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Abstract

Storing pallets of Stock Keeping Units (SKUs) on top of one another in
lanes on a warehouse floor is known as block stacking. This storage system
is widely used in manufacturing systems and distribution centers. The ar-
rangement of lanes in the layout of this system significantly impacts utilization
of the storage space and transportation costs. Existing research that studies
the layout for this system focuses exclusively on determining the optimal lane
depth with respect to space utilization and ignores transportation costs. In
this study, we develop a simulation model that computes several performance
metrics to evaluate both of these objectives for a warehouse layout. It aims
to take the stochastic variations exist in the real world situation into account.
Designing the layout based on the historical data distinguishes this model from
the analytical models in the systems with high level of uncertainty, where de-
termining the required parameters for analytical models are difficult due to the
high variations. We verified the model using the existing analytical models and
developed an experimental analysis to show the trade-off between the space
utilization and transportation costs in the layout design problem.

1 Introduction

A block stacking warehouse is a unit load storage system where pallets of stock keeping
units (SKUs) are stacked on top of one another in lanes on the warehouse floor. This
storage system does not require any storage racks or other storage facilities and can be
inexpensively implemented in any wide area. However, space planning is challenging
in this inexpensive storage system. This system is widely operated under the shared
storage policy. In this policy, empty lanes are available to all SKUs. However, to
avoid blockage and relocation of pallets, an empty lane is entirely dedicated to a SKU
once a pallet of that SKU is stored in the lane. This policy utilizes storage space
more efficiently, though the order picking process might be generally less efficient in
this system.
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Figure 1: Transportation costs vs. space utilization with respect to the lane depth
(lane depths and travel distances are in units of pallet).

This restriction leads to waste storage spaces in lanes when they are being filled
or depleted. This is because there will be some unoccupied spaces in a lane that are
only available to the assigned SKU. This effect is termed honeycombing and the waste
associated with it is incurred to the system until a lane becomes entirely occupied
or empty [2]. In addition to the honeycombing, aisles also contribute to the overall
amount of wasted space. Aisles are not used for pallet storage but are required for
access to the lanes. To utilize the storage space more efficiently, the layout must be
designed such that these two types of waste are minimized.

The transportation costs are also impacted by the lane depths as well. Deep
lanes create a layout that has few aisles and therefore utilizes the storage space more
efficiently but suffers from higher transportation costs. The reverse is true for the
shallow lanes. Hence, a trade-off between the space utilization and transportation
costs must be taken into account in designing a warehouse layout. Figure 1 illustrates
this trade-off for two extreme cases. The layout with deep lanes provides more storage
locations (126 vs 108 pallet positions) but longer transportation distance (20 vs 10
pallet locations) to retrieve the same pallet position.

In this paper, we describe a discrete-event simulation model that evaluates both
space utilization and transportation costs for a given warehouse layout. The proposed
simulation model considers stochastic variations in the major production factors, like
a real world situation, for the layout design problem. It evaluates a given warehouse
layout with respect to several metrics pertinent to space utilization and transportation
costs. This makes it a useful tool that can be used along with an optimization
algorithm to find an optimal layout with respect to these two objectives.
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Figure 2: A typical warehouse layout considered in this paper.

The system simulated in this research is a manufacturing warehouse that consists
of a production line, storage lanes, aisles, cross-aisles, outbound docks, AGVs (fork-
lifts), and a parking for the AGVs (forklifts). The structure of the warehouse is given
to the model. It is the definition, shape, and location of storage lanes, aisles, cross-
aisles, the production line output queue, outbound docks, and the AGVs parking.
The warehouse operations that are simulated in the model are generally of two types:
production storage and outbound load. In a production storage operation, a pallet
is produced and an AGV or forklift picks it up and delivers it to a floor stack. In an
outbound load operation, a truck arrives at an outbound dock and an AGV is sent
to pick up the requested pallet from the floor stack and deliver it to the truck. A
sample warehouse layout considered in this research is shown in Figure 2.

This paper is organized as follows. First, we briefly review the related research
on the warehouse layout design especially those that particularly studied block stack-
ing. Next, we explain the proposed simulation model and its elements in section 3.
Then, the experimental analysis is discussed in section 4 and finally, future research
is described in section 5.
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2 Related research

The research studied warehouse layout mostly considered it with respect to trans-
portation costs [8, 16, 20, 13, 19, 15, 17, 18]. Few studies investigated designing the
layout with respect to the other objectives such as storage costs [9], storage capacity
[12, 21], and space utilization [7, 4]. Comprehensive reviews on the research about
the warehouse layout can be found in [3, 6, 1]. Studies that particularly investigated
block stacking are briefly reviewed in the following.

Kind [10] was the first scholar considered the trade-off between the lane depth and
width to find the optimal lane depth that minimizes waste of storage space. However,
he did not provide any derivations for his model. Later, Matson [14] proposed a
more accurate model to approximate the optimal lane depth. Her model assumed
instantaneous resupply (i.e., infinite production rate) like the warehouses that store
products received from suppliers.

Goetschalckx and Ratliff [5] showed that if storage in multiple lane depths is al-
lowed for a SKU, then the optimal lane depths follow a continuous triangular pattern.
Larson et al. [11] proposed a class-based storage system to classify SKUs and allocate
required storage space to the classes.

Derhami et al. [4] further developed Matson’s model [14] and obtained the optimal
lane depth that maximizes volume utilization under finite production rate constraint.
They showed that using infinite production rate model in a finite production rate
environment produces lane depths about twice as deep as they should be, but the
resulting loss of space is not significant. That is because the space utilization curve,
as a function of lane depth, is quite flat. However, shorter optimal lanes mean more
aisles and therefore more flexibility with respect to travel for forklifts. They did not
consider the effect of the lane depth on the transportation costs.

The aforementioned studies aimed to calculate the optimal lane depth that max-
imizes floor/volume utilization. Using these models, the warehouse layout can be
designed only by dividing the warehouse floor into the lanes with depths equivalent
to the optimal depth. However, there is another important factor significantly im-
pacted by the warehouse layout, it is the transportation cost. Considering both space
utilization and transportation costs simultaneously in designing the layout for a block
stacking warehouse has not been adequately addressed in the literature.

In this study, we develop a simulation model that can be used as part of a
simulation-based optimization model to find an optimal warehouse layout with re-
spect to these two objectives. Our simulation model computes several performance
metrics to evaluate a given layout with respect to these two objectives. Like a real
world situation, it considers stochastic variations in the major production factors.
This empowers it to achieve accurate results for an uncertain environment where ex-
isting analytical models fail due to the high variations exist in the main production
factors and demand. In such a situation, the historical production and outbound
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Algorithm 1 The overall pseudo-code for the simulation model.
call data-preparation
call distance-calculation
while the event list is not empty do

event = the earliest event in the event list
TimeNow = time of event
call the corresponding procedure for the event
remove the event from the event list

call performance-evaluation

load data can be used in the simulation model. This model can then be used as an
evaluation tool along with an optimization algorithm to find the most effective layout
with respect to both space utilization and transportation costs.

3 The simulation model

The proposed simulation model is an event-oriented simulation that simulates the
production storage and outbound load operations in a warehouse while computing
the desirable performance metrics. It consists of four modules: data preparation,
distance calculation, main simulation, and performance evaluation.

The data-preparation procedure prepares the simulation input data. It gener-
ates the simulation event list from the real or randomly generated production and
outbound load data. The distance-calculation procedure calculates the rectilinear
distances between the locations of the warehouse where vehicles travel between them.
All distances are stored and later used in the main simulation procedure.

The main simulation procedure consists of nine sub-procedures (events). These
procedures simulate the entire warehouse operations. These operations are either
a production storage operation where an AGV or a lift truck picks up a produced
pallet from the production line and delivers it to a storage lane, or an outbound load
operation where an AGV or a lift truck picks up a pallet from the storage area and
delivers it to an outbound dock. The required parameters used to measure utilization
of the storage volume and transportation costs are calculated while these operations
are executed.

The performance-evaluation procedure is executed after all events in the simula-
tion event list are executed. It calculates the performance matrices used to evaluate
the layout in terms of space utilization and transportation costs. The overall pseudo-
code of the simulation model is illustrated in Algorithm 1. The following assumptions,
as presented in Figure 2, are presumed in the simulation model:

• Lanes are perpendicular to the left (west) side of the warehouse.

• For ease of navigation, all lanes in a bay have the same depth.
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• Outbound docks are located on the right (east) side of the warehouse.

• One outbound dock exists in the middle of each zone.

• The production line is located on the left (west) side of the warehouse.

• The AGVs parking is located in the middle of the south side of the warehouse.

• All aisles and cross-aisles are bidirectional and wide enough to allow two AGVs
cross each other (i.e. no AGV blockage)

• The AGVs traffic congestion is ignored.

• AGVs travel with a constant speed.

• Stochastic variations are added to the calculated travel times to incorporate the
delays and variations caused by the traffic congestion and variable speeds of the
vehicles on the turns and etc.

The elements of the model are explained in the following sections. The notation
used in the main simulation procedure is described in Table 1.

3.1 Data-preparation procedure

The first step is to collect and prepare the simulation input data. Two types of data
are collected:

• Data related to the warehouse, which includes warehouse dimensions, num-
ber of bays, number of lanes, number of cross-aisles, number of aisles, number
of outbound docks, number of AGVs, AGVs average speed, bay depths, aisles
and cross-aisles widths. This data mainly characterize the warehouse layout
(See Figure 2).

• Data related to SKUs, which includes the number of SKUs, pallets heights,
stackable heights, historical or randomly generated production and outbound
load data, and initial inventory.

Unlike the traditional simulation models where the next event is scheduled after
the current event of the same type is executed, our simulation model takes the simula-
tion event list in advance. This provides more flexibility as either the historical (real)
or randomly generated production and outbound load data can be used to build the
entire simulation event list.

A row of the event list provided to the model at the start of the simulation contains
the time of production or outbound load for a unit pallet of a SKU. So, if the historical
production or outbound load data are in batch units, they must be expanded to pallet
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Table 1: Table of notation.
na number of aisles
nc number of cross-aisles
nb number of bays
nl number of lanes in a bay
nA number of AGVs
no number of outbound docks
aa aisle width (in units of pallets)
ac cross-aisle width (in units of pallets)
sh warehouse height (in units of distance i.e., inch, cm)
sl warehouse length (in units of distance i.e., inch, cm)
sw warehouse width (in units of distance i.e., inch, cm)
As AGV’s average speed (in units of pallets/hour)
bi depth of bay i (in units of pallets)
T s total simulation time (in units of hours)
Tw warm-up period time (in units of hours)
ru total distance traveled unloaded (in units of pallets)
rl total distance traveled loaded (in units of pallets)
tu total time that AGVs travel unloaded (in units of hours)
tl total time that AGVs travel loaded (in units of hours)
WH

ij honeycombing waste of storage space generated in lane j of bay i
Oij occupied space-time in lane j of bay i
E simulation event list
Lp
w pick-up waiting list for the production line

Lo
w pick-up waiting list for outbound orders

tp time to load or unload a pallet to an AGV (in units of hours)
tw1 time that a pick-up request is added to either of the waiting lists (in units of hours)
tw2 time that a waiting pick-up request is assigned to an AGV (in units of hours)
εt epsilon time unit

unit events. A batch of production can be expanded to the transactional events using
random production times. This can be obtained by sampling production times from
random distributions. We generate production times for each SKU from a symmetric
triangular distribution whose most likely value is the average production time for
the SKU and its lower and upper bounds are 20 percent lower and higher than the
average production time.

For example, assume that the historical production data includes the production
of a batch of three pallets of a SKU at time zero. If the average production time for
this SKU is two hours and the three randomly generated processing times are 2, 1.8,
and 2.1 hours, then three production events are added to the event list for this SKU
at times 2, 3.8, and 5.9 hours. On the other hand, expanding a batch of an outbound
load does not involve randomness and all pallets are scheduled at the same time. This
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means, a historical outbound load of a batch of three pallets of a SKU at time zero,
for example, is expanded to three outbound load events at time zero.

The other production events that must be scheduled in the event list are the
production events to build the initial inventory (current state of the system). Hence,
the initial inventory is built up in the model by producing and storing pallets of SKUs
one by one like a regular production event. Then, the warm-up event is executed
and resets all the variables used for performance evaluation to their initial values.
The warm-up period must be scheduled once all pallets of the initial inventory are
produced and stored – no matter how many AGVs work in the system. For this
reason, the longest path that an AGV may travel to store a pallet and returns to the
parking (a path from the AGVs parking to the production line and then from the
production line to the furthest storage lane and then from there to the parking) is
found and denoted as dmax. Then, the pallet-production events are scheduled with
dmax/(nAA

s) hours time intervals for the entire inventory one by one. The warm-up
time is then scheduled at

Tw >
dmax(

∑ns

i=1 vi − 1)

nAAs
+ εt (1)

where ns is the number of SKUs and vi is the initial inventory of SKU i. This
lower bound ensures that the warm-up event is scheduled after the initial inventory
is entirely built up. The production and outbound load data are added to the event
list starting from (Tw + εt).

For example, assume that a SKU has five pallets of initial inventory, dmax is 2000
pallets, As is 2500 pallets/hour, and two AGVs work in the warehouse. The Pallet-
production events are scheduled for this SKU at times 0, 0.4, 0.8, 1.2, and 1.6 hours.
The warm-up time can be set to any time after 1.6 hours.

3.2 Distance-calculation procedure

This procedure calculates rectilinear distances between the following locations:

• storage lanes.

• storage lanes and the production line.

• storage lanes and outbound docks.

• storage lanes and the AGVs parking.

• outbound docks and the production line.

• outbound docks and the AGVs parking.

• the production line and the AGVs parking.
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This procedure is executed just once and computed distances are stored for later
usage in the main simulation procedure. The following sections explain how these
distances are calculated.

3.2.1 Distance between storage lanes

A rectilinear distance between two locations is obtained by summing distances trav-
eled along the x-axis and y-axis. As it is shown in Figure 2, we used a Cartesian
coordinate system and assumed the origin is located at the southwest corner of the
layout. We numbered bays from left to right (i.e. west to east) and numbered lanes
and cross-aisles from bottom to top (i.e. south to north). The x-coordinates for all
lanes in a bay are identical (i.e., xli,1 = ... = xli,j). For example, they are calculated
for lanes in bays 1 to 3 in Figure 2 as

xl1,1 = ... = xl1,15 = a (2)

xl2,1 = ... = xl2,15 = a+ b1 + b2 (3)

xl3,1 = ... = xl3,15 = 2a+ b1 + b2 (4)

The y-coordinates are calculated by defining zones. Lanes between two consecutive
cross-aisles form a zone. That is, lanes located between cross-aisles i and i+ 1 create
zone i. Zones determine how many cross-aisles are passed when traveling between
two lanes. As demonstrated in Figure 2, lanes between the first and the second cross-
aisles are assigned to zone 1, so zl1 = ... = zl5 = 1, zl6 = ... = zl10 = 2, and so on.
Zone assignment in Figure 2 started from the southern cross-aisle, but it can be done
conversely. Since, we assumed that cross-aisles are equi-spaced, the number of lanes
per zone for a bay is

nl/z =
nl

nz

(5)

where nz is the number of zones. For the sake of simplicity, we assume that nl/z is
an integer. Subsequently, the assigned zone for lane j is obtained by

zlj =

⌈
j

nl/z

⌉
(6)

The y-coordinates of the lanes are then calculated by

ylij = j + aczlj (7)

For the two lanes located in different zones, the distance is

dllijkl =
∣∣xlij − xlkl∣∣+

∣∣ylij − ylkl∣∣ (8)

but for the lanes located in an identical zone, it is the shortest path between the path
that connects them from the cross-aisle located at the top of the lanes and the path
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that passes from the cross-aisle located below them (see dll+5,9,6,8 and dll−5,9,6,8 in Figure
2). That is,

dll−ijkl =
∣∣xlij − xlkl∣∣+ (ylij + ylkl)− 2(zlj(a

c + nl/z)− nl/z) (9)

dll+ijkl =
∣∣xlij − xlkl∣∣+ 2(zlj(a

c + nl/z) + 1)− (ylij + ylkl) (10)

dllijkl = dllklij = min{dll−ijkl, d
ll+
ijkl} (11)

3.2.2 Distance between storage lanes and the production line

We assumed that the production line output queue located at the middle of the west
side of the warehouse. So, its x-coordinate is zero and its y-coordinate is

yp =
sw

2
(12)

The assigned zone to the production line is

zp ≈
⌈

yp

nl/z + ac

⌉
(13)

The distance between the production line and the storage lanes located in the first
bay or in the other bays but in different zones is

dlpij = xlij +
∣∣yp − ylij∣∣ (14)

and for the lanes located in the same zone as the production line (except the lanes
located in the first bay), it is calculated as

dlp−ij = xlij + (ylij + yp)− 2(zlj(a
c + nl/z)− nl/z) (15)

dlp+ij = xlij + 2(zlj(a
c + nl/z) + 1)− (ylij + yp) (16)

dlpij = min{dlp−ij , dlp+ij } (17)

3.2.3 Distance between storage lanes and outbound docks

The x-coordinates of all outbound docks, xoi , are sl and their y-coordinates are

yoi ≈
⌊

sw

no + 1

⌋
i (18)

So, their assigned zones are

zoi ≈
⌈

yoi
nl/z + ac

⌉
(19)
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The distance between dock k and the storage lanes located in the last bay or in
the other bays but in different zones is

dloijk =
∣∣xlij − xok∣∣+

∣∣ylij − yok∣∣ (20)

and the distance to the lanes that are in the other bays but same zone as outbound
dock k is obtained by

dlo−ijk =
∣∣xlij − xok∣∣+ (ylij + yok)− 2(zlj(a

c + nl/z)− nl/z) (21)

dlo+ijk =
∣∣xlij − xok∣∣+ 2(zlj(a

c + nl/z) + 1)− (ylij + yok) (22)

dloijk = min{dlo−ijk , d
lo+
ijk } (23)

3.2.4 Distance between storage lanes and AGVs parking

We assumed that the AGVs parking located in the middle of the south side of the
layout. Thus, its x-coordinate, xA, is sl/2 and its y-coordinate is zero. The distance
between the AGVs parking and all storage lanes is calculated by

dlAij =
∣∣xlij − xA∣∣+ ylij (24)

3.2.5 Distance between outbound docks and the production line

The distance between the production line output queue and outbound dock k located
in a different zone is

dpok = xok + |yp − yok| (25)

and distance to the outbound dock located in the same zone is calculated as

dpo−k = xok + (yp + yok)− 2(zp(ac + nl/z)− nl/z) (26)

dpo+k = xok + 2(zp(ac + nl/z) + 1)− (yp + yok) (27)

dpok = dpok = min{dpo−k , dpo+k } (28)

3.2.6 Distance between outbound docks and AGVs parking

The distance between outbound dock k and the AGVs parking is

dAo
k =

∣∣xok − xA∣∣+ yok (29)
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Algorithm 2 Pseudo-code for distance-calculation procedure.
calculate nl/z
set B = 0, c = 0
for all (i ∈ {1, .., nb}) do

if (i MOD 2 == 1) then
c = c+ 1
xli,1 = ... = xli,nl

= B + aac
else

xli,1 = ... = xli,nl
= B + aac+ bi

B = B + bi
for all (i ∈ {1, .., nb} & j ∈ {1, .., nl}) do

calculate zlj , y
l
ij using eqs. (6) and (7)

for all (l ∈ {j + 1, .., nl}) do
calculate dllijil, d

ll
ilij using eq. (8)

for all (k ∈ {i+ 1, .., nb} & l ∈ {1, .., nl}) do
calculate dllijkl, d

ll
klij using eqs. (8)–(11)

calculate yp, zp using eqs. (12) and (13)
for all (i ∈ {1, .., nb} & j ∈ {1, .., nl}) do

calculate dlpij using eqs. (14)–(17)

for all (k ∈ {1, .., no}) do
calculate yok, z

o
k using eqs. (18) and (19)

for all (i ∈ {1, .., nb} & j ∈ {1, .., nl} & k ∈ {1, .., no}) do
calculate dloijk using eqs. (20)–(23)

xA = sl/2
for all (i ∈ {1, .., nb} & j ∈ {1, .., nl}) do

calculate dlAij using eq. (24)

for all (k ∈ {1, .., no}) do
calculate dpok using eqs. (25)–(28)

calculate dAo
k using eq. (29)

calculate dpAk using eq. (30)
report {dll, dlp, dlo, dlA, dpo, dAo, dpA}

3.2.7 Distance between production line and AGVs parking

This distance is obtained by
dpA = yp + xA (30)

Algorithm 2 presents the pseudo-code for the distance-calculation procedure. The
traveling times are stochastic in the simulation model. We generate a random trav-
eling time for each trip by sampling from a symmetric triangular distribution whose
most likely value is the average traveling time between the selected locations and its
lower and upper bounds are 20 percent lower and higher than the average time.
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3.3 Main simulation procedure

The main simulation procedure consists of nine events (sub-procedures), which are
executed until the simulation event list becomes empty. In each iteration, the earliest
event is found and the simulation time is updated to the event time. Then, the
procedure associated with that event is executed. Afterward, that event is removed
from the event list and simulation proceeds by selecting the next earliest event. This
procedure is shown in Algorithm 1.

Among the simulation events pallet-production, outbound-pick-up, and warm-up
events, which represent production of a SKU, outbound request for a SKU, and the
warm-up period, are scheduled in the event list in the data-preparation step. The
rest of the events are scheduled in the simulation model according to their precedent
events. The simulation events are described in the following.

3.3.1 Pallet-production event

In this step, a pallet of a SKU has been produced and sent to the production line
output queue for storage. A pick-up request is issued. If there is at least one AGV
available, a storage lane is assigned to this pallet and the nearest AGV to the pro-
duction line is dispatched (not physically) to pick up the pallet. That is, the AGV
resource is seized by setting the variable representing its availability to busy. Other-
wise, if no AGV or empty space is available, the SKU is added to the pick-up waiting
list to be picked up later when an AGV becomes available or a lane is freed up.

To avoid having multiple partially occupied lanes, we use the unique storage lane
policy. In this policy, once an empty lane is assigned to a SKU, no other lane can be
used to store that SKU until the assigned lane is fully occupied. Afterward, another
empty lane is assigned to the SKU. We call this lane the open storage lane and model
must keep track of these lanes for all SKUs. The same policy is used for depletion and
the associated lane is called the open depletion lane. This means, at any simulation
time, SKUs have at most one open lane for storage and one for depletion.

An empty lane can be assigned to a SKU randomly or by using a greedy algorithm
to sort empty lanes with respect to the waste of storage space or total traveling
distance. The waste of storage space for this purpose can be calculated using the
models developed in [4].

Finally, ru is updated by adding the distance between the current location of the
assigned AGV and the production line. Similarly, tu is updated by adding the time
that it takes for the AGV to travel and pick-up the pallet. At the end, pallet-pick-
up event is scheduled at (TimeNow + tp+ travel time). Algorithm 3 presents the
pseudo-code for this procedure.
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Algorithm 3 The pseudo-code for pallet-production.
if an AGV or storage space is available then

lane = the open storage lane for the produced SKU
Capacity = capacity of the lane based on the SKU stackable height
TotalInv = on-the-way pallets to the lane + its occupied positions
if TotalInv==Capacity then

mark lane as fully occupied
find a new lane based on the selection criteria

update on-the-way pallets to the lane by one
find the nearest available AGV to the production line
set the status of the selected AGV to busy
TravDist=distance from the current location of the AGV to the production line
ru = ru + TravDist
tu = tu + (TravDist/As) + tp

add pallet-pick-up to E at (TimeNow + (TravDist/As) + tp)
else

add the SKU to Lp
w

tw1 = tw1 + TimeNow

Algorithm 4 The pseudo-code for pallet-pick-up.
TravDist = distance between the production line and the open storage lane
TravInLane = lane depth - occupied floor positions in the open storage lane
rl = rl + TravDist+ TravInLane
tl = tl + (TravDist+ TravInLane)/As + tp

ru = ru + TravInLane
tu = tu + (TravInLane/As)
add storage-process to E at (TimeNow + tp + (TravDist+ 2× TravInLane)/As)

3.3.2 Pallet-pick-up event

At this point, the assigned AGV has arrived at the production line and picked up
the produced pallet. Since the storage location is known (from the pallet-production
event), rl can be updated by adding the distance between the production line and
the open storage lane. Moreover, the distance that the AGV travels inside the lane
must be calculated and added to rl. It is equal to the depth of the open storage lane
deducted by the occupied floor positions. tl is updated by adding the time that it
takes for the AGV to travel to and inside the assigned lane. The AGV unloads its
load in the furthest available spot in the lane and then travels back to the entrance
of the lane. So, this distance must be added to ru and tu. Finally, the storage-process
event is scheduled at (TimeNow + tp+ traveling time). The pseudo-code for this
procedure is shown in Algorithm 4.
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3.3.3 Storage-process event

At this point, the AGV has reached the storage lane, unloaded its load in the furthest
available position, and moved back to the entrance of the lane. The honeycombing
waste of storage space for this lane must be updated as one more pallet position of
the lane has been occupied. It is updated for a lane j in bay i as follows.

WH
ij = WH

ij + (bis
h − kijhs)(TimeNow − LaneLastEventT ime) (31)

where kij is the number of occupied pallet positions in the lane, hs is the pallet height
for SKU s (assigned SKU to this lane), and LaneLastEventT ime is the time of the
last change in the inventory of the lane. The occupied space-time is updated as well

Oij = Oij + kijhs(TimeNow − LaneLastEventT ime) (32)

Afterward, the variable representing the AGV’s availability is set to free, indicating
that it is available. Also, the location (status) of the AGV is updated to the location
of the storage lane.

Since the AGV is released now, it can be assigned to the pallets waiting for pick-
up at the production line or storage lanes (outbound requests). Hence, the pick-up
waiting list for the production line is checked for any postponed pick-up request. If
there are any requests, the pallet-production event is scheduled at TimeNow for the
SKU that has waited the most. Otherwise, the pick-up waiting list for the outbound
requests is checked and the outbound-pick-up event is scheduled at TimeNow for the
SKU that has waited the most and has non-zero inventory.

If both queues are empty, the AGV must be sent to the AGVs parking, but first,
we need to ensure that no coincident production or outbound event is going to seize
it. Thus, the release-AGV event is scheduled at (TimeNow + εt) to ensure that this
operation is pushed to the end of the processing sequence of all events scheduled at
TimeNow. The pseudo-code for this procedure is described in Algorithm 5.

3.3.4 Release-AGV event

Once an AGV unloads its load, it is immediately sent to the AGVs parking if there
is no pick-up request waiting. In the release-AGV, the AGV is seized again like if it
physically started traveling to the parking. The distance between the AGV’s current
location to the parking is added to ru and the traveling time is added to tu. The
park-AGV event is scheduled at (TimeNow + traveling time). Algorithm 6 shows
the pseudo-code for this procedure.

3.3.5 Park-AGV event

In this event, the released AGV arrives at the AGVs parking and waits for next
assignment. Thus, the variable representing the AGV’s status is updated to free and
its current location is set to parked at the parking.

15



Algorithm 5 The pseudo-code for storage-process.
lane = the open storage lane for the storing SKU
update WH

ij and Oij for the lane using eqs. (31) and (32)
Set LaneLastEventT ime to TimeNow
increment inventory of the lane by one pallet
increment inventory of the SKU by one pallet
decrement on-the-way pallets to the lane by one pallet
update the status of the AGV to available
update the location of the AGV to the location of the lane
if Lp

w is not empty then
add pallet-production to E at TimeNow for the SKU waited the most
tw2 = tw2 + TimeNow
remove the SKU from Lp

w

else if Lo
w is not empty then

find the SKU with the longest waiting time and non-zero inventory
add outbound-pick-up to E at TimeNow
tw2 = tw2 + TimeNow
remove the SKU from Lo

w

else
add release-AGV to E at (TimeNow + εt)

Algorithm 6 The pseudo-code for release-AGV.
TravDist = distance between the AGV’s current location and parking
ru = ru + TravDist
tu = tu + (TravDist/As)
update the status of the AGV to busy
add park-AGV to E at (TimeNow + (TravDist/As))

3.3.6 Outbound-pick-up event

In this event, a pick-up request has been placed to deliver a pallet from the storage
area to an outbound dock. First, the status of the AGVs is checked to find a list of
all available AGVs. If there is no AGV available or the inventory of the requested
SKU is zero, the SKU is added to the pick-up waiting list and TimeNow is added to
tw1 to keep the waiting times. But if at least one AGV is available, the depletion lane
is selected and the nearest AGV to that lane is seized for delivery. So, the status of
the selected AGV changes to busy, and ru and tu are updated accordingly.

To select the depletion lane at first, the open depletion lane for the requested
SKU is checked. If it is not empty (considering on-the-way pick-ups), then it is
used for depletion. Otherwise, one of the lanes that keep the requested SKU is
selected as the open depletion lane. The selection can be random or by using a greedy
algorithm that sorts lanes with respect to the waste of storage space or travel distance
to the outbound area. The model proposed in [4] can be used to calculate waste of
storage space for different bay depths. In this approach, the lane that generates the
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Algorithm 7 The pseudo-code for outbound-pick-up.
if an AGV is available and the SKU inventory > 0 then

lane = the open depletion lane for the requested SKU
TotalInv = Inventory of the lane - sum of on-the-way pick-ups to the lane
if TotalInv == 0 then

mark lane as empty
select a new lane with respect to the selection criteria

find the nearest available AGV to the lane
set the status of the selected AGV to busy
increment on-the-way pick-ups to the lane by one unit
TravDist=distance from the current location of the AGV to the lane
TravInLane = lane depth - occupied floor positions in the lane
ru = ru + TravDist+ TravInLane
tu = tu + (TravDist+ TravInLane)/As

add depletion-process to E at (TimeNow + (TravDist+ 2× TravInLane)/As + tp)
else

add the SKU to Lo
w

tw1 = tw1 + TimeNow

highest waste of space is depleted first. Finally, the withdrawal-process is scheduled
at (TimeNow+ traveling time). Algorithm 7 presents this procedure in details.

3.3.7 Depletion-process event

At this step, the assigned AGV has picked up a pallet of the requested SKU and
starts traveling to the assigned outbound dock. First, the inventory of the lane is
decreased by one unit and the honeycombing waste of space and occupied space-time
are updated for this lane using (31) and (32), respectively. If the inventory of the
lane becomes zero, it is marked empty and becomes available to all SKUs. Then,
distance between the storage lane and assigned outbound dock is added to rl. Also
tl is updated by the time that the AGV requires to travel this distance and unloads
the load. Afterward, the truck-loading event is scheduled at (TimeNow+ traveling
time). The pseudo-code of this procedure is described in Algorithm 8.

3.3.8 Truck-loading event

In this procedure, the AGV unloads its load in a truck and becomes available. The
location of the AGV is updated to the assigned outbound dock. Since one AGV
becomes available, the pick-up waiting lists for the production line and outbound
requests are checked for any waiting requests. If there are any requests waiting, the
corresponding event is scheduled at TimeNow, otherwise the release-AGV event is
scheduled at (TimeNow + εt). This procedure is presented in Algorithm 9.
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Algorithm 8 The pseudo-code for depletion-process.
lane = the open depletion lane
update WH

ij and Oij for the lane using eqs. (31) and (32)
LaneLastEventT ime = TimeNow
decrement lane inventory by one pallet
decrement SKU inventory by one pallet
decrement on-the-way pick-ups to the lane by one
TravDist=distance from the lane to the assigned outbound dock
TravInLane = lane depth - occupied floor positions in the lane
rl = rl + TravDist+ TravInLane
tl = tl + (TravDist+ TravInLane)/As + 2tp

add truck-loading to E at (TimeNow + (TravDist/As) + tp)

Algorithm 9 The pseudo-code for truck-loading.
update the status of the AGV to available
update the AGV’s location to the assigned outbound dock
if Lp

w is not empty then
add pallet-production to E at TimeNow for the SKU waited the most
tw2 = tw2 + TimeNow
remove the SKU from Lp

w

else if Lo
w is not empty then

find the SKU with the longest waiting time and non-zero inventory
add outbound-pick-up to E at TimeNow
tw2 = tw2 + TimeNow
remove the SKU from Lo

w

else
add release-AGV to E at (TimeNow + εt)

3.3.9 Warm-up event

This event is executed just once and resets all variables used for performance evalua-
tion (not the control variables) to zero. Algorithm 10 shows this procedure and lists
variables impacted by this event.

3.4 Performance-evaluation event

The performance-evaluation procedure is executed after the main simulation proce-
dure stops. The following performance metrics are calculated: average waste of stor-
age volume (W̄ s), utilization of storage volume (Ū s), percentage of wasted volume
(W̄ ), average AGVs utilization (ŪA), total travel distance (r), and average waiting
time for pick-ups (t̄w). Among these metrics, W̄ s, Ū s, and W̄ are used to evaluate
a layout in terms of space utilization. They show how well the warehouse space is
utilized for storage. ŪA and r evaluate the layout with respect to transportation
costs. Finally, t̄w and ŪA can be used to determine the AGV fleet size in the system.
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Algorithm 10 The pseudo-code for warm-up.
for all lanes do

reset LaneLastEventT ime to TimeNow
reset WH

ij , Oij to zero

reset tw1 , t
w
2 , r

u, rl, tu, tl to zero

3.4.1 Average waste of storage volume

It is the average number of pallet positions wasted in the warehouse (in units of pallets
× feet ) and calculated as

W̄ s =

∑nb

i=1

∑nl

j=1W
H
ij + sh(naa

aswe + nca
csl)(T s − Tw)

T s − Tw
(33)

where swe is the effective warehouse width and is equal to sw − nca
c.

3.4.2 Utilization of storage volume

It shows how well the warehouse volume is utilized for storage purpose.

Ū s =

∑nb

i=1

∑nl

j=1Oij∑nb

i=1

∑nl

j=1(Oij +WH
ij ) + sh(naaaswe + ncacsl)(T s − Tw)

(34)

3.4.3 Percentage of wasted volume

It shows what percentage of the warehouse volume wasted during the simulation
period.

W̄ =

∑nb

i=1

∑nl

j=1W
H
ij + sh(naa

aswe + nca
csl)(T s − Tw)

shslswe (T s − Tw)
(35)

3.4.4 Average AGV utilization

It shows the average utilization for AGVs.

ŪA =
tl + tu

nA(T s − Tw)
(36)

3.4.5 Total travel distance

The total distance that AGVs traveled either loaded or unloaded.

r = ru + rl (37)
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Table 2: Characteristics of the SKUs in the test problem.

SKUs Production rate Demand rate Production batch Stackable height Pallet height
(pallet/month) (pallet/month) (pallet) (pallet) (ft)

SKU 1 20105 460 434 4 3
SKU 2 30785 187 275 4 3
SKU 3 21452 254 321 3 3
SKU 4 10063 2807 1248 4 4
SKU 5 27966 1262 728 4 4
SKU 6 29288 1385 763 4 4
SKU 7 9391 1911 980 2 4
SKU 8 30948 2941 1141 3 3
SKU 9 35027 2571 1054 2 5
SKU 10 31955 2867 1123 2 4

3.4.6 Average waiting time for pick-ups

The average time that pick-up requests had to wait for an AGV or empty space.

t̄w =
tw2 − tw1
ne

(38)

where ne is the total number of pallet-production and outbound-pick-up events in the
simulation.

4 Experimental study

We tested our model on a test problem that consists of ten randomly generated SKUs.
The average production and demand rates, production batch quantities, and pallets
sizes for the SKUs are shown in Table 2. To use stochastic production and outbound
load times in the simulation, we sampled these times from symmetric triangular dis-
tributions whose lower and upper bounds are 50% lower and higher than the average
production and outbound load times presented in Table 2. The production batch
quantities were obtained by the EOQ model. The warehouse specifications are listed
in the following:

• sw = 1728 ft

• sl = 3456 ft

• sh = 16 ft

• nc = 2

• nA = 5

• no = 1

• ac = 2 pallets

• aa = 2 pallets

• As = 2 miles/hour

• truck capacity: 20
pallets

• pallet size: 48 × 48
inches
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We assumed that the number of requested pallets for a SKU in an outbound order
varies between 1 to 5 pallets and they add up to 20 pallets for each order. Thus, they
were randomly generated from a discrete uniform distribution with a mean of 3 pallets.

4.1 Model verification

The model was verified by comparing its results with the analytical model proposed
by Derhami et al. [4]. To meet the assumption made for the analytical model, the
test problem was simulated under deterministic rates for a layout with ten equally
deep bays (i.e., 10 bays with 6 pallets deep, 7 aisles, and 2 cross-aisles). That is, the
simulation was run with the deterministic and constant production and outbound
rates shown in Table 2. Also, in order to comply with the unit load assumption
presumed in the analytical model, the number of requested pallets for each SKU was
set to one in the outbound orders. Moreover, the number of AGVs was increased to
100 to prevent any waiting time caused by the lack of AGVs. The simulation was run
for 8 months and found the average waste of storage volume of 10985.9 yd3. Using
the same data, the average waste of storage volume obtained 10786.4 yd3 by the
analytical model developed in [4]. The 1.8% difference between the results is about
the same estimation error reported in [4].

4.2 Simulation parameters

We tested different scenarios to find the best parameters for the initial inventory of the
warehouse and warm-up period aiming to obtain accurate and reliable results while
the computational cost is considered. We tested three different initial inventories:
0, 25, and 50 percent of the production batch quantities and four different warm-up
periods: 0, 1, 2, and 3 months. So, totally 12 scenarios were simulated for 450 days
and the space utilization was monitored. The space utilization converged after the
same amount of simulation time in all scenarios regardless of the initial inventory of
the warehouse. However, the zero initial inventory scenarios are more favorable in
terms of computational cost as they do not require to build any initial inventory.

From the warm-up perspective, the space utilization converged approximately
after 8 months in all scenarios except the zero warm-up scenarios, for which it took
longer. However, the space utilization converged sooner in the one-month warm-up
scenarios (almost after 3 months) allowing the model to collect more information
in the remaining simulation period. Figure 3 presents the convergence of the space
utilization for different warm-up scenarios with zero initial inventory. We chose zero
initial inventory with one month warm-up period for our experimental study.

We tested different values for the number of replications and measured the Con-
fidence Interval (CI) of the average space utilization within the replications using
t-distribution. The CIs must be narrow such that the simulation provides statisti-
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Figure 3: Space utilization for different warm-up scenarios.

cally valid results for the layout comparison. We arbitrarily chose a layout with 4 bays
(2 bays with 16 pallets deep and 2 bays with 17 pallets deep) and simulated it for 2 to
24 replications. Figure 4 shows the CIs with respect to the number of replications. As
the figure presents, the CI becomes smaller as the number of replications increases;
however, the changes become smaller as the number of replications grows. We ran the
simulation on a computer equipped with 3.5 GHz Intel Xeon processor with 8 cores
and 16 GB of RAM memory. To better utilize the computational resources, we ran
the simulation module in parallel on multiple processors. That means up to 8 repli-
cations could be handled simultaneously by the computer. Hence, the computational
time between 1 to 8, 9 to 16, and 17 to 24 replications are almost the same. Figure 4
presents the computational times. The CI changes insignificantly from 8 to 24 repli-
cations while the computational time almost triples. Considering the run-times, we
chose to replicate the model for 8 replications as it provided sufficiently narrow CI
(0.001).

4.3 Experimental analysis

In this section, we describe our experiment with ten different layouts from shallow
to deep bays aiming to illustrate the trade-off between the space utilization and
transportation costs with respect to the bay depths. The layouts are obtained by
dividing the warehouse effective length (warehouse length minus the sum of aisle
widths) by the given number of bays. If one bay is much deeper than the others,
the bay depths are adjusted such that they all become close to one another while the
required number of bays is met.

For example, the layout with 10 bays is obtained by dividing the effective ware-
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Figure 4: CI of average space utilization for different number of replications.

house length (72-(5+1)2 pallets) by 10, which yields 10 bays with 6 pallets deep.
The layout with 20 bays is obtained by dividing (72-(10+1)2) by 20 which results in
19 bays with 2 pallets deep and 1 bay with 12 pallets deep. This arrangement can
be adjusted to 10 bays with 2 pallets deep and 10 bays with 3 pallets deep. The
adjustment aims to make the bay depths as close as possible. To perform a fair com-
parison, all other variables (including the simulation event list) were kept fixed in all
ten experiments.

Table 3 shows the layouts and compares the proposed performance metrics for
these layouts. Notice that we converted the units of W̄ s and r to yd3 and mile using
the pallet sizes. As the table presents, the space utilization improves as the number
of bays increases from 2 to 4 (i.e., the bay depths decrease). Then, it diminishes
as the bay depths become shallower. This is because the number of aisles increases
and therefore, the storage space decreases. On the other hand, the average travel
distance declines as the number of bays grows but, it becomes steady after 12 bays.
As Figure 5 illustrates, there is a trade-off between the space utilization and total
travel distance with respect to the lane depth. That is, the transportation costs
improve at the cost of lower space utilization. However, this improvement is bounded
and will be modest after a certain point. This shows optimizing just one of these
factors without considering the other one results in poor performance of the other
factor. Like the space utilization, W̄ s and W̄ reach their best values for the layout
with 4 bays and then they become worse as the number of bays grows.

The pick-up waiting times are incurred in two ways: waiting for an AGV or an
empty storage space. Since the number of AGVs were kept fixed in all experiments,
the growth in the t̄w occurs as a result of reduction in the storage space. Increasing
the number of bays results in having more aisles and therefore, less storage space
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Table 3: Performance metrics for the layouts with different bay depths.
Number Bays depths∗ W̄ s Ū s W̄ ŪA r t̄w Run time
of bays (pallet) (yd3) (percent) (percent) (percent) (mile) (hour) (minute)

2 (342) 12376± 27.9 45.5± 0.07 50.4± 0.11 70.0± 0.24 33241± 126.1 5.5± 0.67 188
4 (162, 172) 11395± 33.5 47.7± 0.08 46.4± 0.14 64.4± 0.22 30317± 113.9 3.1± 0.50 196
6 (115, 9) 11460± 24.3 47.5± 0.09 46.6± 0.10 63.4± 0.19 29790± 99.4 3.0± 0.46 211
8 (87, 6) 11746± 26.9 46.8± 0.05 47.8± 0.11 62.6± 0.18 29346± 93.2 3.3± 0.52 209
10 (610) 12130± 22.7 45.9± 0.08 49.4± 0.09 62.2± 0.18 29155± 90.2 3.9± 0.52 246
12 (511, 3) 12357± 35.4 44.3± 0.12 50.3± 0.14 61.4± 0.11 28737± 53.7 8.7± 0.68 234
14 (414) 13045± 28.1 43.6± 0.09 53.1± 0.11 61.8± 0.14 28924± 70.5 6.1± 0.64 257
16 (310, 46) 13524± 29.2 42.4± 0.10 55.0± 0.12 61.6± 0.14 28827± 67.9 7.5± 0.65 294
18 (317, 1) 13977± 31.5 41.2± 0.11 56.9± 0.13 61.8± 0.11 28928± 50.6 9.2± 0.66 330
20 (210, 310) 14419± 30.9 39.9± 0.11 58.7± 0.13 61.6± 0.08 28806± 34.4 11.1± 0.66 330

∗(xa, yb) means the layout contains a bays with x pallets deep and b bays with y pallets deep.

Figure 5: Average travel distance vs. space utilization for different bay depths.

remains in the warehouse. Hence, new pallets have to wait more for space to be freed
up.

The AGVs utilization diminishes as the number of bays grows. This is because
the total travel distance decreases as the number of bays increases and therefore, the
AGVs are used less. The simulation run times have increased as the number of bays
increased. This is because the storage space shrinks as the number of bays increases
and the model has to reschedule (add to the waiting list) more pallet-production or
outbound-pick-up events as the results of lack of storage space.

Another important finding of our experiment is that disregarding the stochastic
variations in the model leads to a considerable error in estimating the performance of
a layout in the practical cases. The average waste of storage volume for the 10 bays
layout was obtained 10985.9 yd3 under the deterministic conditions (see verification
experiment in section 4.1) while it was reported 12130.3 yd3 under stochastic condi-
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tions (see Table 3). That means, ignoring the stochasticity of the problem resulted in
approximately 10% underestimation of the waste of space in this case. This highlights
the advantage of using the simulation model to design the warehouse layout.

5 Conclusions and future research

In this study, we developed a simulation model that computes performance met-
rics required to evaluate a warehouse layout with respect to space utilization and
transportation costs. This model can also be used to find the optimal AGV (or lift
truck) fleet size to operate the warehouse. The main advantage of this model is
that it considers the stochastic variations and can work with the historical produc-
tion and outbound load data. This is beneficial in the systems with high level of
uncertainty where the main production and demand parameters change during the
planning horizon. The existing analytical models fail to provide accurate results in
such environments.

We tested our model on a test problem for various layouts and showed that there is
a trade-off between utilization of storage volume and transportation costs with respect
to the lane depth. A warehouse with deep lanes utilizes the storage volume better.
However, shallow lanes incur less transportation costs. Our experiment shows that
the utilization of storage space and transportation costs decrease as the bay depths
decrease in the layout. However, the reduction in the transportation costs becomes
modest at a certain lane depth. This finding can be used to find an efficient layout
with respect to both of these two objectives. Our model can further be used as part
of an optimization approach to seek for such a layout.

This paper is a part of a larger research that authors are conducting in design-
ing the layout for block stacking systems. We aim to develop a simulation-based
optimization approach to design the warehouse layout with respect to both space
utilization and transportation costs. In that respect, our next step is to develop an
optimization algorithm that works with the proposed simulation model to find an
optimal layout. The optimization algorithm seeks for the best set of bay depths and
the number of cross-aisles using the simulation model to evaluate candidate solutions
with respect to both objective functions.
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