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Abstract: Mobile Shelf-based Order Pick (MSOP) systems are gaining significant in-
terest for e-commerce fulfillment due to their rapid deployment capability and dynamic
organization of storage pods based on item demand profiles. In this research, we model
the MSOP system with class-based storage strategies and alternate pod storage policies
using multi-class closed queuing networks. We observe that though closest-open location
pod storage policy do not allow to efficiently use the storage spaces in comparison to
random location pod storage policy in an aisle, it increases the system throughput for
all item classes.

1 Introduction

Mobile Shelf-based Order Pick (MSOP) system is gaining significant interest from e-
commerce fulfillment companies. Kiva Systems LLC, which is now a wholly owned sub-
sidiary of Amazon.com, developed the mobile fulfillment system in 2003 (Wurman et al.
[2008], D’Andrea and Wurman [2008], Mountz [2012]). The MSOP system is a goods-to-
man order-pick system, where the items are stored on movable storage shelves. Robots
(also known as drive units) fetch the inventory pods from the storage area and transport
them to the pick stations for order picking (see Figure 1). Empty robots can travel un-
derneath the rack locations. This system has been implemented by several large retailers
such as The Gap, Walgreens, Staples, and Office Depot. Due to reduced picker travel,
the system improves worker pick conditions, and also reduces order pick inaccuracies.

Upto 55% of the operating costs at a distribution center are due to its order pick costs,
which include costs associated with its layout (De Koster et al. [2007]). In a goods-to-man
system, there are several factors which affect the efficiency of order-picking operations.
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Figure 1: Robot and inventory pods (source: kivasystems.com)

For instance, the location of the SKUs in the storage system and the order pick area layout
affect the system responsiveness. The storage location assignment problem consists of
allocating the product to the different slots in a warehouse (Heragu et al. [2005]). The
basic principle is that the high-demand products have to be allocated to the slots closer to
the order-picking stations for reducing the total time in handling. The class-based storage
approach is the most effective method, dividing the items into classes and assigning to
each class a set of areas in which the products are stored with an objective to reduce
the travel time in a warehouse and improve the order picking efficiency (Tompkins et al.
[2010]).

The biggest advantage of the MSOP system is ‘dynamic layout reorganization.’ The
pods that are frequently requested by the pick station are gradually positioned closer to
the pick stations and the ones that are rarely requested are gradually moved towards the
back of the aisles (see Figure 2). Shelves with fast-selling items are indicated in dark
whereas slow-selling items are indicated with light squares. This dynamic reorganization
of storage shelves based on the SKU demand profile of the pods is one of the most
attractive features of the MSOP system.

Several operational decisions affect the MSOP system throughput performance. For
instance, the choice of pod storage location, the choice of order assignment to the order
pick stations, and the choice of the robot to fetch the pod, affect the throughput perfor-
mance. Likewise, the design choices such as the number of robots, depth-to-width ratio
of the storage area, and maintaining a dedicated or a pooled fleet for order pick and
replenishment processes may affect the system performance.

Roy et al. [2014] investigate the effect of pod storage policies (“random open location
storage” and “closest open location storage”) on system throughput performance with a
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Figure 2: Distribution of pods in the MSOP system (source: wired.com)

single class of items. In this research, we extend our previous work by investigating the
performance of the MSOP system with class-based storage and in combination with two
pod storage policies within the zone: “random open location storage” and “closest open
location storage.” The random open location storage may seem to be the most efficient
and commonly used storage policy, where any pod (after an order pick) is equally likely
to be stored in any of the open locations. The primary objective of this policy is to
maximize space utilization. In the closest open location storage policy, the pod is stored
in the closest open location within the aisle that has been chosen for retrieval. The closest
open location storage policy may be useful in reducing the travel time of the robot. We
derive the aisle travel time expressions and develop a multi-class closed queuing network
model to analyze two pod storage policies and three item (pod) classes A, B and C.

The rest of this paper is organized as follows. In Section 2, we describe the order
pick process in the MSOP system. The analytical model for the order pick system with
class-based storage is presented in Section 3. The results from the numerical experiments
and conclusions from this study are drawn in Sections 4 and 5 respectively.

2 System Description

The storage area consists of an even number of aisles A. A single pod is assumed to be l

meter long and w meter deep. The order pick area is D meters long and W meters deep.
The warehouse shape factor is characterized by depth/width, which is the ratio between
D and W . D represents number of pod storage locations per aisle and W represents the
the number of aisles . In this research, we consider the MSOP system with one order-pick
station located in the middle of the cross-aisle (in front of the aisles). This area is called
the order pick area.

The storage and retrieval requests are assumed to be independent, and processed on
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Figure 4: Dedicated area for A, B and C items in the side of an aisle

a FCFS (first come, first served) basis. The robot first fetches the pod (that stores the
requested order item) and travels to queue at the order pick station. After the item
is picked from the pod, the robot stores the pod back in the order pick area. In our
layout, the robot uses the single-directional arrival path to fetch the pod and uses the
single-directional departure path to store the pod back (Figure 3).

The robots use a dual command cycle to process transactions, i.e., after completing
the storage transactions, the robot immediately proceeds to fetch another pod for the
order picking process. The items are stored in pods according to the classes namely A,
B, and C i.e., pods store one of the three items A, or B, or C only. Class A items
are relatively few in numbers but account for a large amount(70-80%) of the order pick
activity whereas class C items are relatively large in number but account for a relatively
small account of the order-pick activity. The volume of order-pick activity for class B

items lie in between the volumes for class A or class C items.
Each side of an aisle has a dedicated storage area for storing pods with A, B, and

C class items. In Figure 4, we show an aisle side with storage locations dedicated to
A, B, and C class items storage. Each pod storage segment also has a number of open
locations, which are used by the robot to store the pod before fetching a pod of the same
or another class.
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3 Queuing Network Model

The MSOP system is modeled as a closed queuing network with a simplification of the
vehicle movement and the Markov-chain based models are developed to analyze the travel
time. In Roy et al. [2014], we derive the mathematical expressions for the travel time
where a robot stores a pod in the open location and then retrieves a pod from another
storage location in a warehouse. To analyze class-based storage policies, we extend the
single item (pod) class approach to estimate the first two moments of the robot travel
time in an aisle to three item (pod) classes. We maintain dedicated robots for handling
different classes of pods and hence the queuing model is a multi-class network. The
models are evaluated using approximate mean value analysis. Using analytical models,
we optimize different design parameters of a warehouse to improve system performance.
The performance measures obtained from the models include robot utilization, system
throughput and the expected throughput time for order-picking.

3.1 Network Nodes

The order pick (OP) station is located at the middle of the cross-aisle in the departure
path. We divide the cross-aisle departure path into two equal segments (CAFD

L and

CA
FD

R corresponding to the left and right segment of the cross-aisle in the order pick
area). Likewise, the arrival path along the cross-aisle is divided into two equal segments
(CA

FA

L and CA
FA

R corresponding to the left and right segment of the cross-aisle in the
arrival path). Each segment of the cross-aisle is modeled as an Infinite Server (IS) queue.
A robot starts its service and accesses either the left or the right side of the segments on
the departure path (with equal probability, 1/2). It then chooses any one of the aisles
with equal probability p = 1

A/2 , and then accesses either pick face of the aisle with equal

probability and moves towards an open rack location to store a pod (based on the pod
storage strategy). Next it moves towards a pick-up location, retrieves the pod and exits
the aisle. As soon a robot exits the aisle it accesses the arrival path segment based on
its current position from either the left or the right side of the cross aisle.

Based on the aisle protocol explained in Roy et al. [2014], only one robot can enter the
aisle at a time; therefore, each aisle is modeled as a single server queue with an infinite
buffer size. The pick station is modeled as a single server queue with service rate µOP .
Since we assume that orders are always waiting to be served by the robot, we model the
system as a closed queueing network (see Figure 5). In this model we consider two pod
storage strategies, random and closest open location storage strategy, either each storage
zone. Using Approximate Mean Value Analysis (AMVA), we obtain the expected cycle
time for order picking E[CTop], the throughput of order picking Xop, and expected queue
lengths at various nodes.

We now explain the approach to estimate the aisle service times and then discuss the
queuing model.
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Figure 5: Single-class queueing network model for order picking using an MSOP system

3.2 Aisle Service Time Estimation for A, B and C Pod Class with

Random Pod Storage

Let NA, NB and NC denote the total number of storage locations for A, B and C pod
classes, respectively, in each side of an aisle , out of which mA, mB and mC locations are
open for storing A, B and C class pods, respectively.

Let us denote the service time for class A, B and C robots in an aisle using the terms
tAAisle,R, tBAisle,R and tCAisle,R, respectively, for the random open location pod storage
strategy. The travel time of a robot includes the time to store a pod and retrieve another
pod, including the return travel (tiWL,R) for ith class robot, the handling time to store
a pod (tstore), the handling time to retrieve a pod (tretrieval) and the time associated
with travelling between the arrival-path (onward as well as return) of a cross-aisle to the
starting point of the aisle location, dlocarr with a robot velocity vr.

tAAisle,R = tAWL,R + tstore + tretrieval +
2dlocarr

vr
(1)

tBAisle,R = tBWL,R +
2NAl

vr
+ tstore + tretrieval +

2dlocarr

vr
(2)

tCAisle,R = tCWL,R +
2(NA +NB)l

vr
+ tstore + tretrieval +

2dlocarr

vr
(3)
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Note that the travel time associated with the travel between the arrival and the
departure paths is included in the cross-aisle service time. Roy et al. [2014] show that
the first and the second moments of the distance travelled to store and retrieve a pod
within the locations in an aisle segment with N storage locations is given by Equations
4 and 5.

E[DR] =
(4N + 1)l

3
(4)

E[D2

R] =
(6N2 + 2N − 1)l2

3
(5)

The expected service time by a robot in aisle for the dedicated area A, B and C can be
obtained by taking the expectations of the terms in (1), (2) and (3), respectively, which
is given as:

E[tAAisle,R] = E[tAWL,R] + tstore + tretrieval +
2dlocarr

vr
(6)

E[tBAisle,R] = E[tBWL,R] +
2NAl

vr
+ tstore + tretrieval +

2dlocarr

vr
(7)

E[tCAisle,R] = E[tCWL,R] +
2(NA +NB)l

vr
+ tstore + tretrieval +

2dlocarr

vr
(8)

Since tWL,R = DR

vr
, the first and second moments of .tAWL,R, tBWL,R and tCWL,R can be

obtained.
The second moments of the three classes of robot service time in an aisle are calculated

as follows:

E[tA
2

Aisle,R] = E[tA
2

WL,R] +

(

tstore + tretrieval +
2dlocarr

vr

)2

+ 2

(

tstore + tretrieval +
2dlocarr

vr

)

E[tAWL,R] (9)

E[tB
2

Aisle,R] = E[tB
2

WL,R] +

(

(2NA)l

vr
+ tstore + tretrieval +

2dlocarr

vr

)2

+ 2

(

(2NA)l

vr
+ tstore + tretrieval +

2dlocarr

vr

)

E[tBWL,R] (10)

E[tC
2

Aisle,R] = E[tC
2

WL,R] +

(

2(NA +NB)l

vr
+ tstore + tretrieval +

2dlocarr

vr

)2

+ 2

(

2(NA +NB)l

vr
+ tstore + tretrieval +

2dlocarr

vr

)

E[tCWL,R] (11)

Using the first and second moment of the robot service times in an aisle, the coefficient
of variation (CV) of the all classes of robot service times in an aisle is obtained.

The service time parameters of the cross-aisle travel are identical to the ones shown
in Roy et al. [2014]. Roy et al. [2014] also discuss the procedure to obtain the aisle service
time expressions for the closest open location pod storage policy.
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Table 1: System Dimensions and Operation Parameters
Symbol Description Values

ddeparr Distance between arrival & departure path 1.2 meter

dlocarr Distance between arrival path & starting point of rack locations 1 meter

d Aisle width 1 meter

l Gross length of pod location 0.99 meter

w Gross depth of pod location 1 meter

vr Speed of a robot 3 meter/sec

tstore Time needed to store a pod 5 sec

tretrieval Time needed to retrieve a pod 5 sec

tpick Time needed for order picking at OP station 15 sec

Table 2: Performance Measures of MSOP system using three classes of robots

Input Output: Performance Measure
Policy Ns NA NB NC V QOP QAisle UOP UAisle E[CTA] E[CTB ] E[CTC ] XA XB XC

(sec.) (sec.) (sec.) (picks/hr.) (picks/hr.) (picks/hr.)

Random 1000

25 15 10
20 0.7 1.8 50% 86% 560.6 669.7 716.9 89.6 21.2 9.7
30 0.8 2.8 56% 97% 767.6 874.5 896.9 98.2 24.4 11.8
40 0.9 3.8 59% 99% 981.3 1086.9 1083.4 102.6 26.2 12.9

10 15 25
20 1.2 1.8 70% 86% 398.5 470.9 601.6 126.3 30.2 11.8
30 1.5 2.7 78% 98% 542.7 610.7 730.2 138.9 35.2 14.7
40 1.8 3.7 83% 99% 691.8 756.9 865.2 145.4 37.8 16.5

Closest 1000

25 15 10
20 0.8 1.8 55% 86% 514.5 605.9 647.4 97.9 23.7 10.8
30 0.9 2.8 61% 97% 703.0 792.1 811.2 107.2 27.0 12.9
40 1.0 3.8 65% 99% 897.8 985.3 981.3 111.9 29.1 14.4

10 15 25
20 1.3 1.8 73% 86% 385.5 446.6 554.7 130.6 32.0 12.9
30 1.7 2.7 82% 97% 524.0 580.2 677.0 144.0 37.0 15.8
40 1.9 3.7 87% 99% 667.2 720.0 805.3 150.8 39.9 17.6

4 Numerical Experiments

To perform the numerical experiments, we use the system dimension data given in Table
1. We deploy 70%, 20%, and 10% of the robots available in the system to fetch an A,
B and C pod class, respectively, from the aisle storage location. Class switching is not
allowed which means that a robot which stores an A class pod cannot retrieve another
class pod (i.e., B or C). We first compare the performance of the order pick system
by storage policy (random and closest open location storage strategy). It is expected
that the closest open location storage strategy would take less residence time in the
aisles than the random storage. The analysis results (provided in Table 2) show that
order pick operations with closest open location storage policy takes about 3%-9% less
residence time (E[CTi], i ∈ {A,B,C}) than the random open location storage policy for
A, B, and C class robots. Therefore, a system can gain a slightly higher throughput
capacity with the closest open location storage policy than random open location storage
policy.

To study the effect of the number of storage locations in the dedicated area, we fix
the number of locations in the dedicated area B and vary the locations in the area A and
C. We observe that as the number of locations in area A decreases and the number of
locations in the area C increases, the queue length QOP at order pick station increases
but the queue length QAisle at aisle nodes decreases, which results in reduction in cycle
time and increase in throughput for all three classes.
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5 Conclusions

In this research, we analyze alternate class-based storage strategies in an MSOP system
using multi-class closed queuing networks. We analyze the system with two pod storage
strategies. We see that though the open locations are not efficiently used in the closest
open location storage policy, the throughput time estimates are always more than the
throughput time estimates obtained using the random open location storage policy for
all the three classes. Relaxing some of the assumptions of the model, such as retrieving
the pod other than the same side of the aisle as storage, is subject of future research.
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