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A Schwinger disentangling theorem

Daniel J. Crossa� and Robert Gilmore
Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA

�Received 19 April 2010; accepted 22 September 2010; published online 18 October 2010�

Baker–Campbell–Hausdorff formulas are exceedingly useful for disentangling op-

erators so that they may be more easily evaluated on particular states. We present

such a disentangling theorem for general bilinear and linear combinations of mul-

tiple boson creation and annihilation operators. This work generalizes a classical

result of Schwinger. © 2010 American Institute of Physics.

�doi:10.1063/1.3501027�

In a classic work,
1

Schwinger calculates the expectation value,

��0�eA�a,b�eB�a†,b†���0� = det�Im + BA�−1. �1�

Here, A and B are m�m skew-symmetric matrices, the m operators a† and b† are independent

boson creation operators, the m operators a and b are independent boson annihilation operators,

��0� is the ground state, and A�a ,b�	a⊤Ab=Aijaib j and similarly for B�a† ,b†�. The sets of

operators a and b mutually commute, and each set obeys the commutation relations �a� ,a�
†�

=���. For m=1, the usual angular momentum operators are recovered by J+=a†b, J−=b†a, and

J3= �a†a−b†b� /2.

Recently, Viskov
2,3

extended Schwinger’s result, interpreting it in terms of differential opera-

tors acting on the constant function 1. In this paper we generalize both Schwinger and Viskov’s

results by proving a general operator disentangling theorem using a matrix Baker–Campbell–

Hausdorff �BCH� approach.
4

Theorem 1 proves this result for arbitrary bilinear combinations of

creation and annihilation operators, a result obtained previously by Hong-yi
5

using the technique

of integration within an ordered product. Our main result, Theorem 2, extends Theorem 1 to

additionally include arbitrary linear combinations of operators. Along the way we compute ground

state expectation values and interpret our results in terms of differential operators in order to

compare with Schwinger and Viskov, respectively.

Consider the following general bilinear combinations of creation and annihilation operators:

N =
1

2
N
a†,a�, R = R�a†,a†�, and L = L�a,a� , �2�

where N, R, and L are n�n matrices, and N
a† ,a�	N�a† ,a�+N�a ,a†�. The same letter signifies

the operator and the associated matrix, the former being in bold. Without loss of generality R and

L may be assumed symmetric. These bilinear operators generate a Lie algebra whose commutation

relations may be derived from those of the underlying operators.

We generalize the operator appearing in Eq. �1� to

Q = eL�a,a�eR�a†,a†�, �3�

which is represented by the expression exp L exp R. This operator is antinormally ordered, mean-

ing that the raising operations act before the lowering operations. A BCH formula may be used to

a�
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disentangle this operator, rewriting it in the normally ordered form exp R� exp N� exp L�. This is

most efficiently executed using a matrix representation of the algebra.
4

Theorem 1: With the above definitions, exp L exp R=exp R� exp N� exp L�, where R�

=RD2�
−1, L�=D2�

−1L, N�=−D2�
⊤, and D2�= In−4LR.

Proof: The general bilinear operator N+L+R may be mapped onto the 2n�2n matrix,

� N 2R

− 2L − N⊤ 
 . �4�

This mapping provides a faithful representation of the algebra of bilinear operators in terms of the

defining matrix representation of the symplectic algebra sp�2n ,R�. We now solve for the primed

operators, which satisfy

exp� 0 0

− 2L 0

exp�0 2R

0 0

 = exp�0 2R�

0 0

exp�N� 0

0 − N�
⊤ 
exp� 0 0

− 2L� 0

 . �5�

The nilpotent operators are easily exponentiated. Writing D1�=exp N� and D2�= �D1�
⊤�−1, we have

� In 0

− 2L In


�In 2R

0 In


 = �In 2R�

0 In


�D1� 0

0 D2�

� In 0

− 2L� In


 , �6�

where In denotes the n�n identity matrix. This yields

� In 2R

− 2L In − 4LR

 = �D1� − 4R�D2�L� 2R�D2�

− 2D2�L� D2�

 , �7�

from which we easily obtain

D2� = In − 4LR R� = RD2�
−1, �8�

D1� = �In − 4RL�−1 L� = D2�
−1L . �9�

We emphasize that these manipulations depend only on the algebraic properties of the operators

and the group properties of their exponentials. These results do not depend at all on the invariant

vector space on which these operators may act.
6

�

As an immediate corollary, the ground state expectation value of the operator in the Hilbert

space of number states is easily evaluated.

Corollary 1: The ground-state expectation value of Q is ��0�Q��0�=det�In−4RL�−1/2.

Proof: The exponential of the lowering operator acts as the identity on ��0�. Likewise, the

exponential of the raising operator acts as the identity on ��0�. Thus,

��0�Q��0� = ��0�exp N�
a†,a���0� , �10�

where N�=−ln�In−4RL�. The operator in the exponential may be normally ordered, yielding

N��a† ,a�+tr N� /2. These two terms commute so they may be exponentiated separately. Since the

first term is normally ordered, it acts as the identity on the ground state, while the second term is

a scalar. The expectation value is just this scalar,

exp tr N�/2 = det�In − 4RL�−1/2. �11�

�

To compare with Schwinger’s result, Eq. �1�, set n=2m, rewrite the bilinear form Aijaib j by

relabeling b j→a j+m, and similarly changing the second index of A. This new A has a block

structure where only the upper right block is nonzero. This should correspond to the matrix L,

except that it is not symmetric. It may be symmetrized by setting
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L =
1

2
� 0 A

A⊤ 0

 . �12�

Define R in terms of B in the same way. Then, since

�I2m − 4RL� = �Im − BA⊤ 0

0 Im − B⊤A

 , �13�

the expectation value is

�det�Im − BA⊤�det�Im − B⊤A��−1/2 = det�Im − BA⊤�−1. �14�

If we now assume that A and B are antisymmetric �A⊤=−A�, then this immediately yields

Schwinger’s result. Note that Eq. �14� is valid for arbitrary A and B.

We may also evaluate the operator Q on the ground state ��0�.
Corollary 2: Q��0�=det�C�eCB�a†

,b
†���0�, where C= �Im−BA⊤�−1.

Proof: With the operator Q normally ordered, we obtain

eR��a†,a†�etr N�/2eN��a†,a�eL��a,a���0� , �15�

=etr N�/2eR��a†,a†���0� , �16�

=det�In − 4RL�−1/2eR�In − 4LR�−1�a†,a†���0� . �17�

If we set n=2m, use the two sets of operators a and b, and express L and R in terms of A and B

as before, then with the help of the matrix identity X�I−YX�−1= �I−XY�−1X this state becomes

det�C�eCB�a†,b†���0� , �18�

where C= �Im−BA⊤�−1. �

Viskov
2

interprets Eq. �1� in the following way. Replace the Hilbert space operator with a

differential operator Q̃ through the replacements ai
†
→xi, bi

†
→yi, ai→�xi

, and bi→�yi
. Then have

Q̃ act on the constant function 1 and evaluate the result at x=y=0. After these replacements,

Schwinger’s result becomes

Q̃1�0 = eA��x,�y�eB�x,y�1�0 = det�Im + BA�−1, �19�

where the notation indicates that the expression is to be evaluated at x=y=0. We note that acting

on 1 with this operator is equivalent to operating on ��0� in Schwinger’s case, and that evaluating

at x=y=0 is equivalent to operating on ��0�.
Viskov uses analytical methods to generalize this result by removing the evaluation at zero

and letting A and B be arbitrary. He finds

eA��x,�y�eB�x,y�1 = det�C�eCB�x,y�, �20�

where C= �Im−BA⊤�−1. Notice that this is precisely Eq. �18� with the replacements a†→x, b†

→y, and ��0�→1.

Our present result generalizes Viskov’s. We have the general bilinear differential operator

Q̃ = eL��x,�x�eR�x,x�. �21�

Since x and �x obey the same commutation relations as a† and a, Q̃ may be disentangled in exactly

the same way as before. The action of Q̃ on 1 is therefore given by Eq. �17� by making the

replacements a†→x and ��0�→1. As mentioned previously, Viskov’s result is recovered from the

special case of Eq. �18� through the same replacements.

103515-3 A Schwinger disentangling theorem J. Math. Phys. 51, 103515 �2010�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

165.82.85.181 On: Wed, 21 Jan 2015 02:40:51



Schwinger
1

generalized the expectation value of Eq. �1� to include linear combinations of

creation and annihilation operators. If we define the new operator

Q = eA�a,b�+��a�+���b�eB�a†,b†�+��a†�+���b†�, �22�

where ��a�	�iai, then Schwinger showed that

��0�Q��0� = det�C�eC��+��,�+���, �23�

where C= �Im+BA�−1 and C��+�� ,�+���=Cij��i+�i���� j +� j��. We keep the same definitions of

Eq. �2� for the bilinear operators and introduce the linear operators l= l�a� and r=r�b†�, as well as

the multiple of identity operator �=�I, ��C. We now prove our main disentangling result.

Theorem 2: exp�L+ l�exp�R+r�=exp�R�+r��exp�N�+���exp�L�+ l��, where R�, L�, and N�

are just as in Theorem 1, Eqs. (8) and (9), and

r� = D1��r + 2R⊤l� , �24�

l� = D2�
−1�l + 2Lr� , �25�

2�� = �r⊤ + 2l⊤R�D2�
−1�l + 2Lr� + l⊤r . �26�

Proof: The general operator N+L+R+ l+r+� may be mapped onto the 2�n+1��2�n+1�
matrix,

�
0 l⊤ r⊤ − 2�

0 N 2R − r

0 − 2L − N⊤ l

0 0 0 0
� . �27�

The operator exp�L+ l�exp�R+r� may be put into the normally ordered form following the same

procedure as in the purely bilinear case. The details are left to the reader. �

We immediately obtain the ground state expectation value.

Corollary 3: ��0�Q��0�=det�In−4RL�−1/2e��.

We want to compare this result with Eq. �23�. First, note that with the help of the matrix

identity X�I−YX�−1Y = �I−XY�−1− I the number �� may be rewritten as the quadratic form,

D1��l,r� + RD1�
⊤�l,l� + D1�

⊤L�r,r� . �28�

Here, D1��l ,r�= �D1��ijlir j, and similarly for the other terms. To compare with Eq. �23�, set n=2m,

write L and R in terms of A and B, and write l= �� ,���= ��1 ,�2 , . . . ,�m ,�1� ,�2� , . . . ,�m� �, and

similarly write r= �� ,���. If we assume that both A and B are antisymmetric, then the matrices

RD1�
⊤ and D1�

⊤L are also antisymmetric and their corresponding quadratic forms vanish. The

remaining quadratic form becomes

C��,�� + C���,��� = C�� + ��,� + ��� , �29�

with C= �Im+BA�−1. Since we already established that under these assumptions det�I2m

−4RL�−1/2=det C, we are done.

Again, we evaluate Q on the ground state ��0�.
Corollary 4: Q��0�=etr N�/2+��eR�In − 4LR�−1�a†

,a
†�e�In − 4RL�−1�r+2Rl��a†���0�.

If we again set n=2m and write L and R in terms of antisymmetric A and B, this state becomes

det�C�eCB�a†,b†�eC��+��,�+���e�C�+CB����a†�e�C��−CB���b†���0� , �30�

and C= �Im+BA�−1.
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We note that Viskov
3

also proved a differential operator identity similar to Corollary 4, but

with no linear derivative terms. By making the usual replacements, Viskov’s result may be gen-

eralized to include these linear operators as well.

This paper has proven an operator disentangling theorem for arbitrary linear and bilinear

combinations of antinormally ordered boson creation and annihilation operators using a matrix

BCH approach. The ground state expectation values were calculated, generalizing Schwinger’s

result, Eq. �1�. The states obtained by applying the operators to the ground state were also

calculated. The foregoing results were then reinterpreted as differential operators applied to the

constant function 1, generalizing a result of Viskov, Eq. �20�. Finally, using the matrix represen-

tation of the operators, Eq. �27�, the present methods may be easily extended to reorder any given

arrangement of linear and bilinear operators into any other.
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