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Melih Çelik, Ph.D.
Department of Industrial Engineering, Middle East Technical University, 06800 Ankara,

Turkey

Abstract

In warehouses, storage replenishment operations involve the transportation of items
to capacitated item slots in forward storage area from reserve storage. These items
are later picked from these slots as their demand arises. While order picking consti-
tutes the majority of warehouse operating costs, replenishment operations might be as
costly in warehouses where pick lists generally consist of only a few lines (e.g., order
fulfillment warehouses).

In this study, we consider the storage replenishment problem in a parallel-aisle
warehouse, where replenishment and order picking operations are carried out in suc-
cessive waves with time limits. The aim is to determine the item slots that will be
replenished and the route of the replenishment worker in each replenishment wave, so
as to minimize the total labor and travel costs, and ensure the availability of items at
the start of the wave they will be picked. The problem is analogous to the inventory
routing problem due to the inherent trade-off between labor and travel costs.

We present complexity results on different variants of the problem and show that
the problem is NP-hard in general. Consequently, we use a heuristic approach in-
spired by those from the inventory routing literature. We use randomly generated
warehouse instances to analyze the effect of different storage policies (random and
turnover-based) and demand patterns (highly skewed or uniform) on replenishment
performance, and to compare the proposed replenishment approach to those in prac-
tice.

1 Introduction

Breakdown of warehouse operating costs reveals that making necessary items available in
pick area and picking of these items for satisfying customer orders cover 55% of the total
warehousing costs. Although the order picking problem (OPP) is a well-studied problem,
to the best of our knowledge, its relation with replenishment activities is not considered in
the warehousing literature. In this study, we consider a coordinated approach, where the
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replenishment and transportation/routing decisions are made in an integrated manner by
taking into account the dependence between the replenishment and pick cycles. In doing
so, we aim to complete the replenishment operations within pre-specified time limits before
picking operations, hence avoiding overtime, while minimizing the transportation costs by
making use of economies of scale during replenishment.

Order picking operations inherently require items to be available in the storage area
prior to picking. Upon receipt, items are put away into the reserve storage area, where they
are stored in bulk amounts. The motivation for such a storage area is to preserve space
efficiency at the cost of less efficient picks. Because of this, order picking is not performed
in this area. Upon need, which is based on the picking schedule, items are broken down and
replenished into the forward storage area, where storage is in smaller quantities. Here, the
motivation is to sacrifice space efficiency and provide better accessibility of items, which
leads to more efficient picking. Hence, the availability of items in the forward storage area
is ensured by replenishing the needed items from the storage area.

In general, replenishment and picking activities are performed in sequence in a cyclic
manner, particularly, in warehouses that employ manual order picking. Each of the replen-
ishment and pick cycles is called a “wave.” In practice, when planning for replenishment,
these waves are treated independently, that is, the decisions of which items to replenish and
how much are made based only on the upcoming pick wave. In this case, routing deci-
sions for replenishment in the forward storage area are made mostly identical to those of
order picking. However, in this case, two issues might arise: (i) The replenishment wave
might exceed the time limit, resulting in the need for overtime, and (ii) Treating each wave
independently might result in excessive transportation.

There are many studies in the literature that consider the combined effect of the building
blocks of warehouse design and management. For instance, Thomas and Meller (2014)
emphasize the benefit of the integration of put-away, replenishment, and order picking in
the design of warehouses. Strack and Pochet (2010) present an integrated model for the
warehouse and inventory management problems at the tactical level. The model decides
on the replenishment amounts of items in addition to deciding which items are assigned to
the reserve storage and forward areas, as well as which items are picked from which area,
etc. To the best of our knowledge, the case of replenishment of items in the forward storage
area is not considered in conjunction with order picking cycles, which is a gap that is aimed
to be filled in this study.

2 Problem Definition and Complexity

A typical schedule for t days in a warehouse resembles the one in Figure 1, where the
replenishment and picking activities are performed in a cyclic manner. For simplicity, we
assume equal cycle lengths and the customer orders to be picked in each pick cycle are
known for t days.

2



Figure 1: A typical schedule for t days of replenishment and order picking waves

We define the storage replenishment problem (SRP), which aims to make decisions on
(i) when and how much to replenish each item in the pick area from reserve storage to
guarantee availability and (ii) the routing of the replenishment carrier in each period. In
the SRP, we assume a single uncapacitated replenishment carrier available. A set of “pe-
riods” (waves), their pre-specified time lengths of waves, and arrivals of each item at the
reserve storage in each day are known. The warehouse layout, item locations with cor-
responding storage capacities, initial inventories of each item in the reserve and forward
storage areas, and the amount of each item to be picked in each wave are given. Demand
patterns (uniform or skewed) and storage policies (random or turnover-based) are speci-
fied and known. The objective in the SRP is to minimize the total replenishment travel
time. Under these settings, the SRP is similar to the Inventory Routing Problem (IRP).
The (dis)similar features that (de)construct the two problems can be specified as follows.
There exists one-to-one correspondence between “supliers” and “retailers” in the IRP and
“reserve storage area” and “item locations”. “Demand time and amounts” in the IRP match
with “pick lists” of the SRP while “load capacity” of IRP can represent “wave time limit”
of the SRP. A “single item and multiple retailers” structure of the IRP can be seen as a
“multiple items, each of which demanded by one retailer”. Although “holding cost” of the
IRP is an important trade-off component, the SRP does not incorporate such a cost item.
However, “availability” may point out an imputed cost in the SRP. Another distinction be-
tween two problems is about routing decisions because the SPR has a special structure that
makes routing “easir” than that of the IRP. Below we introduce a few variates of the SPR
and discuss their computational complexity status.

Theorem 1 If feasible, the SRP is polynomially solvable for a single wave.
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Figure 2: The SRP instance required for transformation from the PARTITION problem

Proof. Without the existence of multiple periods, the SRP is equivalent to the OPP,
which is polynomially solvable by Ratliff and Rosenthal (1983). f

Theorem 2 The SRP is weakly NP-hard for two periods.

Proof. NP-hardness by transformation from PARTITION (a weakly NP-hard problem),
which, given a set A and an integer size si for each a ∈ A, seeks a subset A′ ⊆ A such that
the total size in A′ equals the total size in A \ A′.

The required transformation uses the SRP instance in Figure 2, and sets the following
parameters:

• One item in each of the n + 1 aisles

• All item locations have 1 unit capacity

• Items 1, 2, . . . , n to be picked in the second wave

• Item n + 1 to be picked in both waves

• Wave time limit: 2(sn+1 + k) +
∑n

i=1 si

It is easy to observe that we can find a feasible solution to the SRP instance only if the
corresponding PARTITION instance with item “sizes” si for i = 1, 2, . . . , n and sn+1 + k
for i = n + 1 has a feasible solution. This shows that unless P = NP, the problem can
be solved in pseudo-polynomial time in the best case. To solve the problem in pseudo-
polynomial time, one needs to extend the state definition by Ratliff and Rosenthal (1983)
to include remaining time for both tours in the two replenishment waves. Here, the number
of states (which is constant for the Ratliff and Rosenthal algorithm) depends on the number
of pick aisles and the wave time limit. Consequently, it is polynomial in the case of unary
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Figure 3: The SRP instance required for transformation from the 3-PARTITION problem

representation of the inputs, which implies that it can be solved in pseudo-polynomial time.
f

This yields an important corollary for the OPP with two capacitated order pickers.

Corollary 3 The OPP with two capacitated pickers is weakly NP-hard.

Next, we show the strong NP-hardness of the SRP with at least three periods.

Theorem 4 The SRP is strongly NP-hard for more than two periods.

Proof. NP-hardness by transformation from 3-PARTITION, where we have set of 3m
elements, an integer bound B, a size si for all items in the set such that B

4 < si <
B
2 holds

for all i, and all sizes in the set add up to mB. We are looking for a partition of the set into
m disjoint sets such that all sets have a total size of exactly B units each.

The required SRP instance for transformation is given in Figure 3.
The following settings transform the SRP instance in the figure to an equivalent 3-

PARTITION instance:

• One item in each of the 3m + 1 aisles

• All item locations have 1 unit capacity

• Items 1, 2, . . . , 3m to be picked in the last wave

• Item 3m + 1 to be picked in all waves

• B
8 < si <

B
4 for all i and

∑3m
i=1 si = B

2

• Wave time limit: 2
(
(3m + 1)k + s3m+1

)
+ B

5



Here, a feasible SRP solution can be found only if the 3-PARTITION instance with
item weights equal to i = 1, 2, . . . , 3m and s3m+1 + k for i = 3m + 1 has a feasible solution.
Since the 3-PARTITION problem is strongly NP-hard, so is the SRP with at least three
periods. f

Theorem 4 results in an important corollary for the OPP with at least three capacitated
pickers.

Corollary 5 The OPP with more than two capacitated pickers is strongly NP-hard.

3 An A Priori Route-Based Heuristic
The NP-completeness of the SRP suggests that as the instance size increases, the computa-
tional burden to solve it to optimality will substantially increase. To overcome this burden,
we propose an a priori route-based heuristic in this section. The motivation behind this
heuristic is that once the items to visit are fixed, the routing problem is easily solvable.

In the first step of the heuristic, we solve the OPP corresponding to all the items that
will be picked throughout the planning horizon. To do so, we may use the exact approach
by Ratliff and Rosenthal (1983), or one of the heuristics proposed by Hall (1993). The
possibility of solving the a priori routing problem in a fast manner differentiates our work
from that by Solyalı and Süral (2011), where the routing subproblem requires the solution
of the TSP on a general graph using a specialized solver (Concorde, 2011).

Once the a priori route is determined, we fix the sequence of items to be visited in each
replenishment trip. For each item i ∈ M, we define αi and βi, which consist of the items
and the P&D point that precede and succeed the item on the a priori route, respectively.
By fixing the sequences of item replenishment, the main aim is to simplify the routing
decisions in the next step.

An example for using the a priori route for determining the replenishment sequence
is given in Figure 4, where an instance with 16 items on a warehouse with 8 aisles is
considered. The figure on the left shows the optimal tour (found using the Ratliff and
Rosenthal algorithm) that visits all 16 items. If the next replenishment wave involves the 7
items shown in blue, we use the sequence on the optimal your to determine the sequence at
which these items will be replenished. The resulting tour is shown on the right.

The first two steps of the heuristic determine the route of replenishment, given which
items will be replenished. This leaves the decision of which items to replenish (note that
due to the order-up-to policy, how much to replenish is not a part of the decisions). For
this end, we extend the strong formulation of the reduced model for the IRP, for which the
idea was first put forward by Pınar and Süral (2006) and later applied by Solyalı and Süral
(2011).

The notation we use for the restricted model is given in Table 1. The index set M
represents the items (stock locations), whereas M′ additionally includes the P&D point.
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Table 1: Notation

Index sets
M Stock locations (items)
M′ M ∪ v0

T Waves
T ′ T ∪ {|T | + 1}
T ∗ T ∪ {0}
αi Predecessors of i ∈ M′ on the a priori route
βi Successors of i ∈ M′ on the a priori route

Parameters
ci j Travel time between i ∈ M′ and j ∈ M′

pit Arrivals of item i ∈ M at the reserve storage at wave t ∈ T
bikt Amount to be sent to stock location i ∈ M in wave t ∈ T ′ if the last replenishment

was made in wave k ∈ T ∗

rit Amount of item i ∈ M to be picked in wave t ∈ T
πit The earliest wave for item i ∈ M in which a replenishment can satisfy the demand

from wave πit to wave t ∈ T
µik The latest wave for item i ∈ M for which a replenishment in wave k ∈ T can satisfy

the demand
C Total time allowed for each wave
Ii1 Initial inventory of stock location i ∈ M
I′i1 Initial inventory of item i ∈ M in the reserve storage area

Decision variables
zit Binary variable indicating whether stock location or P&D point i ∈ M′ is visited in

wave t ∈ T
ŷt

i j Binary variable indicating whether j ∈ M′ follows i ∈ M′ in the route for wave t ∈ T
Iit Inventory of item i ∈ M in forward storage in wave t ∈ T ′

I′it Inventory of item i ∈ M in reserve storage in wave t ∈ T ′

wikt Binary variable indicating whether stock location i ∈ M is replenished in wave t ∈ T ′,
given that the last replenishment was made in wave k, πit ≤ k ≤ t − 1.
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Figure 4: (a) The optimal route involving all 16 items, (b) The resulting route when a subset
of items (shown in blue) are to be replenished

Whereas use T to denote the waves, the sets T ′ and T ∗ also include {0} and |T | + 1, re-
spectively. The predecessor and successor sets for stock location or P&D point i ∈ M′ are
denoted by αi and βi, respectively.

Travel time between i ∈ M′ and j ∈ M′ is given by ci j. If i ∈ M, this may also include
the time to replenish the item. At the beginning of each day (corresponding to wave t ∈ T ),
pit units of item i ∈ M arrive at the reserve storage area. In each wave t ∈ T , rit units of
item i ∈ M are to be picked. The initial inventory of item i ∈ M at the reserve and forward
storage areas are given by I′i1 and Ii1, respectively.

To incorporate the strong formulation, we make use of additional parameters. The
parameter bikt denotes the amount to be sent to stock location i ∈ M in wave t ∈ T ′ if the
last replenishment was made in wave k ∈ T ∗. More formally,

bi0t = Ui − Ii1 +

t−1∑
j=1

ri j, and

bikt =

t−1∑
j=k

ri j for all k ∈ T.

For k = 0, the amount bikt should increase the initial inventory level Ii1 for item i ∈ M to
the order-up-to level Ui and needs to satisfy the demand for the first t− 1 waves. For k ≥ 1,
it needs to satisfy the demand between waves k and t − 1.

Since we need to guarantee that none of the storage locations stocks out during the
planning horizon, two additional parameters are used: (i) πit is the earliest wave for item
i ∈ M in which a replenishment in wave k ∈ T ∗ can satisfy the demand of periods k +

1, k + 2, . . . , t − 1 until the next replenishment in wave t ∈ T , (ii) µkt is the latest wave for
item i ∈ M for which a replenishment in wave k ∈ T can satisfy the demand in waves
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0 1 2 3 4
wi01 (25)

wi02 (45)

wi12 (20)

wi13 (40)

wi23 (20)

wi24 (40)

wi34 (20)

Figure 5: The shortest path network corresponding to the given example, with the bikt values
given in brackets

k + 1, k + 2, . . . , t − 1 until the next replenishment in wave t ∈ T . In mathematical terms:

πit = max
0≤k≤t−1

{k : bikt ≤ Ui}, and

µkt = max
k+1≤t≤|T |+1

{t : bikt ≤ Ui}.

We use decision variable wikt to denote whether item i ∈ M is replenished in wave
t ∈ T ′, after the last replenishment was made in wave k, where πit ≤ k ≤ t − 1. Here, wi0t

denotes whether the first replenishment for item i is in wave t and wik,|T |+1 indicates whether
the last replenishment for item i is in wave k.

The replenishment scheme for item i ∈ M, when modeled with the binary decision
variables wikt, constitutes a shortest path network. As an example, consider an item with an
initial inventory of 20 units, stock location capacity of 45 units, and assume that a constant
amount of 20 units is picked in every wave. For a horizon of 3 waves, this yields the
network given in Figure 5.

The decision variable zit indicates whether item location i ∈ M or the P&D point is
visited in wave t ∈ T , ŷt

i j is the binary routing variable for wave t ∈ T , and the variables
Iit and I′it denote the inventory of item i ∈ M in the forward and reserve storage areas,
respectively.

Using the given index sets, parameters, and decision variables, we solve the following
model to find the set of items to replenish in each wave:

min
∑
i∈M′

∑
j∈M′

∑
t∈T

ci jŷt
i j (1)

s.t. I′i,t+1 = I′it + pit −

t−1∑
k=πit

bikt wikt ∀i ∈ M, t ∈ T, (2)

I′it ≥
t−1∑

k=πit

bikt wikt ∀i ∈ M, t ∈ T, (3)

Ii,t+1 = Iit +

t−1∑
k=πit

bikt wikt − rit ∀i ∈ M, t ∈ T, (4)
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µi,0∑
k=1

wi0k = 1 ∀i ∈ M, (5)

µit∑
k=t+1

witk −

t−1∑
k=πit

wikt = 0 ∀i ∈ M, t ∈ T, (6)

|T |∑
k=πit

wi,k,|T |+1 = 1 ∀i ∈ M, (7)

t−1∑
k=πit

wikt = zit ∀i ∈ M, t ∈ T, (8)

zit ≤ z0t ∀i ∈ M, t ∈ T. (9)∑
j∈αi

ŷt
i j = zit ∀i ∈ M′, t ∈ T, (10)∑

j∈βi

ŷt
ji = zit ∀i ∈ M′, t ∈ T, (11)∑

i∈M′

∑
j∈M′

ci jŷt
i j ≤ C ∀t ∈ T, (12)

wikt ∈ {0, 1} ∀i ∈ M, t ∈ T ′, πit ≤ k ≤ t − 1, (13)
ŷt

i j ∈ {0, 1} ∀i ∈ M′, j ∈ M′, t ∈ T, (14)

zit ∈ {0, 1} ∀i ∈ M′, t ∈ T, (15)
Iit, I′it ≥ 0, ∀i ∈ M, t ∈ T. (16)

Here, objective function (1) minimizes the total replenishment time. Constraints (2) and
(3) impose inventory balance at the reserve storage area, whereas Constraint (4) stipulates
inventory balance at the stock locations. Constraints (5)-(7) are the flow balance constraints
for the resulting shortest path network, whereas Constraint (8) ensures that an outgoing arc
in the shortest path network results in the corresponding binary replenishment variable to
be 1. Using Constraint (9), we impose the inclusion of the P&D point in each replenish-
ment tour, while Constraints (10) and (11) connect the routing and binary replenishment
variables, and impose the tour precedence relations. Wave time limits are set by Constraint
(12), and Constraints (13) through (16) indicate the ranges for the decision variables.

The modified model uses the precedence sets for each item determined by the previous
step and the wikt values for each item as additional parameters, and decides on whether an
arc on the network will be used or not, subject to inventory balance, network flow balance,
wave time limit, and routing precedence constraints. As the last step, given which items
will be replenished in each wave, the resulting routes are improved using the Ratliff and
Rosenthal algorithm for these waves.
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4 Computational Experiments

The objectives of our computational experiments in this study can be summarized as fol-
lows: (i) compare different a priori routing approaches (optimal, S-shape, largest gap)
among each other; (ii) measure the effect of instance size, demand structure, and storage
policies on the efficiency of replenishment; and (iii) analyze the extent of the improvement
of the proposed replenishment schemes over those in practice. Our instances are based on
those by Archetti et al. (2007) and Solyalı and Süral (2011). The settings are as follows.
Warehouse setting assumes (i) 10 aisles and 15 item locations in each aisle and (ii) suc-
cessive locations (aisles) are 1(2.5) unit(s) of travel time apart. Number of periods (H) are
3 or 4 where they are “3 days with 1 wave each”, “1 day with 3 waves”, “4 days with 1
wave each”, “2 days with 2 waves each”, and “1 day with 4 waves”. Number of items (n)
are 15, 30, or 75. Per-period demand (ri) is set as ∼ Disc Uni f (10, 100). Initial inventory
at reserve storage is set as ∼ Disc Uni f (0.8ri, 1.2ri) while order-up-to levels (Ui) are put
as giri, gi ∈ {2, 3}. Daily item arrivals are set as ∼ Disc Uni f (0.8Ui, 1.2Ui) while initial
inventory at item location equals to Ui − ri. We set wave time limit as 180 time units and
solve 5 test instances for each setting. In total we solve a set of 75 instances.

We consider two types of demand: (1) uniform, where the probability that any item
will appear on a pick list on a given day is identical; and (2) skewed, where certain items
have more likelihood to appear on the pick list. For the latter, we use the Pareto distribution
with 20-80 skewness, which implies that 20% of the items in the warehouse receive 80% of
the total demand. In this case, we analyze two storage policies: (i) random storage, where
items are stored in the warehouse randomly, regardless of the demand; and (ii) turnover-
based storage, where items that generate more demand are stored “in convenient locations.”

Our instances have been run on a computer with Intel Core i7-4500U CPU at quad-core
1.80GHz and 8 GB RAM. All CPU times are within 5 seconds.

We first consider the effect of a priori route. Figure 6 shows the percent deviations of
heuristic a priori route schemes from the optimal a priori route solutions. Here, regardless
of the number of periods, we observe opposite patterns for the S-shape and largest gap
heuristics. The S-shape heuristic is closer to the optimal route when the density of the
items in the warehouse is high. This is reflected in the results by the decreasing gap of this
heuristic from 15 to 75 items. The largest gap heuristic, which performs better when item
density is lower, displays an increasing gap level with increasing number of items.

Now we consider the effect of demand and storage policies. The best results are ob-
tained when demand is skewed and turnover-based storage is used. Figure 7 shows the
percent deviations of the other demand patterns and storage policies from this case. There
are two conclusions which can be drawn from the figure: (1) if demand is skewed, applying
a turnover-based storage has an average travel time savings of 6% on average, underlining
the importance of using a storage policy in line with demand skewness. (2) when demand
is skewed and turnover-based storage is applied, an average of 4% less travel time is ob-
served compared to uniform demand and random storage. Hence, when storage policy is
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Figure 6: Deviations of heuristic a priori route schemes from the optimal a priori route
solution

in line with demand skewness, skewed demand pattern yields a slight advantage over the
case when demand is uniform.

In Table 2, we show the percent improvement of the proposed heuristics under different
a priori route schemes from the method where each wave is treated independently as being
treated in practice. As the table also indicates, the percent improvement ranges from 15%
to 31% for optimal, from 9% to 28% for S-shape, and from 9% to 23% for largest gap a
priori routes.

5 Conclusion and Further Research Directions

This study demonstrates that item replenishment in warehouses can be made more efficient
by considering waves in a coordinated way. We define the storage replenishment problem
(SRP), which aims to determine the replenishment sequences and amounts for each wave
so that total travel time for replenishment is minimized. We establish the complexity results
for this problem and show that proposed approaches outperform those in practice by more
than 20% on average.

Immediate further research directions involve the extension of the work to multiple ca-
pacitated replenishment pickers and warehouses with different layouts (with middle aisles,
fishbone aisles, etc.). Another interesting area to explore is the case where items that can-
not be replenished from the reserve storage area being replenished from the receiving area
at the expense of penalty costs, thereby resolving any infeasibility issues.
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Figure 7: Deviations of the (i) uniform demand pattern (Unif) and (ii) skewed demand
pattern with uniform storage policy from turnover-based storage under skewed demand

Table 2: Percent improvement of different a priori routing methods from practice
Periods n Optimal S-shape Largest gap
1 day, 15 20.07 13.97 21.61

3 waves 30 24.04 17.64 18.66
75 31.13 28.71 17.36

3 days, 15 20.87 15.35 22.89
1 wave 30 26.64 19.30 19.26

75 23.36 21.54 15.77
1 day, 15 15.17 9.20 20.68

4 waves 30 23.81 16.90 17.12
75 23.59 21.20 9.00

2 days, 15 15.79 11.51 18.54
2 waves, 30 23.95 19.76 15.14

75 23.00 20.99 9.03
4 days, 15 17.09 10.69 23.62
1 wave 30 22.14 16.94 14.86

75 30.71 27.69 12.49
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