
Haverford College Haverford College 

Haverford Scholarship Haverford Scholarship 

Faculty Publications Physics 

1996 

A New Model of the Solar Cycle A New Model of the Solar Cycle 

E. Knobloch 

Adam Landsberg 
Haverford College, alandsberg@haverford.edu 

Follow this and additional works at: https://scholarship.haverford.edu/physics_facpubs 

Repository Citation Repository Citation 
E. Knobloch and A.S. Landsberg. (1996). A New Model of the Solar Cycle. Monthly Notices of the Royal 
Astronomical Society 278: 294. 

This Journal Article is brought to you for free and open access by the Physics at Haverford Scholarship. It has been 
accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more 
information, please contact nmedeiro@haverford.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Haverford College: Haverford Scholarship

https://core.ac.uk/display/229125958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarship.haverford.edu/
https://scholarship.haverford.edu/physics_facpubs
https://scholarship.haverford.edu/physics
https://scholarship.haverford.edu/physics_facpubs?utm_source=scholarship.haverford.edu%2Fphysics_facpubs%2F555&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmedeiro@haverford.edu


1
9
9
6
M
N
R
A
S
.
2
7
8
.
.
2
9
4
K

I. 

Mon. Not. R. Astron. Soc. 278, 294-302 (1996) 
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ABSTRACT 
A new model of the solar magnetic activity cycle is proposed. The model is based on 
the symmetries of a rotating star, and describes the interaction between dipole and 
quadrupole fields in the weakly non-linear regime. The model describes not only pure 
dipole and quadrupole dynamos, but also the transitions with increasing dynamo 
number to mixed polarity states, and in appropriate regimes to aperiodic states which 
are highly suggestive of prolonged activity minima such as the Maunder minimum. 

Key words: Sun: activity - Sun: magnetic fields - Sun: rotation - sunspots. 

1 INTRODUCTION 

The study of the solar magnetic cycle dates from the time of 
Galileo. It is now known that the cycle has an approximate 
22-yr period but variable amplitude. In particular, during 
certain prolonged periods, now known as the Maunder or 
grand minima, the number of sunspots has decreased 
dramatically, and sunspots may have been absent altogether 
(Weiss 1994). A number of more or less realistic models have 
been proposed, both for the basic solar cycle and for its 
amplitude 'vacillation'. These models are of two types: the 
first relies on numerical integration of the full MHD equa
tions, usually with a parametrized a-effect and field loss via 
magnetic buoyancy. In recent years this approach has been 
pursued particularly by A. Brandenburg and colleagues (see, 
e.g., Brandenburg et al. 1989a,b). The second approach, 
pursued by N. O. Weiss and colleagues (Weiss, Cattaneo & 
Jones 1984; Jennings 1991; Jennings & Weiss 1991; Weiss 
1993, 1994; Tobias, Weiss & Kirk 1995), has focused on 
model systems that attempt to capture the essential physics 
of dynamo action while preserving the correct spatial 
symmetries of the problem, but otherwise makes no attempt 
at quantitative predictions (see also Platt, Spiegel & Tresser 
1993). In fact, these two approaches are somewhat comple
mentary and, given the parametrization of the full equations, 
neither approach is at present capable of detailed predictions 
(cf. Hoyng 1990; Weiss 1994). 

The present paper is in the spirit of the second approach. 
It takes as its starting point the observation that the solar 
dynamo does not, in fact, operate in a pure multipole state 
(Tang, Howard & Adkins 1984; Stenflo & Vogel 1986; 
Visozo & Ballester 1990). Such states will be referred to as 
mixed parity or non-symmetric states. The slow modulation 
of the solar cycle can then be thought of as a low-frequency 
oscillation between the dipole and quadrupole components. 

Such an oscillation could be periodic (if major actlVlty 
minima occur periodically), or aperiodic as in the Sun. The 
paper focuses on the interaction of the dipole and quadru
pole modes, and studies the most general equations describ
ing such a mode interaction that are consistent with the 
symmetries of a rotating star. The modes involved are either 
axisymmetric or non-axisymmetric; the latter drift in the 
azimuthal direction as well as in latitude. Such modes are 
entirely natural in systems of this type (cf. Net, Mercader & 
Knobloch 1995). The equations are then truncated at third 
order. Such a truncation requires that the two modes bifur
cate at nearby dynamo numbers. If this is so, the truncated 
equations provide a quantitatively exact description of the 
mode interaction. If the two modes bifurcate at dynamo 
numbers that differ substantially, the truncated equations 
should still provide a qualitative description of the inter
action. 

In addition to the observational support for mixed parity 
dynamos, many dynamo models also show such behaviour. 
Moreover, such models show that the first two modes to 
become unstable are typically the dipole and quadrupole 
modes (e.g. Brandenburg et al. 1989a, b; Jennings & Weiss 
1991), providing additional support for studying their non
linear interaction. The equations describing this interaction 
contain a relatively small number of free coefficients, and 
these can be varied to explore the possible dynamics result
ing from the interaction. These coefficients can be computed 
by standard techniques from whatever basic partial differen
tial equations are of interest. In the absence of such calcula
tions, the model does not have quantitative predictive power; 
it can, however, be used to shed light both on the solar cycle 
and on the dynamics observed in the numerical simulations, 
and can do so more simply than using partial differential 
equations. It is this point of view that is adopted here. The 
model is based on the ideas put forward by Knobloch 
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(1994a) and suggests a plausible mechanism for the occur
rence of Maunder minima. 

2 THE MODEL 

In the following we let zo(t) and ze(t) be the (complex) ampli
tudes of the toroidal magnetic field in the dipole and quadru
pole states. In the former the toroidal field is antisymmetric 
with respect to the equator, while in the latter it is symmetric. 
These fields are thus odd and even with respect to reflection 
in the equator. In spherical polar coordinates (r, e, ¢) the 
toroidal field may then be written in the form 

Bt(r, e, ¢)=Re{zoeim¢fo(r, e)+ zeeim¢fe(r, e)} 

+ higher order terms, (1) 

where fa e denote the spatial eigenfunctions of the two 
modes, and m is the azimuthal wavenumber. The two 
eigenfunctions have the following symmetry properties: 
fo(r, n- e)= -fo(r, e),fe(r, n- e)=fe(r, e). There is a similar 
expression for the poloidal field with amplitudes that are 
related to (zo, ze) by the solution of the linear dynamo 
problem. Consequently, the dynamics of both fields is fully 
determined once the time evolution of (zo, ze) is known. Note 
that we have assumed that both competing modes have the 
same non-zero azimuthal wavenumber m. This is a plausible 
assumption, since the dynamo number is expected to be a 
strong function of m. It follows from rotation and reflection 
invariance of the problem (i.e., invariance under ¢ - ¢ + ¢o 
and e - n - e) that the amplitude equations must be equi
variant with respect to 

rotation: (zo, ze) - eim¢O(zo, ze), 

reflection: (zo, ze)-( - zo, ze)· 

(2a) 

(2b) 

The equations for (zo, ze) thus take the form, truncated at 
third order, 

(3a) 

(3b) 

Here f.l + iw and f.l' + iw' are the growth rates and frequen
cies of the two modes, and Kj , Kj are complex coefficients. 
The assumption that m ¢ 0 is not essential to the derivation 
of these equations. Similar equations follow even when m = 0 
(axisymmetric modes), provided that the frequencies of the 
two modes are sufficiently near one another that the problem 
is captured by an unfolding of the 1: 1 temporal resonance 
(Landsberg & Knobloch 1994). Such situations do, in fact, 
arise in axisymmetric dynamo models (Jennings & Weiss 
1991). It should be noted, however, that the m=O case is 
special in that the initial instability need not be a Hopf 
bifurcation; in such systems dynamo waves need not be 
present. In the general case with two incommensurate fre
quencies w, w', equations (3a) and (3b) can be simplified 
even further by so-called normal form transformations. Since 
the validity, in parameter space, of such normal form 
equations is more limited than that of the original system, we 
choose to work with equations (3a) and (3b). In describing 
the solutions of these equations and their relation to the 
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dynamics of the magnetic field we shall retain the terminol
ogy dipole and quadrupole when referring to the amplitudes 
Zo and Ze' even though it does not apply, strictly speaking, to 
non-axisymmetric fields; the terminology odd/even is more 
precise. 

In the following we set, without loss of generality, 
f.l = A. + ~A., f.l' = A. - ~A., and treat A. as the bifurcation 
parameter. Thus the dipole state sets in when A. = - ~A., and 
precedes the onset of the quadrupole state at A. = ~A. pro
vided that ~A. > O. In general, these pure parity states are the 
only ones that bifurcate from the non-magnetic state 
described by Zo = ze = 0, although, as discussed below, in 
appropriate circumstances an additional quasi-periodic 
solution can also bifurcate from this state. Note that the pure 
parity (non-axisymmetric) modes take the form of dynamo 
waves that travel not only in the azimuthal direction but also 
in latitude. For example, if Ze = 0 and we write fo = I fo I ei<l>, 
then equations (1) and (3a) show that Bt=lzollfo(r, e)1 
x cos [Q t + m¢ + <I>(r, e)]. Here Q is the frequency of the 
non-linear dipole dynamo, IQ - wi = &(A. + ~A.). For fixed r, 
¢, this expression describes the usual 'butterfly' diagram for 
such a dynamo. In addition, it shows that the pure parity 
modes are necessarily rotating waves, so that spatial rotations 
are equivalent to time evolution. It is also easy to check the 
general result that only the first mode to become unstable 
can be stable and then only when it bifurcates supercritically 
(Iooss & Joseph 1980). 

3 DYNAMICS OF THE MODEL 

Equations (3a) and (3b) depend on six complex coefficients, 
in addition to the parameters specifying the linear problem. 
To illustrate the dynamical behaviour exhibited by equations 
(3a) and (3b) and reduce the number of parameters, we set 
K j = K~, K2 = K~, K3 = K~. This is, in fact, a consistent 
assumption whenever the two modes are nearly degenerate, 
i.e., whenever fa - fe, 0 < e < n/2. In the following we suppose 
that the first mode to become unstable is the dipole mode, 
with the quadrupole mode following at a slightly larger A. 
(dynamo number). Although it is not necessary, we also 
suppose that Re K j < 0, i.e., that both modes bifurcate super
critically. Equations (3a) and (3b) have a number of possible 
solutions, which we now describe and relate to the magnetic 
field. Time-independent solutions of the form (Izo I, IZel) = 
(Izol, 0) and (0, IZel) correspond, respectively, to pure dipole 
and quadrupole modes. These are therefore periodic 
dynamos in which dynamo waves propagate towards the 
equator in a periodic fashion with well-defined symmetries 
relative to the equator. When Iw-w'l= &(~A.), the non
linear terms promote frequency locking between the non
linear frequencies Q, Q' of the two competing modes, 
resulting in periodic dynamos with a constant mixture of 
both dipole and quadrupole modes. These states correspond 
to time-independent solutions of equations (3a) and (3b) of 
the form (Izol, IZel), IZozel ¢ 0, and appear in pitch-fork 
bifurcations from the pure parity states. In addition, there are 
two types of oscillatory solutions (lzo(t)I, IZe(t)I), ones that 
oscillate about a pure parity mode, and ones that oscillate 
about a mixed parity mode. These correspond to dynamos 
that are quasi-periodic, since the new oscillation frequency is 
superimposed on the basic dynamo frequency w. As we 
discuss below, such solutions come about through secondary 
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bifurcations, and hence their frequency is always small 
relative to the dynamo frequency. This is because the new 
frequency is related to the amplitude of the solutions at 
which the bifurcation takes place. This frequency has there
fore nothing to do with the linear beat frequency between the 
two modes, nor does the growth rate of the linear modes 
have any bearing on the nature of the non-linear state that 
will ensue. As also discussed below, the symmetric oscilla
tions are usually produced through secondary Hopf bifurca
tions from a pure parity state, or through so-called gluing or 
global bifurcations. Finally, there are circumstances under 
which there is a bifurcation to such quasi-periodic oscilla
tions directly from the trivial state (Swift 1988). In this case 
the new frequency starts from zero, rather than from a small 
but finite value, and increases with increasing A. All of these 
solutions, except the last, can be identified with the various 
solutions found by Brandenburg et al. (1989a, b) and Schmitt 
& Schussler (1989) in their numerical integration of the 
mean field dynamo equations with a-quenching and flux loss 
through magnetic buoyancy. The corresponding 'butterfly' 
diagrams are readily constructed, since within the present 
theory the spatial structure of the modes is given simply by 
the dipole and quadrupole eigenfunctions. Thus all that is 
necessary is to take the solutions (zo(t), ze(t)) and multiply 
them by the appropriate eigenfunctions, plotting the results 
for fixed r, ¢ in the (0, t )-plane using the representation (1), 
cf. Dangelmayr, Knobloch & Wegelin (1991). However, in 
contrast to the problem studied by Dangelmayr et al., the 
dynamo problem admits waves travelling in one direction 
only, towards the equator. Consequently, we take 

io,e(O)=e(r-ik)O sin 20, 
n 

0<0<-
2 

io,e(O)= ±e(y-ik)(rr-O) sin 20, 
n -< O<n, 
2 

(4a) 

(4b) 

and use these trial eigenfunctions to construct butterfly 
diagrams illustrative of the different possible solutions of 
equations (3a) and (3b). These eigenfunctions are the sim
plest ones that capture the directionality (equatorward if 
k > 0, poleward if k < 0) and approximate shape of the 
unstable dynamo modes. Here y is a real parameter related 
to the group velocity of the waves, and the r, ¢ dependence of 
the eigenfunctions has been omitted. The eigenfunctions are 
continuous at 0 = nl2 where they vanish, and falloff towards 
either pole provided that y> O. In Fig. 1 we show examples 
of butterfly diagrams for pure dipole and quadrupole fields 
constructed using these eigenfunctions. These are, respec
tively, antisymmetric and symmetric in the equator. We have 
chosen to represent these (and subsequent) solutions in 
terms of a sequence of time slices, instead of the more usual 
contour plots, in order to be able to represent states with 
more complex time-dependence as well. These solutions 
represent fully non-linear solutions of the dynamo problem, 
since they solve equations (3a) and (3b) for the indicated 
values of the coefficients K j , K2 and K3• To generate these 
solutions we have chosen the mode-splitting parameter LlA 
arbitrarily (here LlA = 0.0001), assuming that the frequency 
difference w - w' depends linearly on LlA. It should be clear 
that the dynamics of equation (3a) and (3b) depend only on 
this difference. The actual frequencies w, w' are required 
only for the construction of the corresponding butterfly 

3 . 14 '---:-'t=""'o......i..-~t=-!1"7/.,..4 ~-'-..,..t=-!1...,,/2::-'--~t=-=3-:-/4:-'--........,t....i.=.,..1-.....J 

3.14L-_~~_~~~~....i.-~~~~~~~~..,..,....~.....J 
toO t=1/4 t=1/2 t=3/4 t=l 

Figure 1. Stable dynamo solutions in the form of (a) a dipole, and 
(b) a quadrupole. The states are represented by a sequence of 
equally spaced time slices B,( 8, tn), n = 1, ... , extending over one 
period of the dynamo cycle. Here 8 is the colatitude, and the dashed 
line denotes the equator. The parameter values for the dipole 
solution shown are (ft, ft', w, w', K j , K2, K3 )=(0.0004, 0.0002, 
6.283, 6.263, - 1.0 + 1.0i, - 2.0 + 1.0i, - 0.3 + 2.0i), i.e., 
A. = 0.0003, ~A. = 0.0001, w - w' = 0.02. The quadrupole solution 
was obtained by interchanging the primed and unprimed para
meters. The eigenfunction parameters are k = 11.0, Y = 5.0. 

diagrams. In order to construct these, one needs to choose, in 
addition to the absolute frequencies, the eigenfunction 
parameters k and y. For the case shown in Fig. 1 we have 
used k = 11.0, Y = 5.0, so that most of the activity is confined 
to a ± 30° strip around the equator, as observed in the Sun. 
The figures show clearly that the dynamo waves propagate 
towards the equator, either out of phase or in phase in the 
two hemispheres. Because no effort has been made to choose 
trial eigenfunctions that are differentiable at the equator, the 
quadrupole solution exhibits some unphysical behaviour at 
0= n12. If one used exact eigenfunctions, as in the model 
problem worked out by Worledge et al. (1995), this artefact 
would be absent, although at the expense of a significantly 
more complex expression in place of equations (4a) and (4b). 
Even in the absence of a theoretical prediction, the appropri
ate eigenfunctions can in principle be determined from 
observational data and used to elucidate the appearance of 
the toroidal field corresponding to other solutions of equa
tions (3a) and (3b). In view of the fact that the butterfly 
diagrams inevitably depend on the choice of the eigenfunc
tions, we represent in Fig. 2 the corresponding solutions in 
terms of the time series zo(t) and ze(t). Note that, in spite of 
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the distinct and apparently complex spatial dependence, 
both solutions have identical sinusoidal dynamics. In fact, if 
viewed in terms of the projection on to the amplitudes IZol 
and IZel, these solutions are just fixed points. Both of these 
representations provide an eigenfunction-independent 
characterization of these simple solutions. In Fig. 3 we show 
the slightly more complex mixed parity solution, represented 
by a fixed point of the form (Izol, IZel), IZozel "" O. Fig. 4 shows 
the corresponding time series (zo(t), ze(t)). Observe that the 
two (complex) amplitudes have the same (non-linear) fre
quency, and a fixed phase relation. All these solutions satisfy 
equations (3a) and (3b), and their stability can be determined 
by linearizing these equations about these solutions. 

In Fig. 5 we show stable quasi-periodic solutions. These 
solutions are, respectively, symmetric and asymmetric with 
respect to the equator. In the representation of Fig. 5 the 
solutions have been strobed with the basic dynamo fre
quency, leaving only the modulation frequency. The figures 
present equally spaced time slices within the modulation 
period. The equatorward motion of the dynamo waves 
cannot be seen in these figures, which focus on the long-time 
behaviour of the solutions. In order to characterize these 
solutions in an eigenfunction-independent way, we intro
duce, following Swift (1988), the (real) coordinates (u, v, w) 

t 

Figure 2. The time series Re zo(t} and 1m zo( t) used to construct 

defined by 

u + iv = 2zoze, 

w=l zeI2-lzoI2. 

A new model for the solar cycle 297 

(5a) 

(5b) 

The use of these coordinates eliminates the (non-linear) 
dynamo frequency from the dynamics while retaining infor
mation about the amplitudes and relative phase of the dipole 

t 

Figure 4. The time series zo(t} and ze(t} used to construct Fig. 3. 

Fig. l(a}. Fig. l(b} is constructed from identical time series for Ze' (b)o .--~~_~~_~~_~~_~_~~_~~-, 

o 

q, 

" "" " ~ 
C,) 

3.14~_t~=~O~-~t-=~1/~4~-~t=~1~/~2~~-t-=~3~/4~-~-t=~1~ 

Figure 3. A mixed parity state for (Il, Il', W, Wi, K 1, K 2, K3)=(0.04, 
0.02, 6.27, 6.29, - 36.05 + 20.30i, - 0.9187 -16.62i, -1.0), i.e., 
A = 0.03, AA = 0.01, w - Wi = - 0.02. The eigenfunction parameters 
are k= 11.0, 1'= 4.0. 

©1996 RAS, MNRAS 278, 294-302 

q, 

~ .a 
~ 
'0 
C,) 

3.14~~~_~~~~~~~~~~~~~_~~~ 
t=O t=31.S t=63.6 t=95.4 t=127.2 

Figure 5. Modulated (two-frequency) dynamo states. (a) A stable 
symmetric state for (Il, Il', W, Wi, K 1, K 2, K 3)=(0.16, 0.20, 6.5108, 
6.0556, -1.0 + 1.0i, -1.0 - O.3i, 1.0 + 0.5i), i.e., A = 0.18, 
AA = - 0.02, w - Wi = 0.4552; (b) a stable non-symmetric state for 
(0.11, 0.09, 6.2838, 6.2826, - 0.875 + 1.0i, -1.015 + 1.Oi, 
0.02+0.5i), i.e., A=O.I, AA=O.OI, w-w' =0.0012. The eigen
function parameters are k = 11.0, l' = 4.0. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 

 at H
averford C

ollege L
ibrary on M

arch 3, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://adsabs.harvard.edu/abs/1996MNRAS.278..294K
http://mnras.oxfordjournals.org/


1
9
9
6
M
N
R
A
S
.
2
7
8
.
.
2
9
4
K

298 E. Knobloch and A. S. Landsberg 

and quadrupole modes. Consequently, the quasi-periodic 
solutions shown in Fig. 5 correspond to simple limit cycles in 
the (u, v, w) variables. We show such limit cycles projected 
on the (v, w) plane in Fig. 6. To interpret this figure, note that 
a pure dipole state corresponds to the fixed point (0, 0, w) 
with w < 0, while the fixed point (0, 0, w) with w > ° 
describes a pure quadrupole. Note also that the reflection 
symmetry in the equator, (zo, ze) .... (-zoo ze), translates into 
the symmetry (u, v, w) .... ( - u, - v, w) in the new variables. 
Consequently, a symmetric quasi-periodic dynamo (Fig. 5a) 
corresponds to a limit cycle in the (v, w) plane which is sym
metric under v .... - v (Fig. 6a), while an asymmetric quasi
periodic dynamo corresponds to one of a pair of limit cycles 
related by reflection in v = ° (Fig. 6b). In contrast, the projec
tion of the dynamics onto the variables (Izol, IZel) completely 
hides their symmetry properties by ignoring the relative 
phase of the modes (see Figs 6c and d). 

Analysis of equations (3a) and (3b) shows that as A is 
varied for fixed L1A. the pair of asymmetric cycles can form a 
double homoclinic connection to the fixed point correspond
ing to the dipole state; this connection then breaks, forming a 
symmetric limit cycle (Landsberg & Knobloch 1994). In Fig. 
7 we show the result of solving equations (3a) and (3b) for A 
just prior to this gluing bifurcation. The solutions are repre
sented both in the (v, w) plane as in Fig. 6, but also in terms 
of the variables 

E=Ju2+V2+w2=lzoI2+lzi, (6a) 

P=w/E, -1~P~I, (6b) 

0.2 

0.15 

W 0.1 

0.05 

-0.05 
-0.15 -0.1 -0.05 0.05 0.1 0.15 

V 

(c) 
0.425 

0.4 

0.375 

Izel 0.35 

0 0.325 

0.3 

0.275 

0.1 0.15 0.2 0.25 0.3 

Izol 

introduced by Brandenburg et al. (1989a,b) to analyse the 
results of their direct simulations of the partial differential 
equations for an a-Q dynamo with a quenched a-effect. 
The variable E provides a measure of the magnetic field 
energy in the dynamo, while the quantity P measures the 
preference of one polarity over the other. Specifically when 
P = - 1 the field is dipolar, while when P = 1 it is quadru
polar. In both cases the proximity to the homoclinic connec
tion results in a highly non-linear time series E(t) and P(t), 
spending long periods of time in a nearly pure dipole state, 
before making a brief and abrupt excursion in which the 
quadrupole mode is briefly excited. These brief periods are 
correlated with a significant drop in the magnetic energy E. 
This solution is evidently closely related to that found by 
Brandenburg et al. (1989b, fig. 5), who tentatively identify it 
with the Maunder-like grand minima in the solar cycle. In the 
following we refer to such solutions as type I grand minima. 
Note, however, that neither E(t) nor P(t) reveal the sym
metry of the resulting dynamo state. Moreover, as shown in 
Figs 6(a) and (c), a stable symmetric quasi-periodic state can 
coexist with a stable mixed parity (periodic) state, showing 
that the dynamo can operate under identical conditions in 
one of several different modes. In these cases the 'initial 
conditions' determine the actual state realized. 

Equations (3a) and (3b) also exhibit more complicated and 
perhaps more interesting behaviour, in which both ampli
tudes IZo i, I Ze I spend a significant time near zero before 
making a large-amplitude excursion. These solutions also 
describe strongly non-linear modulation of the dynamo 

W 

-0.075 

-0.1 L~~~;;;'==::;;::;:;~=-~::::;::;;;:~::::;::',,;;-:-~-;:-,;::;-----l 
-0.06 -0.04 -0.02 0.02 0.04 0.06 

v 

(d) 0.3 r::--~~-~-~~--~--~-----... 

0.25 

I Ze I 0.2 

0.15 

Figure 6. The limit cycles in the (v, w) and (Izol, Izel) planes corresponding to Figs 5(a) and (b). Note that in (a) the symmetric modulated state 
coexists with a stable mixed parity periodic dynamo, corresponding to one of a pair of fixed points (d. Fig. c). 
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Figure 7. (a) The limit cycles in the (v, w) plane just prior to the 
gluing bifurcation, describing dynamos with type I grand minima; (b) 
and (c) The corresponding time series E(t) and P(t). The parameter 
values are (p., p.', w, w', K" K z, K3)=(0.0685942, 0.0357942, 
6.24319, 6.32319, -1.0 + 1.0i, -1.0 -O.3i, 1.0 + 0.5i), i.e., 
A = 0.0521942, ~A = 0.0164, w - w' = - 0.08. The corresponding 
figures just after the gluing bifurcation are essentially indistinguish
able, except that in (a) the trajectory now traverses both lobes of the 
limit cycle. 

cycle, but this time it is the energy E that remains small over 
long times. Such states represent a second and distinct 
mechanism for producing Maunder-like grand minima. Figs 
8 and 9 show that these type II minima can occur either 
periodically or irregularly, though always with a well-defined 
characteristic period. In this respect the present model 
differs from that put forward by Platt et al. (1993). In fact, the 
observational data indicate both that there is a well-defined 
interval between successive minima (208 yr) and that their 
form tends to be similar (Weiss 1994). The solutions shown 
in Figs 8 and 9 are highly non-linear, and are characterized 

© 1996 RAS, MNRAS 278, 294-302 

A new model for the solar cycle 299 

(a) 100 

BO 

60 

E(t) 

40 

20 

0 
0 

..I 
50 100 150 200 250 300 

t 

(b) 

0.75 

0.5 

pet) 

-0.25 

-0.5 

-0.75 

-1 
50 100 150 200 250 300 

t 

(e) 7 

Izol 

Figure 8. Solutions exhibiting periodic, type II grand minima. (a) 
The time series E(t); (b) the time series p(t); and (c) the projection 
on to the reduced phase space (Izol, IZell. The parameters are (p., p.', 
w, w', K j , K 2 , K3)=(0.035, 0.165, 6.323, 6.243, -0.95 + 1.5i, 
0.5 -1.0i, 0.5 +0.5i), i.e., A =0.1, ~A = -0.065, Co - w' =0.08. 

by an exponential build up in the energy E of the magnetic 
field, followed by an abrupt collapse. At the same time, the 
dominant polarity of the field undergoes an abrupt reversal. 
Note that, unlike the solutions described in Fig. 7, the 
characteristic asymmetry of this new class of solutions 
resides in the time series E(t) as opposed to p(t). Conse
quently, these new solutions describe Maunder-like minima 
in which the field oscillates between fields containing both 
dipole and quadrupole components, resulting in a dynamo 
cycle that is superficially more complicated. Unlike the type I 
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Figure 9. Solutions exhibiting (apparently) aperiodic, type II grand 
minima. (a) The time series E(t); (b) the time series p(t); and (c) the 
projection on to the reduced phase space (Izol, IZel). The parameters 
are (11, Il', w, w', K J, K2, K3)=(0.48, -0.08, 6.123, 6.443, 
- 0.9 + 3.0i, 0.5 + 0.5i, 0.5 + 0.5i), Le., A. = 0.2, ~A. = 0.28, 
w-w' = -0.32. 

solutions, the type II states are apparently not directly 
associated with the proximity to a global bifurcation. 

Yet other types of solutions can be obtained by increasing 
Iw - w'l. For example, for large enough Iw- w'l the steady 
state (Izol, IZel) will describe a quasi-periodic oscillation as 
the two (non-linear) frequencies Q, Q' unlock. Such oscilla
tions resemble 'beating' familiar from linear problems, with 
the beat period corresponding to the period of the resulting 
amplitude vacillation, and can be easily distinguished from 
the two-frequency oscillations present when I w - w'l is small. 

This is because in the former case the amplitudes (zo' ze) 
oscillate about a zero mean, while in the latter case they 
oscillate about a non-zero amplitude (and about a fixed 
phase as well). 

It is interesting and instructive to compare the solutions 
described above with those obtained by Brandenburg et al. 
(1989a,b; see also Schmitt & Schussler 1989) by direct 
simulation of the partial differential equations for an a-Q 
dynamo with a quenched a-effect. The calculations by these 
authors (d. Brandenburg et al. 1989b, fig. 5) reveal a 
scenario of the type described in Figs 6 and 7, i.e., the 
presence (for appropriate values of the dynamo number) of 
highly non-linear oscillations about a mixed parity state, in 
which the system spends most of the time in a state of nearly 
pure parity (dipole) containing the most energy, while making 
brief periodic excursions into the competing (quadrupole) 
state. The oscillations exhibit the same type of asymmetry in 
p( t), with a slower rise and a rather more rapid fall-off, as 
shown in Fig. 7(c). Although Brandenburg et al. do not 
discuss the spatial symmetry of their solution, we believe on 
the basis of our investigation of equations (3a) and (3b) that 
the appearance of solutions of this type heralds a change in 
the symmetry of the cycle from a non-symmetric to a sym
metric (quasi-periodic) dynamo. For other values of the 
dynamo number the observed solutions look more like that 
shown in our Fig. 6(b), indicating that the quasi-periodic 
dynamo is, in fact, asymmetric (d. Brandenburg et al. 1989b, 
fig. 6). Note that the invariant circles in the Poincare sections 
used by Brandenburg et al. to describe their quasi-periodic 
solutions are directly comparable to the limit cycles in the (v, 
w)-plane shown in Figs 6 and 7. The use by these authors of· 
the full solution instead of its envelope results in inessential 
complexity and one that makes the understanding of the 
dynamics more difficult. For example, fig. 6 of Brandenburg 
et al. (1989b) is of the type shown in our Fig. 6(b), except that 
in our Fig. 6(b) the basic frequency of the dynamo waves has· 
been removed. A further study of the case described in Figs 
6 and 7 of this paper indicates that the symmetric quasi
periodic state created in the gluing bifurcation disappears in 
a frequency locking bifurcation that creates a pair of stable 
and a pair of unstable limit cycles on an invariant torus 
(Landsberg & Knobloch 1994, fig. 7). Each of the new limit 
cycles describes a mixed parity periodic dynamo, and all 
coexist with a pair of unrelated mixed parity states (d. Fig. 
6c) as well as the two pure parity states. Such a picture 
appears to be consistent with that summarized in fig. 12 of 
Brandenburg et al. (1989b). Brandenburg et al. find no 
evidence for the type II grand minima, or for the presence of 
chaotic dynamos. This is undoubtedly because of their 
inability to explore the parameter space; it is well known that 
the gluing bifurcation described in Figs 6 and 7 can, under 
appropriate conditions on the eigenvalues of the pure mode, 
lead to a homoclinic explosion, much as occurs in the well
known Lorenz equations (d. Rucklidge & Matthews 1995). 
Equations (3a) and (3b) facilitate greatly the exploration of 
parameter space, and can be used to locate regions of non
periodic modulation. 

4 CONCLUSION 

The model proposed here is based on the rotation and 
reflection invariance of a rotating star. The former is respon-
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sible for the fact that all primary dynamo modes that break 
azimuthal symmetry precess, Le., for the fact that all such 
modes are produced in Hopf bifurcations leading to rotating 
waves (cf. Ecke, Zhang & Knobloch 1992; Knobloch 
1994a). The latter can be shown to imply that each mode is 
either odd or even with respect to the equator. The resulting 
amplitude equations describing the interaction of the first 
two such modes to become unstable as the dynamo number 
is increased are related to the equations put forward by 
Knobloch (1994a) to describe the solar cycle in terms of the 
amplitudes of dynamo waves travelling towards the equator 
in the northern and southern hemispheres. In particular, if we 
denote these amplitudes by v, W, we see that Zo = v - W, 
Ze = V + W. The reflection symmetry (J -+ n - (J takes (v, w) to 
(w, v). In these variables equations (3a) and (3b) become 

where a =K, - K2 -3K3, b =K, + K2 +K3 and c=K,
K2 + K3, and we have again ignored the difference between 
Kj and Kj, j = 1, 2, 3. These equations differ from those 
suggested by Knobloch (1994a) only in the presence of the 
new terms (vw2, v2w). Consequently, it comes as no surprise 
that the dynamics of equations (3a) and (3b) bear substantial 
resemblance to that of equations (7a) and (7b) with c = 0; in 
addition to the two primary modes, equations (7a) and (7b) 
with c = 0 exhibit secondary bifurcations to single frequency 
mixed parity states and to quasi-periodic states in which the 
amplitudes lvi, Iwl oscillate with a slow frequency either 
about a pure mode (Ivl = I wi) or about a mixed mode 
(Ivlof I wi)· Such oscillations persist only for an interval of 
dynamo numbers, and with increasing A typically give way to 
the mixed parity states, either via a secondary Hopf bifurca
tion or a global bifurcation at which the new oscillation 
frequency vanishes. These transitions are typically hysteretic. 
See Dangelmayr & Knobloch (1991) and Knobloch (1994a) 
for more details. Indeed, in appropriate circumstances, the 
resulting oscillations will be chaotic (Knobloch 1994b; 
Hirschberg & Knobloch 1995), leading to a non-periodic 
dynamo. It is therefore not surprising that similar behaviour 
is also found in equations (3a) and (3b). However, this model 
also exhibits behaviour very much like the Maunder minima 
in the solar cycle, resulting either from a global bifurcation 
involving a pure dipole mode, or in the case of type II 
minima from the proximity to the origin (Le., the unmag
netized state). The type II behaviour is apparently absent 
from equations (7a) and (7b) when c = O. Both types of 
solutions are naturally identified with cycles in which the 
activity fluctuates over long time-scales (cf. Brandenburg et 
al.1989b). 

The model equations introduced here enable us to discuss 
with ease not only the possible dynamical states of any 
dynamo model sharing the symmetries of a rotating star but 
also the transitions between them, simply by varying the par
ameters and coefficients in equations (3a) and (3b). Such a 
study, though at present incomplete, allows us to obtain an 
understanding of the possible behaviour of such systems. The 
resulting model describes the possible interactions between 
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dipole and quadrupole modes, both when the dipole sets in 
first (L1A > 0) and when the quadrupole sets in first (L1A < 0). 
We have seen that secondary instabilities of these pure parity 
states typically involve mixed parity states. These can be 
either single-frequency or two-frequency states, depending 
on the nature of the bifurcation creating them. We have also 
seen that there are substantial regions in the coefficient space 
of equations (3a) and (3b) in which the variation of a single 
parameter, the bifurcation parameter A, will result in strongly 
non-linear amplitude modulation, and have identified at least 
three distinct mechanisms leading to such modulation. All of 
this behaviour is of codimension-one, i.e., it is accessible by 
varying a single parameter, the dynamo number A. Such a 
detailed study would not be possible in models based on 
partial differential equations. In fact, the basic message of 
this paper is that even the simplest non-linear dynamo 
models cdnsistent with the symmetries of a rotating star have 
such a bewildering variety of solutions that even a concerted 
effort has failed thus far to provide a complete description 
(cf. Dangelmayr & Knobloch 1991; Landsberg & Knobloch 
1994; Hirschberg & Knobloch 1995). 

In relying entirely on the symmetries of the problem the 
approach adopted in this paper strips the dynamo problem 
to its absolute essentials. In this respect it differs from earlier 
studies of this type which relied on models based on a drastic 
truncation of some dynamo equations (see, e.g., Weiss 1993). 
Such truncations have been found very helpful in interpret
ing dynamo behaviour. On the other hand, they are also 
limited in that they are not completely general. In the present 
approach we replace uncertainties in modelling various 
physical processes (and even uncertainty in which processes 
should be included!) by the freedom to select a relatively 
small number of coefficients in the amplitude equations. This 
approach, called astromathematics by Spiegel (1994), offers 
the best opportunity for exploring the possible dynamics that 
are available to dynamo models, and provides a viable 
explanation of Maunder minima. However, even these 
undoubtedly simplest possible equations appear to describe 
such a range of possible behaviour that a complete under
standing of possible dynamo behaviour may remain elusive 
(cf. Hirschberg & Knobloch 1995). 
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