
Boston University School of Law Boston University School of Law 

Scholarly Commons at Boston University School of Law Scholarly Commons at Boston University School of Law 

Faculty Scholarship 

4-2019 

Shocking Technology: What Happens When Firms Make Large IT Shocking Technology: What Happens When Firms Make Large IT 

Investments? Investments? 

James Bessen 
Boston University School of Law 

Cesare Righi 

Follow this and additional works at: https://scholarship.law.bu.edu/faculty_scholarship 

 Part of the Science and Technology Law Commons 

Recommended Citation Recommended Citation 
James Bessen & Cesare Righi, Shocking Technology: What Happens When Firms Make Large IT 
Investments?, No. 19-6 Boston University School of Law, Law and Economics Research Paper (2019). 
Available at: https://scholarship.law.bu.edu/faculty_scholarship/603 

This Working Paper is brought to you for free and open 
access by Scholarly Commons at Boston University 
School of Law. It has been accepted for inclusion in 
Faculty Scholarship by an authorized administrator of 
Scholarly Commons at Boston University School of Law. 
For more information, please contact lawlessa@bu.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scholarly Commons at Boston University School of Law

https://core.ac.uk/display/229123314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarship.law.bu.edu/
https://scholarship.law.bu.edu/faculty_scholarship
https://scholarship.law.bu.edu/faculty_scholarship?utm_source=scholarship.law.bu.edu%2Ffaculty_scholarship%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/875?utm_source=scholarship.law.bu.edu%2Ffaculty_scholarship%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.law.bu.edu/faculty_scholarship/603?utm_source=scholarship.law.bu.edu%2Ffaculty_scholarship%2F603&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lawlessa@bu.edu


 
 
 
 
 
 

SHOCKING TECHNOLOGY: 
WHAT HAPPENS WHEN FIRMS MAKE LARGE 

IT INVESTMENTS? 

 
 
 
 

Boston University School of Law 
Law & Economics Series Paper No. 19-6 

 
 

April 2019 
 
 

James Bessen 
Boston University School of Law 

 

Cesare Righi 
Boston University School of Management 

 Electronic copy available at: https://ssrn.com/abstract=3371016 



 

 1 

Shocking Technology: 
What happens when firms make large IT 
investments? 

 
James Bessen and Cesare Righi 
Technology & Policy Research Initiative, Boston University School of Law 
 
12 April 2019 

 
 
Abstract: Many economists see information technology (IT) as central to understanding 
trends in productivity, labor’s share of output, and employment, especially as new “artificial 
intelligence” (AI) technologies emerge. Yet it has been difficult to measure its effects. This 
paper takes a first look at the economic impacts of large custom software investment by 
firms—“IT shocks.” Using a novel difference-in-differences methodology, we estimate the 
productivity of these shocks and the associated effects on revenues and employment and we 
explore the implications in terms of labor’s share and other variables, including 
heterogeneous relationships by industry, AI use, and time. In our preferred models, IT 
shocks increase firm productivity by about 5%, followed by increases in revenue of 11% and 
in employment of 7% on average. However, employment growth following IT shocks is 
small or negative in mature industries; also, it has been slower in recent years, reducing job 
reallocation and aggregate productivity growth. Also, labor’s share of revenue decreases and 
operating profits rise following IT shocks. 
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Introduction 

Many economists see information technology (IT) at the crux of several major 

economic issues including productivity growth, decreasing labor’s share of output, and the 

potentially negative impact of technology on employment. New information technologies, 

such as Big Data and machine learning, are altering many production activities, enabling 

computers to interpret X-rays to diagnose disease, select job applicants, handle routine 

customer support phone calls, and drive cars. Some economists worry about the effects of 

new IT on wages, employment, and inequality (Brynjolfsson and McAfee 2014), some 

fearing mass unemployment (Frey and Osborne 2017). Others see new information 

technology implicit in labor’s declining share of output (Karabarbounis and Neimann 2014, 

Autor et al. 2017 Acemoglu and Restrepo 2018, Calligaris et al. 2018). And many economists 

see IT as central to ongoing productivity growth but they differ widely as to whether the 

positive impact of IT has waned (Gordon 2017) or is about to start a resurgence 

(Brynjolfsson, Rock, and Syverson 2019).  

There is a sizeable empirical literature on IT (see Brynjolfsson and Yang 1996, 

Kretschmer 2012, and Stiroh 2005 for reviews). However, this literature is limited in several 

ways. First, it focuses mainly on the impact of IT on productivity and little on some of the 

other issues just noted.1 Second, much of this literature measures IT as hardware, either 

computers and peripherals or also other information processing equipment and 

                                                 
1 An important strand of the literature studies the relationship of IT and complementary investments in 
organizational capital, human capital, and management including Bartel, Ichniowski, and Shaw 2007; Bessen 
2015; Bloom et al. 2012; Bloom et al. 2014; Bloom et al. 2017; Bresnahan, Brynjolfsson, and Hitt 2002; 
Bresnahan and Greenstein 1996; Brynjolfsson et al. 2008; Caroli and van Reenen 2001; and Crespi, Criscuolo, 
and Haskel 2017. Akerman 2015 and Gaggl and Wright (2018) explore a variety of outcome variables beyond 
productivity. 
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communications equipment.2 Third, in line with the focus on productivity measurement, this 

literature treats IT as an input to production rather than as investment in innovation. 

These limitations are important because the nature of IT has been changing. IT is 

now dominated by firm-specific custom software rather than hardware or pre-packaged 

software. While firm-specific software accounted for 33% of IT investment in 1985, it 

accounts for 55% today.3 In 2016, the Bureau of Economic Analysis (BEA) estimates that 

private investment in proprietary software—both self-developed and custom contracted—

was $250.4 billion, almost as much as net capital investment. Not only is this investment 

large, it is also qualitatively different from routine investments in IT inputs. There are, of 

course, different types of IT investments. Installing routine word processing software on 

personal computers is an example of IT as an input factor. But when a firm builds a custom 

logistics system with proprietary features that rivals do not have, that is different because it is 

innovation. Innovative investments can, for instance, let the firm earn quasi-rents, increasing 

markups and decreasing labor’s share of output. Investment in custom software is largely 

investment in innovation (otherwise the software could be purchased) and, as we develop 

below, this implies different outcomes and different ways of measurement than investments 

in routine inputs. 

This paper takes a first look at the economic impacts of large custom software 

investment by firms on firm productivity, revenue and employment, and also explores the 

implications of these effects on quantities such as labor’s share of revenue and markups. We 

do this by focusing on events where firms make major investments in developing new 

                                                 
2 Some important exceptions include Bloom et al. 2012, Harrigan et al. 2016,  Jin and McElheran 2018, and 
Tambe and Hitt 2012. 

3 This counts custom contracted and own-account (self-developed) software as a share of total gross 
investment in software, computers, and peripherals. 
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software, a kind of “technology shock.” We identify these events using online resume data to 

detect large increases in the share of software developers in each firm’s workforce. Firm 

financial data from Compustat allow us to relate these events to changes in firm outcomes in 

a difference-in-differences model bolstered by a control function to capture unobserved 

productivity and demand shocks. 

We make several contributions to this literature. First, we develop a new way to 

measure major IT investments and adapt a novel methodology from Bessen et al. (2019) to 

estimate impacts. Second, we are able to explore not only impacts on productivity, but also 

associated effects on firm revenue and employment, and study the association of these 

shocks with labor’s share of revenue and profits. Third, we perform this analysis along 

multiple dimensions to understand heterogeneous impacts. These include whether or not the 

firm uses AI/Big Data, industry, geographical location, firm age and calendar time of the 

shocks. Together, this analysis provides a rich picture of what IT does and where it does it 

with implications for a range of policy issues. 

We find that these technology shocks are followed on average by increases in 

productivity, sales, and—contrary to alarmist predictions—employment. These increases are 

economically significant (respectively, 5, 11 and 7 percent) and we provide a variety of 

estimates that support a causal interpretation of our main results. However, the impact of 

these shocks on employment depends on the industry; it is strong in technologically new 

industries but weak or negative in mature ones. Moreover, we find that the productivity 

impact of IT shocks has not declined in recent years, however, employment has not grown 

as much following these shocks. This means that IT shocks contribute less to aggregate 

productivity growth now than they did in the past as argued by Decker et al. (2018). That is, 

IT shocks do not contribute to the correlation between productivity and firm size as much 

 Electronic copy available at: https://ssrn.com/abstract=3371016 



 

 5 

as they did in the past. Finally, major IT investments are followed by a decrease in labor’s 

share of firm revenue and an increase in firm operating margins in some industries.  

The paper begins by discussing the nature of custom software and the significance of 

IT shocks. A simple model outlines the relationship of these shocks to a variety of outcome 

variables. We then describe the construction of our data. The last two sections summarize 

our empirical findings and conclude.  

Background and Theory 

IT shocks 

A large literature has looked at the productivity contribution of IT both at the 

aggregate level (see for example, Oliner and Sichel 2000, Jorgenson, Ho, and Stiroh 2005) 

and at the firm level (see for example, Brynjolfsson and Hitt 1996, 2003). This body of 

research uses two main methods of obtaining estimates of the productivity contribution of 

IT: non-parametric growth accounting estimates of Solow residuals or parametric estimates 

of production functions. In both methods, IT enters as an input factor of production. IT 

investments in innovation only appear tangentially, as embodied technical change reflected in 

the quality-adjusted price of IT goods or as part of IT’s contribution to disembodied 

technical change. 

However, the large investments that firms are making in developing their own 

software suggest a number of important differences in the role of IT that affect a broader 

range of outcomes and also affect how we measure the impact of IT. First, innovations can 

generate quasi-rents. To the extent that new custom software lowers prices or increases 

product quality in a way that rival firms cannot imitate, IT investment should lead to quasi-
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rents that increase the firm’s markup of price over cost. Below we will explore whether 

major IT investments tend to be followed by increases in operating margins and decreases in 

labor’s share of output, both of which might follow from increased markups. 

Second, innovation can change the production function. For example, Acemoglu and 

Restrepo (2018) emphasize how automation of tasks—increasingly done by information 

technology—can change labor’s share of output. 

Third, the impacts of innovative IT investment are likely much more heterogeneous 

than those of routine investments. One reason for heterogeneous outcomes is wide variation 

in the technological opportunities facing different industries and firms. Another is that firms 

have disparate capabilities in terms complementary assets needed for innovation such as 

software talent, managerial capability, and organizations. A significant literature has looked at 

how such complementary assets affect the returns to IT, however, the connection to the 

innovative role of IT is not always drawn.4  

Finally, innovation tends to be risky in general and this is particularly true for IT 

innovation. Indeed, large IT projects have notoriously high rates of failure.5 The high 

uncertainty, combined with some other characteristics of software investment, tend to make 

much IT investment “lumpy,” that is, occurring in discrete episodes of high investment. It is 

well-established that capital investment tends to be lumpy (Haltiwanger et al. 1999; Doms 

and Dunne 1998; Nilsen and Schiantarelli 2003). In theory, high uncertainty gives rise to 

lumpy behavior when the investment is irreversible and when there are indivisibilities or 

                                                 
4 See footnote 1 for some citations to this literature.  

5 Michael Bloch, Sven Blumberg, and Jürgen Laartz, “Delivering large-scale IT projects on time, on budget, and 
on value,” Digital McKinsey, October 2012, a study of 5,400 IT projects > $15 million found failures so bad in 
17% of the projects that they threatened the existence of the company; on average costs run 45% higher and 
56% less value than planned. Lars Mieritz, “Survey Shows Why Projects Fail,” Gartner, June 2012 in survey of 
154 organizations, North America and Europe found failure rates of 28% for projects > $1 million; 20% for 
projects smaller than $350k. 
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nonconvex adjustment costs (Pindyck 1991, Rothschild 1971). Investments in custom 

software are typically irreversible; they cannot be resold because they are firm-specific. And 

large software systems have large, indivisible fixed costs. Also, associated organizational 

changes may have large adjustment costs.  

All of this suggests that substantial innovative IT investment may occur in discrete 

episodes. Below we define “IT spikes” and find that a large share of IT investment occurs in 

these episodes. Indeed, custom software development appears to be substantially lumpier 

than capital expenditure. Using our definition, 47% of the total increase in the employment 

of software developers occurred during IT spikes, yet these spikes accounted for only 12% 

of firm-year observations in our data. 

These episodes appear to reflect specific technological and market opportunities of 

the firm. Consider three examples from 2007. After a decade of rapid growth, Ebay invested 

$89 million in software development staff and consultants to enhance user experience and 

add new products. That year Danske Bank, Denmark’s largest retail bank, also hired a large 

number of software developers. Danske Bank had developed an effective IT banking 

platform, but on acquiring a group of banks in Baltic countries, they needed to adapt their 

platform and integrate existing systems from this group. In 2007 also, the aerospace division 

of Crane Company identified a market opportunity to sell rugged mobile computers to 

military suppliers. They hired software developers and also acquired a business unit of an 

embedded computer firm in order to rapidly put together a product and bring it to market. 

These examples show that the occurrence of spikes may often be tied to particular 

technological opportunities such as Crane Co.’s opportunity to deliver a new kind of 

computer to the military market or Danske Bank’s opportunity to enter new markets or 

Ebay’s opportunity to expand its market with better service. The opportunities were mostly 
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specific to the particular firm. In addition, exploiting these opportunities depended on 

complementary firm assets such as Ebay’s large customer base, Danske Bank’s existing 

platform, and Crane Co.’s technical capabilities including those in the acquired business unit. 

In short, the occurrence of these IT shocks is substantially idiosyncratic to the firm. 

Moreover, the IT shock should be viewed not simply as a pure investment in software, but 

an investment in complementary goods as well. 

Because such major investments in innovation often occur in discrete episodes, we 

can exploit an empirical approach developed by Bessen et al. (2019) that uses these events to 

conduct difference-in-differences analyses. This approach allows us to isolate the 

relationship between large IT investments and subsequent performance of a variety of 

outcome variables. While an association between the timing of these events and changes in 

firm behavior over time is not, by itself, sufficient to establish causality, we use some 

standard tools of production function estimation to strengthen the plausibility of our 

estimates and support a causal interpretation of our empirical models. 

A simple model 

It is helpful to sketch a simple model and define the outcome variables that we will 

explore. Assume that firm i creates output Y at time t according to a Cobb-Douglas 

production function, 

(1) 

𝑌𝑖𝑡 = 𝐴𝑖𝑡 ∙ 𝐿𝑖𝑡
𝛽

∙ 𝐾𝑖𝑡
1−𝛽

 

where A is productivity, L is employment, and K is capital. Assume also that firms have 

some market power so that price, p, can be expressed by an inverse demand function, 
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(2) 

𝑝𝑖𝑡 = 𝑑𝑖𝑡 ∙ 𝑌𝑖𝑡

−
1
𝜀 ,       𝑅𝑖𝑡 = 𝑝𝑖𝑡𝑌𝑖𝑡 =  𝑑𝑖𝑡 ∙ 𝑌𝑖𝑡

1−
1
𝜀 , 

where 휀 is the elasticity of demand, d is a firm-specific demand shifter, and R is revenue. 

The firm seeks to maximize profits, 

𝜋𝑖𝑡 = 𝑅𝑖𝑡 − 𝑤𝑡𝐿𝑖𝑡 − 𝑟𝑡𝐾𝑖𝑡 

where w is the wage and r is the capital rental rate. The first order conditions are 

(3) 

𝜕 𝑌𝑖𝑡

𝜕 𝐿𝑖𝑡
=

𝛽𝑌𝑖𝑡

𝐿𝑖𝑡
=

𝑤𝜇

𝑝𝑖𝑡
,       

𝜕 𝑌𝑖𝑡

𝜕 𝐾𝑖𝑡
=

(1 − 𝛽)𝑌𝑖𝑡

𝐾𝑖𝑡
=

𝑟𝜇

𝑝𝑖𝑡
,       𝜇 ≡

휀

휀 − 1
. 

These conditions apply in equilibrium, however, firms facing adjustment costs might not 

reach long-term equilibrium immediately. 

Several useful expressions can now be derived. First, since we observe firm revenue, 

but not actual output, it is helpful to define a log revenue production function 

(4) 

ln 𝑅𝑖𝑡 =
1

𝜇
[ln 𝐴𝑖𝑡 + 𝛽 ln 𝐿𝑖𝑡 + (1 − 𝛽) ln 𝐾𝑖𝑡] + ln 𝑑𝑖𝑡 . 

We will estimate a version of this equation below, specifying A as a function of the IT 

shock. 

Second, unit cost, c, can be defined 

(5) 

𝑐𝑖𝑡 ≡
𝑤𝐿𝑖𝑡 + 𝑟𝐾𝑖𝑡

𝑌𝑖𝑡
=

𝑐0

𝐴𝑖𝑡
, 
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where the latter expression is derived from the first order conditions and applies in 

equilibrium.6 Then, using Euler’s theorem and the first order conditions (3), it is 

straightforward to show that the price markup is,  

(6) 

𝑝𝑖𝑡

𝑐𝑖𝑡
= 𝜇. 

One concern is that IT may create market power, increasing the markup. This might occur, 

for instance, if a firm earned quasi-rents from its innovative software. Below we will want to 

explore whether markups change, but since we do not observe unit costs, we need to 

measure closely related variables. Three related quantities are labor’s share of revenue, s, 

operating margins, m, and the capital labor ratio, respectively, 

(7) 

𝑠 ≡
𝑤𝑡𝐿𝑖𝑡

𝑝𝑖𝑡𝑌𝑖𝑡
=

𝛽

𝜇
,            𝑚 ≡

𝑅𝑖𝑡 − 𝑐𝑖𝑡𝑌𝑖𝑡

𝑅𝑖𝑡
= 1 −

1

𝜇
,         

𝐾𝑖𝑡

𝐿𝑖𝑡
=

1 − 𝛽

𝛽
∙

𝑤𝑡

𝑟𝑡
 . 

Labor’s share of revenue is also interesting because Acemoglu and Restrepo (2018) propose 

that automation of tasks can decrease labor’s share, decreasing 𝛽 in our model. On the other 

hand, Autor et al. (2017) find that the changes in labor’s share of output in the aggregate are 

largely a result of reallocation of employment between firms, not within-firm changes. Our 

data may provide some indication whether IT shocks cause within-firm decreases in labor’s 

share of output. Another issue has been the extent to which rising markups and firm profits 

have been caused by lax competition policy as opposed to changes in technology (Barkai 

2016, De Loecker and Eeckhout 2017). Bessen (2017) finds some evidence that information 

                                                 

6 𝑐0 = 𝑤 (
𝛽𝑟

𝑤(1−𝛽)
)

1−𝛽
+ 𝑟 (

𝛽𝑟

𝑤(1−𝛽)
)

−𝛽
. 
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technology is associated with higher operating margins. Below we will see whether IT shocks 

cause measurable changes in operating margins as well. 

Also, using (2), (3), and (6), revenue and optimal labor demand can be written, 

(8) 

ln 𝑅𝑖𝑡 = (휀 − 1)(ln 𝐴𝑖𝑡 − ln 𝜇 − ln 𝑐0) + ln 𝑑𝑖𝑡 . 

ln 𝐿𝑖𝑡 =  ln
𝛽𝑅𝑖𝑡

𝑤𝑡𝜇
=  (휀 − 1)(ln 𝐴𝑖𝑡 − ln 𝜇 − ln 𝑐0) + ln 𝑑𝑖𝑡 + ln

𝛽

𝑤𝑡𝜇
. 

This latter equation is important because it shows that the impact of productivity on 

employment depends on the firm’s demand elasticity with respect to price. This allows us to 

explore whether the predictions of major job losses associated with artificial 

intelligence/machine learning appear to be occurring. Bessen (2019) argues that demand 

elasticity has historically declined in industries subject to heavy productivity-enhancing 

technological change. As a result, firms in manufacturing industries, which have been subject 

to extensive automation and rapid technical change for a long period of time, are likely to 

have lower demand elasticities than firms in service, trade, and finance sectors. This raises 

the possibility, that we will test below, that industries may differ in response to IT 

productivity, some growing, others not.7  

This equation also provides us a way to explore how firm productivity improvements 

contribute to aggregate productivity growth. That is, aggregate productivity grows when 

firms improve their productivity and also when more productive firms grow proportionately 

larger. Decker et al. (2018), analyzing the recent slowdown in job reallocation, finding 

evidence that positive productivity shocks are occurring just as frequently now as in the past, 

                                                 
7 Bessen (2019) is concerned with industry-level elasticities of demand; here we are concerned with firm level 
elasticities, which reflect both industry elasticity as well as the substitutability between firms within the industry. 
In common models of oligopoly, firm demand elasticities reflect industry demand elasticities. 
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but that the correlation between firm employment size and productivity is weakening. We 

will explore below whether IT shocks have changed over the last two decades both regarding 

their productivity impact and also their impact on firm employment growth.  

Data 

In this section we describe our sample construction and define the main variables for 

the empirical analysis. 

Sample 

Our main sources of data are Compustat and LinkedIn. We retrieve data on firm 

characteristics such as revenues, capital, total employment, capital investment, market value 

of equity, wages, industry codes and country of incorporation from Compustat, and use 

these variables to define operating margins and labor share of revenue. 

We convert all variables defined in current dollars to 2009 dollars using deflators 

from the BEA.8 We calculate capital as net plant and equipment. We define operating 

margins as the operating income before depreciation and taxes divided by revenue. To 

calculate labor’s share of revenue, it is necessary to calculate the wage bill. For a fraction of 

Compustat firms, mostly in the financial sector, staff expense is reported. For the remainder 

of firms, we impute the wage bill by multiplying the number of firm employees by the 

industry employee compensation per employee. As long as firm wages move more or less in 

parallel with industry wages, this imputation will be representative.9 

                                                 
8 We deflate revenues by the industry gross output deflator. We deflate capital and capital investment by the 
investment deflator. We deflate wages and market value of equity using the deflator of the gross domestic 
product. 

9 For those observations where we have wage data, the correlation between the actual wage bill and the 
imputed wage bill is .714. 
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LinkedIn is our source of data on the composition of firms’ workforce. LinkedIn 

allows users to post their profiles including resumes and they may choose to make their 

profiles public. Our data were obtained for another project that used Google to search for 

public profiles on LinkedIn from June to November of 2013 (Ge et al. 2016).10 Each 

profile’s work experience section reports a series of jobs by date, job title, and employer. For 

instance, one person might have been a “graphic design intern” at company X from 1998 to 

2002, and an “information architect” at company Y from 2002 to 2007. 

We limit our sample period to years between 1990 and 2012. LinkedIn data may be 

less reliable as we go further back in time, and 2012 is the last full year before these data 

were collected.  

We matched firms in Compustat and LinkedIn in a multistep process. First, we used 

ticker symbols where these were available in the LinkedIn data. Next, for each firm name in 

Compustat that we could not match at the previous step, we tried to identify all the possible 

variations in the LinkedIn data, as LinkedIn users may list variations of a company name or 

provide the name of a subsidiary as their employer. So we cleaned and standardized firm 

names consistently in the two data sets and used a fuzzy matching algorithm on these names. 

Then we manually reviewed the fuzzy matches to reduce false positives. This was a 

burdensome task, so we focused our efforts on large companies as it is more difficult to 

retrieve additional information for a careful review on smaller organizations. Eventually, we 

matched 4,262 firms active between 1990 and 2012.11 

Our match coverage improves over time. The percentage of Compustat firms we can 

match with LinkedIn firms increase from 25% in 1990 to 54% in 2012.  Not surprisingly, 

                                                 
10 We thank Ke-wei Huang for graciously sharing these data with us. 

11 Details on the matching process are available upon request. 
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matched firms are substantially larger than unmatched firms in terms of sales, employees and 

capital and other variables related to firm size (see Table A1 in the Appendix). Moreover, the 

coverage of LinkedIn improves over time, so we have more matches in recent years. As a 

consequence of the focus on large firms and the increase in coverage over time, the match 

covers firms that account for 68% of the employees in Compustat in 1990, rising to over 

90% of the employees in 2012. Finally, software engineers may be over-represented in 

LinkedIn, so our matched firms are also more likely to be in IT-related industries. Note that 

both LinkedIn and Compustat are international, including non-US companies, but both sets 

are dominated by US firms. 

We use resume data from LinkedIn to define our key measure of IT shocks. This 

measure is based on changes in the IT share of each firm’s workforce, that is, changes in the 

ratio of software developers to total employees. We tally how many LinkedIn profiles report 

working at a given firm in a given year and to calculate the share of these profiles that are in 

software development jobs. To do this, we created a list of 1,791 job titles for software 

development occupations. We included managers such as “information systems project 

manager;” and we excluded job titles for tech support, maintenance, and basic operations. 

Identifying software developers in this way, we tabulate the ratio of LinkedIn software 

developers to LinkedIn total employees for each year for each firm from 1990 through 2012.  

However, this ratio might not be representative of the total population for employees 

because the relative usage of LinkedIn by software developers compared to non-IT 

employees might have changed over time. To correct for changes in coverage, we calculated 

the total ratio of software occupations to all workers in each year of the Current Population 

Survey. We use this ratio to weight the firm-year observations so that they correspond to the 

ratio from the Current Population Survey in aggregate. 
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We use also use the ratio of IT workers to total employees to calculate the number 

of non-IT employees, multiplying the number of employees reported in Compustat by one 

minus the IT share. Throughout the paper, when we refer to labor generally, we mean this 

measure of non-IT labor. In addition, we use the LinkedIn data to flag companies that use 

AI or Big Data by identifying a list of job titles associated with these technologies.12 

For each firm, we keep all the consecutive years with a positive IT share of 

employees and those for which this is equal to zero but preceded by a year with a positive IT 

share of employees, so we can compute growth rates. We discard firms for which we can 

never define a growth rate in IT share of employees and firm-years without data in 

Compustat, keep only the longest series of observations without gaps for each firm and, if 

there are ties, we keep the most recent series because the quality of the LinkedIn improves 

over time. 

Table A2 in the Appendix shows summary statistics for firm-years in our matched 

sample. About 10 percent of the observations are related to firms that use AI or Big Data, 

the mean growth rate of the IT share of the workforce is 10 percent, mean operating 

margins are 11 percent, and the mean ratio of employee compensation to revenue is 32 

percent.13 Table A3 shows the distribution by sector. 

IT Spikes 

Above we proposed that software investment tends to be “lumpy” because it is risky, 

irreversible, and has large indivisibilities and/or non-convex adjustment costs. In this section 

                                                 
12 These are “Hadoop” “big data” “quantitative analyst” “data scientist” and “machine learning.” We define a 
time-invariant indicator equal to one for firms that employ at least one person listing these titles in their profile 
during our sample period. 

13 The last two means are trimmed of the 1% tails. 
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we define a practical way of identifying these “spikes.” We can see evidence of the lumpiness 

of the IT share growth in Figure 1. This shows a histogram of the year-over-year growth rate 

in firm IT shares. The smooth line represents a normal distribution. Comparing the 

histogram to the normal curve shows that the growth rates in the IT share have a heavy 

upper tail—there are a disproportionate number of events where the growth rate is 40% or 

above. Moreover, a very large proportion of the firm-years has a growth rate close to zero. 

We define a spike as a year when the percentage growth rate in the IT share exceeds 

30 percent (for example, the IT share goes from 1.00 percent to 1.35 percent).14 A way to 

gauge the lumpiness of IT hiring is to look at the share of hiring that occurs during spike 

years. Although only 12 percent of the firm-year observations are spike years, these account 

for 47 percent of the total increase in IT hiring in aggregate over the sample period. 

Characteristics of these spikes are explored further in the Appendix. Among the 

findings: 1) the frequency of spikes grew during the 1990s, but does not exhibit a strong 

trend since then; nor does the frequency seem to respond consistently to changes in the 

business cycle (figure A2). 2.) Table A4 shows the frequency of spikes in the sample of 

matched firms. About one third of the firms do not spike during the sample period. Of 

those that do spike, about 40 percent spike only once, the remainder spiking more often, up 

to 7 times. For firms that spike multiple times, our analysis focuses on the spike with the 

largest growth.15 

                                                 
14 There are, of course, many other ways one could define a spike. We experimented with several of these, 
including using different thresholds, using an absolute measure of increase rather than a relative measure, using 
stocks of software developers, and using thresholds relative to a firm average. Generally, results are similar. We 
report results based on a higher threshold (50%) to define spikes in the robustness checks in the Appendix. 

15 The largest spikes account for 25 percent of the total increase in IT hiring in aggregate over the sample 
period, although they are only 5 percent of the firm-year observations. 
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Figure 2 provides further evidence on the lumpiness of spikes. The chart shows the 

mean and median growth rate of the IT share around the year of the largest spike. On 

average, there is little growth prior to the spike, a sharp and discrete increase with the spike, 

and little growth afterwards. The spike typically represents a permanent increase in the firm’s 

IT share of the workforce.16  

Firms that spike tend to be smaller than firms that do not spike, both before and 

after the largest spike (see Table A5). Unreported analysis confirms this using only data for 

the first year in our sample for each firm. This is related to the definition of spike that we 

use. Large firms, which aggregate multiple business divisions, are less likely to see a 30 

percent growth in IT share for the entire company even if individual business units spike. 

The difference in size may also be related to differences in the distributions of spikers and 

non-spikers by industry. 

We also analyze the relationship between firm size and the occurrence of spikes in a 

regression framework. We estimate a set of linear probability models in which we regress an 

indicator equal to one in the year of a spike (multiplied by 100 to facilitate the interpretation 

of the coefficients as percentage-point changes) against measures of firm size in the previous 

year and calendar year effects. For these estimates we use all the spikes, allowing firms to 

have more than one spell. Spells start either in a firm’s second year in the sample (because of 

our definition of spike and because we use lags of the predictors) or in the year after a spike, 

and end either in a spike year or at the end of the sample period. We model the baseline 

hazard of a spike with a set of “age” dummies, where age is defined as the number of years 

since the start of the spell. We use three measures of firm size (all in natural logarithms): 

                                                 
16 Our econometric analysis below is robust to excluding firms with multiple spikes. 
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revenues, non-IT employees and market capitalization. The first three columns of table A6 

show that they are all negatively correlated with spikes. However, in the last three columns 

of that table we also show that the growth of revenue, non-IT employees and market 

capitalization is not significantly correlated with spikes. These results suggest that while 

smaller firms are more likely to experience IT spikes, they are not growing more than other 

firms before the spikes, a result that we will confirm below with other methods. 

Finally, Figure 3 shows general trends of revenue and employment around the year 

of the largest spike. The chart shows medians of these variables across all firms that spike, 

without any controls. Both quantities exhibit secular trends both before and after the spike, 

with revenue tending to grow faster. A slight pickup, especially in revenue, occurs 

immediately after the spike. In the analysis below we will look at these trends, but also 

control for a variety of considerations. 

Empirical Strategy 

In this section we describe our empirical strategy to estimate the effect of IT spikes 

on productivity and other firm outcomes. Our first set of models estimates a simple 

difference-in-differences production function. Then, we complement these estimates with 

other difference-in-differences analyses.  

Productivity 

We begin with the most basic analysis, estimation of the productivity impact of IT 

spikes using a modified revenue production function (4). Define the revenue productivity 

𝑎𝑖𝑡 ≡
1

𝜇
ln 𝐴𝑖𝑡 + ln 𝑑𝑖𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝜔𝑖𝑡 + 𝛾 ∙ 𝐷𝑖𝑡 , where 𝛼𝑖 is a firm fixed effect that 

controls for differences across firms that do not change over time, 𝛽𝑡 is a year fixed effect 
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that controls for all factors that change over time and are common to all firms, and 𝜔𝑖𝑡 is an 

unobserved time-varying firm-specific shock, capturing both productivity and demand 

shocks. Let 𝐷𝑖𝑡 represent the contribution of firm IT/software development to productivity. 

In the literature, this variable is typically captured as a perpetual-inventory stock of past 

investments in IT. While we will not use such a stock, it is helpful to start with the standard 

estimation problem from the literature. Inserting this expression for productivity in 

production function, (4),   

(9) 

ln 𝑅𝑖𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝛾 ∙ 𝐷𝑖𝑡 + 𝛿 ln 𝐿𝑖𝑡 + 𝜃 ln 𝐾𝑖𝑡 + 𝜖𝑖𝑡 ,      𝜖𝑖𝑡 ≡ 𝜔𝑖𝑡 + 𝜌𝑖𝑡    

where 𝜌𝑖𝑡 represents a standard error term. Our interest, and that of much of the literature, 

is to estimate the elasticity of IT, 𝛾. 

The standard problem with estimating this equation is that the firm may base its 

decisions about variable inputs on unobserved productivity shocks, 𝜔𝑖𝑡, making these 

shocks an omitted variable. In particular, an unobserved increase in productivity may be 

positively associated with higher investments in IT, so 𝐸[𝜖𝑖𝑡 ∙ 𝐷𝑖𝑡] ≠ 0, possibly biasing 

coefficient estimates upwards. This simultaneity problem was identified by Marschak and 

Andrews (1944) and a large literature has developed on methods to obtain unbiased 

production function estimates. Leading techniques include control functions (Olley and 

Pakes 1996; Levinsohn and Petrin 2003; and Ackerberg, Caves, and Fraser 2015) and 

dynamic panel data estimates (Arellano and Bond 1991, Blundell and Bond 2000). We will 

mainly use the control function method of Olley and Pakes (1996), augmented with firm and 

year fixed effects, with some robustness checks using dynamic panel data estimates (which 
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we do not report for the sake of brevity). 17 Our analysis differs from the standard 

production function estimation in that we measure the contribution of a discrete increase in 

IT investments to productivity rather than the relationship between changes in IT stock 

calculated using the perpetual inventory method.  

Specifically, let 𝜏𝑖 be the year that firm i spikes (if at all). Then we specify 𝐷𝑖𝑡 ≡

𝟏(𝑡 ≥ 𝜏𝑖) as an indicator variable that equals one for the year of the spike and subsequent 

years. This approach has several advantages for our purposes. First, this form corresponds 

more closely with the discrete phenomenon we are studying, providing better measurement. 

While major investment episodes are captured in stock measures, their contribution to 

changes in productivity may be diluted by the use of measures that include past 

expenditures. Second, we can test whether the occurrence of IT spikes is correlated with 

other, potentially confounding variables.18 For example, we find that IT spikes are 

uncorrelated with prior revenue growth, reducing concerns related to trends in the pre-spike 

period that may confound our estimates (see Appendix). Third, it avoids heroic assumptions 

about depreciation. IT stocks are calculated on the assumption of a constant rate of 

“depreciation.” However, software does not actually depreciate; instead, it becomes obsolete 

based, in part, on the developments of rivals and these developments are likely to affect firm 

revenue. 

Using a discrete form for 𝐷𝑖𝑡, makes equation (9) a difference-in-differences (DID) 

specification. As we explore below, this also has advantages in estimating the relationship of 

IT spikes with revenue and employment. It is important to note that, as we emphasized 

                                                 
17 Because our data do not include firm-level measures of intermediate inputs exclusive of IT-related costs, we 
cannot use the similar methods of Levinsohn and Petrin (2003) and Ackerberg, Caves, and Fraser (2015). 

18 Comparable inquiries on investment stocks are not possible without a clear model of how and when 
investment occurs. 
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above, firms sometimes make these large investments in response to unique technological 

and market opportunities that may increase the gains to investments in IT. That is, in the 

context of this DID specification, the simultaneity problem emerges as a selection bias: the 

error term may be correlated with the occurrence of an IT spike, biasing estimates. We can still 

use the Olley-Pakes control function approach to correct for this selection bias. Olley and 

Pakes (1996) take advantage of the notion that a firm facing a positive shock will increase 

capital investment; that is, investment is correlated with the unobserved productivity shock. 

Following their approach, we make an assumption about timing: firms will adjust labor, 

including software development labor, in the same year as the shock; they will also invest in 

capital, but the effective capital stock adjusts more slowly. Under some general conditions 

(see Pakes 1994), investment can be written as an increasing function of revenue 

productivity and capital, 𝐼𝑖𝑡 = ℎ(𝑎𝑖𝑡 , 𝐾𝑖𝑡) in the region where investment is positive. If 

productivity is the only scalar unobservable and if the investment demand function is strictly 

monotonically increasing, then this function can be inverted, 𝑎𝑖𝑡 = ℎ−1(𝐼𝑖𝑡 , 𝐾𝑖𝑡). This is a 

“control function” that reflects the disturbances to productivity that are observed by the 

firm but not measured by the econometrician. We approximate this control function using a 

third order polynomial in log investment and log capital, 𝑓(ln 𝐼𝑖𝑡 , ln 𝐾𝑖𝑡), such that 𝑎𝑖𝑡 =

𝑓(ln 𝐼𝑖𝑡 , ln 𝐾𝑖𝑡) + 𝜂𝑖𝑡. Then we can estimate 

(10) 

ln 𝑅𝑖𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝛾 ∙ 𝐷𝑖𝑡 + 𝛿 ln 𝐿𝑖𝑡 + 𝑓(ln 𝐼𝑖𝑡 , ln 𝐾𝑖𝑡) + 𝜖𝑖𝑡 .   

This equation is the first stage of an Olley-Pakes estimation procedure and can be 

estimated with or without the fixed effects. The control function should capture the 
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contribution of the unobserved shocks, reducing the concerns related to possible bias in 𝛾.19 

Equation (10) introduces a slight wrinkle to the typical Olley-Pakes estimation in that 

productivity here is only partially unobserved. That is, we include the IT spike term, 𝛾 ∙ 𝐷𝑖𝑡, 

explicitly in the regression even though it is implicitly captured by the control function as 

well. We can show this does not bias the estimates of 𝛾, although it does potentially create 

multicollinearity.20 But the precision of our estimates below, as well as formal tests for 

multicollinearity, show that this is not a problem for our analysis. We also can estimate 𝛾 in a 

two-step procedure where we first estimated (10) without the 𝛾 ∙ 𝐷𝑖𝑡 term, and then regress 

the first stage productivity estimates against 𝛾 ∙ 𝐷𝑖𝑡 and a set of fixed effects. 

In addition, we estimate a more general specification, one that allows us to estimate a 

variable effect before and after the spike: 

(11) 

ln 𝑅𝑖𝑡 = 𝛼𝑖 + 𝛽𝑡 + ∑ 𝛾𝑘 ∙ 𝟏(𝑘 = 𝑡 − 𝜏𝑖)

𝑘≠−1

+ 𝛿 ln 𝐿𝑖𝑡 + 𝜃 ln 𝐾𝑖𝑡 + 𝜖𝑖𝑡 .   

In this equation, we substitute the post-spike indicator with a set of year-relative-to-spike 

dummies, omitting the indicator for the year before the spike. This specification allows us to 

measure how the effect of IT spikes changes over time and to examine the trend in 

productivity before the spikes both graphically and formally. While the lack of significant 

differences in pre-spike trends in productivity between spikers and other firms does not rule 

                                                 
19 Under Olley and Pakes’s assumptions, it should also produce unbiased estimates of 𝛿. Ackerberg, Caves, and 
Fraser (2015) argue for alternative assumptions and an alternative estimation procedure, however, this is not 
our focus.  

20 If the control function exactly captured productivity, then the regression routine would have to drop the 𝛾 ∙
𝐷𝑖𝑡 term. But as long as 𝜂𝑖𝑡 has non-negligible variation, we can show that the estimates of 𝛾 are unbiased. 
Calculations available from authors. 
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out all the endogeneity concerns described above, failing to find substantial differences in 

the trends would reduce the concerns related to pre-spike confounding factors.  

Revenue and Employment 

When a firm experiences a positive productivity shock, two effects determine the 

revenue it produces: 1) it is able to produce more with given quantities of labor and capital 

and 2) it reduces prices in response to lower costs; lower prices increase optimal revenue, so 

the firm also scales up the amount of labor and capital it employs. Equations (4) and (9) 

capture the first effect, accounting for revenue relative to given levels of labor and capital. 

Equation (8a) describes the combined response of revenue to both greater productivity and 

greater demand. We can derive a difference-in-differences version of this equation using the 

equivalent procedure as with the productivity equation, that is, let  

(휀 − 1) ln 𝐴𝑖𝑡 + ln 𝑑𝑖𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝜔𝑖𝑡 + 𝛾 ∙ 𝐷𝑖𝑡 and let 𝜖𝑖𝑡 ≡ 𝜔𝑖𝑡 + 𝜌𝑖𝑡. Then we have a 

general difference-in-differences specification, 

(12)  

ln 𝑅𝑖𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝛾 ∙ 𝐷𝑖𝑡 + 𝜖𝑖𝑡 .   

In this DID specification we do not include labor and capital as predictors of 

revenue, as our interest here is in estimating the total effect of the IT shock on revenue and 

not the effect on productivity. As above, we rely on firm fixed effects and year fixed effects 

to capture time-invariant unobserved heterogeneity across firms and all time-varying factors 

that are common to all firms. Nevertheless, this DID specification has the same potential 

concerns about endogeneity related to unobservable productivity and demand shocks as 

does equation (9). However, if we accept that 𝐸[𝜖𝑖𝑡 ∙ 𝐷𝑖𝑡] ≈ 0 for equation (9), then the 

comparable simultaneity biases in the estimates of 𝛾 in (12) should be small as well. 
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Equation (8b) provides a comparable expression for firm non-IT labor, ln 𝐿𝑖𝑡. The 

equivalent DID specification for this outcome variable takes the same form as (12) with 

labor as the outcome variable. And estimates of 𝛾 from this equation, too, should be likely 

unbiased, assuming the occurrence of the spike is uncorrelated with the error term.  

As with the production function, we also estimate models that allow for the effect of 

the IT spike to vary by year relative to the spike, and test for the existence of pre-spike 

trends. The maintained assumption for these models is that, conditional on firm and year 

effects, the trends in revenues and labor of the spikers and the other firms would be parallel 

in absence of the IT spike. We will provide evidence supporting this assumption at least for 

the pre-spike period below. 

Results 

In this section we present the results of our empirical analysis. We begin showing the 

estimates for the production function. Then, we provide the estimates of the effects of IT 

shocks on revenues and employment. We also estimate heterogeneous effects of the IT 

shocks and finally explore the implications for operating margins, labor share of revenues 

and capital labor ratio.   

Estimates for the production function 

Table 1 presents our estimates of the production function based on equation (9). 

Instead of the firm fixed effects, the specification in column 1 includes a single dummy 

variable for whether the firm is in the treatment group (a spiker) or not, which captures the 

“selection effect” into the IT spikes. The estimates show that after the IT spike there is a 9% 
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increase in productivity, and that spikers are less productive than other firms before the 

spike. 

The model in column (2) drops the spiker dummy and includes a full set of firm 

fixed effects. The coefficient of the post-spike dummy drops substantially, but it is still 

statistically significant at 1% level and large in magnitude, implying an increase in 

productivity after the spike by almost 5%. 

Columns (3) and (4) report the estimates for the specifications based on the Olley 

and Pakes models. Model (3) does not include the firm and year fixed effects and it is 

estimated applying the full procedure following Olley and Pakes (1996), which allows us to 

provide an estimate for the coefficient of capital. Here the control function is a third order 

polynomial in log investment and log capital and the estimates also take into account the 

probability of firm exit. 

For simplicity, we estimate only the first stage of the Olley and Pakes (1996) model 

in specification (4), which also includes fixed effects for firms and years, as well as the 

polynomial of log capital and log investment, so we do not provide the coefficient of 

capital.21 The coefficients of the IT spikes are similar to those in column (2). Because the 

specifications in columns (3) and (4) might give rise to multicollinearity, we measure the 

variance inflation factor for the first stage of the column (3) specification. The value for 𝛾 is 

1.01, suggesting that this estimate is not subject to serious multicollinearity. Thus, 

unobserved shocks do not seem to bias the estimates of productivity gains accompanying IT 

spikes. Therefore, for the analysis below, we assume 𝐸[𝜖𝑖𝑡 ∙ 𝐷𝑖𝑡] ≈ 0. 

                                                 
21 The coefficient of the IT spike and its standard error are not affected by this choice, as they are estimated in 
this first stage.  
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In Table A4 in the Appendix, we report on a number of robustness checks of these 

productivity regressions, estimating variations of the model in column (2) of Table 1. First, 

we estimate a model that substitutes the year effects with year-by-4-digit-SIC-code. These 

effects should capture all the time-varying shocks that are common to firms in an industry. 

Second, we allow the coefficients of capital and labor to be different for each SIC 2-digit 

industry. Third, we estimate a model discarding the control group and exploiting only the 

timing of the spikes for the subsample of spikers for identification. Fourth, we re-define the 

spikes using a higher threshold in the growth of the IT share of employment (50% instead of 

30%). Fifth, we drop all firms that spike more than once during the sample period. Finally, 

we drop firm-years characterized by very high or low revenue growth (those in the top and 

bottom 1% of the distribution of revenue growth). In general, the estimated coefficients are 

similar across these variations: they are all positive and statistically significant at 1%, and 

although the point estimates vary, all imply an increase in productivity after the IT spike. 

In addition to these robustness checks, we conducted several alternative 

specifications not reported here:22 we added the log of advertising and marketing expenditure 

and the log of research and development expenses in the control function polynomial; we 

performed a two-step procedure, first estimating a standard Olley-Pakes estimation without 

the IT term and then regressing the resulting productivity estimates on the IT term and fixed 

effects; we performed a similar two-step procedure using dynamic panel data methods in the 

first step (Arellano and Bond 1991). In all of these, the estimated coefficients were similar to 

those reported in the table. Finally, we also considered a model where an IT spike might 

change the long term markup. While the equations just estimated assume a constant markup, 

                                                 
22 And available from the authors on request. 
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below we find that IT spikes tend to be followed by higher markups. In step one, we 

estimate the inverse of the markup as a function of the IT shock then insert the prediction 

of this variable into equation (9). Bootstrapping the errors, this gives us a somewhat larger 

estimate of the productivity shock of .066 (.017). 

In Figure 4 we provide a graphical representation of the trends in productivity before 

and after the IT spikes. The figure plots the coefficients of a set of year-relative-to-spike 

dummies from our estimates of equation (10) in an 11-year window around the spike. 

Spikers and other firms are on very similar productivity trends before the spike. After the 

spikes, there is a 5% increase in productivity that remains about constant at least for the first 

five years. This trend provides further support for a causal interpretation of our estimates of 

equation (9). Also, this time pattern is distinctly different from the result of Brynjolfsson and 

Hitt (2003), who find that productivity growth continues to increase up 5 or 7 years after 

investment in computers. We find that productivity responds quickly with little further 

adjustment after the first year.23 

Estimates for revenues and employment 

Table 2 shows the difference-in-differences results for revenues and non-IT 

employment. The model in column (1) is a simplified version of equation (12) in which we 

                                                 
23 The estimation includes year-relative-to-spike dummies for the entire sample period (from year -22 to 21). 
However, few observations are available far from the spike time, leading to large standard errors. For this 
reason, we only display the most central coefficients. We also tested the equality of the pre-spike trends with an 
F-test of the null hypothesis that the pre-spike coefficients (including those not shown in the figure) are jointly 
zero. This test cannot reject the null hypothesis (p-value 0.46). We also estimated this general specification 
using only the subsample of spikers, discarding the control group. Following Borusyak and Jaravel (2017), we 
omit also the dummy for the earliest year before the spike. The results are very similar: the coefficients for the 
pre-spike dummies in the 5 years before the spike are very close to zero and their pattern is very similar to the 
one reported for the full sample, the F-test cannot reject the null hypothesis for the pre-spike coefficients (p-
value 0.52), and there is a marked increase in productivity after the spike. These results provide support to the 
idea that the increase in productivity of the spikers is driving the results, rather than a possible decrease in 
productivity of the firms that do not spike. 
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use the spiker dummy defined above instead of the firm fixed effects. The estimates in 

column (1) imply that after the IT spike there is very large increase in firm revenues. The 

coefficient of the “selection” indicator captures the difference in firm size before the IT 

spike, and confirms that the occurrence of IT spikes is more likely for smaller firms. 

The model in column (2) is our preferred specification, in which we use firm fixed 

effects. The coefficient for the post-spike dummy in this model is much lower than in 

column (1). Nevertheless, we observe an increase in revenues by 11% after the spikes. 

Columns (3) and (4) estimate similar models, in which our outcome variable is the 

natural logarithm of non-IT employment. The results are analogous to those of models (1) 

and (2): spikers are smaller on average in terms of employment (column (3)), and there is a 

7% increase in employment after the spikes (column (4)).       

IT shocks are followed by strong revenue growth on average and, far from 

destroying jobs, employment grows substantially on average. Note however that 

employment grows more slowly than revenue. This could be because IT might also reduce 

labor’s share of output. We will explore that possibility below.  

Table A5  in the Appendix reports the results of robustness checks similar to those 

we performed for the production function estimates. The results are similar to those 

reported in the main text. 

Figures 5 and 6 plot the coefficients of more general models that allow us to check 

the pre-spike trends and to observe the dynamics of the effects after the IT shocks. Firms 

affected by the IT shocks and those that are not have very similar trends in revenues and 
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employment before the IT shocks, and then the spikers experience an increase in these 

outcomes. This provides additional support for a causal interpretation of the results.24  

Heterogeneity of the effects 

Table 3 and Table 4 explore the heterogeneity of the responses of productivity, 

revenue, and labor to IT shocks. To explore heterogeneous responses to different values of 

categorical variable z, we estimate specifications based on 

(13) 

ln 𝑌𝑖𝑡 = 𝛼𝑖 + 𝛽𝑡 + ∑ 𝛾𝑧 ∙ 𝟏(𝑡 ≥ 𝜏𝑖 & 𝑧 = 𝑗)

𝑗

+ 𝜋𝑋𝑖𝑡 + 𝜖𝑖𝑡 ,   

where 𝑌𝑖𝑡 is one of our outcomes, and 𝑋𝑖𝑡 contains the natural logarithms of capital and 

labor for the production function estimates. 

 Some people argue that artificial intelligence technologies will have a different effect 

on employment because these technologies are more about replacing human tasks (Ford 

2015). Panel A measures the impacts by whether the firm employs AI or Big Data software 

developers at any point in time in our sample period. We find that the productivity impact of 

an IT spike is about the same between AI-users and others, even if the coefficient for the 

latter group of firms is estimated more precisely. This finding complements the deeper look 

taken by Tambe (2014) who finds that firm returns to investments in Hadoop, a key 

                                                 
24 Also for these models we tested the equality of the pre-spike trends with an F-test of the null hypothesis that 
the pre-spike coefficients (including those not shown in the figures) are jointly zero. The test for the trend in 
revenues cannot reject the null hypothesis (p-value 0.46). The test for the trend in non-IT labor rejects the null 
hypothesis at 5%. However, this rejection is essentially driven by few coefficients for time periods more than 
10 years before the spike, where we have relatively few observations and the results may be driven by outliers. 
So we do not view this rejection as problematic for a causal interpretation. As we did for the production 
function, we also estimate these models on the subsample of spikers. Results are very similar to those reported 
here. 
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machine learning technology, are higher, but only for firms in geographically concentrated 

Hadoop clusters (Silicon Valley) that also have made other large IT investments. In contrast 

to the productivity results, the AI-using firms exhibit much stronger revenue and 

employment growth.25 This does not necessarily mean that AI/Big Data causes more rapid 

growth; it could simply be that more rapidly growing companies are more likely to employ 

AI. But these estimates are hard to reconcile with the idea that AI is particularly job-

destroying in the firms using it. 

Panel B looks at differences between industries that use software as part of their 

products and those that do not.26 Those that use software as part of their products exhibit 

higher growth in all three outcome measures on average.27 But those that develop software 

for internal use nevertheless show strong growth in each outcome variable.28 

Panel C looks at changes in response over time. This is important because aggregate 

productivity grows when firms increase their productivity and when more productive firms 

grow faster. Decker et al. (2018) argue that the pace of job reallocation has declined since 

2000, contributing to slowing aggregate productivity growth. They find slowing job 

reallocation is driven by declining firm responsiveness to productivity shocks. We find 

supportive evidence regarding IT shocks. The productivity gains from IT shocks are roughly 

                                                 
25 A formal test of the equality of these coefficients rejects the null hypothesis of equal coefficients at least at 
5% level. 

26 The former include NAICS 5112, software publishers, 5181, Internet service providers and web search 
portals, 5182, Data Processing, Hosting, and Related Services, 5191 Other information services, 5415 
Computer Systems Design and Related Services, 3341 Computer and peripheral equipment manufacturing, 
3342 Communications Equipment Manufacturing, 3344 Semiconductor and Other Electronic Component 
Manufacturing, and 3345 Navigational, measuring, electromedical, and control instruments manufacturing. 

27 There is significant overlap between firms that produce software-based products and firms that use AI. 

28 Formal tests of the equality of these coefficients cannot reject the null hypothesis at conventional 
significance levels for the productivity regressions, while it rejects at 10% and 1% respectively for the revenue 
and labor specifications. 
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the same before and after 2002. However, the response of employment and revenue 

declined sharply, and these differences are statistically significant at least at 5% level.  

Panel D explores whether “US does IT better,” as proposed by Bloom et al. (2012), 

who argue that better managerial practices at US-based firms generate greater returns to IT 

investments. While we cannot interpret differences between US and non-US firms in our 

data as entirely driven by managerial practices, we find that the productivity coefficient is 

significantly greater for former group (difference statistically significant at 1% level). 

Interestingly, the coefficient for labor is not much different, either economically or 

statistically. This might also reflect different managerial capabilities. 

Finally, Panel E explores the differential effect of IT for new firms (those publicly 

listed for 5 years or fewer). Consistent with the view that startups are better able to utilize 

new technology, we find much larger gains in productivity, revenue, and employment after 

new firms make major investments in IT. 

Table 4 compares several industry sectors. All sectors show an increase in 

productivity following an IT spike, in many cases highly significant, except for the small 

“Other” category.29 But in the other outcome variables, there is significant heterogeneity. In 

particular, manufacturing industries exhibit much smaller revenue growth than do tertiary 

sector industries and they exhibit minimal or even negative labor growth compared to strong 

employment growth for trade, FIRE (Finance, Insurance and Real Estate), and services. 

Equation (8) provides an explanation: firms in manufacturing industries may have lower 

price elasticities of demand. Bessen (2019) suggests that demand elasticity in manufacturing 

industries was initially high but declined as these industries were progressively automated; 

                                                 
29 The “Other” sector represents only 227 firms, of which 155 experience an IT spike. 
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tertiary sector industries may have higher demand elasticity in part because they have 

experienced far less productivity-improving technical change. 

Labor’s share of revenue, operating profits and capital labor ratio 

Economists have attributed changes in a number of measures to information 

technology, including labor’s share of output, operating margins and the capital labor ratio. 

These possible effects of IT are important because they relate to economic inequality, firm 

market power, and other economic trends. 

In this section, we explore possible associations between some of these variables and 

IT shocks. While our above analysis used control functions to correct for selection bias, we 

do not attempt to correct for selection bias in the analysis of these variables. Nevertheless, 

the associations between IT spikes and subsequent changes in labor’s share and margins 

provide some insights about trends in these outcome variables. What we can do is to 

establish a sort of Granger causality that certain changes in these outcome variables tend to 

follow IT shocks. 

Also, we do not present a complete model of these effects. Instead, we identify four 

explanations for the decline in labor’s share of output from the literature and use our 

empirical analysis to distinguish between them by looking at the responses of the variables in 

equation (7): 

1. Autor et al. (2017) find that most of the decline in labor’s share of revenue 

occurs from the relatively greater growth of firms with low labor share. They find 

little within-firm change in labor’s share. In their model, IT may play a role in 

heightening competition via reduced communication costs. We test whether IT 

spikes are followed by a decline in labor’s share of revenue at the affected firms. 

2. Karabarbounis and Nieman (2014), analyzing aggregate data, contend that falling 

IT prices induced firms to replace labor with capital. In their model, labor and 
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capital have an elasticity of substitution that is greater than one so that the 

decline in the relative price of IT should cause a decrease in labor’s share and an 

increase in the capital-labor ratio. While their analysis is at an aggregate level, if 

falling IT prices are driving major IT investments, then we should expect to see 

these investments also followed by a decline in labor’s share and an increase in 

the capital-labor ratio. We test these below. 

3. Acemoglu and Restrepo (2018) propose that automation replaces human labor 

with machines on particular tasks, causing a decline in labor’s share of output.30 

In this case, the capital-labor ratio should also rise. 

4. IT innovations might generate quasi-rents, causing a rise in markups and a fall in 

labor’s share of income. Bessen (2017) finds a link between industry IT 

investment and firm operating margins. Calligaris et al. (2018), using cross-

country data, find a link between digitalization and markups. We test whether IT 

spikes are followed by a rise in operating margins, which are related to markups. 

We can understand these explanations in terms of equation (7). A decline in labor’s 

share of revenue can follow from a decline in the output elasticity of labor, 𝛽, or from a rise 

in markups, 𝜇. But a decline in 𝛽 should also correspond to an increase in the capital-labor 

ratio, all else equal. And a rise in markups should correspond to an increase in long-term 

equilibrium operating margins. We can distinguish between these explanations depending on 

how these variables respond following an IT shock. 

We begin with Table 5, looking at estimates in the spirit of a difference-in-

differences analysis for wages and labor’s share of revenue. In this table and the next, the 

outcome variable is trimmed of the 1 percent tails to remove influential outliers (mostly 

firms with very small revenues) when the outcome is labor’s share of revenue or operating 

margin. The first two columns use reported wage data. Only a fraction of Compustat firms 

report “staff expense,” mostly in the financial sector. There is no significant change in either 

                                                 
30 They also note that technology might increase the number of tasks in a way to offset this tendency. 
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wages or labor’s share for these firms associated with an IT spike, but the sample size may 

be too small to identify an association. Columns 3 and 4 impute wages using BEA industry 

estimates for employee compensation for those firms that do not report staff expense. To 

the extent that firm wages move in tandem with industry wages, this imputation should be 

representative and, as above, the imputed wage bill correlates with the actual wage bill where 

we have data. Here, we see no effect on wages but a significant decline in labor’s share of 

revenue. Since wages are little changed, this decline represents the relative growth rates of 

revenue and labor, which diverge, as we have seen above. We thus find that there is a 

significant association at the firm level on labor’s share following major IT investments. This 

finding does not, of course, necessarily contradict the finding of Autor et al. (2017) that most 

of the aggregate decline comes from between-firm changes. 

Columns 5 through 7 explore related variables to distinguish between the various 

explanations. Operating margins increase significantly, both in the economic sense and in the 

statistical sense. Moreover, the magnitude of the implied change in 
1

𝜇
, -1.6%, closely matches 

the decline in labor’s share of revenue, -1.4%.  Quasi-rents might be larger in industries 

where IT is part of the product if, for instance, these industries also experience network 

effects. The 6th column excludes these industries. The result is still significant and similar in 

magnitude. The capital-labor ratio shows a small increase after an IT spike that is not 

statistically significant. These estimates suggest that, overall, explanation #4, a rise in rents, 

fits the data best. 

Table 6 looks at these differences across industries, suggesting some important 

industry heterogeneity. Column 1 repeats the regression on labor’s share. Manufacturing, 

transport, utilities, and other industries all show significant declines in labor’s share of 

revenue; services show an increase. To the extent that manufacturing, transport and utilities 
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are arguably industries subject to automation, this finding lends support to the Acemoglu-

Restrepo hypothesis.31 

Column 2 looks at operating margins where the increase is substantial in nondurable 

manufacturing and especially in services. Because services includes the software industry, 

Column 3 excludes IT-producing industries; now the services coefficient is smaller and not 

statistically significant. IT producing industries might, indeed, have higher quasi-rents. 

Column 4 looks at the capital-labor ratio. There are significant increases in 

transport/utilities and “other” industries. In these two sectors, declining share of labor might 

be a result of a replacement of labor by capital, either from factor substitution 

(Karabarbounis and Nieman) or from biased technical change (Acemoglu and Restrepo). But 

that does not seem to be the case for manufacturing generally or for tertiary sector 

industries. 

In summary, IT spikes are associated with declining labor share and that is closely 

linked to rising markups overall. There are some industry differences, suggesting that in 

some industries the decline in labor’s share could be the result of rising markups while in 

others it could be from labor-displacing automation. 

Conclusion 

This paper firmly takes the view that much investment in information technology is 

innovation. We measure this innovative activity using the share of software developers in a 

firm’s workforce. And we show how major changes in firm software development can be 

                                                 
31 Bessen et al. (2019) find that automation occurs in tertiary sector industries as well as manufacturing and 
transport. On the other hand, in Acemoglu and Restrepo’s model, the labor-displacing effect of automation can 
be offset if technology creates new tasks for workers to perform. Arguably, this might happen more frequently 
in tertiary sector industries. 
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used to analyze various impacts and associations of information technology using difference-

in-differences. 

This analysis helps answer several questions but also raises several more. We find 

that these IT investments boost firm productivity and this effect has not diminished after 

2002, contrary to the view of Robert Gordon (2017). Nor has the frequency of spikes 

declined. However, we also find that firms have grown less in response to this improved 

productivity in recent years. That means that the contribution of IT to aggregate productivity 

growth is likely smaller—these newly more productive firms are not increasing their share of 

aggregate employment as much. This finding parallels the evidence of Decker et al. (2018) 

that the response to productivity shocks has declined in recent years. The question, of 

course, is why.  

We also find that, on average, major IT investments increase firm employment, even 

at firms that use AI, contrary to a common view. New information technologies are not 

creating unemployment overall. Nevertheless, even though firm employment rises on 

average, some jobs are lost (and others are created), perhaps an increased number. We see 

some evidence that jobs are lost in manufacturing, transport, and utilities while job growth 

following IT shocks is robust in trade, services, and finance. This follows the pattern 

proposed by Bessen (2019) where technologically mature industries will tend to have lower 

elasticity of demand and, hence, a weaker or negative employment response. But this pattern 

means that workers may need to transfer from one industry to another, perhaps changing 

occupations and skills. The policy challenge here is to facilitate these transitions, reducing the 

burden on workers and facilitating more rapid adoption of new technologies. An important 

question, then, is to understand which occupations are most affected, what new skills are 

most needed and how workers can be best helped to make these transitions. 
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  We also find that labor’s share of revenue declines following IT shocks on average 

because firms earn greater markups following the investment. This might be because they 

earn quasi-rents on their innovations. In any case, more research is needed to understand the 

mechanism and how it relates to aggregate trends in the labor share as in Autor et al. (2017). 

Finally, this paper has focused on episodes where firms sharply increase the share of 

software developers in their workforces. This is a useful measurement device, but much 

innovative IT occurs outside of these episodes, including at very large firms that spend 

heavily on IT—at large firms, spikes at individual business units are obscured in aggregate 

numbers. In addition, we have only explored direct impacts at the firms making the 

investments. These investments surely affect rival firms, firms in downstream and upstream 

industries, and consumers.32 So while our results highlight some important impacts of IT, 

more research is needed to understand the full social impact. Nevertheless, we can conclude 

that understanding IT as innovation is critical to appreciating its role. 

  

                                                 
32 Autor and Salomons (2018) address some of these issues with productivity growth. 
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Tables and Figures 

Table 1: production function estimates 
Outcome Log(revenue)  

Specification OLS OLS Olley-Pakes Olley-Pakes 

Model Selection Firm FE Olley-Pakes Olley-Pakes, FE 

 (1) (2) (3) (4) 

     

Post spike 0.091** 0.048** 0.052** 0.046** 

 (0.021) (0.010) (0.019) (0.011) 

     

Spiker -0.214**    

 (0.028)    

     

Log(non-IT labor) 0.647** 0.647** 0.627** 0.632** 

 (0.012) (0.027) (0.011) (0.027) 

     

Log(capital) 0.295** 0.204** 0.136**  

 (0.009) (0.018) (0.023)  

     

Year effects ✓ ✓  ✓ 

Firm effects  ✓  ✓ 

Control function    ✓ 

     

Observations 47,448 47,416 45,438 44,177 

R-squared 0.871 0.976 n.a. 0.975 

Firms 4,088 4,056 3,872 3,800 

The unit of observation is firm-year. Outcome is the natural logarithm of revenue in all models. Post spike is 

an indicator variable equal to one starting in the year of largest spike in IT employment. Spiker is an indicator 

variable equal to one for firms that spike during the sample period. All models include the natural logarithms 

of non-IT employees and capital. Model (3) estimated using the logarithm of capital investments as proxy 

variable (Olley and Pakes 1996). Models (1), (2) and (4) estimated with the Stata package developed by 

Correia (2016). Model (3) estimated with the Stata package developed by Yasar et al. (2008). Model (4) 

includes a third order polynomial in log investment and log capital as a control function for capital. We only 

estimate the first stage of the Olley-Pakes algorithm for this model, so we do not report the coefficient of 

capital. Robust standard errors clustered by firm in parentheses. ** p<0.01, * p<0.05 
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Table 2: IT spikes, sales and non-IT employment 
Specification OLS 

Outcome Log(revenue)  Log(non-IT employees) 

Model Selection Firm FE  Selection Firm FE 

 (1) (2)  (3) (4) 

      

Post spike 0.628** 0.109**  0.596** 0.070** 

 (0.056) (0.018)  (0.053) (0.017) 

      

Spiker -1.239**   -1.125**  

 (0.088)   (0.082)  

      

Firm effects  ✓   ✓ 

Year effects ✓ ✓  ✓ ✓ 

      

Observations 50,205 50,202  49,991 49,967 

R-squared 0.051 0.939  0.049 0.942 

Firms 4203 4200  4242 4218 

The unit of observation is firm-year. Outcome is the natural logarithm of revenue in models (1) and (2), and 

the natural logarithm of non-IT employees in models (3) and (4). Post spike is an indicator variable equal to 

one starting in the year of largest spike in IT employment. Spiker is an indicator variable equal to one for 

firms that spike during the sample period. All models include year effects. Models (2) and (4) also include 

firm fixed effects. All models estimated with the Stata package developed by Correia (2016). Robust standard 

errors clustered by firm in parentheses. ** p<0.01, * p<0.05 
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Table 3: Heterogeneous “effects” of IT spikes 
Specification OLS 

Model Production function Revenue Non-IT employees 

Outcome Log(revenue) Log(revenue) Log(non-IT 

employees) 

 (1) (2) (3) 

    

Panel A: AI/Big Data    

    

Post spike not AI 0.048** 0.098** 0.056** 

 (0.011) (0.018) (0.018) 

    

Post spike AI 0.045 0.247** 0.237** 

 (0.031) (0.068) (0.067) 

    

Panel B: IT producing    

    

Post spike not IT 0.043** 0.089** 0.042* 

 (0.012) (0.020) (0.020) 

    

Post spike IT 0.064** 0.179** 0.170** 

 (0.021) (0.042) (0.040) 

    

Panel C: Time period    

    

Post spike pre-2002 0.044** 0.154** 0.128** 

 (0.014) (0.027) (0.027) 

    

Post spike post-2002 0.052** 0.060* 0.005 

 (0.016) (0.027) (0.025) 

    

Panel D: US based    

    

Post spike not US -0.011 0.055 0.055 

 (0.023) (0.041) (0.043) 

    

Post spike US 0.056** 0.117** 0.072** 

 (0.011) (0.019) (0.019) 

    

Panel E: New firms    

    

Post spike old firm 0.019 0.007 -0.016 

 (0.011) (0.021) (0.022) 

    

Post spike new firm 0.121** 0.366** 0.291** 

 (0.022) (0.032) (0.027) 

The unit of observation is firm-year. Outcome is the natural logarithm of revenue columns (1) and (2), and 

the natural logarithm of non-IT employees in column (3). Post spike is an indicator variable equal to one 

starting in the year of largest spike in IT employment, and it is interacted with different variables in each 

model. All models include year and firm fixed effects. Models in column (1) also include the natural 

logarithms of non-IT employees and capital. All models estimated with the Stata package developed by 

Correia (2016). Robust standard errors clustered by firm in parentheses. ** p<0.01, * p<0.05 
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Table 4: heterogeneity by industry 
Specification OLS 

Model Production function Revenue Non-IT employees 

Outcome Log(revenue) Log(revenue) Log(non-IT 

employees) 

 (1) (2) (3) 

    

Post spike nondurable manufacturing 0.050 -0.019 -0.090* 

 (0.031) (0.048) (0.044) 

    

Post spike durable manufacturing 0.049** 0.060 0.024 

 (0.015) (0.033) (0.032) 

    

Post spike transport and utilities 0.135** 0.142* -0.028 

 (0.026) (0.056) (0.059) 

    

Post spike trade 0.045 0.175** 0.209** 

 (0.038) (0.068) (0.053) 

    

Post spike finance 0.072** 0.229** 0.146** 

 (0.025) (0.040) (0.051) 

    

Post spike service 0.033 0.141** 0.172** 

 (0.026) (0.046) (0.043) 

    

Post spike others -0.144** 0.099 0.129 
 (0.039) (0.074) (0.075) 

The unit of observation is firm-year. Outcome is the natural logarithm of revenue columns (1) and (2), and 

the natural logarithm of non-IT employees in column (3). Post spike is an indicator variable equal to one 

starting in the year of largest spike in IT employment, and it is interacted with industry indicators in each 

model. All models include year and firm fixed effects. Models in column (1) also include the natural 

logarithms of non-IT employees and capital. All models estimated with the Stata package developed by 

Correia (2016). Robust standard errors clustered by firm in parentheses. ** p<0.01, * p<0.05 
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Table 5: Relationship of IT spikes with wages, labor share, operating margin and capital 

to labor ratio 
Specification OLS  

Outcome Log(wages) Labor 

share of 

revenue 

Log(wages) Labor 

share of 

revenue 

Operating 

margin 

Operating 

margin 

Log(Capital/ 

non-IT 

employees) 

Sample Reporting 

firms 

Reporting 

firms 

All firms All firms All firms No IT 

producers 

All firms 

 (1) (2) (3) (4) (5) (6) (7) 

        

Post spike 0.003 -0.006 -0.001 -0.014** 0.016** 0.012* 0.007 

 (0.020) (0.005) (0.004) (0.004) (0.005) (0.005) (0.013) 

        

Observations 3,502 3,806 49,624 49,062 49,159 37,033 48,577 

R-squared 0.885 0.801 0.919 0.754 0.644 0.672 0.922 

Firms 339 346 4190 4144 4114 3035 4116 

The unit of observation is firm-year. The sample for models (1) and (2) does not include firm-years that do 

not report wages. The sample for model (6) excludes IT producers. Outcome is the natural logarithm of wages 

in models (1) and (3), the labor share of revenue in models (2) and (4), the operating margin in models (5) 

and (6), and the natural logarithm of the ratio between capital and number of non-IT employees in model (7). 

Models (2), (4), (5) and (6) do not include firm-years in the top 1% and bottom 1% of the distribution of the 

outcome variable. Post spike is an indicator variable equal to one starting in the year of largest spike in IT 

employment. All models include year and firm fixed effects, and are estimated with the Stata package 

developed by Correia (2016). Robust standard errors clustered by firm in parentheses. ** p<0.01, * p<0.05 
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Table 6: Relationship of IT spikes with labor share, operating margin and capital to labor 

ratio by industry 
Specification OLS  

Outcome Labor share of 

revenue 

Operating 

margin 

Operating 

margin 

Log(Capital/ non-IT 

employees) 

Sample All firms  All firms No IT 

producers 

All firms 

 (1) (2) (3) (4) 

     

Post spike nondurable 

manufacturing 

-0.069** 0.033* 0.038** 0.029 

 (0.012) (0.014) (0.014) (0.028) 

     

Post spike durable 

manufacturing 

-0.029** 0.007 0.015 -0.035 

 (0.005) (0.008) (0.009) (0.020) 

     

Post spike transport and 

utilities 

-0.033** -0.006 -0.000 0.198** 

 (0.009) (0.010) (0.010) (0.042) 

     

Post spike trade -0.002 0.003 0.007 0.002 

 (0.007) (0.007) (0.007) (0.037) 

     

Post spike finance 0.001 -0.014 -0.009 0.045 

 (0.008) (0.012) (0.012) (0.037) 

     

Post spike service 0.055** 0.058** 0.012 -0.177** 

 (0.012) (0.013) (0.013) (0.034) 

     

Post spike others -0.050** 0.009 0.016 0.351** 

 (0.016) (0.019) (0.019) (0.070) 

     

Observations 49,062 49,159 37,033 48,577 

R-squared 0.757 0.645 0.673 0.923 

Firms 4,144 4,114 3,035 4,116 

The unit of observation is firm-year. The sample for model (3) excludes IT producers. Outcome is the labor 

share of revenue in model (1), the operating margin in models (2) and (3) and the natural logarithm of the 

ratio between capital and number of non-IT employees in model (4). Models do not include firm-years in the 

top 1% and bottom 1% of the distribution of the outcome variable. Post spike is an indicator variable equal 

to one starting in the year of largest spike in IT employment, and it is interacted with industry indicators in 

all models. All models include year and firm fixed effects, and are estimated with the Stata package developed 

by Correia (2016). Robust standard errors clustered by firm in parentheses. ** p<0.01, * p<0.05 
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Figure 1: Distribution of growth in IT share of employment 

 
The figure reports the percentage of firm-years in each 5 percentage-point bin of the distribution of the 

growth in IT share of employees (blue histogram) and compares it with a normal distribution (red line).  
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Figure 2: Growth in IT share of employees around highest spikes 

 
The figure reports the mean and the median of the growth in IT share of employees in an 11-year window 

around the year of the highest spike for firms that spikes at least once.  
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Figure 3: Growth in revenue and non-IT employees around highest spikes 

 
The figure reports the medians of revenues and non-IT employees in an 11-year window around the year of 

the highest spike for firms that spikes at least once. Revenues and non-IT employees in each year are 

normalized dividing their value in the current year by the value in the year before highest spike.   
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Figure 4: trend in revenues around spike, production function estimates 

 
This figure plots the coefficients (solid line) and the 95% confidence intervals (shaded area) of a set of 

year-relative-to-spike from an OLS regressions similar to model (2) in table 1. The omitted category is the 

year before the spike. While the regression includes the full sets of coefficients, we report here only those 

in an 11-year window around the year of the spike. The unit of observation is a firm-year. The sample 

includes both spikers and firms that do not spike. The outcome variable is the natural logarithm of 

revenues. The model includes year and firm fixed effects, as well as the natural logarithms of non-IT 

employees and capital. Robust standard errors are clustered by firm. 
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Figure 5: trend in revenues around spike, difference-in-differences estimates 

 
This figure plots the coefficients (solid line) and the 95% confidence intervals (shaded area) of a set of 

year-relative-to-spike from an OLS regressions similar to model (2) in table 2. The omitted category is the 

year before the spike. While the regression includes the full sets of coefficients, we report here only those 

in an 11-year window around the year of the spike. The unit of observation is a firm-year. The sample 

includes both spikers and firms that do not spike. The outcome variable is the natural logarithm of 

revenues. The model includes year and firm fixed effects. Robust standard errors are clustered by firm. 
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Figure 6: trend in non-IT employees around spike, difference-in-differences 

 
This figure plots the coefficients (solid line) and the 95% confidence intervals (shaded area) of a set of 

year-relative-to-spike from an OLS regressions similar to model (4) in table 2. The omitted category is the 

year before the spike. While the regression includes the full sets of coefficients, we report here only those 

in an 11-year window around the year of the spike. The unit of observation is a firm-year. The sample 

includes both spikers and firms that do not spike. The outcome variable is the natural logarithm of non-IT 

employees. The model includes year and firm fixed effects. Robust standard errors are clustered by firm. 
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Appendix 

Figure A1: Distribution of growth in IT share of employees by rank within firm 

 
The figure plots the mean and the median of the growth in IT share of employees by rank within firm.   
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Figure A2: Frequency of spikes by year 

 
This figure plots the number of spikes occurring in each sample year and the number of spikes limited to 

the largest spike per firm. 
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Table A1: Comparison of means for matched and unmatched firms 
Variable Unmatched Matched T-statistic Norm. Diff. 

 (1) (2) (3) (4) 

Sales (mill $2009) 642.64 4,626.56 72.27 0.34 

Employees (total, 1000s) 2.50 15.11 70.55 0.34 

Capital (mill $2009) 312.31 1,888.88 58.38 0.27 

Wages (mill $2009) 68.82 74.16 17.07 0.09 

IT producing industry 0.16 0.21 26.06 0.13 

US firms 0.91 0.88 19.98 -0.10 

Capital investment (mill $2009) 52.64 339.75 50.76 0.25 

Market value of equity (mill $2009) 742.29 5,944.15 72.30 0.33 

First year in Compustat 1,989.60 1,986.15 50.73 -0.25 

Year 1,999.69 2,002.34 85.28 0.43 

Observations 97,563 64,086   

Unit of observation is firm-year. Unmatched are firm-years in Compustat we cannot match to firm-years in 

LinkedIn. Matched are those we can match. Columns (1) and (2) report means by group. Column (3) 

reports the t-statistics from a test of the difference between the means in the first two columns. Column (4) 

reports the normalized difference in average covariates between groups. 
 

Table A2: descriptive statistics 
Variable N Mean SD Min Max 

Post spike 51,382 0.4 0.5 0.0 1.0 

Spiker 51,382 0.7 0.4 0.0 1.0 

Growth in IT share of employees 47,120 0.1 0.3 -1.0 4.7 

Revenue 50,205 5,423.7 17,541.3 0.0 440,944.5 
Non-IT employees 50,108 17.2 53.9 0.0 2,182.0 

Capital 50,134 2,161.0 8,328.5 0.0 247,286.0 

Capital/Non-IT employees 48,809 206.4 1947.7 0.0 229,661.4 

Wages 49,655 74.7 74.4 0.0 13,773.5 

Capital investment 48,012 386.2 1,663.4 -401.6 49,105.4 

Market value of equity 51,290    6,974.4 23,668.1 0.0 744,989.4 

AI/Big Data 51,382 0.1 0.3 0.0 1.0 

It producing 51,382 0.2 0.4 0.00 1.0 

First year in Compustat 51,382    1,985.4 16.3 1,950.0 2,011.0 

Year 51,382 2,002.9 6.0 1,990.0 2,012.0 

Labor share of revenue* 49,100 0.3 0.3 0.0 2.7 

Operating margin* 49,200 0.1 0.3 -3.6 0.6 

Unit of observation is firm-year. All the dollar amounts are in millions of 2009 dollars. Employment data in 

thousands of employees. *Trimmed of 1% top and bottom tails. 

 

 

Table A3: sample by industry 
Industry N % 

Durable manufacturing 14,518 28.30% 

Service 9,847 19.20% 

Finance 7,629 14.80% 

Nondurable manufacturing 7,088 13.80% 

Transport and utilities 5,245 10.20% 

Trade 4,417 8.60% 

Other 2,638 5.10% 

Total 51,382 100.00% 
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Table A4: Frequency of spikes per firm 
Number of spikes per firm Number of firms Percent of firms 
0 1,468 34.44 
1 1,107 25.97 
2 768 18.02 
3 513 12.04 
4 271 6.36 
5 93 2.18 
6 34 0.80 
7 8 0.19 
Total 4,262 100.00 

Unit of observation is a firm. 

 

Table A5 comparison of firm-years pre- and post-spike 
 Pre spike Post spike T-stat Norm. Diff. 

 (1) (2) (3) (4) 

Revenue 6,460.05 4,140.15 14.76 -0.13 

Non-IT employees 19.72 14.19 11.45 -0.10 

Capital 2,404.33 1,858.98 7.29 -0.07 

Capital/Non-IT employees 193.65 222.02 1.60 0.01 

Wages 74.04 75.48 2.14 0.02 

AI/Big Data 0.15 0.08 25.86 -0.23 

IT producing 0.26 0.22 9.30 -0.08 

Labor share of revenue* 0.32 0.31 1.62 -0.01 

Operating margin* 0.11 0.11 2.37 0.02 

Observations 28,536 22,846   

Unit of observation is firm-year. Pre-spike observations include firm-years for firms that do not spike and 

those before the year of the highest spike for the spikers. Columns (1) and (2) report means by group. 

Column (3) reports the t-statistics from a test of the difference between the means in the first two columns. 

Column (4) reports the normalized difference in average covariates between groups. *Trimmed of 1% top 

and bottom tails. 
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Table A6: Predictors of spikes 
Outcome 1[spike] X 100 

Specification OLS 

 Revenue Non-IT 

labor 

Market cap Change in 

revenue 

Changed in non-

IT labor 

Change in 

market cap 

 (1) (2) (3) (4) (5) (6) 

       

Lagged 

revenue 

-1.11**      

 (0.08)      

       

Lagged  non-

IT employees 

 -1.07**     

  (0.08)     

       

Lagged  

market cap 

  -1.04**    

   (0.07)    

       

Lagged  

change in 

revenue 

   0.14   

    (0.54)   

       

Lagged  

changed in 

non-IT 

employees 

    -0.25  

     (0.60)  

       

Lagged  

change in 

market cap 

     0.40 

      (0.29) 

       

Observations 46,002 45,838 47,058 41,802 41,401 42,780 

R-squared 0.03 0.03 0.03 0.03 0.03 0.03 

Mean outcome 12.72 12.63 12.71 12.23 12.11 12.21 

Firms 4200 4231 4260 3973 3984 4033 

Unit of observation is firm-year. The outcome is an indicator variable equal to one in the year of a spike, 

multiplied by 100. Firms at risk of a spike from their first year in the sample, or the first year after a spike 

(i.e. firms may have multiple spells). All models include year effects and year-since-spell-start dummies. 

Robust standard errors in parentheses clustered by firm. ** p<0.01, * p<0.05 
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Table A4: robustness of production function estimates 
Outcome Log(revenue) 

Specification OLS 

Model industry-by-year L & K by 

industry 

spikers higher 

spikes 

no multi-

spikers 

no growth-

outliers 

 (1) (2) (3) (4) (5) (6)  

       

Post spike 0.049** 0.049** 0.058** 0.034** 0.084** 0.046** 

 (0.011) (0.010) (0.010) (0.012) (0.017) (0.009) 

       

Observations 45,644 47,416 34,778 47,416 23,743 46,508 

R-squared 0.980 0.977 0.970 0.976 0.982 0.980 

Firms 3981 4056 2674 4056 2438 4013 

The unit of observation is firm-year. Sample for model (3) contains only firms with an IT spike. Sample for 

model (5) excludes firms with more than one IT spike. Sample for model (6) excludes firms with at least one 

year in the top 1% or bottom 1% of the distribution of revenues for firm-years in the sample. Outcome is the 

natural logarithm of revenue in all models. Post spike is an indicator variable equal to one starting in the year 

of largest spike in IT employment. In model (4) this variable is computed using a higher threshold. All models 

include the natural logarithms of non-IT employees and capital, and firm fixed effects. Model (2) allows the 

coefficients of non-IT employees and capital to differ by industry (SIC 2-digit). Model (1) includes industry-

by-year effects (SIC 4-digit). Models (2)-(6) include year effects. All models estimated with the Stata package 

developed by Correia (2016). Robust standard errors clustered by firm in parentheses. ** p<0.01, * p<0.05 
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Table A5: IT spikes, sales and non-IT employment, robustness checks 
Panel A 

Outcome Log(revenue) 

Specification OLS 

Model industry-by-year spikers higher spikes no multi-spikers no growth-outliers 

 (1) (2) (3) (4) (5) 

      

Post spike 0.098** 0.118** 0.088** 0.170** 0.110** 

 (0.019) (0.017) (0.021) (0.030) (0.017) 

      

Observations 48,447 36,859 50,202 25,045 49,238 

R-squared 0.953 0.924 0.939 0.953 0.943 

Firms 4,129 2,757 4,200 2,533 4,158 

 

Panel B 

Outcome Log(non IT-employees) 

Specification OLS 

Model industry-by-year spikers higher spikes no multi-spikers no growth-outliers 

 (1) (2) (3) (4) (5) 

      

Post spike 0.065** 0.068** 0.060** 0.106** 0.074** 

 (0.018) (0.016) (0.021) (0.028) (0.017) 

      

Observations 48,160 36,599 49,967 24,993 49,041 

R-squared 0.955 0.930 0.942 0.956 0.946 

Firms 4,146 2,775 4,218 2,539 4,198 

The unit of observation is firm-year. Sample for column (2) contains only firms with an IT spike. Sample for 

column (4) excludes firms with more than one IT spike. Sample for column (5) excludes firms with at least 

one year in the top 1% or bottom 1% of the distribution of revenues or non-IT employees for firm-years in 

the sample. Outcome in Panel A is the natural logarithm of revenue in all models. Outcome in Panel B is the 

natural logarithm of non-IT employees in all models. Post spike is an indicator variable equal to one starting 

in the year of largest spike in IT employment. In column (3) this variable is computed using a higher 

threshold. Models in column (1) includes industry-by-year effects (SIC 4-digit). Models (2)-(6) include year 

effects. All models estimated with the Stata package developed by Correia (2016). Robust standard errors 

clustered by firm in parentheses. ** p<0.01, * p<0.05 
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