
Georgia Southern University
Digital Commons@Georgia Southern
14th IMHRC Proceedings (Karlsruhe, Germany –
2016) Progress in Material Handling Research

2016

A High-Density, Puzzle-Based System for Rail-Rail
Container Transfers
Kevin Gue
University of Louisville, kevin.gue@louisville.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/pmhr_2016

Part of the Industrial Engineering Commons, Operational Research Commons, and the
Operations and Supply Chain Management Commons

This research paper is brought to you for free and open access by the Progress in Material Handling Research at Digital Commons@Georgia Southern.
It has been accepted for inclusion in 14th IMHRC Proceedings (Karlsruhe, Germany – 2016) by an authorized administrator of Digital
Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

Recommended Citation
Gue, Kevin, "A High-Density, Puzzle-Based System for Rail-Rail Container Transfers" (2016). 14th IMHRC Proceedings (Karlsruhe,
Germany – 2016). 14.
https://digitalcommons.georgiasouthern.edu/pmhr_2016/14

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Georgia Southern University: Digital Commons@Georgia Southern

https://core.ac.uk/display/229122576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.georgiasouthern.edu?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2016%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/pmhr_2016?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2016%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/pmhr_2016?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2016%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/pmhr?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2016%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/pmhr_2016?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2016%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2016%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2016%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1229?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2016%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/pmhr_2016/14?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2016%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


A High-Density, Puzzle-Based System for Rail-Rail Container Transfers

Kevin R. Gue and Gang Hao

Department of Industrial Engineering
University of Louisville, Louisville, KY, USA

Abstract

We describe a high-density, puzzle-based storage and transfer system for contain-
ers in a rail-to-rail hub for the Physical Internet. The system uses a new algorithm
called GridHub, which is able to transfer items in all four cardinal directions simulta-
neously within a grid. We show how the GridHub system might be used in a rail-rail
transfer hub to transfer containers between one side of the grid and a train.

1 Introduction

The Physical Internet (PI or π) is a new concept in global logistics that, among other things,
specifies standards for container sizes and protocols for transfers at hubs [12]. So-called
π-containers are transferred between vehicles (π-movers) via π-hubs, which are similar
metaphorically to routers of the digital internet [1, 11]: π-containers (data packages) are
unloaded from inbound vehicles (data senders) and moved to outbound vehicles with differ-
ent destinations (data receivers). Because π-containers are handled several times in mul-
tiple π-hubs before arriving at their destinations, quick handling at hubs is essential to a
plausible, future Physical Internet.

We consider the case of a rail-to-rail (rail-rail) hub at which trains offload containers
for transfer to future, arriving trains, and load containers from trains that arrived earlier.
The system we described is based on a conceptual design presented in Ballot et al. [1]:
trains arrive to a grid of conveyor modules (one side only) that spans the length of two rail
cars. Containers are offloaded from one car, while the second, newly emptied car loads
new containers. The internal workings of the grid are similar to the GridStore system [7].

2 Literature Review

The most widely used method of transferring containers between trains in railway hubs
is by cranes. Several studies have been done in this area, such as Bostel and Dejax [2],
Boysen et al. [4], and a survey by Boysen et al. [3]. Because the quantity of cranes in
these papers is limited to a very low level to avoid conflicts, performance of container
stations that operate in this way is usually low. Furthermore, this conventional method



of controlling cranes employs complex computational models, so solving these models is
itself a challenge, making their use in real world settings questionable.

Recent advances in high density storage systems [6, 9] provide a theoretical basis for
rail-rail transfer systems, including π-hubs. The term “GridFlow” was coined as a way
to refer to material handling systems using a grid of conveyor modules that pass items
between them [13]. GridFlow systems have very high density because there is no wasted
space devoted to pre-defined aisles, and yet the ability of each storage location (conveyor
module) to move items independently also allows a very high throughput [7].

Two approaches to material movement within a grid have emerged. In the first ap-
proach, the travel path of an item entering the grid is completely or partially specified
after a series of decentralized negotiations processed by the conveyors prior to the actual
movements. This method was pioneered by Mayer [10] with the Flexconveyor, which uses
decentralized control to convey items in a network of conveyor modules. This method was
extended by Seibold et al. [14] with the GridSorter system.

A second approach routes items in an ad hoc, decentralized manner based on the current
conditions of conveyor module and its immediate neighbors. This approach was introduced
by Gue et al. [7] in a storage and retrieval system, and later extended by Uludag [15] and
Gue et al. [8] in a picking and item sequencing system. The case of encountering broken
conveyors in grid-based systems was studied by Furmans et al. [5]. Conveyors in all of these
systems use an access-negotiation-convey protocol to execute movement in the system.

3 GridHub

The authors are developing the GridHub system, which will be fully described elsewhere,
in order to address a number of weaknesses of systems in the existing literature:

• Movement of requested items in existing systems (GridStore, GridPick, GridSe-
quence) is only north and south, never east and west. Consequently, only two sides
of a grid have been available to receive or deliver items.

• Existing systems are not able to deliver a requested item to a specified module on the
perimeter of the grid, only to a specified side of the grid.

• Existing systems are not able to sequence retrievals to a specified boundary module.
(GridPick does sequence deliveries by batch or order, but not to a specified module).

The present paper presents a limited version of GridHub, in which containers are received
and delivered from and to the bottom of the grid only, and in which containers flow up from
bottom-left, then right to the shipping side, then down to the bottom-right face, where they
are loaded into specified slots on specified cars.

The GridHub system has three key components: a group of conveyors in a grid layout
with a central controller, railway cars, and π-containers (Figure 1). Railway cars stop along



the bottom row of conveyors to load and unload containers. The row of conveyors closest
to the railway cars is the loading and unloading row. Other conveyors form the storage area,
and all of the containers are stored and transferred on these conveyors. Since the system is
grid shaped, the location of a conveyor corresponds to its column and row, and we use the
columns and the rows of conveyors in the rest of this paper to describe groups of conveyors.

Figure 1: Overview of GridHub

Railway cars are numbered ascending from 1 according to their arrival sequence. In
each railway car, there are slots in which to place π-containers, and each slot can hold only
one π-container. Slots in one railway car are numbered from the left to the right side of the
car starting with number 1.

Every π-container has departure information, which consists of two parts: the slot in
which it should be loaded in its destination car (slot number) and the rail car onto which it
will be loaded (car number). π-containers are sorted into different groups according to their
slot numbers, and all containers in a same group have the same slot number. Each group
of containers is sorted by car number to form a “virtual queue.” The queue number of the
container indicates the position of that container in its virtual queue. In brief, this number
of one container is generated according to its car number. In other words, a container with
a smaller car number consequently has a smaller queue number. When containers leave or
enter the system, the grouping and sorting of containers will be performed, hence the queue



numbers will be changed several times during the period when the containers stay in the
system.

Figure 2 illustrates an example for containers with departure information displayed. In
the farthest right column of containers, the farthest bottom container is scheduled to be
loaded into the 9th slot (shown by the small text in the bottom side of the box) of car
number 10 (shown by the small text in the top side of the box), and it is the 1st position (the
big text) of the virtual queue formed by containers, and all containers in this queue will be
loaded into the 9th slot in all future railway cars. After this container leaves the system, the
container with car number 11 and slot number 9 changes its queue number from 2 to 1.

Figure 2: Departure information of containers

Additional settings and assumptions of this paper are as follows:

• All π-containers are of unit size.

• Each conveyor can only hold one π-container.

• Every railway car contains the same number of containers.

• Railway cars are fully loaded when they enter and leave the system, and they follow
the first-in-first-out rule.

• All departure information of all π-containers is known while they enter the system,
and this information will not be changed during the period of staying in the system.

• All containers’ destination cars arrive later than the railway cars that carried these
containers into the system.

• Each π-container can only communicate with the conveyor that holds it via some
wireless technology such as Bluetooth, Wi-Fi, or RFID.

• Conveyors are in a grid-like configuration, and each knows its location in the grid.



3.1 Control Architecture and Operations
The control architecture of GridHub consists of two layers (Figure 3).

Figure 3: Control architecture of system

The top layer is a central controller, which has the following functions:

• Coordinates traffic moving, for example, when the railway car which is loading con-
tainers is full, it asks the train to move forward.

• Checks status of components and broadcasts operational information to conveyors.
For example, it surveys all containers and railway cars in the system; if some con-
tainers are scheduled to be loaded into the car waiting for containers, it will broadcast
this information to all conveyors.

• Sorts containers and assigns queue numbers to containers according to their departure
information.

The second layer consists of all the conveyors. Every conveyor is loaded with the same
rules, and each can perform the following activities:

• Assigns transferring tasks by marking the container as “requested,” and gives feed-
back to the central controller if necessary.

• Negotiates with its four cardinal neighbors, and makes decisions to transfer a con-
tainer based on the container’s status and its neighbors’ statuses.

• Carries out the negotiation decision by physically moving its container.

The chart in Figure 4 presents the operation flows of GridHub.



Figure 4: Overall operation steps

3.2 Control Algorithm
The control algorithm of GridHub extends the GridStore [7] and the GridPick [15] systems
by adding additional negotiations. The approach is still divided into three phases (access-
negotiate-convey), and the conveyors have several states to represent negotiation status or
carried containers’ status. These three phases of activities are taken by every conveyor
simultaneously and cyclically, and each iteration performed by these conveyors can also be
called an operation cycle.

Conveyors have three initial states decided by the items they hold:

• Empty: no container placed on it. The conveyor is shown as a blank white square.

• Occupied: holds a container that is not marked as “requested.” The container on it
is in silver.

• Requested: the container on it is marked as “requested,” to be transferred toward
one of the four neighbors. Container in blue is “requested” to be moved right, cyan
is “requested” to be moved left, pink is “requested” to be moved down and gold is
“requested” to be moved up.

The negotiations proceed according to these states, and during negotiations, conveyors
enter or exit additional states with interacting activities among their neighbors. The steps
of the algorithm are:



3.2.1 Access Phase

In this phase, each conveyor reads information of the container placed on it, and updates
its initial state to one of the three states described above. The information to read includes:
the container’s state of “requested,” the slot number, the car number and the queue number.
If the container is marked as requested, its target column or target row will also be read.

3.2.2 Negotiate Phase

Checking fully occupied columns or rows Negotiations start with detecting whether
each of the conveyors is located in a fully occupied row or column of conveyors. Two
waves of message passing are performed. These messages are initialized by the conveyors
in one edge of the system, and sent toward the other edge of the system. Only occupied
conveyors can pass this kind of message; in other words, an empty conveyor will stop the
message passing. If the messages reach the conveyors in the other edge through a column
or row of conveyors, it means that all of the conveyors in this column or row are occupied.
Also, the row or column consists of these conveyors are fully occupied. These conveyors
are marked as “in full column” or “in full row.” An example of fully occupied column is
shown in the first picture of Figure 5.

Assigning transfer tasks By reading the broadcast information from the central con-
troller, a conveyor assigns a task to a container according to its location in the grid and the
container’s departure information. For example, in Figure 2, the conveyor located in the
furthest bottom row and the second column from right:

• It is in the right side of the slot which the container is supposed to be loaded into (it
faces slot number 10, but the intended one is 9),

• it is in the 1st position of the virtual queue (its queue number is equal to or less than
2), and

• it has not been marked as “requested.”

This conveyor will mark the container as “requested” in the left direction and the target
column equals 9. Additionally, the conveyor will also change its state to “requested” with
appropriate information.

Check “half fully” occupied columns or rows Similar to the above negotiation, after
assigning a task, if a conveyor is not in a fully occupied row or column, and it is in the “re-
quested” state, then this conveyor initializes two waves of negotiations toward both edges
of the system in order to detect whether it is in a “half-fully” occupied column or row
(second picture of Figure 5).



Figure 5: Example of fully occupied columns and half fully occupied columns

Negotiations to remove fully occupied rows or columns According to Gue et al. [7],
to keep a GridStore system away from deadlock, at least one empty conveyor has to be
in each column or row. Otherwise the cases shown in Figure 5 could cause deadlocks,
and transfer tasks cannot be completed. We apply this rule to GridHub as well. To avoid
deadlocks, some containers need to be removed from the fully occupied rows or columns.
Negotiations include following steps:

• Method 1: every “requested” conveyor initializes messages to remove an item from
the fully occupied column or row, or the column or row next to it, and this column or
row is in its “requested” direction. This idea is similar with “balancing” negotiations
of the GridPick system [15].

• Method 2: if the above method failed to “break” a fully occupied column or row,
some containers meeting certain conditions will be forced to move out of the fully
occupied column or row.

Negotiations to move newly arrived containers This wave of negotiations is to move
the new arrivals into the system quickly to avoid the congestion near the loading and un-
loading row. The idea is similar to the “exchange of home row” method in [7]. As a result
of successful negotiations, containers will be moved in tandem along a column, and the
container in the loading and unloading row will be moved into the system in one cycle.

Negotiations to eliminate conflicts Since the containers are transferred in four direc-
tions, some of the conveyors holding them may compete with an empty conveyor during
the transfer process, and we call these cases “conflicts.” To solve this problem, we define
priorities of containers by their requested directions. Their priorities are listed from high
to low by requested directions: left, right, up and down. Every conveyor holding a higher
priority container sends a message to its neighbor conveyors holding lower priority contain-
ers. By receiving this message, those conveyors holding lower priority containers change
their states from “requested” to “occupied.” As a result, those conveyors are considered
“occupied” in the later negotiations of the current cycle, and conflicts can be solved.



Transfer negotiations After all negotiations prior to this wave of negotiation, all con-
flicts are solved, and all blocking is ready to be removed. Then, the regular negotiations of
moving containers proceed, as defined by other GridFlow based systems [7, 8, 15].

3.2.3 Convey Phase

After all negotiations are done, conveyors know whether or not to move their containers,
and they also know the direction of movement. Hence, physical movements are carried
out by conveyors. After each container arrives at its destination, identifications will be
performed to check whether the container is at its target location. If yes, they are converted
to regular stored containers; otherwise, they will continue to be moved in future cycles.

Finally, every conveyor cleans all negotiation states to the initial state, and then it enters
a new cycle of negotiation.

3.2.4 Example of Running System

Figure 6 illustrates how GridHub runs. In Figure 6a, the railway car labeled 18 is being
moved forward to the parking position which is beside the bottom right part of the GridHub
system. This railway car just unloaded π-containers that are located at the bottom left part
of the system, and these containers are waiting to be moved into the system. Containers
with queue numbers equal to 1 have been marked as “requested” to be moved down.

In Figure 6b, after several cycles of transportation, all arriving containers have been
moved into the system. In the same period, containers scheduled to be loaded into the
railway car labeled 18 keep moving into the car.

In Figure 6c, the last container belonging to railway car labeled 18 is leaving the system.
Other blue containers are either moved to the column facing their slots on railway cars, or
marked as “requested” by negotiations described in 3.2.2.

In Figure 6d, the car labeled 18 has left the system, and a new batch of containers from
the car labeled 19 are unloaded.

4 Results and Discussion

Performance of GridHub is obtained by measuring the number of railway cars completing
loading and unloading activities in a certain period. All of the simulations are performed
in Anylogic.

4.1 Experiment Configurations and Results
The GridHub system for the experiment is set as a grid of conveyors with 22 columns and
11 rows. The number of rows will also be changed to 12 and 13 for further measurements
of system performance. In each railway car, the number of slots is set to 10. The number



(a) (b)

(c) (d)

Figure 6: Example of a running system

of containers in the system are set from 110 to 200, step 10. Table 1 shows the experiment
settings. Each configuration in this table is run for 50 replications. In every replication,
6800 cycles are run. The first 800 cycles are the warm-up period, and the final 6000 cycles
are the experimental period.

Table 1: Experiment settings

Number of containers Number of rows
110 11 12 13
... 11 12 13
190 11 12 13
200 11 12 13

The number of railway cars processed is shown in Figure 7. In this figure, the horizontal
axis shows the number of containers in the system, and the vertical axis shows the number
of cars processed during the 6000 cycles. The performance is changed by changing of the
system storage densities: while the system’s storage utilization is low, system performance
shows small differences among the three utilization settings. The storage utilization is



defined as:

Us =
Number of containers

Number of conveyors(exclude the border conveyors)

110 120 130 140 150 160 170 180 190 200
170

180

190

200

210

220

230

240

Number of containers

A
v
e

ra
g
e
 n

u
m

b
e

r 
o
f 
ra

ilw
a
y
 c

a
rs

 

 

11row

12row

13row

Figure 7: Number of cars processed

4.2 Discussion
If the GridHub is considered as the server of a single-server queuing system, the service
times are the waiting intervals between departure events of two adjacent railway cars. The
longer intervals require the railway cars to wait longer; then the longer intervals result
in lower overall performance (Figure 7 and Figure 8). Hence, the number of railway cars
processed is decided by the intervals between two loading and unloading events of adjacent
cars.

The length of the intervals affected by multiple factors, and the value of these factors
are plotted in Figures 9a to 10b. The mechanism is explained by two cases (low Us and
high Us).



110 120 130 140 150 160 170 180 190 200
25

26

27

28

29

30

31

32

33

34

Number of containers

A
v
e

ra
g

e
 i
n

tv
e

ra
ls

 (
in

 c
y
c
le

s
)

 

 

11row

12row

13row

Figure 8: Average length of intervals between loading/unloading of two adjacent cars

When the system is less congested (the number of containers is less than 140), fewer
negotiations (Method 2 in Section 3.2.2, Figure 9b) take place. This results in fewer con-
tainers being transferred into columns, which are facing their slots on cars in time. For
example, a container scheduled to go to slot 10 may start to be moved from some places in
the left part of the system when its target railway car has already arrived. As a comparison,
in the cases of higher Us, the container may already stays in the column which is facing its
target slot on its target railway cars when the car arrives.

These extended distances increase the overall waiting time of trains (Figure 9a). In
Figure 8, the increasing of intervals of the left parts are made in this way.

As the utilization of storage increases (number of containers greater than 140), the
effects of the above mechanism get weaker, and the other factors have stronger influence
on the system performance.

Though containers can be transferred to railway cars via fewer conveyors (Figure 9a),
when the system is more congested (the number of containers greater than 140), these
containers have to “pass through” a very crowded area. The crowded area is generated
by the negotiation activities to remove fully occupied columns and rows (Figure 10a and
Figure 10b). These negotiations make a lots of conveyors in “requested” states, but the



110 120 130 140 150 160 170 180 190 200
7

8

9

10

11

12

13

14

Number of containers

 

 

11 row

12 row

13 row

(a) Average longest distance(unit: number of
conveyors)

110 120 130 140 150 160 170 180 190 200
0

2

4

6

8

10

12

14

16

18

20

Number of containers

 

 

11row

12row

13row

(b) Average number of negotiations of horizontal
movement (method-2 in Section 3.2.2)

Figure 9: Factors affect performance while storage utilization is low

amount of empty conveyors are limited. Hence, it takes longer time to complete movements
than the cases of lower utilization, so the performance of the system is lower in this case.

110 120 130 140 150 160 170 180 190 200
0

5

10

15

20

25

30

35

40

Number of containers

 

 

11 row

12 row

13 row

(a) Average number of negotiations of horizontal
movement (method-1 in Section 3.2.2)

110 120 130 140 150 160 170 180 190 200
5

10

15

20

25

30

35

Number of containers

 

 

11row

12row

13row

(b) Average number of negotiations of vertical
movement (method-1 in Section 3.2.2)

Figure 10: Factors affect performance while storage utilization is high

5 Conclusion

The GridHub system offers a potential solution to the problem of transferring π-containers
between rail cars at π-hubs in the Physical Internet. Of course, the algorithms we propose in



this paper would have to be instantiated in real software, running real hardware, and many
modifications might be required. Nevertheless, the prototypical system we have simulated
suggests high throughput is possible with a very high density of storage.

References

[1] Ballot, E., Montreuil, B., and Thivierge, C. (2012). Progress in Material Handling
Research 2012. MHIA, Charlote, NC, U.S.A.

[2] Bostel, N. and Dejax, P. (1998). Models and Algorithms for Container Allocation
Problems on Trains in a Rapid Transsipment Shunting Yard. Transportation Science,
32(4):370–379.

[3] Boysen, N., Fliedner, M., Jaehn, F., and Pesch, E. (2011). A Survey on Container Pro-
cessing in Railway Yards: Decision Problems, Optimization Procedures and Research
Challenges. Technical report, Friedrich-Schiller-Uiversitat Jena.

[4] Boysen, N., Fliedner, M., and Kellner, M. (2010). Determining fixed crane areas in
rail-rail transshipment yards. Transportation Research Part E, 46:1005–1016.

[5] Furmans, K., Gue, K. R., and Seibold, Z. (2013). Optimization of failure behavior of a
decentralized high-density 2D storage system. Springer Berline Heidelber.

[6] Gue, K. (2006). Very high density storage systems. IIE Transactions, 38:79–90.

[7] Gue, K., Furmans, K., Seibold, Z., and Uludag, O. (2014). GridStore: A Puzzle-Based
Storage System With Decentralized Control. IEEE TRANSACTIONS ON AUTOMA-
TION SCIENCE AND ENGINEERING, 11(2).

[8] Gue, K., Furmans, K., and Uludag, O. (2012). A High-Density System for Carton
Sequencing. In Proceedings of the 6th International BVL Symposium on Logistis, Ham-
burg, Germany.

[9] Gue, K. R. and Kim, B. S. (2007). Puzzle-Based Storage Systems. Naval Research
Logistics, 54(5):556–567.

[10] Mayer, S. H. (2009). Development of a completely decentralized control system for
modular continuous conveyors. PhD thesis, Institutes fur Fordertechnik und Logistiksys-
teme der Universitat Karlsruhe (TH), Karlsruhe, Baden-Wrttemberg, Germany.

[11] Meller, R. D., Montreuil, B., Thivierge, C., and Montreuil, Z. (2013). Functional
Design of Physical Internet Facilities: A Road-Based Transit Center. Technical Report
FSA-2013-001, CIRRELT, Montreal, Canada.



[12] Montreuil, B. (2011). Toward a Physical Internet: meeting the global logistics sus-
tainability grand challenge. Logist. Res., 3:71–87.

[13] Schwab, M. (2015). A decentralized control strategy for high density material flow
systems with automated guided vehicles. PhD thesis, Karlsruher Instituts fur Technolo-
gie (KIT), Karlsruhe, Baden-Wrttemberg, Germany.

[14] Seibold, Z., Stoll, T., and Furmans, K. (2013). Layout-Optimized Sorting of Goods
with Decentralized Controlled Conveying Modules. In Systems Conference (SysCon),
2013 IEEE International, pages 628–633. IEEE.

[15] Uludag, O. (2014). GridPick: A High Density Puzzle Based Order Picking System
with Decentralized Control. PhD thesis, Auburn University, Auburn, Alabama.


	Georgia Southern University
	Digital Commons@Georgia Southern
	2016

	A High-Density, Puzzle-Based System for Rail-Rail Container Transfers
	Kevin Gue
	Recommended Citation


	tmp.1523038606.pdf.lPDmL

