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Abstract

Inventory accuracy is critical in most industrialveéonments such as
distribution, warehousing, and retail. Many comparuse a technique called
cycle counting and have realized outstanding resuit monitoring and
improving inventory accuracy. The time and resesrto complete cycle
counting are sometimes limited or not available. tHis work, we promote
statistical process control (SPC) to monitor ineeptaccuracy. Specifically,
we model the complex underlying environments wiiltore distributions to
demonstrate sampling from a mixed but stationaogg@ss. For our particular
application, we concern ourselves with data thaultefrom inventory
adjustments at the stock keeping unit (SKU) levieéwa given SKU is found
to be inaccurate. We provide estimates of bothlypee | and Type Il errors
when a classic C chart is used. In these estimgtiwe use both analytical as
well as simulation results, and the findings dentrais the environments that
might be conducive for SPC approach.

1. Introduction

Inventory record accuracy is vital to any companthwigh levels of inventory. Failure

to keep accurate inventory records can result $s laf product, time wasted correcting
records, product not in stock for consumers, aretgiock of items. Inventory accuracy
is realized when the actual on hand inventory exqueadorded inventory. This has become
a challenging task for some environments (e.g.elasgail stores, distribution centers,



etc.) because they often have thousands of diffeteck keeping units (SKU'’s) in their
inventory.

Cycle counting is currently the most common andaldsthed method used by
companies to keep inventory record accuracy. Cgolenting has generally replaced
annual physical inventory checks. Cycle counting leen accepted as a better method as
it doesn’t require the entire environment to shmvd to count SKU’s. Physical inventory
checks are not only tedious and stressful, and ta@yresult in errors due to the time
constraints on counting the SKU’s. Cycle countingrds subsets of inventory to check
that the actual on hand inventory equals the restbrdventory. If there are differences
between the two, the errors are corrected. Cyclentoog has been found to be less
disruptive to daily operations, provides ongoingaswee of inventory accuracy, and can
be molded to focus on items with higher value.

It is believed that with the correct execution g€le counting that any company can
have 95% or better accuracy. The dilemma for gelamompany is that it takes a large
amount of resources, labor hours, and money to renglbat cycle counting is
implemented correctly. Comprehensively for largeiemments there is a need for a
method to keep high levels of inventory accuracyleviminimizing the use of available
resources. As companies strive to be more effictbetcost competitive pressures mount
on the effective use of resources.

Statistical Process Control (SPC) is a proven stiedil method used to monitor
processes and improve quality using variance remtucPC utilizes random samples to
monitor and control a process to ensure it is dpwyacorrectly and producing
conforming parts. In our inventory accuracy domtiare is an opportunity to utilize
random samples rather than the comprehensive agproé cycle counting, but
statistically valid approaches must be utilizead@strol type | and type Il errors. As such
statistical process control is an ideal applicaf@mrmonitoring inventory accuracy.

The two methods that can be used are a P-chara@dhart. A P-chart could be
used to monitor the percent of SKU’s in a sampé the observed inventory level does
not match the recorded inventory level. This meanandom sample af SKU'’s is
selected and checked to see if the actual on hmeaohiory equals the recorded inventory.
The numbers that don’t equal each other is diviokethe total sample size, which gives
an estimate of the inventory accuracy, or P. Owee P could be plotted on a P chart. A
C-chart could be used to monitor the collective hamof item adjustments for a set of
randomly observed SKU’s where the on hand invenfaigd to match the recorded
inventory. For a C-chart, an inspection unit oksias sampled, and the observed number
of nonconformities is plotted in relationship toé.

This research focuses on SPC, specifically C-chadsan acceptable substitute for
cycle counting for monitoring inventory record acy. The research looks at a
population, which is represented by a large rettmte or equivalent environment with
thousands of SKU’s. The likelihood of a single SKeEing accurate at a given time is
assured to follow or follows a Bernoulli processdavhen a given SKU if found to be
inaccurate, the absolute value of the inventorystdjent follows a Poisson process.
Each SKU within an operational unit can behave wlig carrying its own Poisson rate.



This violates the basic assumption of SPC that eschpled unit follows the same
distribution. Therefore we use a mixture distribatito comprehensively model each of
these subpopulations. A C-chart monitors the nuroberventory adjustments made to a
specific SKU. From there, we inspect the Type | @gde Il error rates of the C-chart.

2. Background Literature

This review provides an overview of literature itwog cycle counting, SPC, and
associated error rates.

2.1. Cycle Counting

[1] describes cycle counting as a process wheri@edlaindividuals inspect a finite
number of SKU's in inventory and compare the obsdren hand items to the recorded
inventory levels. These trained individuals examihe cause of the errors in the
inventory and take corrective action when justifi€ycle counting is designed to
comprehensively examine all the SKU’s over timeotigh sequential and collective
counting exercises. The primary goals of cycle tiognare to identify the causes of the
errors, correct the conditions causing the erm@ntain a high level of inventory record
accuracy, and provide a correct statement of afZet$3] states that with the proper use
of cycle counting, inventory record accuracy ab8%&o can be consistently maintained.
[4] and [5] portray cycle counting as a quality wssice process that emphasizes
correcting errors in inventory accuracy. Thereagous approaches of cycle counting
including the geographical method [6], random samgp|3], the ABC method [7], [8],
[9] and process control [2]. [1] says that you dHomiot accept a one system fits all
approach. In complex operations, you may have antcgrogram with multiple
approaches, and the program should be customizegdetdfic operational and business
needs.

2.2. Statistical Process Control

It is well known that it is impossible to inspeat t@st the quality into a product; the
product must be built right the first time. Thisphes that a process must be stable and
that all individuals involved with the process muasntinually seek to improve process
performance and reduce variability in key paransef#@]. [10] states that there is a four
step process for Statistical Process Control; nieathe process, eliminate undesirable
variation from the process, monitor the process, @mtinuously improve the process.
[10] also states that there are seven common tbatsare used to monitor and improve
processes: check sheet, pareto chart, flow chausec and effect diagram, histogram,
scatter diagram, and control charts.

The most commonly used of these tools is the cbobrart, and it is the tool that this
paper is examining as a method to monitor inventmguracy. The idea of a control



chart was first proposed by Walter Shewhart ([I1d fL2].) A typical control chart plots
the averages of measurements of a quality chaistatem samples taken from the
process over time. The chart has a center line @id) upper and lower control limits
(UCL and LCL). The center line represents the ayeraf the process. If a given data
point exceeds the thresholds as established byJ@ie or LCL or other non-random
trends appear, the process is declared out ofaard operating with unknown sources
of variability [10.]

2.3. Typel and Typell Errorsfor Control Charts

Control limits are generally set at 3 standard aiéwns away from the mean of the
population. When a data point falls out of thesdts, it indicates that the process is not
stationary or out of control. There are two typésrors that are associated with control
charts. They are type | and type Il errors. Theetymlpha error known as the false alarm
rate occurs when the null hypothesis is rejectadjtbs actually true. This happens when
a point is plotted outside of the control limitsevhthe process is generating observations
in accordance to the null hypothesis. This meaasfierator concludes that the process
is out of control when it is in fact in control. pg Il, Beta error known as the miss rate
happens when we fail to reject the null hypothesitsthe alternative is actually true. This
means that the operator concluded the processneantrol when it was in fact out of
control.

The average run length (ARL) is the average nurobpbints that is needed to detect
an out of control condition. Large in-control ARBsd small out of control ARLs are
desired. ARL calculations can become quite corapid as documented in the
literature. For example, [13] models control charssng a Markov chain approach to
evaluate the ARL when supplementary run rules ppdied. [14] and [15] look at using
the EWMA control chart instead of the X chart andluate different methods of
computing the ARL properties of EWMA control chartd 6] studies the effect of using
run rules on X charts. There are many other adgaim the research of ARL as seen in
the thousands of research advances documentee iettature.

3. Modeling Details

It is common in large industrial environments ted#housands SKUs in inventory or on
retail shelves. Inventory adjustments requirethatSKU level (when inventory is found
to be inaccurate) is random from a process perspeahd relatively rare. As such, we
assume the number of inventory adjustments per $&KUbllow a Poisson process.
Comprehension of such complex composites of anreemgopulation is effectively

impossible to fathom as a typical retail environtinesuld have thousands of SKUs. As
the number of SKUs becomes large, measures faiabl@cmodeling must be taken to
collapse the individual SKU distributions to a mgeable number of subpopulations.
This collapsing process is justified by our obs&ore of inventory adjustments in large



retail environments. For example, if you consitlex electronic department in a large
retail environment, individual DVDs, regardlesstbé title, behave statistically similar.
Such observations have been made countless tintes investigation of large inventory
systems.

As we will describe, we pursue several progressamues to examine the nature of
sampling from a population that is the result ofnpngubpopulations. In essence, we
make the assumption that our populations of inugraoljustments can be modeled as a
set of subpopulations. As a result, the populatemesmixture distributions of finite sets
of subpopulations. In what follows, there is ahhigvel discussion of the modeling
efforts that include the approaches of enumera@own probability. Preliminary
simulation results of scenarios using large samplees have been explored and are
briefly introduced in the poster session.

3.1. Enumeration

We assume that an inventory system population canrdpresented by five sub-
populations. Once the pdf is described as a mextdirfive Poisson subpopulations, the
expected value and variance for the populationgasdy determined. With these values,
the control limits of the classic C control chasihdbe calculated. Finally, the type | and
Il error rates for the example problems are obthimsing complete enumeration.
Solving these examples using complete enumeratieates a foundation of this work
that supports extensions of the results by progi@dionfident basis for verification.

3.1.1. Method

The method used to solve the aforementioned exangdleur problem is described in
this section. This includes a numerical examplé shaws how the results are calculated.
The notation used in our model to solve these prablis shown below:

oc;= proportion of the population represented byipdf

A; = Poisson arrival rate of thi population

Xi = random variable representing the number of inmgnadjustments from the
sample population

Z; = random variable representing subpopulation

Y = random variable that consists of the sum of @daas forX;

n = number of SKU’s sampled to assess inventorysaatjents for the population
m = number of subpopulations (assumed five for phaiser)

Aside from the notation, it is also important totexdghat the number of inventory
adjustmentsX;, in a subpopulation is representative of the nundfeadjustments that
have to be made for a specific SKU. For example)vientory is checked and records
show that there should be 55 units in stock andetlage only 50 units, an inventory
adjustment of 5 units would be required. When naymg any process with sampled



observations, the collection of observations isemftsummarized by summing the
individual observation for a given sampling perioBor our effort, we call this random
variableY, and it follows this expression:

Wheren represents the number of SKUs being samp{ed. assumed to be a mixture
of m subpopulations and follows the pdf describe(R)

fxi =o¢q f,q + ¢y f0 + oo+ ¢, £, Where, X1 a; =1 (2)

Where Z; is the variable of sub population This mixture population closely
resembles mixture distributions found in populaability texts [17].

3.1.2. Constructing an Example

The first step to solving our example problem isd&iermine the expected value and
variance of a mixture distribution example. Thepested value and variance are
determined by using basic expected value operatondsis shown in [18]. For our
application, we use a mixture of Poisson distributions, and the resulting expected
value,E(X) and variance, VaX) are as follows:

E(X;) = X%, o« E(Z) (3)
Var(X;)) = %, o [(A)? + 0] — (X2 o< A)? (4)

Wherec; is the proportion of the population representedhsy pdf i, andi; is the
Poisson arrival rate of th& population.

The next step is to determine what the controltBrof this problem are. This is done
using the following equations:

UCL = nE[X;] + 3 nVar[X;] (5)
LCL = nE[X;] — 3 ynVar[X;] (6)

Where,n is the number of SKUs sampled, aXds a random variable that represents
the number of inventory adjustments in the sampfaufation.

Now that these equations have been introduced, amme with m = 5
subpopulations and = 2 SKUs sampled is presented. The problem hagallowing
parameters:

4; =0.25, 0.50, 0.75, 0.20, 0.30
o; = 0.15, 0.20, 0.05, 0.40, 0.20



Once these parameters are preser€kl;) is computed according to (3), and it is
determined to be 0.315. Similarly, the \/g)(is computed according to (4), and it is
0.337. Next, an UCL = 4.74 and LCL = -2.22 are cated using (5) and (6),
respectively.

Now that the control limits have been establistwmnplete enumeration is used to
exhaust all possible numerical combinations ofrthmber of inventory adjustments for
the two SKUs being sampled. For example, the oolybination forY=0 is X;=0 and
X>=0. Therefore, the probability &0 is simply the Pd;=0)*Pr(X,=0). This process is
carried out all the way t¥=11, which consists of 12 different combinations<gfandX..
After enumeratingY=11, the cumulative probability sums to 1 usingensignificant
digits, and it can be concluded that practicallypalssible combinations of; and X,
have been exhausted. Table 1 presents the ptifisoscenario.

Table 1: Cumulative Probability for Example Prable

Cumulative Probability Example
Y =X1+X2 Prob(Y) Cum Prob

0

0.54375953

0.54375953

0.32079783

0.864557361

0.104350788

0.968908149

0.025076815

0.993984964

0.004989009

0.998973973

0.000867797

0.99984177

0.000135831

0.999977601

1.94586E-05

0.999997059

2.58E-06

0.999999639

||V |IWIN]|F

3.19167E-07

0.999999958

[
o

3.70631E-08

0.999999995

[y
[y

4.0588E-09

1

The final step is to determine the type | erroerar this example. The type | error
rate calculation for this example is done using:

p =1—(P[X;+X, < UCL]— P[X;+ X, <LCL)]) (7)

In this equation, if the LCL is calculated to bedehan zero, it is set to zero. Our
problem has an UCL = 4.74 and a LCL = 0. To fihd type | error, all the possible
combinations ofX; + X; that are less than or equal to 4 must be summedaniracted
from 1. This is relatively easy considering thltad the possible combinations have

already been enumerated. Using this informati@ntyipe | error rate for our example
turns out to be 0.001026.



3.2. Modeling Using Conditional Probability

This section examines using conditional probabsitio calculate both the type | and type
Il error rates of mixture distribution problems. hel use of conditional probabilities
greatly simplifies the calculations required to aietine these errors, making its
application to our problem advantageous. Applyoogpditional probabilities to solve
type | and type Il errors for mixture distributiorserves as a practical method to
computing these errors.

3.2.1. Modeing

This section describes the methods for which caortht probabilities are calculated.
The derivation of equations for the type | erroluea forn=2, 3, 4, and 5 are shown as
derived in [18] and [19]. First, when 2 randomrmgées of SKUs are collected, the total

number of inventory adjustments for the samplangply/ the sum ofX; and X, (or n=2,
using our notation).

Using the UCL for a sample of 2,
P[X, + X, < UCL]
= X3Lo P[X1] X P[X, < (UCL — X,)] (8)

Using the LCL for a sample of 2,
P[X, + X, < LCL]

= YL, P[X,] x P[X, < (LCL — X,)] (9)

The probability of a type | error wher2 is,

1-p = P[X, +X, <UCL] - P[X; + X, < LCL]

p’ =1-(P[X, + X, < UCL] - P[X, + X, < LCL]) (10)

Using the UCL for a sample of 3,



P[X, + X, + X; < UCL]
=YY, P[X,]P[X, + X5 < (UCL — X,)]

=YY PLX ][ Syt ™ PIX,IP[Xs < (UCL — X, — X,)]] (11)

Using the LCL for a sample of 3,

PlX, + X, + X3 < LCL]

ZLCLOP[X1]P[X2 + X3 < (LCL — X;)]
ZLCLOP[Xl][ZLCL ¥P[X,]P[Xs < (LCL — X, — X,)]] (12)

Therefore, using the probability of being withiretrange of the control limits, the
type | error ratep’, is

1-p’ = P[X; + X, + X3 < UCL] - P[X; + X, + X5 < LCL]
p’'=1-(P[X, + X, + X3 S UCL] - P[X; + X, + X5 < LCL]) (13)

Using the UCL for a sample of 4,

PIXi+X,+X;+ X, <UCL]

ZUCLOP[Xl] X P[X, + X5+ X, < (UCL — X,)]
= XYLy P[X1] X [Syete™ PIX2] X P[Xs + X, < (UCL — X, — X,)]]

= YL, PX,] x [2”“ *1plx,] x [Z”CL X172 plx,] x P[ X, < (UCL — X, — X, — X3)]]] (14)



Using the LCL for a sample of 4,

P[X, + X, + X5 + X, < LCL)
= YL P[X,] X P[X, + X3 + X, < (LCL — X,)]
= YL PIX, ] X [S35 PIX,] X P[Xs + X, < (LCL — X, — X,)]]

= YL, P[X,] X [ZLCL *1p[x,] x [ZLCL X pX;1x P[X, < (LCL— X, — X, — X3)]]]  (15)

Therefore, using the probability of being withiretrange of the control limits, the
type | error ratep’, is

1-p’ = P[X; + X, + X5+ X, <UCL] - P[X; + X, + X5 + X, < LCL]
p'=1-(P[X,+X,+ X+ X, <UCL] - P[X; + X, + X5 + X, < LCL]) (16)

Using the UCL for a sample of 5,

PIX, + X, + X; + X, + X5 < UCL]

ZUCLOP[Xl] X P[X2 + X3+ X, + X5 < (UCL Xl)]
= TYL PIX,] X [Syt ™ PIX,] X P[Xs + X, + X5 < (UCL — X, — X,)]]
= TYLPIX,] X [Syto™ PIX,] X [Eyemo 2 P[X3] X P[ Xy + X5 < (UCL — X, — X, — X3)]]]

ZUCLOP[Xl [ZUCL X1P [ZUCL X1— XZP [X3 [ZUCL X1—-Xp— X3P[X4] x P[XS] <

(UCL — X; — Xp — X5 — X4)]]]] (17)

Using the LCL for a sample of 5,

10



PIX, + X, + X3 + X, + X5 < LCL]
=YL PIX,] X P[Xy + X5 + X4 + X5 < (LCL — X,)]
= T PIX, ] X [S350 PIX,] X P[Xs + X4 + X5 < (LCL — X, — X,)]]
= YKo PLIX1] X [Byis™ PIX] X [Bxis™ 2 PIX3] X P[ Xy + X5 < (LCL — X1 — X, — X3)]]]

= T PIX ] X [Shsg  PIX,] X [Saesy T2 PIXs] X 250y 2 P[X,] X P[Xs) <

(LCL — X, — X, — X5 — X,)]]] (18)

Therefore, using the probability of being withirettange of the control limits, the
type | error ratep’, is

1-p = P[X,+X, + X5+ Xy + Xs SUCL] - P[X, + X, + X5 + X, + X5 < LCL]

P’ =1-(P[X;+X,+ X5+ X, + X5 < UCL] - P[X; + X, + X5 + X, + X5 < LCL)) (29)

We have shown a probabilistic approach to deterrttieeType | and Il errors for
sample sizes of 2, 3, 4, and 5. To compute themdeweloped a model in C++. The
program computes the Type | errors for differenluga of <, 4, m, andn using
conditional probabilities. To make changes tovhkies ofc andA in the model, the
user modifies input values. To alter the numbersobpopulationsm, additional
constants forx andA with input values for each must be created. Rin& change the
value of the number of SKUs sampletl,the constant calledim in the code must be
altered to represent the desired number of SKUset@ampled. Using this code, the
results for the Type | and Il errors for problenesi@iningn=2, 3, 4, and 5 are obtained.

4. Resaults

4.1. Problem Structures Considered

This section provides the type | errors for a bedahset of experimental conditions
across values o andc; for a givenm andn. These different structures are examined in
the next section. The various problem structuresgnted are for examples consisting of
n=2 andn=3 SKUs being sampled. These problem structuresdasigned to give a

11



broad representation of possible designs for realdvmixture distributions when the
number of subpopulations is five. The modificaomade to each of these models
consist of the following alterations to andA:

oc: Skewed Left (SL), Skewed Right (SR), and Fixed (F

A: Equal, Minimum-Maximum, Maximum-Minimum, Weightedleft (WL),
Weighted Right (WR)

Examples of the individual parameter values of eatlhe scenarios can be seen
below:

« - SL:0.025, 0.025, 0.025, 0.025, 0.9
SR: 0.9, 0.025, 0.025, 0.025, 0.025
F:0.2,0.2,0.2,0.2,0.2

A- Equal: 0.5, 0.5, 0.5, 0.5, 0.5
MinMax: 0.1, 0.2, 0.3, 0.4, 0.5
MaxMin: 0.5, 0.4, 0.3, 0.2, 0.1
WL:0.9,0.1,0.1,0.1,0.1
WR:0.1,0.1,0.1,0.1,0.9

We have taken these scenarios and developed aofofidl different models to be

examined for each value of The type | errors for each of these models hogva in the
next section.

4.2. ResultsUsing Enumeration
This section provides the results for all of thembmations of problem structures

discussed in the previous section. Using thesis ik type | error rates for=2 can be
summarized in Table 2.

Table 2: Type | error fon=2

12



Type | Error for n=2

Lambda

Equal

Min-Max

Max-Min

Weighted Left

Weighted Right

Alpha

Skewed Left

0.003659847

0.016830027

0.029747787

0.029875375

0.008513164

Skewed Right

0.003659847

0.029747787

0.016830027

0.008513164

0.029875375

Fixed

0.003659847

0.004914922

0.004914922

0.010460924

0.010460924

This table shows that the combinations have tygredrs that are very small, but they
exceed the traditional view of .0027 under the siasssumption of normality. They
compare favorably if the probability of a type raris designed to be less than 5%.
There are some differences in the type | errord,iiis important to note that all of the
values are small enough to consider the model teffleetive in terms of type | error for
all of the different problem structures. There algo several patterns evident in this
chart. First, is when the values bhre equal, the type | error for all valuescoére the
same. This logically makes sense because the &{&X)var(X) will be the same for all
three structures. Next, when the valuescdadre fixed, the type | error for the Min-Max
and Max-Min structures are the same because tlalaabns involved are the same, the
numbers are just multiplied in reverse order. $ame can be said for fixedvalues for
the weighted left and weighted right structureshe Tinal patterns in the chart are the
diagonal values of the Min-Max and Max-Min, and glded Left and Weighted Right.
These diagonal values are equal for both skewé¢dief skewed righ& values. Once
again, this is because the numbers being multipdied essentially the same as those
being multiplied in reverse order. These pattesins useful to note, but the most
important result of the graph is that all of theégee | error values are significantly small,
showing that the model is effective for a broadcspen of problem structures. The type
| error rates fon=3 are be summarized in Table 3.

Table 3: Type | error fon=3

Type | Error for n=3

Lambda
Equal Min-Max [Max-Min |Weighted Left |Weighted Right
Skewed Left 0.004455981| 0.003748813| 0.008903452 0.01098578 0.005020188
Alpha |Skewed Right | 0.004455981| 0.008903452| 0.003748813 0.005020188 0.01098578
Fixed 0.004455981| 0.016825077| 0.016825077 0.024336803 0.024336803

This table shows that the type | errors fief3 follow a very similar trend to the=2

values. All of the patterns for the=2 values are also evident in this chart. The most
important conclusion that can be drawn is onceraghat all of these type | errors are
small enough to demonstrate that the model is @ffedor all of the different problem
structures.
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4.3. ResultsUsing Conditional Probability

The first step in analyzing the results with thppeach using the C++ program is to
compare the results for=2 andn=3 to the results that were obtained from complete
enumeration for the Type | and Il errors. As meméd earlier, the complete enumeration
results serve as a foundation to compare the seshittined from our program to confirm
their accuracy. Results using the conditional pbility approach are compared to the

results using complete enumeration.

Specificallg, compare the table of the type |

errors obtained from the program to the table pétyerrors obtained from the complete
enumeration. The type | errors for all of the stimues examined are nearly identical for
bothn=2 andn=3.
The next step is to increase the valua & try and reach a more practical level. For
this work, the value oh is increased to 4 and 5. The type | error ratenf4 are

summarized in Table 4.

Table 4: Conditional Probability Type | Errors for4

Type | Error for n=4

Lambda
Equal Min-Max |Max-Min |Weighted Left |Weighted Right
Skewed Left 0.004328 0.003503 0.017428 0.019515 0.008041
Alpha [Skewed Right 0.004328 0.017428 0.003503 0.008041 0.019515
Fixed 0.004328 0.010013 0.010013 0.01555 0.01555

This shows the type | errors for all the problemudures examined in this paper

when the sample size is four.

It is also evidéat the patterns that were illustrated in

the charts fon=2 andn=3 are still present. The type | error ratesrfeb are summarized
in Table 5.

Table 5: Conditional Probability Type | Errors for5

Type | Error for n=5

Lambda
Equal Min-Max |Max-Min |Weighted Left |Weighted Right
Skewed Left 0.003989 0.003126 0.005423 0.007335 0.00611
Alpha [Skewed Right 0.003989 0.005423 0.003126 0.00611 0.007335
Fixed 0.003989 0.005951 0.005951 0.009955 0.009955

The results fon=4 andn=5 show that our method provides small valuestiertype
| error rates. Furthermore, these values illusteatendency to decrease as the value of
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increases.

This is significant, because in practibe method of using a mixture

distribution to monitor inventory accuracy woul@dly involve using higher values af
Low type | error are realized, and as expected,réte continues to decrease as the
samples size increases.
We now investigate the type Il error rates of smaalll large shifts fon = 2, 3, 4, and
5. This is done by assuming that the underlyirggridhution is going to be the model of
fixed « values and equdl values (assumed “in-control” condition), and tiyeet Il errors
are determined by overlaying each scenario on #simed “in-control” condition.
Making this assumption provides a basis to comthédype Il error rates. This does not
provide a complete examination of all of the typertor rates, but it presents an idea of
how these models perform in terms of type Il errors
The type Il errors fon=2 are summarized in Table 6.

Table 6: Type Il Errors fan=2

Type Il Error for n=2

Lambda

Equal

Min-Max

Max-Min

Weighted Left

Weighted Right

Skewed Left

0.996340153| 0.996810259| 0.999958387|  0.999796682 0.96985181
Alpha |Skewed Right | 0.996340153| 0.999958387| 0.996810259|  0.96985181 0.999796682
Fixed 0.996340153| 0.999255895| 0.999255895|  0.997371137 0.997371137

As seen in this table, the type Il errors are elatively large and demonstrate that
small shifts ink are hard to detect. The type Il errorsiie3, 4, and 5 respectively are
summarized in the following tables:

Table 7: Type Il Errors fan=3

Type Il Error for n=3

Alpha

Lambda
Equal Min-Max |Max-Min |Weighted Left |Weighted Right
Skewed Left 0.995544019 | 0.996251187 | 0.999982229 |  0.999905216 0.955404222

Skewed Right

0.995544019

0.999982229

0.996251187

0.955404222

0.999905216

Fixed

0.995544019

0.999365281

0.999365281

0.997905047

0.997905047

Table 8: Type Il Errors fan=4
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Type Il Error for n=4
Lambda
Equal Min-Max |Max-Min |Weighted Left |Weighted Right
Alpha |Skewed Left 0.995672 0.996497 0.999999 0.999999 0.944491
Skewed Right 0.995672 0.999999 0.996497 0.944491 0.999999
Fixed 0.995672 0.999657 0.999657 0.999999 0.999999

Table 9: Type Il Errors fan=5

Type Il Error for n=5
Lambda
Equal Min-Max |Max-Min |Weighted Left |Weighted Right
Alpha |Skewed Left 0.996011 0.996874 0.999999 0.999999 0.936976
Skewed Right 0.996011 0.999999 0.996874 0.936976 0.999999
Fixed 0.996011 0.999831 0.999831 0.999999 0.999999

These tables show that the performance is singlérd results fon=2. This gives us
an idea of how our model performs in terms of titpgrors.
To represent a large shift, the values Adn each of our problem structures will be
multiplied by 3. This means that if the MinMax ptem structure is multiplied by 3, the

shifted values would change to .3, .6, .9, 1.2, IFbr these large shifts, we once again
assume that the underlying distribution is goingbéothe model of fixedc values and

equala values (at the original values,) but this time #otual distributions are assumed
to be the inflated values of 3 times the origihakalues for each structure. The following

tables present the type Il errors fox2, 3, 4, and 5 and inflated values of 3 times the
original A values.

Table 10: 1 Inflated 3 Times Type Il Error far=2

A Inflated 3 Times Type Il Error for n=2

Lambda

Equal

Min-Max

Max-Min

Weighted Left

Weighted Right

Alpha

Skewed Left

0.815263245

0.835176042

0.996033985

0.990227394

0.459125164

Skewed Right

0.815263245

0.996033985

0.835176042

0.459125164

0.990227394

Fixed

0.815263245

0.948812464

0.948812464

0.915564198

0.915564198

Table 11: 1 Inflated 3 Times Type Il Error far=3
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A Inflated 3 Times Type Il Error for n=3
Lambda
Equal Min-Max [Max-Min [Weighted Left |Weighted Right
Skewed Left 0.702930435 | 0.737237134 | 0.996249783 |  0.990395103 0.277976337
Alpha [Skewed Right |0.702930435 | 0.996249783 | 0.737237134| 0.277976337 0.990395103
Fixed 0.702930435 | 0.926219341 | 0.926219341|  0.899825346 0.899825346

Table 12: 1 Inflated 3 Times Type Il Error far=4

A Inflated 3 Times Type Il Error for n=4
Lambda
Equal Min-Max |Max-Min |Weighted Left [Weighted Right
Skewed Left 0.606680 0.652683 0.996957 0.991967 0.168131
Alpha |Skewed Right | 0.606680 0.996957 0.652683 0.168131 0.991967
Fixed 0.606680 0.908847 0.908847 0.889443 0.889443

Table 13: 1 Inflated 3 Times Type Il Error far=5

A Inflated 3 Times Type Il Error for n=5
Lambda
Equal Min-Max |Max-Min |Weighted Left [Weighted Right
Skewed Left 0.525048 0.582937 0.997601 0.993082 0.101876
Alpha |Skewed Right | 0.525048 0.997601 0.582937 0.101876 0.993082
Fixed 0.525048 0.894962 0.894962 0.881996 0.881996

These tables confirm that our model is much moiecg¥e at detecting type Il errors
when the shift is larger. In fact, there is mdnart a 50% chance that shifts of these
orders will be detected with a sample of five oa #ery next sample. These tables also
show the trend of the type Il errors decreasinthasample size increases.

5. Conclusions

There are several conclusions that are drawn aftempletely enumerating the mixture
distribution problem. The first is that solving aample problems with complete
enumeration establishes a foundation for furthedyais. Specifically, the sample sizes
of 4 or 5 become quite detailed; therefore, we@witom complete enumeration to using
probability as shown in [18] and [19]. The resuitsm complete enumeration were
utilized to validate the [18] models as deployedai€++ program. In our results, we
examine a wide variety of mixture distribution stures. Inspecting these different
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structures shows that there are several patternsinafarities that can be identified
between different structures. In essence, wetfiatiour approach to using the C chart as
a means for monitoring inventory adjustments yiefels/ low Type | errors and provides

a great deal of sensitivity to detection of sigrafit changes. Our analysis as presented
here is limited to samples sizes of five, and wadize that extensions to sample sizes of
25 to 100 will be more reasonable in application.

At the poster session, we will present some prelami findings based upon
simulation results that demonstrate the effectisenef the SPC approach to more
realistic situations. We continue to work closalith the industry to investigate and
support the application of this approach.
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