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PHYSICAL REVIE%' 0 VOLUME 33, NUMBER 2

Behavior of homogeneous five-dimensional space-times

Paul Halpern
Institute for Theoretica/ Physics, State Uniuersity ofNew Fork at Stony Brook, Stony Brook, New Fork II 794

{Rcceivcd 10 June 1985; revised manuscript received 3 September 1985)

The set of all spatially homogeneous 4,
'4+ 1)-dimensional cosmologies will be explored. %'e will

utilize a classification of these space-times based on the actions of isometry groups on these mani-

folds. Several exact solutions of the Einstein equations will be derived. The possibilities of dimen-

sional reduction and isotropization will be examined. Five-dimensional generalizations of the mix-

master universe will be developed. Finally, the Einstein equations in 4+ 1 dimensions will be

viewed as a Hamiltonian system. The absence of chaotic solutions to these equations will be shown.

I. INTRODUCTION

Higher-dimensional models have come into increasing
popularity as unified field theories. In these theories, the
scales of the extra dimensions are considered to be
presently very small. Chodos and Detweiler' have pro-
posed a model in which one or more of these extra dimen-

sions contract. They considered Einstein's field equations
in five dimensions, which for the vacuum cases are

~jllv 0 s

where 8„„is the five-dimensional Ricci tensor.
They considered a five-dimensional Kasner-type solu-

tion to these equations:

dsi= —dt2+ g (t/to) '(dx')

where gp;= gp;2=1. In order to guarantee the ap-

pearance of isotropy they took pi p2 p&
———p4 ———,'.

This model contracts monotonically in one spatial dimen-
sion, and expands monotonically and equally in the other
three.

An interesting question in cosmology is why the
Universe has three spatial dimensions and not some other
number. An explanation, based on the anthropic princi-
ple, has been proposed. Barrow2 has pointed out the role
played by the dimensions of space-time in determining the
form of various physical laws and constants. Perhaps in-
telligent life can only emerge in a four-dimensional
space-time~

The model of Chodos and Detweiler is not the most
general (4+ 1)-dimensional model in that it is isotropic in
its three expanding spatial dimensions for all time. This
assumption about the state of the early Universe may not
be necessary.

The question of whether or not the Universe has always
been isotropic and homogeneous has been a central issue
in cosmology for quite some time. The fact that local in-
homogeneities, such as galaxies, exist suggests that the
isotropy and homogeneity of the Universe may have been
a later development. One therefore would like to establish
bounds on the anisotropy of the early Universe given the
experimental limits of our current measurements.

Collins and Hawking in their classic paper considered
the set of possible early states of the Universe which could
lead to the present-day isotropy and homogeneity. The set
of initial data which they examined was the set of all spa-
tially homogeneous and three-dimensional cosmologies.
These data include a three-index tensor C't, which de-
fines the action of an isometry group on the initial sur-
face. This tensor can be classified into one of ten types,
called Bianchi types. Each of these ten equivalence
classes of tensors forms a submanifold in the space of all
three-index tensors. Only four of these types, correspond-
ing to submanifolds of largest dimension, form a set of
nonzero measure in the space of all initial data. Collins
and Hawking showed that the set of all initial data lead-
ing to isotropy at later times is of measure zero. Thus, an
isotropic universe is dynamically unstable under the ac-
tion of all homogeneous perturbations.

In order to explain the improbability that the Universe
is isotropic today, given this set of possible initial condi-
tions, Collins and Hawking advocated applying the an-
thropic principle. One considers the set of all possible
universes. Only in universes which have very nearly ihe
escape velocity can galaxies be formed. Collins and
Hawking found that these universes approach isotropy at
large times. Since the existence of galaxies is probably
necessary for the development of intelligent life, our ex-
istence in the galaxy implies that the Universe is isotropic.

In order to fully generalize this, one might extend our
set of initial data to include universes of higher dimen-
sion. I.et us now consider the set of all possible universes
of any number of dimensions. A subset of this collection
possesses the following properties.

(1) Only three spatial dimensions are observable, after a
sufficient amount of time.

(2) After a sufficient amount of time, any anisotropy
that may exist is within today's experimental limits.

An interesting and well-defined program is the deter-
mination of the size of this subset. We first place same
limits on the set of initial data. We limit this set to
homogeneous cosmologies. Also, for the purposes of this
study, we shall only consider five-dimensional space-
times. We do this for several reasons. First of all, the
original higher-dimensional unified field theories had
4+ 1 dimensions. These theories reduce to the Einstein-
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Maxwell equations. Second, the structure constants and
Killing vectors for the homogeneous five-dimensional
space-times have been cataloged. Third, some of these
cosrnologies have already been studied. Finally, some of
our results have implications for higher-dimensional
models.

The real four-dimensional Lie algebras have been classi-
fied by different authors. We shaH use the classification
given by Fee. In this classification, there are 15 distinct
real four-dimensional Lie algebras, called 60—614 (see
Table I). The set of structure constants of each of these
groups form submanifolds in the space of all three-index
tensors.

The maximum dimensionality of these submanifolds is
9. Nine of the Fee algebras have the distinction of corre-
sponding to submanifolds of this dimension. The remain-
ing ones, GO, 61, G2, 63, 64, and 65, are not general in
the sense that they form a set of zero measure in the space
of three-index tensors. GO corresponds to a submanifold
to 0 dimension, for instance.

We shall examine the solutions of the Einstein equa-
tions for some of these types and determine whether or
not, in these models, three dimensions expand monotoni-
cally and at equal rates while one contracts to unobserva-
bility, given a long enough amount of time.

Also we shall examine the dynamical properties of the
Einstein equations as a Hamiltonian system. To do this,
we extend the powerful technique of Arnowitt, Deser, and
Misner to five dimensions. We compare the dynamical
properties of (3 + 1)-dimensional and (4+ 1)-dimensional
solutions of the Einstein equations. Are there any proper-
ties of the solutions of these equations which are exhibited
in the (3+ 1)-dimensional case, but not in higher dimen-
sions'

II. SOME SIMPLE FIVE-DIMENSIONAL MODELS

We now will find exact vacuum solutions for some of
the five-dimensional homogeneous cosmologies. We uti-
lize Fee s classification of the four-dimensional Lie
groups. The right- and light-invariant vector fields and
forms are given in Fee s work. We write the metric, in
each case, in the Cartan basis of left-invariant forms:

ds = d—t +goto'cot, gz
——gJ(t) .

The one-forms m' obey

(3)

where the C'„are the structure constants of the appropri-
ate group. In each case we assume the metric to be diago-
nal:

gent=diag(a, b,c,d ) .

%e can now write out the Einstein equations:

(5)

a' b c d—Ro= —+—+—+—=0,
a b c d

(abed )'
1 (abed)

+ 1—

(abed )2=
(abed)

2

—R3 —— +S 3 ——0,(abed )

(abed)

(abed )'
4

(abed)
+S4——0, (10)

+n

&rn
Cmn =

&m

where a dot denotes didt. The „x(n =1,2, 3,4) denote
the appropriate scale factor: a, b, c, or d. The S"„are
functions of a, b, c, d and the structure constants. A
convenient way of writing the Einstein equations is to re-
place the variable t with v in accordance with

dt =Ada, A =abed .

Now let us introduce instead of a, b, c, and d, their log-
arithms a, P, y, and b, respectively. Then the Einstein
equations become

TABLE I. Four-dimensional Lie algebras.

60
61
62
63
64
65

67
68
69
610
611
612
613
614

[y,z] =w
[y,z] =y
[x,z]=x
[ w, z]=w
[x,z]=w+x
[x,z) =w+x
[x,z] px
[x,z]= —w +px
[x,y]=w
[x y)=w
[x,y)=w
[w,y]= —x
[w,y]= —x

All commutators are zero
[x,z] =w
[x,z] =w
[x,z] =w

[Wyl= —x
[w,z]=w
[w,z]=w
[w,z]=w
[w z] pw+x
[w,z]=2w
[w, z] =(1+p)w
[w, z] =2pw
[w,x]=y
[w, x]=y

[x,y]=w
[y z]=x+y
[y,z] =py
[y zj=e
[y z]=qy
[x,z] =x
[x,z]=x
[x,z] =px +y
[x,y] =w
[x,y] = —w

[x,z]=w

[y,z]=x +y

[y,z] = —x +py
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(13}

+2P,y,+2P+,+2yg, ; (14)

R„=O (n =1,2,3,4) .

a = —A S'),
p = —AS 2,

y = —AS 3,2 3

5~= —AS 4',

a +P +y +5 =2a+,+2a,y, +2ag,
2a = —exp(4a+ 25)+exp(45+ 2P),

2P =exp(4a+ 25),

2y„=exp(4a+ 25)+exp(45+ 2P),

25 = —exp(4a+ 25),

(19)

and k2, k3, A, 8, and C are aH constants.
Note that the asymptotic behavior of this solution as

and ~~ —ao is that of a generalized Kasner
model. Therefore, only one set of initial Kasner parame-
ters leads to long-term anisotropy. This model also has
zero measure in the set of all possible initial data.

The Einstein equations for the 62 space-time are

In the case of the space-time corresponding to the GO
Fee group, we have the simple generalized Kasner model.
The Einstein equations are

a~=0,

and

a +P +y +5 =2a+,+2a,y, +2ag,
+2P,y, +213+,+2yg, .

and

=0,

'Y~=O i

5~=0,

From. these equations one can show that
(16)

a =exp(a) =k ~exp(k2r —P—5)

c =exp(y) =k3exp(k4~+P —5) .

(2O)

a +P +y„+5 = 2a+,+2a,y, +2ag,
+2P,y, +2P+,+2yg, .

The solution of this is the Chodos and Detweiler model
mentioned in the last section. Note that the submanifold
corresponding to the group GO has zero dimensions in the
space of all three-index tensors. Also, only one set of pa-
rameters for this model exhibits the long-term behavior of
isotropy in the three observable spatial scale factors.
Therefore this model has zero measure in the space of all
possible initial conditions.

For the Gl space-time the Einstein equations are

2a = —exp(4a+ 25),

2P~= exp(4a+ 25),

2y =exp(4a+ 25),

Thus the Einstein equations (19) reduce to

2P =(k&) exp( 4P 25+—4k2r—),
25 = —exp(45+ 2P),

p~ 5~+2(p~)—+2(5,) +25+~ 2k2k4 4k—2p, =O .—

One particular solution to these equations is

a =exp(a) =k, ,

b =exp(P) =kzr,

c =exp(y) =k4exp(k3~)H,

d =exp(5) =k 5 /~,

with

k(4 ——kg~kg', k) kg' ——2 .

(21)

(22)

a +P +y +5 = 2ag, +2a,y +2ag,
+2P,y, +2P+,+2yg, .

The solution to this is

Note that this model does not expand in three spatial di-
mensions and thus is not a candidate for a Kaluza-Klein
cosmology.

The 63 model is interesting in that its Einstein equa-
tions do not admit a solution with four nonzero scale fac-
tors. The Einstein equations for this model are

a =exp(2a) =Ace sech(co~)exp( k, ~), —
b =exp(2P) =8 cosh(co~)exp(k2r),

c =exp(2y ) =C cosh(co'r)exp(k31 },
d =(1/32}exp(2k&r),

0 a ~ C—R =—+—+—+—=0
a b c 1
(cibcd } ld'
(abed) 2 g2c~

(abed)
(abed)

(24)

(25)

~2= —Zk, 2+k, k2+k, k, +k,k, ,
(abed ) 1 d 1—R3 —— =0
(&bcd) 2 azc2 c2
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&4 (abed)' 1 d4—
(abed) 2 azci

+— (27)

(28)

From Eq. (28), c =kb, where k is a constant. Then by
subtracting Eq. (25) from Eq. (26), one finds that d =0.
Therefore the general solution of these equations is the
four-dimensional Kasner solution:

a =At&,

b =c=Etc, (29)

p.=y. .

Therefore, for this model,

c=kia, d=kib,

(30)

where ki and k2 are constants. This is clearly not a valid
Kaluza-Klein cosmology in that either two of the scale
factors expand, while two contract, or all four expand.

Solutions have been also found for the 67, 68, and
611 five-dimensional space-times as classified by Fee.
Soine of these salutions have the behavior that three of
the spatial dimensions expand monotonically, while one
contracts monotonically. However, in each case, the
dependence of each of the scale factors on time is vastly
different from that of the other two. In each case, the
Universe models become increasingly more anisotropic,
sometimes at an exponential rate.

We can draw some interesting conclusions from this
study. First af all, unlike the (3+ 1)-dimensional case,
not all of the (4+ 1)-dimensional vacuum Einstein equa-
tions for the set of all equivalence classes of structure con-
stants admit solutions. Of this set of solutions, may ex-
hibit the undesirable property of contraction in more than
one scale factor, or expansion in mare than three. Finally,
of this set, the solutions which approach isotropy are
probably of measure zero.

III. THE FIVE-DIMENSIONAL
MIXMASTER MODEL

In recent years, several authors have applied dynamical
systems theory to the study of the solutions of the Ein-
stein equations. One important concept in this theory is
the idea of chaos. Chaos may be viewed as a situation in
which a dynamical system, without the introduction of
stochastic forcing or other random elements, exhibits
behavior which is, for all intents and purposes, unpredict-
able. One would have to know the initial data with abso-
lute certainty in such systems, since solutions with neigh-
boring sets of initial data diverge.

where

1 2p= —
p aild g= —7

The Einstein equations for the 64 universe include the
identities

2a = [(b —c ) —a "]d

2P„=[(c —a ) b]d-
2y = [(a b) c]d— —

(31)

n +p +5 =2a+,+2a,y, +2ap,
+2p, y, +2p+, +2', . (32)

When we can neglect the right-hand side of Eqs. (31),
the solution of these equations is a five-dimensional Kas-
ner space-time. This is the situation in the limit v~00
(t~ao). Since our system is considered to be evolving
backward in time, our initial conditions can be written in
terms of the Kasner parameters:

a =Ap ~ ~+const,

p= A@is+const,

p =A+3'7+ const,

5=Ap~w+ const,

where

gp;= gp;i=1, i =1,4.

(33)

The Universe remains in the Kasner regime only when

Among the set of four-dimensional anisotropic space-
times, the property of chaos distinguishes two Bianchi-

type models. Bianchi types VIII and IX are the only
homogeneous vacuum models which possess a nonzero
metric entropy, an indicator of chaos.

The way that this chaos manifests itself is through a
series of oscillations as a universe of this type collapses to-
wards a singular state. In the evolution of the Bianchi-
type-IX model, two of the universe's scale factors are os-
cillating at any given time, while the third is experiencing
exponential decay. After a transition period, one of the
oscillating scale factors switches with the decaying scale
factor, and a new "era" begins. The length of each era is
dependent on the length of its predecessor. However, a
small change in the length of one era leads to such a large
change in the length of its successor, that the appearance
is that of a random-number generator.

It is interesting to examine whether or not higher-
dimensional cosmologies might possess chaotic solutions.
Several authors have shown that none of the higher-
dimensional extensions of the mixmaster model (Bianchi
type IX) are chaotic. Mixmaster models are universes
which display a pattern of oscillation similar to that of
the Bianchi type-IX model. However, if the number of
oscillations is finite, then the Universe is demonstrably
not chaotic.

Let us look at the three five-dimensional homogeneous
cosmologies which display behavior which could be
characterized as "mixmaster. " The five-dimensional
model analogous to Bianchi type IX is the Fee model
G13. The structure constants for this model are the same
as that of Bianchi type IX.

The Einstein equations for this model can be written
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the terms on the right-hand side of Eqs. (31) are small.
However, as r decreases, one or more of the terms may in-
crease. %e then may no longer neglect the right-hand
side of the equations. Assume that a is this term, and
that it is larger than the other terms. Then we can write
the equations (31) as

a = ——,
' exp(4a+25),

P =y = —,
' exp(4a+ 25),

ad -t, bd -t(1+p& —
p&

—p3) 4 2 (1+p2 —p3 —p] )

cd-t [~+»-» -»)

Therefore either

1+p~ —p2 —p»o 1+p2 —p3 —p»o
or

1+p3-p~ -p2 & O

(39)

(40)

a =exp(a), b =exp(P), etc.

The solution of these equations (34), satisfying the ini-
tial conditions (33) in the limit ~~ oo, is

A (2p)+pg)A
Q exp( —,' AP4r)—,

cosh[(2pi +P4)A~]

b 2 =8 exp[(2p2 —2p, —p4)Ar]cosh[(2P ~ +pq )A~],
(35)

c2=C exp[(2p3 —2p~ —p4)As]cosh[(2p& +p4)AT],
d2=A 2exp(pqAv),

where A, 8, and C are constants.
The asymptotic expressions for these functions and the

function t(~) as r~ —ao are

a -exp[ —(p & +P4 )A~],

b -exp[(p2+ 2p ) + p4)A~],

c -exp[(P3+2P i+P&)Av ],
d -exp(P4A~) .

(36)

We can then express a, b, c, and d in terms of new Kas-
ner parameters:

a-t, b-t, c-t, d-tP) P2 P3 P4 (37)

(P2+2P&+P4)
( I+2p i+p4)

(p ) +p4)
(1+2p, +p&)

'

(P3+2pi+P4), P4

(1+2P)+p~)
' (1+2p)+p4)

abed =A' t, A'=(I+2P)+P4)A .

(38)

Note that Xp =X(p ) =1, i = 1,4.
So, the space-time undergoes a transition from one Kas-

ner regime to another via a mechanism similar to that of
the four-dimensional Bianchi type-IX model. Note,
though, that this transition only takes place if one of the
terms on the right-hand side of Eqs. (31) increases as
~~ —ao. As Ishihira has pointed out, this is not always
the case for higher-dimensional models. Thus either
a d, b d, or c d must increase for a transition to
occur. Writing a, b, c, and d in terms of their initial
behavior before the transition, the terms assume the Kas-
ner regime form:

for a transition to take place. Otherwise, transitions
would cease, and the Universe would remain in a Kasner
regime.

I.et us now look at what happens to the 613 universe,
initially in a Kasner regime parametrized by a set of Kas-
ner parameters p~, p2, p3, and p4, as it evolves. %e are
only free to choose two parameters in this set, p& and p2,
since conditions (33) imply

p4=1 —pr —p2 —p3 ~

P3 = —,
' [(1—

P&
—P2)+( 1 —3P& —3P2 —2P &P2

2 2

+2P i+2P2)'"l

Of course p~ and p2 must be such that

1 —3p( —3pg —2pip2, +2p( +2pp )0

for p& to be real. Conditions (40) become

3p] +p2 +p] —p2 —ptp2&0

3p2 +p ~ +p2 —p] —p jp'2 & 0

3pi + 3p2 —5pi —5p2+5pip2+2 & 0 .

(41)

(43)

[(b2+ 2)2 a4]d2

2@~=[(c +a ) b]d-
[(a2 b2)2 c4]d2

+2P,y, +2P+,+2yg, . (45)

In order for a transition to take place, two of the initial
Kasner parameters must satisfy condition (42) and one of
the conditions (43). The set of allowed values for p& and

p2 can be graphically represented as three regions bound-
ed by ellipses. This can be seen in Fig. l. Outside the set
depicted by (43), but within the set depicted by (42), no
more transitions take place. The Universe remains in this
initial Kasner state, and the behavior continues to be
characterized by Eqs. (33).

If the transition does take place, then after a short in-
terval, the Universe can be characterized by new Kasner
parameters, p, transformed by Eqs. (38). The same cri-
teria can then be applied for a second transition. The new
parameters must satisfy one of Eqs. (43).

The behavior of the 614 universe is similar to that of
613. The 614 universe has the same structure constants
as Bianchi type VIII. Its Einstein equations are
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0=P(4y, —a, P, 25,)—;—
where

2 ~ 4P=c i3=& 23= 2& 43

Equation (48) implies that either P =0 or

4y, =a,+P,+25, .

In the first case (P =0) the Einstein equations are

2a =dc +bd2 —ad
2P =d4c' b4d'+a4d-'

2y =2a'b'd'+a4d+b4d'

26~= —d c

a +p +y +5 = 2ag, +2a,y,+2ap,
+2P,y, +2P+,+2yg, .

(48)

Now, if we make the assumption that one of the terms (let
us assume that it is c) dominates two of the other terms
(a,b) then the first four equations become

Note that if one makes the approximation similar to that
of G13, that one of the terms on the right-hand side of
(44) is large compared to the other two, then one arrives at
the same equations and the behavior as that of 613.

Another five-dimensional universe with mixmaster
properties is the 612 universe in Fee's nomenclature.
This model has no four-dimensional analogue. The Ein-
stein equations for this universe in the diagonal case are

2a =(8P2)a2bzd +d c2+b d a4d—2

2p ( 8P 2 )u 2b 2d 2+d 4c 2 b 4d 2 +g 4d 2

(46)
2y =(2 6P2)—a b d +a d+b d

25 =(16P )a b dz —d c

a +p +y +5 =2a+,+2a,y, +2ap,
+2p,y, +2p+, +2yp, ; (47)

2a~=d c

2P =d'c',

2y =0
25 = —d'c'.

These are the same equations as those of 613 and G14.
If one now assumes that P is not equal to zero, then one
obtains the constraint P = —, in order not to contradict
one of the Einstein equations. This does not affect the
asymptotic behavior of the equations in the case c &~a,b.
Thus, in either case, the behavior of 612 near a singulari-
ty is the same as 613 and 614: a finite sequence of oscil-
lations and transitions from one Kasner state to another.

We shall now employ a different method in our
analysis. This method will serve to illuminate the qualita-
tive aspects of the behavior of higher-dimensional space-
times.

IV. A HAMILTONIAN ANALYSIS
OF THE FIVE-DIMENSIONAL COSMOLOGIES

The anisotropic four-dimensional cosmologies have
been analyzed by utilizing the power of the Arnowitt,
Deser, and Misner (ADM) formulation of the Einstein
variational principle. In using this method one represents
the time evolution of the Universe as that of a particle
(the Universe point) moving in two dimensions subject to
the infiuence of a potential. The two axes parametrize the
shape of the Universe. A different potential corresponds
to each Bianchi type.

This method may also be applied to higher-dimensional
cosmologies. By applying this technique, interesting in-
formation about the qualitative behavior of the universe
model in question can be obtained. The shape of the po-
tential dictates the precise nature of the evolution of the
Universe.

Let us now apply this procedure in order to examine the
qualitative behavior of the five-dimensional anisotropic
cosmologies, as classified by Fee. We use the same form
of the metric as before:

I.O ds = —dt +gij ci7 cia
2

We now assume that we can rewrite g,j.
g J

——exp(2a)exp(2P~J ),

(52)

(53)

0.0

0 5 . a a ~ ~ I

- O. 50 -0.25 O.OO O.25 O.50 0.75 I .00

FIG. 1. Depending on the value of two of the four Kasner
parameters, the 613 universe may or may not undergo a transi-
tion to another Kasner regime. In this graph, the large elhpse
surrounds the range of possible initial Kasner values pl and p2.
Inside this eHipse, but outside the shaded region, transitions do
occur which lead to an alteration of the Kasner parameters.
However, if p~ and p2 are within the shaded region, the universe
will undergo no future transitions.

where a(t) is a scalar, and p&(t) are the elements of a
traceless, chagonal matrix 8.

We can reparametrize 8 with new variables 80, 8+,
and 8 such that

pii=&o+v 2&++v 6&-

p» —so+ v 2m+ —v 6a
(54)

p33 ——Bo—2v 28+,
P~= —3&o

Let us now apply the ADM formalism. The Einstein ac-
tion (from which the field equations can be derived) is in
the vacuum case:



360 PAUL HALPERN 33

I=(16m ') f 'RY —I d'x, (55} I = Po Bo+P+ &++I— 8—+@ada

I=(16~-') f ~'J
Bt

—NC —X;C' d x . (56)

The quantities here to be varied separately are the ij
(ij =1,2, 3,4) components of the metric tensor, g 1, their
conjugate momenta, m'J, and two other functions N and

where R is the five-dimensional scalar curvature, and g is
the determinant of the metric.

Applying the methods of ADM, this reduces to C =0—3p +po +p+ +p —768m. e ( R) .

We note that po, p+, and p are the momenta conju-
gate to Bo, 8+, and 8 . We choose a jv 3 as our canon-
ical time coordinate. H =~3P, being conjugate to the
time, becomes our Haxniltonian.

We solve the C constraint equation for p~:

H = 3p~ —=po +p+ +p 768m—e ( R) . '

(66)

N =(—goo), N~
——go; .5 1/2 5

We can adjust the zero of a and redefine it so
(57)

Also, t is a parameter which distinguishes the four-
dimensional spacelike slices.

Varying N and ¹ yields C =0 and C'=0, a set of
constraints on g,j and n'J We .do this and reduce the ac-
tion to the form

I =(16ir ') f m'~ d x
t

subject to the constraints C =0, and C'=0, where

C'= —v g I'R+g -'[-,'(0, )' —i~~ ]I,
(59)

Also,

f "dt= f dg,, (61}

So,

I =4m f n gJd,
q

. (62)

It is convenient to parametrize the diagonal matrix m'k

as follows:

C'= 2n"',;, —
where g =det(g, j ), R is the scalar curvature of t =const
surfaces, and a semicolon means covariant differentiation
on t =const surfaces.

Because we are considering homogeneous universes we
can integrate over the space variables. Our choice of dif-
ferential forms which appear in the metric leads to

'x= 4m '.

768m e ~e
We now define V= 1 —e ( R ). Thus

H2 p 2+p 2+p 2+e6cg( V 1 ) (67)

aH d aH
da aBo

' da ap+

(68)

The potential V(B) is a combination of exponential
functions which is determined by the structure constants
of the homogeneous model in question. We have calculat-
ed these for the groups classified by Fee. These potentials
are presented in Table II. The simplest case ( GO) is when
( V —1) vanishes. Then, H =(po +p+ +p )', and
the shape of the Universe is characterized by a free parti-
cle moving in a space spanned by the Bo, 8+, and 8
axes. In the general case, the Universe behaves as a point
particle in the potential well V.

In the four-dimensional case, it has been noted that the
qualitative nature of the universe in question is related to
the shape of the equipotential surfaces for this potential
well. In particular, the fact that the potentials corre-
sponding to vacuum Bianchi types VIII and IX are closed
determines that these types exhibit a chaotic behavior. '

For the diagonal models the exact form of their potential
1S

V(8,8+ ) = 1+—', exp(48+ )[cosh(4v 38 ) —1]

H is our ADM Hamiltonian. %e can now write out
Hamilton's equations for this Hamiltonian:

aH d aH dH aH
da '=ap, ' da -' ap, ' da=aa'

p =(8&br k „

p'k =(8+}(~'k 4&'kit'i»—
(63)

+ —,
'

exp( —88+ )

+ —', exp( —28+ )cosh(2~38 ), (69)

with

12P i=Po+~&P++~&P

12P 2=Po+~2P+ ~67

12p 3 =po —2 2p+

12+ 4= 3po
4

(64)

The result is that the action and the C constraint can be
rewritten

where the plus sign corresponds to the Bianchi type-VIII
case. The coordinates 8+ and B are analogous to the
coordinates Bo, 8+, and 8 in the five-dimensional case.
This potential has exponentially steep walls with equipo-
tentials forming equilateral triangles in the (8+,8 )

plane. For 8+ and 8 close to zero, the equipotentials
look like circles. The corners of the triangle are not
closed, but instead have thin channels leading off to infin-
1ty.

The chaotic behavior of these space-times can be ex-
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TABLE II. Potentials ( V) associated with the five-dimensional homogeneous cosmologics.

1

1+ z exp( —108o+2V 28+ —2V 68
1+ 2 [exp( —28o+4V 28++4V 68 )+exp( —108o+2V 28+ —2V 68 )]
1+2exp( 28—o+4V 28+)+ z exp( —108o+2V 28+ —2V68 )

1+2 exp( —28o )[exp(4V 28+ )+exp(2V 68 —2V 28+ )]
1+6exp( 28o—+4V 28+ )—exp( 28o—2V 2—8+ +2V 68 )

+ z [exp( —108o—4V 28+ )+exp(68o+4V 68 )]
1+ ~ [exp( —28o+4V 28++4V 68 )+exp( —108o+2V 28+ —2V 68 )]
+ 12 exp( —28o+4V 28+ )

1+(6+4P+2P~)exp{ 28o—+4V 28+)+ z exp( —108o+2V28+ —2V 68 )

1+(6P'+2Q'+2P+2Q+2PQ+2)exp( —28o+4V 28+ }
1+(6P~+2Qi+4PQ —1)exp( —28o+4V 28+ )

+ —,[exp( —108o+2V 28+ —2V 68 )+exp(68o+6V 28+ +2V 68 )]
1+20exp( —28o+4V28+ )

+ z [exp( —108o—4V 28+ )+exp{ 28o+4—V 28++4V 68 )]
1+(6+10P+6P~)exp( —28o+4V 28+ )+ z exp{—lOBo 4V 28+—)

1+(20Pi —1)exp( 28o+4—V 28+ )

+ z exp{—108o—4V 28+)+exp( 28o+4V—28+)cosh(4V 68 )

1+exp(68o)[cosh(4V 68 )—1]+ z exp( —108o—4V 28+ )
—2 exp( —28o —2V 28+ )cosh(2V 68 )

1+exp(68o)[cosh{4V 68)—1]+ i exp( —108o—4V 28+ )

+2 exp( —28o —2V 28+ )cosh(2V 68 )

plained in the following manner. Within the Bianchi
type-IX potential, the universe point first bounces against
two potential walls until it enters the corner channel
formed by these walls. One approximates the exponential-
ly steep equipotentials as infinitely hard walls. Then the
point leaves the corner to bounce against the walls corre-
sponding to a different corner channel. This process re-
peats itself indefinitely. The chaotic behavior occurs be-
cause neighboring trajectories diverge as they are followed
both forward and backward in time. This can only occur
in models where the potential is closed, aside from the
presence of the corner channels.

None of the five-dimensional homogeneous space-times
in fact have the closed potential wells required for chaotic
behavior. Cross sections of the Gl, G2, and G14 poten-

tials are depicted in Figs. 2—4. It is clear that closed po-
tential wells, required for the manifestation of chaotic
behavior, do not exist for five-dimensional homogeneous
space-times as classified by Fee.

For example, one can use this method to show that the
G13 model, the five-dimensional mixmaster analogue, is
not chaotic. One can rewrite the ADM Hamiltonian in
this case as

2&= —Pa +po +Jp+ +P—
—(1—V')exp(6a —V 28o ),

where

V'(B,B+ ) = 1+exp(48+ }[cosh(4V 38 ) —1]
—2 exp(2 —8+ }cosh(2V 38 )

+ —,'exp( —88+ ) .

0.2

0,0
0.6,

-0,6-0.5
Q+

FIG. 2. Depicted here are the equipotential surfaces ( V=2,
V=4, and V=8) for the five-dimensional spacetime classified
as 61. The two-dimensional figures represent three-dimensional
potentials, sliced by the 80——0 plane. Note that these potentials
are aH open, precluding the possibility of chaos. The nearest
line to the bottom of the graph corresponds to V=2; the
furthest to V=8.

0, 2

I 0.0

-0.6
—0.5 0.0 0.5 i.0 l.5

FIG. 3. The equipotential surfaces as in Fig. 2 for 62. The
inner curve corresponds to V =2. The outer one corresponds to
V=S.
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0.0-

-06
—0.5

l I I I I I I I I I

0.5 I .0
g+

FIG. 4. The equipotential surfaces as in Fig. 2 for 614. The
inner curve corresponds to V =2; the outer, to V =8.

V. CONCLUSIONS

We have found several interesting properties of the
class of solutions to the five-dimensional Einstein equa-
tions. This set of solutions possesses important qualita-
tive differences from its four-dimensional counterpart.

For several of the Fee types, no diagonal vacuum solu-
tions exist. It is increasingly more difficult to find diago-
nal solutions as one increases the number of dimensions of
the Einstein equations. This is because of the fact that as
the number of dimensions increases by one, the number of
nontrivial Einstein equations increases by two, and the
dimensionality of the set of structures constants also in-

V', the part of the potential that is dependent only on
8+ and 8, is recognizable as the potential for the four-
dimensional Bianchi type-IX model. The equipotentials
in the 8+, 8 plane are triangular and closed, except for
the corners where the potential increases exponentially.
This can be seen by looking at the asymptotic form for V
as 8+~—oo.

V= —,'exp( —88+) .

However, one can look at the Hamiltonian for this sys-
tem and note that the full potential also is dependent on
Bo. So, the momentum po conjugate to Bo is nonzero. In
fact, in the 80~ —ao direction, the equipotential trian-
gles become larger exponentially. Therefore, the full po-
tential in the five-dimensional case is open. This pre-
cludes the existence of chaotic behavior.

It is likely that closed equipotentials wells will not be
found for any higher-dimensional anisotropic cosmology.
If this is the case, then chaos in cosmology is a
dimension-specific phenomenon.

creases. This places an increasing number of restrictions
on the scale factors, since the number of scale factors is
equal to the number of dimensions. Eventually, some of
these restrictions could contradict others, eliminating the
possibility of a diagonal solution.

Most of the Fee types admit solutions which exhibit di-
mensional reduction in which three spatial dimensions ex-
pand, while the remaining one contracts.

The set of Fee types which approach isotropy appears
to be a set of zero measure in the space of all possible
five-dimensional cosmologies. The nine Fee types
comprising the most general set of homogeneous
universes, in that their sets of structure constants have the
maximum number of degrees of freedom, have yet to be
fully explored. A stability analysis of this set would indi-
cate whether or not isotropy is possible at late cosmic
times. Perhaps there is a set of finite measure in the space
of all initial data which leads to a universe which con-
forms to our experimental limits of anisotropy, as deter-
mined by the measurement of the microwave background
radiation? This question has been examined in the case of
the four-dimensional Bianchi models. '

We have shown that none of the five-dimensional
models are chaotic. This is a marked contrast with the
four-dimensional case. We speculate that chaos is a
dynamical property that is only possible in the (3+ 1)-
dimensional case. Chaos only manifests itself in the case
where, in a Hamiltonian ADM analysis, the Umverse is a
point in a closed potential well. This requires a certain
symmetry of the set of structure constants specifying the
universe type. For example, in the four-dimensional Bian-
chi type-IX case, the Einstein equations are invariant
under a cyclic permutation of the axes. This symmetry is
impossible for higher-dimensional models.

Studies of the Einstein equations for space-time of
greater than four dimensions yield several benefits. They
may be of use in the development of realistic higher-
dimensional unified field theories. Failing that, they cer-
tainly aid in answering the question, "In what sense is our
Universe, of three spatial dimensions, special among the
set of universe of all possible numbers of dimension?"
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