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CLASS-BASED STORAGE WITH A FINITE NUMBER OF ITEMS 

Yugang Yu 
Rotterdam School of Management, Erasmus University, the Netherlands 

René B.M. de Koster 
Rotterdam School of Management, Erasmus University, the Netherlands  
 

ABC class-based storage is widely studied in literature and applied 
practice. It divides all stored items into a limited number of classes 
according to their demand rates (turnover per unit time). Classes of items 
with higher turnovers are stored in a region closer to the warehouse depot. 
In literature, it is commonly shown that the use of more storage classes 
leads to shorter travel time for storing and retrieving items. A basic 
assumption in this literature commonly is that the required storage space 
of items equals their average inventory levels, which is right if an infinite 
number of items are stored in each storage region. However, if a finite 
number of items are stored in the warehouse, more storage classes need 
more space to store the items: more classes lead to fewer items stored per 
class, which have less opportunity to share space with other items. This 
paper revisits ABC class-based storage by relaxing the common 
assumption that the total required storage space of all items is independent 
of the number of classes. We develop a travel time model and use it for 
optimizing the number and the boundaries of classes. Our numerical 
results illustrate that a small number of classes is optimal. 

 

1. Introduction 
ABC class-based storage is the most commonly used storage policy in practice and is 
widely discussed in many operations management textbooks (Adams et al., 1996; 
Heragu, 2006; Tompkins et al., 2003), and scientific papers (De Koster et al., 2007; 
Graves et al., 1977; Gu et al., 2007; Hausman et al., 1976; Rosenblatt and Eynan, 1989; 
Thonemann and Brandeau, 1998). 

ABC class-based storage divides items into different classes (three is common in 
practice) according to the ABC demand curve (see Figure 1(a)). A relatively small 
number of highly demanded items are grouped as A-class items and are then stored in a 
warehouse region closest to the depot. Rarely demanded items grouped as C-class items 
are stored in the region farthest from the depot. Within each class, items are stored 
randomly. Figure 1(b) shows a side view of a storage rack with an example of ABC 
class-based storage in an automated storage and retrieval warehousing system. In such a 
system, the distance between a storage location and the depot is measured in Chebyshev 
distance (Hausman et al., 1976). 
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Figure 1. ABC class-based storage. Figure (b) gives a side view of the storage rack  

The seminal paper of Hausman et al. (1976) formulates a travel time model for class-
based storage and addresses the benefits of two or three class-based storage under 
different ABC demand curves. Rosenblatt and Eynan (1989) generalize the model for n-
class-based storage and develop an algorithm for finding optimal boundaries of all 
classes. Following these two papers, most research on class-based storage (Eynan and 
Rosenblatt, 1994; Gu et al., 2007; Kouvelis and Papanicolaou, 1995; Larson et al., 1997; 
Yu and De Koster, 2009) assumes that the total required storage space does not depend 
on the number of classes. The assumption is true if the number of items in each class is 
sufficiently large (infinite). A basic assumption in these models is that multiple items 
share a common storage space, and they are replenished to the system at different points 
in time. When an item is replenished, empty storage space for receiving it can be found 
by using part of the common space. As a result, if the number of items in a class is 
infinite, the required storage space of the class approximately equals the total average 
inventory level of all items in the class (Hausman et al., 1976, page 634). With this 
assumption, the numerical results in these papers show that an increase in number of 
classes can reduce average travel time for storing or retrieving items (see the curve 
indicating conventional research results in Figure 2). 

However, if a finite number of items are stored in a warehouse, the total required 
storage space differs from that given by Hausman et al. (1976). 
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Figure 2. The travel times in two different lines of research  

This paper extends Hausman et al. (1976) and Rosenblatt and Eynan (1989) by 
assuming a finite number of items are stored. The total required storage space therefore 
becomes a function of the number of classes and the number of items in each class. More 
classes with fewer items per class result in a larger required storage space per item. With 
an increase in the number of classes, the number of items per class decreases and more 
storage space is needed to store all items, which increases the average travel time for 
storing/retrieving items. However, simultaneously, the item turnovers can be classified 
more precisely and frequently requested items can be stored closer to the depot, which 
decreases the average travel time for storing/retrieving items. 
A travel time model to describe the above tradeoff is missing in Hausman et al. (1976). In 
the literature, Eldemir et al. (2004) develop formulas to estimate the required storage 
space as a function of the number of items under random storage. They comprehensively 
analyze the impact of the skewness of the ABC curve on required storage space and then 
on the average travel time. However, the total required storage space is not given as a 
function of the number and boundaries of classes such that they can be optimized. Their 
model is also too difficult to be used for optimizing the number of classes and class 
boundaries.  
This paper develops a new formula to estimate the required storage space for n-class-
based storage. A travel time model and a corresponding algorithm are then developed to 
determine the optimal number of classes and their boundaries. Our results support that, if 
the number of classes is large, an increase in the number of classes lengthens the travel 
time for storing/retrieving items as shown in Figure 2, which may explain why in practice 
only a small number of classes are used. 

This paper is organized as follows. Section 2 describes the problem as defined by 
Hausman et al. (1976) and Rosenblatt and Eynan (1989). Section 3 introduces the 
conventional travel time model from Hausman et al. (1976) and Rosenblatt and Eynan 
(1989). In Section 4, we extend the conventional research by assuming a finite number of 
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items stored in the system. In Section 5, numerical examples are given to illustrate the 
main findings of this paper. Section 6 concludes the paper. 

2. Problem Description 
This section first describes the studied system. We then define mathematical notations 
and formulas used throughout the paper.  

Following Hausman et al. (1976), we consider a basic automated warehousing system: 
an automated storage/retrieval system (AS/RS) consisting of a storage/retrieval (S/R) 
machine, a storage rack, and one depot where all items enter and leave the system. Items 
can be finished goods, work-in-process, or raw materials, and they are stored on 
standardized pallets before arriving at the AS/RS system. The system works as follows: 
when a storage pallet arrives at the depot of the system, the machine retrieves it and 
transports it (moving in horizontal and vertical directions simultaneously) to any given 
storage location in the rack. Upon request of a stored pallet, the machine picks up and 
moves the pallet to the depot.  

In accordance with Hausman et al. (1976), the system has the following properties: 
1) All storage locations are the same size as the pallets themselves. On each pallet, 

only one item is stacked. 
2) The depot is at the lower-left side of the storage rack, as shown in Figure 1(b). 
3) The storage rack is “square” in time; the time for the machine to move from the 

depot to the most distant column equals the time from the depot to the highest row.  
4) The capacity of the machine is one unit load and it operates in a single-command 

mode; the machine either stores or retrieves a pallet each time.  
5) The pickup/deposit time for the machine to load/unload a pallet is ignored. 
6) The turnover of each item is known and constant through time. The turnover of an 

item equals the number of times the item is stored or retrieved in a unit-time 
period, such as a week, a month, or a year. 

7) Item inventories are replenished according to the simple EOQ model, where the 
demand of every item (measured in number of pallets) is deterministic and 
determined by the ABC curve given in Eq. (1). 

8) The items are ranked according to their marginal contribution to the total demand 
using the ABC curve. An item that has a smaller contribution is indexed with a 
larger number. 

The ABC curve is a plot of ranked cumulative percentage demand per unit time, ( )G i , 
and modeled by: 

 
1

0 0
( ) ( ) / ( )

isG i i D j dj D j dj= = ∫ ∫ ,    for 0 1s< ≤ , (1) 

where i is the item at the ith percentile in the ranked sequence of all items. ( )D i  is the 
demand of item i per unit time. The smaller s is, the skewer the ABC curve is. 

Without loss of generality, assuming that the total demand 
1

0
( )D j dj∫ =1, Hausman et 

al. (1976) then have: 
 1( ) ( ) / , 1 1sD i dG i di si i−= = < ≤ . (2) 
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Given the above system properties and the item demands determined by Eq. (2), we 
want to find the average one-way travel time for storing/retrieval a pallet. A one-way 
travel time is the travel-time distance between the depot and a pallet storage position. 

Class-based storage divides the storage space into n regions. Region k is dedicated to 
store items of class k, k=1,…,n. A region with items of higher turnover is located closer 
to the depot. As shown in Figure 1, the regions are L-shaped and square-in-time.  

Storage locations and corresponding pallets are defined as follows. 
j index of the jth storage location (or pallet). A pallet closer to the depot has a 

smaller index.  
The notations related to a region (class) k include: 

ki  the item with the lowest turnover in class k. 
kj  the storage location (a corresponding pallet) farthest from the depot in region 

(class) k. It corresponds to the total required storage space of items 1 to ki . 

kt  average one-way travel time for storing/retrieving a pallet of class k. 

kG  100μ(cumulative demand for the first k classes)/(the total annual demand of 
all items)% . 

kR  one-way travel time for storing/retrieving a pallet at the boundary of 
region(class) k. 

( )kΛ  the total turnover (in the number of pallets) of all items stored in class k per 
unit time. 

nT  average one-way travel time of a pallet for an n-class storage system. 

With the above notations and according to Hausman et al.(1976) and Rosenblatt and 
Eynan (1989), the average one-way travel time in an n-class system, nT  can be 
formulated as: 

 1
1

1 1

( ) ( )( )
( ) ( )

n
nkk

n kn nk
k k

t k kT t
k k

=
=

= =

Λ Λ
= =

Λ Λ
∑ ∑
∑ ∑

. (3) 

1
( ) / ( ( ))n

k
k k

=
Λ Λ∑  is the weight of item turnover of class k in the total turnover of all 

items where ( )kΛ  is the turnover of all the items in class k, and 
1

( )n

k
k

=
Λ∑  is the total 

turnover of items in the whole system. 
1

( ) / ( ( ))n

k
k k

=
Λ Λ∑ is calculated by using 

( )kΛ =
2

2
1

( )k

k

R

R
j djλ

−
∫ , k=1,…,n, where ( )jλ  is the turnover of the jth pallet in the system in 

Hausman et al.(1976). Rosenblatt and Eynan (1989) simplify the calculation using Eq. (1) 
to obtain:  
 1 11

( ) / ( )n s s
k k k kk

k k G G i i− −=
Λ Λ = − = −∑ ,   1,...,k n= . (4) 

In case of an SIT system, kt  equals (Eynan and Rosenblatt, 1994; Hausman et al., 
1976; Rosenblatt and Eynan, 1989): 
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3 3

1
2 2

1

2( )
3( )

k k
k

k k

R Rt
R R

−

−

−
=

−
         1,...,k n= , (5) 

Substituting Eq. (4) and (5) into (3), Eq. (3) can be rewritten as: 

 
3 3

1
12 21

1

2( ) ( )
3( )

n s sk k
n k kk

k k

R RT i i
R R

−
−=

−

−
= −

−∑ . (6) 

To minimize nT  in Eq.(6), we have to derive the relationship between kR  and ki , 
k=1, …, n. If this relationship is obtained, the travel time in Eq. (6) can then be 
minimized by optimizing either kR , k=1, …, n or ki , k=1, …, n-1. 

 

3. Conventional Travel Time Model for Class-based Storage 
Using the results of Hausman et al.(1976) and Rosenblatt and Eynan (1989), this section 
summarizes the conventional relationship between kR  and ki , k=1, …, n based on the 
derivation of the required storage space of each class. This leads to a travel time model, 
which can be used to optimize class boundaries. 

3.1 Required Storage Space 
In the classic economic order quantity (EOQ) model, the EOQ (in pallets) of item i is  
 1/2( ) (2 ( ))Q i KD i=  (7) 
where K is the ratio of order cost to holding cost and assumed to be the same for all items. 
The average inventory (in pallets) of item i is ( ) / 2Q i . The average inventory level of all 
items, L, therefore is 
 

1 1 1/ 2 1/ 2

0 0
( ) / 2 (2 ( )) / 2) (2 ) /( 1)

i i
L Q i di KD i di Ks s

= =
= = = +∫ ∫ . (8) 

Hausman et al. (1976, p. 634) assume the total required storage space ( measured in 
number of pallet locations) for storing all items, A , equals L: 
 1/ 2(2 ) /( 1)A L Ks s= = + . (9) 

Therefore, if full turnover based storage is considered, the relationship between pallet 
j, j∈(0, A ] and item i can be determined by (Hausman et al., 1976): 
 

( ) 1/ 2

0
(2 ( )) / 2)

i j

k
j KD k dk

=
= ∫ , (10) 

 that is,      2 2 1/( 1)( ) [( 1) /(2 )] si j s j Ks += + . (11) 
Without loss of generality, j is rescaled from (0, L] to (0, 1] by replacing j with j* L  in 

Eq. (11), and we have 

 
2 1/2 2

1/( 1) 2/( 1)( 1) [(2 ) / ( 1) ]( ) [ ]
2

s ss Ks s ji j j
Ks

+ ++ +
= = , (12) 

Correspondingly, kj  and ki relate as follows: 
 2/( 1)s

k ki j += ,    k=1,…,n. (13) 
Note that the total required storage space, max {j}, is 1 when all items (i=100%) are 

stored due to the rescaling of j to (0, 1]. 



7 
 

3.2 Relationship between R  and i  
Because the rack is SIT, we have 

2

k kj R=  (or ( kR / 2)nR as max{ } 1nR j= =  after 
rescaling) according to Rosenblatt and Eynan (1989). We then obtain 
 4/( 1)2/( 1) ss

k k ki j R
++= = ,    k=1,…,n, (14) 

where 1n n ni j R= = = . 

3.3 Travel Time Model and Its Solution 
According to Eq. (4) and (14), we have  
 1 1

s s
k k k kG G i i− −− = − = 4 /( 1) 4 /( 1)

1
s s s s

k kR R+ +
−− . (15) 

Substituting Eq. (15) into (6), nT  becomes a function of kR , k=1, …, n-1. The 
corresponding conventional model (Rosenblatt and Eynan, 1989) becomes: 
Model CM(n): 

 Min 
3 3

4 /( 1) 4 /( 1)1
12 21

1

2( ) [ ]
3( )

n s s s sk k
n k kk

k k

R RT R R
R R

+ +−
−=

−

−
= −

−∑ . (16) 

Subject to: 0 1kR< <  and 1k kR R− < . 
Decision variables: kR , k=1, …, n-1. 0 0R =  and nR =1 are known. 
 

To solve Model CM(n), an iterative Eq. (17) is derived: 

 
3

4 /( 1) (5 1)/( 1)1
1 1 12

1

2(1 ) [1 ] ( )
3(1 )

s s s sk
n k k n

k

RT R R T
R

+ + +−
− − −

−

−
= − +

−
. (17) 

Given 0 0T = , both kT , k=1,…,n, and kR , k=1,…,n can be optimally found 
(Rosenblatt and Eynan, 1989). We omit the details here.  

 

4. Our Travel Time Model for Class-based Storage  
This section relaxes the assumption of Hausman et al. (1976, p. 634) represented in Eq. 
(9). Eq. (9) holds if the number of items in each class is infinite. Our relaxation allows a 
finite number of items to share storage space for each class. The required storage space of 
items that is then not simply equal to the average inventory level, L, but a function of the 
number of items and the number of classes. In subsection 4.1, we derive the required 
storage space of storage classes and in subsection 4.2 we find the relationship between 

kR , and ki , k=1, …, n. The travel time corresponding with the required storage space is 
given in subsection 4.3. 

4.1 New required storage space function 
If the number of items for sharing a storage space is finite, the average required storage 
space of an item may depend on many factors, such as the number of items sharing the 
space, the skewness of the ABC curve (s), inventory replenishment policies, and 
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inventory cost (K). We first determine the required storage space of an item as a function 
of the number of items in the same shared space by fixing all the other factors.  

The function ( )i ka N  denotes the required space to store item i in class k, where kN  
represents the total number of items sharing the common storage space of class k. We 
then have. 
 1( )k k kN N i i −= − . (18) 

We have determined ( )i ka N by simulation. It appears to be fairly independent of the 
shape of the ABC-curve s. The resulting function is depicted in Figure 3.  
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Figure 3. The required storage space of item i as a function of kN  

At kN = +∞ , the lower bound of the required storage space of item i, ( )ia +∞ , is 
obtained as: 
 ( ) ( ) / 2ia Q i+∞ = , (19) 
which is consistent with Hausman et al. (1976). 

At 1kN = , dedicated storage is implemented. The upper bound of the required 
storage space of item i, can then be determined by the EOQ of item i: 
 (1) ( )ia Q i=  (20) 

For 1< kN <+∞ , the required storage space of item i is between ( )ia +∞  and (1)ia . 
With an increase in kN , the required storage space of item i decreases and the decrease 
rate is also decreasing to approach zero.  

To formulate the curve in Figure 3, we can approximately represent the required 
storage space for item i as a function of the number of items as: 
 ( ) ( ) ( (1) ( )) ( )(1 )i k i i i k i ka N a a a N a Nε ε− −= +∞ + − +∞ = +∞ + , (21) 
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where ε  is a fixed parameter and ε >0. This is a type of Cobb-Douglas function, with an 
elasticity ε . A 1% increase in kN leads to an ε % decrease in ( ( ) ( ))i k ia N a− +∞ . The 
larger ε  is, the larger the impact of a change of kN  is on the required space of item i. 
According to our simulation results, ε  does not heavily depend on s and is around 0.3. 

Substituting Eq.(7) and (19) into Eq. (21), we have 
 1/2( ) (0.5 ( )) (1 )i k ka N KD i N ε−= + . (22) 

Eq. (22) shows that ( )i ka N  is not only determined by kN , but also by other various 
factors such as the skewness s  of the ABC curve, the replenishment policy and the costs 
of items. 

Using Eq. (22), we can obtain the required storage space (in number of pallets) for 
class k: 

 
1 1

1/2
1 ( ) (0.5 ( )) (1 )k k

k k

i i

k k i k ki i
j j a N di KD i N diε

− −

−
−− = = +∫ ∫ ,    1,...,k n= , (23) 

where 0j =0. 
To make our result comparable to that of (Hausman et al., 1976), we rescale j to j/ L  

by replacing j with j*L, and then obtain 

 
1

1/2
1( ) (0.5 ( )) (1 )k

k

i

k k ki
j j L KD i N diε

−

−
−− = +∫ , 1,...,k n= . (24) 

By substituting Eq. (8), Eq. (24) can then be reformulated as:  

 
1

1/2
1/2

1/2
1

( 1)(0.5 ) (1 ) ( )
(2 )

l

l

k i

k l i
l

s Kj N D i di
Ks

ε

−

−

=

+
= +∑ ∫ , 1,...,k n= . (25) 

Substituting Eq. (2) into Eq. (25), the total required storage of classes 1,…, k-1 equals: 

 ( 1)/2 ( 1)/2 ( 1)/2
1

1
( )

k
s s s

k k l l l
l

j i N i iε+ − + +
−

=

= + −∑ , 1,...,k n= . (26) 

Eq. (26) shows the relation between kj  and 1i ,…, ki .  

4.2 Relationship between R  and i  
kR  is determined by the total required storage space of all items in the previous k classes. 

As before,  
 , 1,...,k kR j k n= = , (27) 
and 0 0 0j R= = . 

Substituting Eq. (26) and Error! Reference source not found.(18) into Eq. (27), the 
relationship between kR  and 1 ,..., ki i  can be expressed as: 

 ( 1)/2 ( 1)/2 ( 1)/2
1 1

1
( ( )) ( ) , 1,...,

k
s s s

k k l l l l
l

R i N i i i i k nε+ − + +
− −

=

= + − − =∑ . (28) 

4.3 Travel time Model 
Considering the new relationship between kR  and ki , we obtain the following model. 
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Model NM(n): 

 Min 
3 3

1
12 21

1

2( ) ( )
3( )

n s sk k
n k kk

k k

R RT i i
R R

−
−=

−

−
= −

−∑  (29) 

Subject to: Eq. (28) which gives the relationship between and kR  and ki  and 
 1( ) 1 1,...,k kN i i k n−− ≥ = . (30) 
Decision variables: either 0kR > , 1,...,k n=  or ki >0, 1,..., 1k n= − .  

 
Model NM differs from Model CM in three respects. Eq. (28) shows that the class 

boundary, kR , is not only related to ki  and s, but also to the number of items in class k 
and all its previous classes 1,…,k-1. Next, because N is finite, Constraints (30) are 
required to ensure that at least one item is stored in each class. Finally, nR  is an unknown 
value in Model NM because nR  relates to kR , 1,..., 1k n= −  are given, but nR =1 in Model 
CM.  

Model NM is quite complex to solve. The methodology for solving Model CM used 
by Rosenblatt and Eynan (1989) cannot be applied here. An iterative relation as in Eq. 
(17) does not hold for Model NM. Next, the objective function (29) is nonlinear and we 
do not know whether it is a convex function of 0kR >  (or kj  or ki ) 1,...,k n=  or not. 
Finally, Constraints (30) are nonlinear functions of kR , 1,...,k n=  considering Eq. (28).  
If ki >0, 1,..., 1k n= −  are taken as the decision variables, ni  is known to be 1. Moreover, to 
avoid reformulating ki  as a function of 1 ,..., kR R  using Eq. (28), without loss of 
generality, we hereafter select ki >0, 1,..., 1k n= −  as the decision variables. 

5. Solution Methodology 
To solve Model NM, we introduce an algorithm including two main steps. We first find 
all the local optimal solutions. Next, these local optimal solutions are then compared to 
obtain a global optimal solution that minimizes the travel time nT .  
To obtain a local optimal solution, we introduce Lagrange multiplier vectors 

1( ,..., )nλ λ λ= 0≥  and 1 1( ,..., )nu u u −= 0≥  for constraints (30) and ki >0, 1,..., 1k n= − , 
respectively. The Lagrangian function of Model NM can be defined by 
 1

11 1
[ ( ) 1]n n

n k k k k kk k
L T N i i u iλ −

−= =
= − − − +∑ ∑ , (31) 

According to Bertsekas (2003), the local minimal solutions of Model NM must 
satisfy the Karush-Kuhn-Tucker necessary conditions that can be described as follows. 
 / 0, 1,..., 1kL i k n∂ ∂ = = − , (32) 
 1[ ( ) 1] 0k k kN i iλ −− − = ,   1,...,k n= , (33) 
 0 1,..., 1k ku i k n= = − . (34) 

To find a local minimum solution of Model NM, we have to solve simultaneous Eq. 
(32)-(34) that are nonlinear. Here, we use the Newton-Raphson method (Press et al., 
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2007) to solve the equations, which converges in 2( )O n  where n is the number (classes) 
of variables. Therefore, a local minimum can be obtained. 

The difficulty is now to find all local optimal solutions. To do so, a grid search 
(Hausman et al., 1976) is applied, which divides the feasible area of ki >0, 1,..., 1k n= −  
into many cells and a starting point in each cell is selected to find a local optimal 
solution. We subsequently make the grid more dense and repeatedly compute the local 
optima in each cell. We stop when a more dense grid does not produce a better solution in 
a certain cell. The output at that stage is the “optimal” solution in the cell.  

From all local optima we can approximately find the optimal solutions of Model NM. 
Moreover, by varying n, we can find the optimal solutions to Model NM for a different 
number of classes to obtain the optimal number of classes. 

 

6. Experiments 
In our numerical examples, the total number of items N=100 and ε =0.3 (approximate 
value, obtained by simulation). The results for the optimal one-way travel time nT  as a 
function of the number classes, n, are shown in Fig. 4-7 under different ABC curves with 
s=1 (20%/20%), 0.431(20%/50%), 0.222(20%/70%), and 0.065(20%/90%). An ABC 
curve with x%/y% indicates that x% of all items in the warehouse are responsible for 
explain y% of the total turnover in pallets and the corresponding s is determined by 
solving Eq. (1). The required storage space as a function of n for two extreme cases of 
s=1 (20%/20%) and 0.065(20%/90%) is shown in Fig. 8. The computation time of our 
algorithm much depends on the number of classes, which takes a second to solve a 
problem of 1- 3 classes, but may take more than one hour if n 50≥ . 
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Figure 4. Travel time with the 20%/20% ABC curve 
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Figure 5. Travel time with the 20%/50% ABC curve 
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Figure 6. Travel time with the 20%/70% ABC curve 
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Figure 7. Travel time with the 20%/90% ABC curve 

 

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

1 2 3 4 5 6 7 8 20 50 80 100

To
ta
l r
eq

ui
re
ed

 s
to
ra
ge

  s
pa
ce

Number of classes

 
(a) s=1 (the 20%/20% ABC curve)             (b) s=0.065 (the 20%/90% ABC curve) 

Figure 8. The total required storage space changes by varying n 

The results in Figs 4-8 lead to the following findings. 
• With an increase in the number of classes, n, the one-way travel time, nT  increases, 

if the number of classes is beyond its optimal value. For example, when n increases 
from 5 to 100, nT  increases more than 10% for the cases of s=1 (20%/20%), 0.431 
(20%/50%), and 0.222 (20%/70%). These results differ from those of Hausman et al., 
(1976) who find a shorter nT  for a larger n. This difference can be explained as 
follows. Hausman et al. (1976) assume that N and Nk are infinite, which implies the 
required storage space of every item equals its average inventory level. An increase 
in n makes it possible to locate high turnover items closer to the depot without 
increasing the total required storage space. However, as we assume N is finite an 
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increase in n leads to a smaller number of items in individual classes, who need more 
total required storage space (see Fig. 8) and then lengthens the travel time *

nT . 
• The optimal number of classes, *n , is small in our results. *n 5≤  for all our 

examples. Using only 3 classes can achieve a near-shortest nT . This is very close to 
warehousing practice where ABC class-based storage is commonly used. 

• The relative gaps between the travel times of our model and those of Hausman et al. 
(1976) increase with an increase in n in all examples. Even at n=1, the relative gaps 
are still quite large (>10% for all examples). As the number of items stored in a real 
warehouse is finite, it is therefore not recommended to use Eq. (6) to estimate nT . 

• The required storage space is an increasing function of n but the increase rates are 
different for different s values. Fig. 8 shows that the increase rate at a larger s is 
smaller when n is small. This is because, when s is larger, the items are more evenly 
divided over storage classes, which gives better space sharing. 

 

7. Conclusion 
This paper extends the work of Hausman et al. (1976) by considering a finite number of 
items to be stored in a warehousing system. Our results show that the optimal number of 
classes is commonly between 2 and 5. Three classes can give near-shortest travel times 
for the ABC curve with s-values between 0.431(20%/50%) and 0.065(20%/90%).  

Hundreds of papers exist on class-based storage implicitly using Hausman et al.’s 
assumption of an infinite number of items. For further research, some of these papers can 
be revisited to address the consequence by assuming a finite number of items to be stored 
in the system. Moreover, facility costs caused from a different number of classes may be 
included in the analysis. The more classes a warehouse has, the more required storage 
space the warehouse needs, which also implies higher facility operational costs for this 
larger warehouse.  
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