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Differential embedding of the Lorenz attractor

Daniel J. Cross and R. Gilmore
Physics Department, Drexel University, Philadelphia, Pennsylvania 19104, USA
(Received 21 January 2010; published 25 June 2010)

Ideally an embedding of an N-dimensional dynamical system is N-dimensional. Ideally, an embedding of a
dynamical system with symmetry is symmetric. Ideally, the symmetry of the embedding is the same as the
symmetry of the original system. This ideal often cannot be achieved. Differential embeddings of the Lorenz
system, which possesses a twofold rotation symmetry, are not ideal. While the differential embedding tech-
nique happens to yield an embedding of the Lorenz attractor in three dimensions, it does not yield an
embedding of the entire flow. An embedding of the flow requires at least four dimensions. The four dimen-
sional embedding produces a flow restricted to a twisted three dimensional manifold in R*. This inversion
symmetric three-manifold cannot be projected into any three dimensional Euclidean subspace without

singularities.

DOI: 10.1103/PhysRevE.81.066220

I. INTRODUCTION

The first step in the analysis of data generated by a cha-
otic dynamical system is the search for an embedding. Often
the data set consists of a single long series of observations
taken at equally spaced time intervals, or a scalar time series
for short. The observed data can be interpreted as the values
taken by an observation function on the original phase space,
sampled along the observed trajectory. Takens” Theorem [1]
guarantees that if the dynamical system that generates the
data exists in an N-dimensional phase space, there is generi-
cally an embedding in R?M*! that may be constructed from
the observed data. While this is adequate for theoretical
work, in practice an embedding of lowest possible dimension
is preferred. In particular, if the data are generated by an
N-dimensional system, there ought to be an N-dimensional
embedding.

Reconstructions of dynamical systems with symmetry
pose a special problem. According to Takens’ theorem it is
necessary to use a generic observation function for a recon-
struction. However, a generic function does not possess a
symmetry, and an embedding made using such an observable
lacks symmetry. Worse, King, and Stewart [2] showed that
an observable with some symmetry can be used for an em-
bedding, but that the embedding typically does not possess
the same symmetry as the original dynamical system. This
was shown explicitly by Letellier and his colleagues [3] for
the Lorenz dynamical system. In particular, they showed that
using an observation function that is odd under the twofold
rotation symmetry of the Lorenz attractor will result in a
dynamical system with inversion rather than rotation symme-
try.

The present work was stimulated by the following diffi-
culty. All inequivalent (nonisotopic) representations (embed-
dings) of the Lorenz system in R* have been identified [4]. A
differential embedding of the Lorenz system based on the x
or y coordinate produces a system not included in this list of
inequivalent representations. We sought to determine how
this could be possible. The answer is provided below.

We study this problem for embeddings with minimal time
delay. In this case, linear combinations of k adjacent terms in
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the time series are good approximations to the signal and its
first k—1 derivatives. For this reason, we call embeddings
with minimal time delay differential embeddings. Embed-
dings of this type have four attractive features [5]: (i) Each
embedding coordinate is the derivative of the previous coor-
dinate (X,,,=X,); (ii) Attempts to model the dynamics using
the embedding coordinates involve construction of only one
unknown source function [5,3], for the last time derivative
XN=h(X1 ,X5,...,Xy); (iii)) An explicit expression for the
source function 7 may be constructed when the differential
equations are known; and (iv) In three dimensions N=3 it is
a simple matter to determine the topological organization of
all unstable periodic orbits simply by inspection of their pro-
jection onto the (X,,X,)=(X,,X,) subspace. In this projec-
tion, all crossings in the upper half plane have sign —1 while
all crossings in the lower half plane have sign +1. The link-
ing number of two periodic orbits is half the number of
crossings in the lower half plane minus half the number of
crossings in the upper half plane [6,7].

The principal drawback of differential embeddings of sca-
lar time series is the signal to noise problem. As a rough rule
of thumb, there is an order of magnitude loss of S/N ratio for
each derivative (or integral) that is taken. A differential em-
bedding of the type x— (x,x,x) generally suffers two orders
of magnitude reduction in this ratio. One way around this
problem is to use an integral-differential embedding x
— (fx,x,%). In this case the integral and differential each
lose about one order of magnitude. The three coordinates
remain differentially related. Care must be taken that secular
terms be removed from the scalar time series before the in-
tegral is taken. The subtle points involved in such embed-
dings have been described in the first topological analysis of
experimental data that was carried out [5]. These points were
amplified on in [6,7].

Briefly, in the first topological analysis, the data set under
consideration behaved like a relaxation oscillator, with a
slow linear change over about half a cycle. The differential
embedding (x,x,%) collapsed to a straight line, as can be
seen in [5]. Spline fits [8] were unable to lift this degeneracy,
as indeed no data processing method based on local fitting
methods could succeed. A variety of nonlocal methods were
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reviewed in this context [6,7]. More recently, newer data
processing methods have been developed to treat problems
of this type [9].

A differential embedding of the Lorenz system based on
the x coordinate is called the induced Lorenz system. Its
relationship to the original Lorenz system will be investi-
gated. Our main result is that these two systems are diffeo-
morphic, in fact isotopic, in R4, though not in R3.

The organization of this paper is as follows. In Sec. II, we
introduce the Lorenz (£) and induced Lorenz (L£;) systems.
In Sec. III, we examine in detail the differential mappings
constructed from the x coordinate of £ and decide when they
furnish embeddings. Singularities found to be present in
these mappings are analyzed in Sec. IV where they are
shown to be consequences of the different symmetries of £
and £;. This shows that a three-dimensional reconstruction of
the Lorenz system with parity symmetry is never an embed-
ding. In Sec. V, we show that £ and £, are related by a “local
reflection” of R® and are in fact isotopic in R*. We extend
this analysis in Sec. VI to the bounding tori and branched
manifolds of the two systems. In Sec. VII, we generalize the
observation in [3] that equivariant embeddings of the Lorenz
system are parity symmetric to arbitrary dynamical systems
with a twofold symmetry. We also demonstrate how recon-
structions with arbitrary twofold symmetry may be recovered
from a generic observation function. Finally, we state our
conclusions in Sec. VIIL

II. LORENZ AND INDUCED LORENZ SYSTEMS

The Lorenz dynamical system L is a three dimensional
flow defined by the equations

xt=0(y—-x) (la)
Yy=Rx-y-—2xz (1b)
Z=—bz+xy. (1c¢)

A dynamical system x=v(x) is said to be equivariant under a
linear transformation M if Mx=v(Mx). The Lorenz system is
equivariant under the transformation R.():(x,y,z)— (—x,
-y,z), which is a 7 rotation about the z axis. We say that £
possesses rotation symmetry or is rotationally equivariant.

The Lorenz branched manifold [3,10,11] is shown in Fig.
1. It is rotationally symmetric. A branched manifold (or knot
holder or template) of a strange attractor generated by a three
dimensional dynamical system is a two-dimensional mani-
fold almost everywhere (it possesses a finite set of zero and
one dimensional singular sets called splitting points and
branch lines, respectively) which provides a caricature of the
original attractor [6]. Specifically, it supports a semiflow ob-
tained by identifying points in the original system that share
the same asymptotic future. This is equivalent to collapsing
the stable manifolds to points. This identification is called the
Birman Williams projection [10,11].

The template shown in Fig. 1 is obtained from the stan-
dard “mask” by rotating each of the two lobes of the mask
through 90 degrees in opposite directions, and then viewing
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FIG. 1. Template for the Lorenz system £ with rotation symme-
try, R.(m). The “X” denotes the central saddle fixed point. The x
and y directions are in the page, horizontal and vertical respectively.
The z direction is out of the page.

the attractor from above. This procedure preserves the topo-
logical organization of the periodic orbits. This transforma-
tion is described in more detail in [12,13].

A differential embedding of the Lorenz system based on
the x-coordinate constructs the so-called “induced Lorenz
system,” L;. Unlike the original system L, the induced sys-
tem is equivariant under the transformation P:(X,Y,Z)—(
—-X,-Y,-Z), which is an inversion. We say that £; possesses
parity symmetry or is parity equivariant. The induced Lorenz
branched manifold [3], which is also parity symmetric, is
shown in Fig. 2. The explicit equations describing this em-
bedding are given in the next section.

The induced system passes the usual embedding tests and
is regarded as an embedding of the original dynamical sys-
tem into R? [14]. While this is essentially true on the attract-
ing set, we claim that the mapping giving rise to this “em-
bedding” is in fact not an embedding on any open subset
containing the attractor and therefore does not truly represent
the entire original flow. We prove this claim in the next sec-
tion.

II1. DIFFERENTIAL MAPPINGS

If M is an m-dimensional manifold with flow ¢, and
f:M—R a real-valued observation function on M, then Tak-
ens’ theorem [1] states that generically the map M — R>"*!
given by

2m

©o dl2m

f[qoz(x)]}, 2)

0

x> {f(x), | ool
0

is an embedding. The notation indicates that derivatives are
to be evaluated at r=0. Such a mapping constructed from

FIG. 2. Template for the induced Lorenz system L; with parity
symmetry, P. The “X” denotes the central saddle fixed point. The
coordinate axes are the same as Fig. 1.
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successive derivatives of an observation function will be
called a differential mapping. When the mapping is an em-
bedding it is called a differential embedding.

Takens’ theorem all but guarantees that the differential
embedding of £ constructed from x and its first six deriva-
tives is an embedding into R’. This leaves open the question
of whether an embedding may be found in lower dimensions,
which ought to be the case since £ was originally defined in
R3.

Consider £ with observation function f(x)=x and define
the series of differential mappings

d dn—l )
F =|lx,—x ...,——x]|, 3
) (x dtx dt”'lx 3)

for each n=3. The mapping F, which gives rise to the sys-
tem £; in R?, is explicitly given by

X X
Y |= o(y—x) . (4)
Z o(R+o-2z7)x—o(l+0)y.

The Jacobian of the transformation is

1 0 0
Jy= -0 o 0 | (5)
oR+o0-72) —o(l+0) —-ox

The Jacobian determinant is —o?x, so the mapping is singular
on the entire yz plane. By setting x=0 in F5 one sees that the
mapping collapses lines of constant y onto points in the
yz-plane, and this is the only set where F3 fails to be injec-
tive. This demonstrates that F5 is not a diffeomorphism on
any open set intersecting the yz plane (x=0). Since the at-
tractor cuts this plane, we conclude that F5 fails to be a
diffeomorphism on any neighborhood containing the attrac-
tor.

The existence of these singularities has been known
[3,15-18]. In these references, the singularities are inter-
preted as obstructions to an observation function well-
sampling an attractor, a property called observability. How-
ever, since the set of singularities has measure zero it has
been tacitly assumed that they do not affect whether or not
one actually obtains an embedding of the phase space. In
other words, obtaining an embedding of the attractor is dis-
tinct from and less restrictive than obtaining an embedding
of the entire phase space. A three-dimensional differential
embedding of the Lorenz system based on the x coordinate
accomplishes the former task, but not the latter. This is why
the induced Lorenz system does not appear on the list of
inequivalent representations of the Lorenz system—in R? it
is not a representation at all.

It is straightforward to derive the equations describing the
image flow under F; expressed in the new variables
(X,Y,Z). We include them for completeness. They are

X=Y (6a)

Y=2 (6b)

PHYSICAL REVIEW E 81, 066220 (2010)

Z=bo(R-DX-b(1+ )Y -(1+b+0)Z-XY - oX°

+)—§(Z+(1+ YY), (6¢)

and the parity symmetry is apparent [13,19,20]. Notice the

1/X behavior in the Z equation [13]. The behavior of the
vector field as X—0 is direction dependent. In particular, if

Z=—(1+0)Y then the last term in Z vanishes for every X.
Notice that according to Eq. (4) X=0 exactly when x=0, but
then Y=oy and Z=—o(1+0)y, or equivalently Z=—(1+0)Y,
which is precisely the condition that the image vector field
be well behaved [cf. Equation (6¢)].

Before moving on we give the LU-decomposition of Jj
=L;U; which will be useful in the sequel. We have Uj
=diag(1l,0,-0ox) and

1 0 0
Li=| -0 0] )
cR+o-2) -1-0 1

In this case singularities in Uy (when x=0) correspond to
singularities in J5.

Now consider the differential mapping F, into R*. We
will show that this mapping does provide an embedding of
L. The first three coordinates of F, are given by F; in Eq. (4)
and the fourth is given by

W= 0z(Ax — ay) + oy(B — x?) — oCx, (8)

where A=1+b+20, B=o(R+0+1)+1, and C=R+2Ro+ 0>
are constants depending only on the control parameters. The
top 3 X 3 sub-matrix of the Jacobian J, is J5 so that in the
LU-decomposition J4,=L,U,, U, has main diagonal equal to
that of U; and the top-left 3 X3 block of L, is L;. The main
diagonal of the rectangular matrix U, is the diagonal starting
from the upper left entry. The bottom row of L, is given by

2-A 1|. (9
X

0Az—-0(2xy+C) B-oz-x*

It is apparent that U, can fail to have maximal rank only
if x=0. However, L, contains a term proportional to 1/x and
so the rank of U, does not indicate the rank of J, in this
limit. If one first sets x=0 in J;, in the new LU-
decomposition U, has a main diagonal given by diag(1,o,
—0o’y) and L is given by

1 0 0
-0 1 0
oAz —-oC 1
oR+o-z) —(1+0) 0 1

o O O

, 10
B-o07 (10)

which is regular for all (x,y,z). Therefore F, is singular only
along the z axis, which is disjoint from the Lorenz flow (it is
the stable manifold of the central fixed point). We conclude
that F, provides an embedding of £ into R*. In fact, F,
provides an embedding of £ onto a three dimensional sub-
manifold M of R* This manifold is disjoint from origin in
R#, which is the image of the z-axis under F,. This situation
is described further in Sec. V.

066220-3



DANIEL J. CROSS AND R. GILMORE

The differential mappings F, for n>4 may be analyzed
analogously. They all share a similar LU-decomposition such
that U, has the same main diagonal as U; and L, possesses a
1/x singularity. Setting x=0 in J, gives a U, with main di-
agonal diag(1,0,—0?y), the same as Uj, and an L which is
regular on R3, so that the singular set consists of exactly the
z axis in each case. We conclude that the differential map-
ping F, is an embedding into R” for n=4.

IV. SYMMETRY

In this section, we show that the singular sets of the map-
pings F, are symmetry induced, that is, they exist because of
the symmetry properties of the original flow and of the cho-
sen observation function. This is not to say that differential
mappings for nonsymmetric systems will never possess sin-
gularities, but to show that singularities are unavoidable in
the present case.

We have seen that the Lorenz system is equivariant under
the diffeomorphism R.(7):(x,y,z)~>(-x,—y,z). On the
other hand, each mapping F,, is antisymmetric under R, (7),
F,(-x,-y,z)=—F,(x,y,z). We then have the commutative
diagram

F

n

(X,y,Z) % (Xl’ e »Xn)

Rz(w)l \LP (11)
Fn
(—x=-y2 — -X,....X,)

where the map P is inversion. It follows that each induced
flow in R” is parity or P equivariant. In particular this holds
for £; in R®. This change of symmetry is a result of the
original system and the observation function together with its
derivatives transforming differently under the equivariance
group.

The difference of symmetry between the Lorenz flow and
the induced flows forces the existence of the singularities in
the mappings F,, independent of the particular details of how
the mappings are constructed. Note that the z axis is point-
wise invariant under R_(7) while its image is inverted under
P. Equation (11) demands that F,(0,0,z)=—F,(0,0,z),
which is only satisfied if the z axis is mapped to the origin.
However, since the z axis is disjoint from the Lorenz flow
this singularity poses no obstruction to obtaining an embed-
ding.

More can be said when n=3. We will assume that the z
axis is the only singularity of F; and show that this leads to
a contradiction. Under this assumption F3 is a diffeomor-
phism on R3-{z axis}. Now the rotation R () is isotopic
(isotopy will be defined in the next section) to the identity
through rotations R_(6) for 0= 6= . It follows that the com-
position F3oR_(6)°F; !is an isotopy from the map P to the
identity. However, P is orientation reversing in R® and can-
not be isotopic to the identity. Therefore 3 must have addi-
tional singularities. The mildest form this singularity can
take is the collapsing of some plane containing the z axis
onto a line (which is parity symmetric).

PHYSICAL REVIEW E 81, 066220 (2010)

The preceding argument is no restriction on F, for n>3
since embeddings of R? with different orientation are isoto-
pic in this case [21]. In both of these arguments the essential
feature is that the original system is equivariant under an
order two symmetry which the observation function is anti-
symmetric under. This forces the image system to have a
different order two symmetry than the original which in turn
forces the existence of singularities. This theme is taken up
again in Sec. VIL

V. L, £;, AND LOCAL REFLECTIONS

This section specifies how the systems £ and L; are re-
lated in R? and in R*. The mappings F; and F, seem rather
complicated, but their complexity is almost entirely superfi-
cial. By allowing smooth deformations the mappings may be
brought into simpler forms. Specifically, in R3 the two sys-
tems differ by a simple mapping called a “local reflection,”
which we define below, while in R* the two systems are in
fact identical.

The coordinate reflection of R3, (x,y,z) (x,y,—z) can-
not be smoothly deformed in to the identity in R* because it
reverses orientation. However, such a smooth deformation is
possible in R* If we consider R*CR* as the subspace
spanned by the first three coordinates, (x,y,z)— (x,y,z,0), a
deformation (parametrized by s) is given by

(x,,2,0) = (x,y,— z sin 5,z cos s) — (x,y,— z,0), (12)

by rotating from s=-m/2 to /2. Notice that this rotation
leaves the xy-plane (z=0) pointwise invariant.

From this deformation we can obtain a twisted embedding
of R? into R* by allowing the rotation to depend on coordi-
nates of R, Setting s=arctan x, the explicit form of this em-
bedding is then

Filxn2) ( L ) (13)
Xy, 7) =l Xy, —, .
\r’l+x2 \r1+x2

The projection of this embedding back into R? is singular: it
sends the yz-plane onto the y-axis. We call this mapping a
local reflection since it reflects only half of R3. Figure 3
illustrates this phenomenon by demonstrating a twisted em-
bedding of R? into R*. This lower dimensional example may
be obtained from Eq. (13) by ignoring the y coordinate. Any
projection of this twisted embedding back into R? results in a
singularity.

The denominators in the last two coordinates of Eq. (13)
normalize them so that the embedding approaches inclusion
as x— *oo (that is, for |x| large, F(x,y,z)=(x,y,
-z sgn x,0), which is the inclusion R®—R*, at least up to a
coordinate reflection).

Through a sequence of deformations, one can show (see
Appendix) that the mapping F; is equivalent to a local re-
flection. This relation will be explored further in the follow-
ing section. In a similar manner one can show that F, is
equivalent to the standard inclusion R3— R* Thus in R* the
two systems £ and L; are the same-one can be smoothly
deformed into the other. The systems provide identical rep-
resentations of the Lorenz dynamical system in R* [21]. We
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FIG. 3. Twisted embedding of R? in R3 and projection onto a
local reflection. This is equivalent to the mapping F in Eq. (13) by
ignoring y.

remark that since the two systems possess different symme-
try, the smooth deformation between them cannot be done in
a symmetry preserving fashion.

Moreover, we may regard the induced system as provid-
ing a three dimensional embedding contained in a three di-
mensional submanifold M C R*. The manifold M is not R3.
Since F, is a diffeomorphism away from the z axis, M is
diffeomorphic to R3—{z-axis}.

VI. L, L;, AND BRANCHED MANIFOLDS

In the previous section we explored the relationship be-
tween the Lorenz and induced Lorenz systems at the level of
the differential equations. In this section, we consider how
the conclusions of that section apply to the branched mani-
folds of the two systems, Figs. 1 and 2.

A branched manifold is contained within a handlebody,
which is a three-dimensional manifold with boundary. The
boundary functions as a trapping surface for the original
flow. A handlebody possesses a decomposition into funda-
mental flow regions called splitting and joining trinions. The
branched manifold inside the handlebody has an analogous
decomposition into splitting and joining charts. These joining

)4

FIG. 4. Trinions with included branched manifold charts: split-
ting (left) and joining (right). The arrow indicates the flow direction

PHYSICAL REVIEW E 81, 066220 (2010)

FIG. 5. Genus three handlebody with trinion decomposition.
Arrows indicate flow direction between trinions. The branched
manifolds of the Lorenz and induced Lorenz systems may be natu-
rally embedded within this handlebody.

and splitting regions are responsible for generating complex
dynamical behavior and are shown in Fig. 4.

Both the Lorenz and induced Lorenz systems possess
branched manifolds constructed from two joining and two
splitting charts. Both systems live inside a genus three
handlebody built up from four trinions. The handlebody to-
gether with its trinion decomposition is shown in Fig. 5.

A visual inspection of the branched manifolds for £ (Fig.
1) and L; (Fig. 2) shows that, though they are similar, they
differ in two important respects. Both of these differences are
in the “bottom” branches that flow from the bottom right
trinion to the bottom left one. First, in the Lorenz system this
branch twists counter clockwise with respect to the flow di-
rection (cf. Figure 1), while in the induced system it twists
clockwise (cf. Figure 2). Second, in the Lorenz system this
branch attaches from below while in the induced system it
attaches from above. Both of these differences are demanded
by the different symmetries of the two systems. The two
distinct joining trinions differing in attaching order are
shown in Fig. 6.

In Sec. V, we saw that up to isotopy £ and L; differ by a
local reflection of R3. The local reflection collapses vertical
lines in the yz-plane to points along the y axis. The handle-
body carrying L intersects the yz plane twice, once on each
side of the z axis. Each intersection is a disk whose image
under the local reflection is a line segment (the disk is col-
lapsed onto a diameter). Therefore, each of these two
branches of the handlebody is “pinched ” by the local reflec-
tion as they pass through the yz plane. We conclude that in
IR3 the natural handlebody containing £; is not the image of

&y &

FIG. 6. The two types of joining trinion related by a reflection in
the z direction (out of the page). The top exit branch is a subset of
the xy plane, which is invariant under reflections

066220-5
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FIG. 7. Effect of the change of orientation z——z (out of the
page) induced by the local reflection on half of the Lorenz branched
manifold. Arrows indicate the flow direction.

the handlebody containing £. This is a reflection of the fact
established in Sec. III that F5 is not a diffeomorphism on any
neighborhood of the attractor and therefore does not repre-
sent the entire Lorenz flow. The image handlebody is, how-
ever, well defined in R* but has a singular projection in R

Next, consider the effect of the local reflection on the
Lorenz branched manifold. The two horizontal branches that
run through the horizontal tubes of the handlebody each cut
the yz plane in a horizontal line segment. However, this line
segment is invariant under the action of the local reflection;
no two points are identified. Recall that the local reflection
preserves the orientation of R* on one side of the singular set
and reverses it on the other by sending z— —z. The effect of
this reversal on half of the branched manifold is shown in
Fig. 7 [13]. This is precisely the operation that takes the
Lorenz branched manifold onto the induced Lorenz branched
manifold.

In general, if a dynamical system and its image under
some mapping into R® have branched manifolds that are the
same except for a pair of joining charts that are of opposite
type the mapping cannot be a diffeomorphism of the flow.
The two joining charts are related by a reflection, but the
other charts are related without reflection, so a local reflec-
tion is required somewhere for the corresponding handle-
body and trinions to match up correctly. Since a local reflec-
tion is the singular projected image into R® of a smooth
embedding into R4, there is no distinction between the two
joining trinions in R*.

Finally, that the two branched manifolds are diffeomor-
phic can also be seen by considering the mapping F;. Recall
that the singularity along the yz-plane collapses the lines y
=const. By applying the Birman-Williams projection on the
Lorenz flow one obtains a branched two-manifold that cuts
the yz plane transversely in the form of a graph over y (see
Fig. 8). Therefore, no two points of the branched manifolds
are identified by F3 and the Birman-Williams projection
commutes with this mapping and the two branched mani-
folds are diffeomorphic.

Several previous studies have been carried out to deter-
mine how many inequivalent representations can be con-
structed for three-dimensional dynamical systems, or more
specifically their strange attractors [21-23]. In [22] it was
shown that if the attractor was contained in a genus-one
bounding torus, its inequivalent representations differed by
global torsion, parity, and knot type. In [23] it was found
that, neglecting knot type, inequivalent representations (or
embeddings) differ by local rotation and local reflection op-
erations. A local rotation is obtained by inserting a tube at
each output port in a trinion decomposition of a genus-g

PHYSICAL REVIEW E 81, 066220 (2010)
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FIG. 8. Intersection of the Lorenz flow with the yz plane. The
fuzziness of this intersection is in the stable direction of the flow.
Since the Birman-Williams projection collapses orbits along the
stable direction the fuzziness disappears, resulting in a set describ-
able as a graph over y.

handlebody and allowing the flow through that tube to be
rotated through an integer number of 2 radians. In this way
it is possible to associate an integer index to each such flow
tube, of which there are 3(g—1) for a genus-g handlebody. A
local reflection has the form shown in Fig. 7. There are g
—1 regions in the decomposition of a genus-g handlebody
that can be subjected to local reflections. Local reflections in
genus-g handlebodies are subject to all the restrictions dis-
cussed above. The present manuscript clarifies that local re-
flections are the result of projections of local rotations from
higher dimensional embeddings. In three dimensions local
reflections describe embeddings of the branched manifold,
not the flow whose projection is the branched manifold. In
order to construct embeddings for the flow, the mapping
must be into one higher dimension [21].

VII R,(7) EQUIVARIANT EMBEDDINGS

It has been observed [3] that one cannot obtain a rotation-
ally equivariant embedding of the Lorenz system from a dif-
ferential embedding based on a single observable. It is the
purpose of this section to demonstrate this explicitly. More
generally, we show that if a differential embedding of a dy-
namical system with an order two symmetry possesses sym-
metry, it is necessarily parity symmetry. Of course, embed-
dings with the same symmetry do exist (e.g., the identity
map), therefore such embeddings cannot be constructed
through successive derivatives of any observation function,
that is, they are not differential embeddings in the usual
sense.

Suppose that a dynamical system X=v(x) is equivariant
under a mapping (group operation) g, so that v(gx)=guv(x).
Let f be an eigenfunction of g satisfying f(gx)= =* f(x). This
is equivalent to saying that f has definite parity (either even
or odd) under g. We show that if f is an eigenfunction then
d/dt|yf(¢,(x)) is an eigenfunction of the same parity, where
¢, is the flow associated to v.

066220-6



DIFFERENTIAL EMBEDDING OF THE LORENZ ATTRACTOR

By definition of derivative

dt

o] = LN =SD o flor o) = flx).
0 1=0 t =0 :

(14)
Now by transforming x+> gx we have

li f(gx + Z‘ng) _f(gx)
o '

i /18 o))~ f8x)
s t

_d
T odt

d
% Of[%(gx)] =

(15)

Asle)]},

0

where in the second line we used the assumption of equiva-
riance. It is now apparent that this expression is an eigen-
function of the same parity as f under g. By induction the
higher derivatives are eigenfunctions of the same parity.
Now a differential mapping F, constructed from f is given
by F,=(fi,f2,-...f,). Here, fi=f and for i>1 f; is the time
derivative of f;_;. It follows that when f has definite parity
that F, has the same definite parity.

Therefore if f is odd under g then the corresponding dif-
ferential mapping F,, will be odd and the image system will
be parity equivariant. If on the other hand f is even then the
differential mapping F, will be even and thus necessarily
two-to-one since F,(x)=F,(gx). The image is therefore trivi-
ally equivariant or invariant. For example, z is even, and a
differential mapping based on z yields a two-to-one mapping
onto the proto-Lorenz system. Explicit equations may be
found in [20].

Now let f be any observation function and make an eigen-
decomposition of f as f=f*+f", where f~ are the even (+)
and odd (-) parts of f under g. Since the derivative is linear,
the components f; of the differential mapping F, split into
even and odd parts f; , which are just the even and odd parts
of ith derivative of f.

Now suppose that g=R.(7). We show that equivariance of
the image under g leads to a contradiction. In order for the
image to be g equivariant '3 must be g equivariant. Suppose
first that the principal directions of g align with the compo-
nents of F5. Since up to a permutation of the axes g=diag(
—-1,-1,1), every component function f; must be an eigen-
function, two with eigenvalue —1 (odd) and one with eigen-
value +1 (even). In any case the component f,=f is an eigen-
function, but we have seen that its derivatives are necessarily
eigenfunctions of the same parity which yields a contradic-
tion. Thus F3 cannot be equivariant under g.

More generally, suppose that y; are equivariant coordi-
nates linearly related to the f; by yi=M{fj. Assume without
loss of generality that y; is even. Then we must have M/ /i
=0, which says that the f; are linearly dependent. In the
same way y, and y; being odd force the f7 to be linearly
dependent. Therefore all f; are linearly dependent, but then
F5 cannot be an embedding. We therefore conclude that no
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differential embedding of a R.(7) equivariant dynamical sys-
tem can be R_(7) equivariant, the Lorenz system in particu-
lar.

The general case follows at once. The generator of any
order two symmetry acting in R” is given in the appropriate
basis by g=diag(*1,*1,..., = 1), where the signs are in-
coherent, and we have g?=I,. The previous considerations
show a differential embedding will not be equivariant under
g, but rather [, or —I,. In the first case the image is invariant,
and in the second case it is parity equivariant. However, as
we have seen, it is possible for a system and its parity equi-
variant image to be diffeomorphic, even isotopic.

Finally, we note that in the spirit of [2], a pair of obser-
vation functions, one even under g and the other odd, may be
used to reconstruct any order-two symmetry. In particular,
the projection of a generic (nonsymmetric) measurement
function f onto the even (f,) and odd (f_) eigendirections
suffices. For the Lorenz system, f=x+z has the projections
f+=z and f_=x. These projections are mapped into the two
dimensional space of embedding parameters f— (f_,f,)
€ V=R? as described in [2]. For the Lorenz system, the map-

ping of generic data into V*=V+V+V+ e V=R® produces a
three-dimensional manifold with Z, symmetry

8
(++,++.++,++)=>(—+,—+,—+,—+).

Projections into three-dimensional subspaces with n, odd di-
rections and 7, even directions results in attractors in R with
inversion symmetry (n,=3, n,=0), rotation symmetry (2,1),
reflection symmetry (1,2), and no symmetry (0,3). These pro-
jections may not be embeddings; failure to be an embedding
is due entirely to the projection [24]. The last projection
cannot be an embedding because it is two to one.

VIII. CONCLUSIONS

We have analyzed differential mappings of the rotation-
ally equivariant Lorenz dynamical system £ in some detail.
While the mapping constructed from the x coordinate and its
first two derivatives is one-to-one on the attractor of L, it
does not provide a diffeomorphism of the flow. The induced
Lorenz system £L; is not diffeomorphic to the Lorenz system
in R3. However, the differential mappings of £ into R” for
n=4 do yield embeddings. We saw that the failure to
achieve an embedding in R? was related to the different sym-
metry properties of £ and £;: the former is rotationally equi-
variant and the latter is parity equivariant. We then showed
that the two systems are actually isotopic in R* and showed
how their associated bounding tori and branched manifolds
are related. Finally, we worked out the details of the obser-
vation made in [3] that no differential mapping of the Lorenz
system is rotationally equivariant; any equivariant image of
such a system is either invariant, possessing no nontrivial
symmetry, or else is parity equivariant with a twofold sym-
metry. We then generalized this result to show that an equi-
variant reconstruction of any system with a twofold symme-
try is parity symmetric. Finally, we showed how to recover
an arbitrary twofold symmetry from a generic observation
function.
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While it is not possible to embed the Lorenz system into
the three dimensional manifold R? it is possible to embed it
into a three-dimensional twisted submanifold M of R*. The
projection of this manifold into R? possesses singularities. In
particular, the projection induces a local reflection.

ACKNOWLEDGMENT

We thank C. Letellier for useful discussions.

APPENDIX: MAPPING DEFORMATIONS

The purpose of this appendix is to fill in the technical
details of Sec. V by constructing explicit deformations of the
mappings F3 and F, to a local reflection and inclusion re-
spectively. The idea of a smooth deformation of an embed-
ding is made precise through the notion of isotopy. Two em-
beddings f and g are isotopic if there is a smooth map A(x,s),
s € [0, 1], that satisfies the following three properties: 1) for
every fixed s, hy(x)=h(x,s) is an embedding; 2) hy=f; and
3) hy=g. We will refer to either A(x,s) or h,(x) as the isotopy.
Thinking of s as time, the isotopy smoothly transforms the
embedding f at time zero to the embedding g at time one
through a sequence of embeddings. It is natural to regard
isotopic embedding’s as the same or equivalent. We note that
it will often be convenient to define an isotopy over an in-
terval other than [0,1]. In all cases the isotopies defined will
be obviously smooth, so one need only check that they are
one-to-one for each s.

Recall the twisted embedding Eq. (13), and the denomi-
nators of the last two coordinate which normalized them to
approach inclusion as |x| — . This embedding is isotopic to
the un-normalized mapping

G:(x,y,2) = (x,y,— x2,2). (16)

One can take for the deformation (1-s)F+sG with s
€[0,1] and check that this is one-to-one for each s. We may
also refer to the first three coordinates of this mapping as a
local reflection of R3.

The mapping F defines a rather complicated embedding
of R3—{yz-plane} into R3. Denote the image of (x,y,z) by
(X,Y,Z)=F;(x,y,z) and recall that these coordinates are
given by Eq. (4). We will now simplify F; through a se-
quence of isotopies. We note that the isotopies need only be
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one-to-one away from the yz-plane since Fj is singular there.
In each case s € [0, 1]. Our goal is to show that F’; is isotopic
to a local reflection.

First note that the first coordinate is already X=x. Next,
by smoothly rescaling the axes, the overall factor of o on the
last two components may be set to one. The second coordi-
nate is now given by Y=y—x. By defining Y=y + (s—1)x this
coordinate can be smoothly changed to Y=y. One can check
that this is one-to-one for every s. For the third coordinate
define Z,=Z(1-s)—-szx to smoothly deform it to —zx. In this
case points with different z coordinate are identified when
x=0. In fact, when x=0, Z,=(s—1)(1+0)y, so for every s the
yz plane is taken to a line. The form of the singularity is
preserved during this deformation and Z, defines an isotopy
of F; away from its singular set. We have thus succeeded in
bring F; to the form of (the first three coordinates of) Eq.
(16) through a sequence of deformations. This proves the
claim in Sec. V that the attractors £; and £ differ by a local
reflection in R>.

Now we consider the embedding F, into R*. Since the
first three coordinate of F, are given by F3, the above isoto-
pies apply to F, as well. However, the isotopy Z, was singu-
lar for F5 along x=0. By checking the fourth coordinate W of
F, given in Eq. (8) we see that points are identified only
when y=0 as well. But this defines the z axis, which is the
singular set of F,. We conclude that Z, is an isotopy away
from the singular set of F.

It remains only to transform the final coordinate W to z to
arrive at the twisted embedding Eq. (16). This can be done
through a sequence of deformations, W—z(x—y)—zx—z.
At each step the deformation is linear: f— g by sg+(1—s)f.
It is tedious but straightforward to check that each deforma-
tion is one-to-one away from the z axis and so completes the
isotopy of F, to the twisted embedding. Finally, the twisted
embedding is isotopic to the standard inclusion R3— R*
This can be achieved by the isotopy

(x,v,2,8) — (x,y,— z sin &,z cos §), (17)
where we set
E=s arctan x + (s — 1)7/2, (18)

and s €[0,1]. We conclude that F, is isotopic to the inclu-
sion R3— R*. This proves the claim in Sec. V that the attrac-
tors £; and £ are identical in R*.
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