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Abstract 

Inventory accuracy is critical in most industrial environments such as 
distribution, warehousing, and retail.  Many companies use a technique called 
cycle counting and have realized outstanding results in monitoring and 
improving inventory accuracy.  The time and resources to complete cycle 
counting are sometimes limited or not available.  In this work, we promote 
statistical process control (SPC) to monitor inventory accuracy.  Specifically, 
we model the complex underlying environments with mixture distributions to 
demonstrate sampling from a mixed but stationary process.  For our particular 
application, we concern ourselves with data that result from inventory 
adjustments at the stock keeping unit (SKU) level when a given SKU is found 
to be inaccurate.  We provide estimates of both the Type I and Type II errors 
when a classic C chart is used.  In these estimations, we use both analytical as 
well as simulation results, and the findings demonstrate the environments that 
might be conducive for SPC approach. 

1. Introduction 

Inventory record accuracy is vital to any company with high levels of inventory. Failure 
to keep accurate inventory records can result in loss of product, time wasted correcting 
records, product not in stock for consumers, and overstock of items.  Inventory accuracy 
is realized when the actual on hand inventory equals recorded inventory. This has become 
a challenging task for some environments (e.g. large retail stores, distribution centers, 
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etc.) because they often have thousands of different stock keeping units (SKU’s) in their 
inventory.  

Cycle counting is currently the most common and established method used by 
companies to keep inventory record accuracy.  Cycle counting has generally replaced 
annual physical inventory checks. Cycle counting has been accepted as a better method as 
it doesn’t require the entire environment to shut down to count SKU’s. Physical inventory 
checks are not only tedious and stressful, and they can result in errors due to the time 
constraints on counting the SKU’s. Cycle counting counts subsets of inventory to check 
that the actual on hand inventory equals the recorded inventory. If there are differences 
between the two, the errors are corrected. Cycle counting has been found to be less 
disruptive to daily operations, provides ongoing measure of inventory accuracy, and can 
be molded to focus on items with higher value.   

It is believed that with the correct execution of cycle counting that any company can 
have 95% or better accuracy.  The dilemma for a large company is that it takes a large 
amount of resources, labor hours, and money to ensure that cycle counting is 
implemented correctly. Comprehensively for large environments there is a need for a 
method to keep high levels of inventory accuracy while minimizing the use of available 
resources. As companies strive to be more efficient, the cost competitive pressures mount 
on the effective use of resources. 

Statistical Process Control (SPC) is a proven statistical method used to monitor 
processes and improve quality using variance reduction. SPC utilizes random samples to 
monitor and control a process to ensure it is operating correctly and producing 
conforming parts. In our inventory accuracy domain there is an opportunity to utilize 
random samples rather than the comprehensive approach of cycle counting, but 
statistically valid approaches must be utilized as control type I and type II errors. As such 
statistical process control is an ideal application for monitoring inventory accuracy.  

The two methods that can be used are a P-chart and a C-chart. A P-chart could be 
used to monitor the percent of SKU’s in a sample that the observed inventory level does 
not match the recorded inventory level. This means a random sample of n SKU’s is 
selected and checked to see if the actual on hand inventory equals the recorded inventory. 
The numbers that don’t equal each other is divided by the total sample size, which gives 
an estimate of the inventory accuracy, or P. Over time P could be plotted on a P chart. A 
C-chart could be used to monitor the collective number of item adjustments for a set of 
randomly observed SKU’s where the on hand inventory failed to match the recorded 
inventory. For a C-chart, an inspection unit of size n is sampled, and the observed number 
of nonconformities is plotted in relationship to time. 

This research focuses on SPC, specifically C-charts, as an acceptable substitute for 
cycle counting for monitoring inventory record accuracy. The research looks at a 
population, which is represented by a large retail store or equivalent environment with 
thousands of SKU’s. The likelihood of a single SKU being accurate at a given time is 
assured to follow or follows a Bernoulli process, and when a given SKU if found to be 
inaccurate, the absolute value of the inventory adjustment follows a Poisson process. 
Each SKU within an operational unit can behave uniquely carrying its own Poisson rate. 
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This violates the basic assumption of SPC that each sampled unit follows the same 
distribution. Therefore we use a mixture distribution to comprehensively model each of 
these subpopulations. A C-chart monitors the number of inventory adjustments made to a 
specific SKU. From there, we inspect the Type I and Type II error rates of the C-chart.  

 
2. Background Literature 

 
This review provides an overview of literature involving cycle counting, SPC, and 
associated error rates.  
 
2.1. Cycle Counting 

 
[1] describes cycle counting as a process where trained individuals inspect a finite 
number of SKU’s in inventory and compare the observed on hand items to the recorded 
inventory levels. These trained individuals examine the cause of the errors in the 
inventory and take corrective action when justified. Cycle counting is designed to 
comprehensively examine all the SKU’s over time through sequential and collective 
counting exercises. The primary goals of cycle counting are to identify the causes of the 
errors, correct the conditions causing the errors, maintain a high level of inventory record 
accuracy, and provide a correct statement of assets [2].  [3] states that with the proper use 
of cycle counting, inventory record accuracy above 95% can be consistently maintained. 
[4] and [5] portray cycle counting as a quality assurance process that emphasizes 
correcting errors in inventory accuracy. There are various approaches of cycle counting 
including the geographical method [6], random sampling [3], the ABC method [7], [8], 
[9] and process control [2]. [1] says that you should not accept a one system fits all 
approach.  In complex operations, you may have a count program with multiple 
approaches, and the program should be customized to specific operational and business 
needs. 

 
2.2. Statistical Process Control 
 
It is well known that it is impossible to inspect or test the quality into a product; the 
product must be built right the first time. This implies that a process must be stable and 
that all individuals involved with the process must continually seek to improve process 
performance and reduce variability in key parameters [10]. [10] states that there is a four 
step process for Statistical Process Control; measure the process, eliminate undesirable 
variation from the process, monitor the process, and continuously improve the process. 
[10] also states that there are seven common tools that are used to monitor and improve 
processes: check sheet, pareto chart, flow chart, cause and effect diagram, histogram, 
scatter diagram, and control charts. 

The most commonly used of these tools is the control chart, and it is the tool that this 
paper is examining as a method to monitor inventory accuracy. The idea of a control 
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chart was first proposed by Walter Shewhart ([11] and [12].) A typical control chart plots 
the averages of measurements of a quality characteristic in samples taken from the 
process over time. The chart has a center line (CL) and upper and lower control limits 
(UCL and LCL). The center line represents the average of the process.  If a given data 
point exceeds the thresholds as established by the UCL or LCL or other non-random 
trends appear, the process is declared out of control and operating with unknown sources 
of variability [10.] 

 
2.3. Type I and Type II Errors for Control Charts 
 
Control limits are generally set at 3 standard deviations away from the mean of the 
population. When a data point falls out of these limits, it indicates that the process is not 
stationary or out of control. There are two types of errors that are associated with control 
charts. They are type I and type II errors. The type I, alpha error known as the false alarm 
rate occurs when the null hypothesis is rejected, but it is actually true. This happens when 
a point is plotted outside of the control limits when the process is generating observations 
in accordance to the null hypothesis. This means the operator concludes that the process 
is out of control when it is in fact in control. Type II, Beta error known as the miss rate 
happens when we fail to reject the null hypothesis but the alternative is actually true. This 
means that the operator concluded the process was in control when it was in fact out of 
control.  

The average run length (ARL) is the average number of points that is needed to detect 
an out of control condition. Large in-control ARLs and small out of control ARLs are 
desired.   ARL calculations can become quite complicated as documented in the 
literature. For example, [13] models control charts using a Markov chain approach to 
evaluate the ARL when supplementary run rules are applied. [14] and [15] look at using 
the EWMA control chart instead of the X̄  chart and evaluate different methods of 
computing the ARL properties of EWMA control charts.  [16] studies the effect of using 
run rules on X̄  charts.  There are many other advances in the research of ARL as seen in 
the thousands of research advances documented in the literature. 

 
3. Modeling Details 

It is common in large industrial environments to have thousands SKUs in inventory or on 
retail shelves.  Inventory adjustments required at the SKU level (when inventory is found 
to be inaccurate) is random from a process perspective and relatively rare.  As such, we 
assume the number of inventory adjustments per SKU to follow a Poisson process.  
Comprehension of such complex composites of an entire population is effectively 
impossible to fathom as a typical retail environment could have thousands of SKUs.  As 
the number of SKUs becomes large, measures for tractable modeling must be taken to 
collapse the individual SKU distributions to a manageable number of subpopulations.  
This collapsing process is justified by our observations of inventory adjustments in large 
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retail environments.  For example, if you consider the electronic department in a large 
retail environment, individual DVDs, regardless of the title, behave statistically similar.  
Such observations have been made countless times in our investigation of large inventory 
systems. 

As we will describe, we pursue several progressive venues to examine the nature of 
sampling from a population that is the result of many subpopulations.  In essence, we 
make the assumption that our populations of inventory adjustments can be modeled as a 
set of subpopulations. As a result, the populations are mixture distributions of finite sets 
of subpopulations.  In what follows, there is a high level discussion of the modeling 
efforts that include the approaches of enumeration and probability.  Preliminary 
simulation results of scenarios using large samples sizes have been explored and are 
briefly introduced in the poster session. 

 
3.1.  Enumeration 

We assume that an inventory system population can be represented by five sub-
populations.  Once the pdf is described as a mixture of five Poisson subpopulations, the 
expected value and variance for the populations are easily determined. With these values, 
the control limits of the classic C control chart can be calculated.  Finally, the type I and 
II error rates for the example problems are obtained using complete enumeration.  
Solving these examples using complete enumeration creates a foundation of this work 
that supports extensions of the results by providing a confident basis for verification.   

 
3.1.1.  Method  

 
The method used to solve the aforementioned examples of our problem is described in 
this section. This includes a numerical example that shows how the results are calculated.  
The notation used in our model to solve these problems is shown below: 
 
 ��= proportion of the population represented by pdf i 

�� = Poisson arrival rate of the ith population 
Xi = random variable representing the number of inventory adjustments from the 
sample population 
Zi = random variable representing subpopulation i 
Y = random variable that consists of the sum of the values for Xi  
n = number of SKU’s sampled to assess inventory adjustments for the population 
m = number of subpopulations (assumed five for this paper) 
 

Aside from the notation, it is also important to note that the number of inventory 
adjustments, Xi, in a subpopulation is representative of the number of adjustments that 
have to be made for a specific SKU.  For example, if inventory is checked and records 
show that there should be 55 units in stock and there are only 50 units, an inventory 
adjustment of 5 units would be required. When monitoring any process with sampled 
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observations, the collection of observations is often summarized by summing the 
individual observation for a given sampling period.  For our effort, we call this random 
variable Y, and it follows this expression: 

 
� � �� � �	�. . ��� (1) 

 
Where n represents the number of SKUs being sampled. Xi is assumed to be a mixture 

of m subpopulations and follows the pdf described in (2) 
 
 fXi = �� f�� � �	 f�	 � � � �� f��  where, ∑ ��

�
��� � 1           (2) 

 
Where Zi is the variable of sub population i.  This mixture population closely 

resembles mixture distributions found in popular probability texts [17]. 
 

 3.1.2. Constructing an Example 
 

The first step to solving our example problem is to determine the expected value and 
variance of a mixture distribution example.  The expected value and variance are 
determined by using basic expected value operators and is shown in [18].  For our 
application, we use a mixture of m Poisson distributions, and the resulting expected 
value, E(Xi) and variance, Var(Xi) are as follows: 

 
����� �  ∑ �� ������

���  (3) 
� !���� � ∑ �� "�λ��	 ��

��� λ�$ % �∑ ��
�
��� λ��	 (4) 

 
     Where �� is the proportion of the population represented by the pdf i, and �� is the 
Poisson arrival rate of the ith population.   

The next step is to determine what the control limits of this problem are.  This is done 
using the following equations: 

 
UCL � )�"��$ �  3 +)� !"��$ (5) 

LCL � )�"��$ %  3 +)� !"��$ (6) 
 

Where, n is the number of SKUs sampled, and Xi is a random variable that represents 
the number of inventory adjustments in the sample population.   

Now that these equations have been introduced, an example with m = 5 
subpopulations and n = 2 SKUs sampled is presented.  The problem has the following 
parameters: 

 
�� = 0.25, 0.50, 0.75, 0.20, 0.30 
�� = 0.15, 0.20, 0.05, 0.40, 0.20 
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Once these parameters are presented, E(��) is computed according to (3), and it is 
determined to be 0.315.  Similarly, the Var(��) is computed according to (4), and it is 
0.337. Next, an UCL = 4.74 and LCL = -2.22 are computed using (5) and (6), 
respectively.  

 Now that the control limits have been established, complete enumeration is used to 
exhaust all possible numerical combinations of the number of inventory adjustments for 
the two SKUs being sampled.  For example, the only combination for Y=0 is X1=0 and 
X2=0.  Therefore, the probability of Y=0 is simply the Pr(X1=0)*Pr(X2=0).  This process is 
carried out all the way to Y=11, which consists of 12 different combinations of X1 and X2.  
After enumerating Y=11, the cumulative probability sums to 1 using nine significant 
digits, and it can be concluded that practically all possible combinations of X1 and X2 

have been exhausted.  Table 1 presents the pdf for this scenario.   
 

Table 1:  Cumulative Probability for Example Problem  
 

 

The final step is to determine the type I error rate for this example.  The type I error 
rate calculation for this example is done using: 

 
,’ � 1 % �."�� � �	 /  012$ %  ."�� � �	  3 212$� (7) 
 

In this equation, if the LCL is calculated to be less than zero, it is set to zero.  Our 
problem has an UCL = 4.74 and a LCL = 0.  To find the type I error, all the possible 
combinations of X1 + X2 that are less than or equal to 4 must be summed and subtracted 
from 1.  This is relatively easy considering that all of the possible combinations have 
already been enumerated.  Using this information the type I error rate for our example 
turns out to be 0.001026.   
 

Y = X1 + X2 Prob(Y) Cum Prob

0 0.54375953 0.54375953

1 0.32079783 0.864557361

2 0.104350788 0.968908149

3 0.025076815 0.993984964

4 0.004989009 0.998973973

5 0.000867797 0.99984177

6 0.000135831 0.999977601

7 1.94586E-05 0.999997059

8 2.58E-06 0.999999639

9 3.19167E-07 0.999999958

10 3.70631E-08 0.999999995

11 4.0588E-09 1

Cumulative Probability Example
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3.2. Modeling Using Conditional Probability 

This section examines using conditional probabilities to calculate both the type I and type 
II error rates of mixture distribution problems.  The use of conditional probabilities 
greatly simplifies the calculations required to determine these errors, making its 
application to our problem advantageous.  Applying conditional probabilities to solve 
type I and type II errors for mixture distributions serves as a practical method to 
computing these errors.   
 
3.2.1. Modeling 
 
This section describes the methods for which conditional probabilities are calculated.  
The derivation of equations for the type I error values for n=2, 3, 4, and 5 are shown as 
derived in [18] and [19].   First, when 2 random samples of SKUs are collected, the total 
number of inventory adjustments for the sample is simply the sum of X1 and X2 (or n=2, 
using our notation).   

Using the UCL for a sample of 2, 

 

."�� � �	 / 012$   

� ∑ ."��$ 4 ."�	 / �012 % ���$567
89�:   (8)   

Using the LCL for a sample of 2, 

."�� � �	 3 212$ 

� ∑ ."��$ 4 ."�	 3 �212 % ���$767
89�:  (9)   

The probability of a type I error when n=2 is, 

1 % ,’ �  ."�� � �	 / 012$ - ."�� � �	 3 212$ 

,’ � 1 % �."�� � �	 / 012$ - ."�� � �	 3 212$) (10)   

Using the UCL for a sample of 3,  
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."�� � �	 � �; / 012$ 

� ∑ ."��$."�	 � �; / �012 % ���$567
89�:   

� ∑ ."��$<∑ ."�	$."�; / �012 % �� % �	�$567=89
8>�: ?567

89�:  (11)   

Using the LCL for a sample of 3,  

."�� � �	 � �; 3 212$ 

� ∑ ."��$."�	 � �; 3 �212 % ���$767
89�:   

� ∑ ."��$<∑ ."�	$."�; 3 �212 % �� % �	�$767=89
8>�: ?767

89�:  (12)   

Therefore, using the probability of being within the range of the control limits, the 
type I error rate, ,’ , is, 

 

1 % ,’ �  ."�� � �	 � �; / 012$ - ."�� � �	 � �; 3 212$ 

,’ � 1 % �."�1 � �2 � �3 / 012$ - ."�� � �	 � �; 3 212$) (13) 

Using the UCL for a sample of 4,  

."�� � �	 � �; �  �A / 012$ 

� ∑ ."��$ 4 ."�	 � �; �  �A / �012 % ���$567
89�:   

� ∑ ."��$ 4 <∑ ."�	$ 4 ."�; �  �A / �012 % �� % �	�$567=89
8>�: ?567

89�:   

� ∑ ."��$ 4 <∑ ."�	$ 4 <∑ ."�;$ 4 ." �A / �012 % �� % �	 % �;�$567=89=8>
8B�: ?567=89

8>�: ?567
89�:  (14) 
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Using the LCL for a sample of 4,  

."�� � �	 � �; �  �A / 212$ 

� ∑ ."��$ 4 ."�	 � �; �  �A / �212 % ���$767
89�:   

� ∑ ."��$ 4 <∑ ."�	$ 4 ."�; �  �A / �212 % �� % �	�$767=89
8>�: ?767

89�:   

� ∑ ."��$ 4 <∑ ."�	$ 4 <∑ ."�;$ 4 ." �A / �212 % �� % �	 % �;�$767=89=8>
8B�: ?767=89

8>�: ?767
89�:  (15) 

Therefore, using the probability of being within the range of the control limits, the 
type I error rate, ,’, is, 

 

1 % ,’ �  ."�� � �	 � �; �  �A / 012$ - ."�� � �	 � �; �  �A 3 212$ 

,’ � 1 % �."�1 � �2 � �3 �  �4 / 012$ - ."�� � �	 � �; �  �A 3 212$) (16) 

Using the UCL for a sample of 5,  

."�� � �	 � �; �  �A � �D / 012$ 

� ∑ ."��$ 4 ."�	 � �; �  �A � �D / �012 % ���$567
89�:   

� ∑ ."��$ 4 <∑ ."�	$ 4 ."�; �  �A � �D / �012 % �� % �	�$567=89
8>�: ?567

89�:   

� ∑ ."��$ 4 <∑ ."�	$ 4 <∑ ."�;$ 4 ." �A � �D / �012 % �� % �	 % �;�$567=89=8>
8B�: ?567=89

8>�: ?567
89�:   

∑ ."��$ 4 E∑ ."�	$ 4 E∑ . E�;$ 4 <∑ ." �A$ 4 ."�D$ /567=89=8>=8B
8F�:

567=89=8>
8B�:

567=89
8>�:

567
89�:

�012 % �� % �	 % �; % �A�?GGG (17) 

Using the LCL for a sample of 5,  
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."�� � �	 � �; �  �A � �D / 212$ 

� ∑ ."��$ 4 ."�	 � �; �  �A � �D / �212 % ���$767
89�:   

� ∑ ."��$ 4 <∑ ."�	$ 4 ."�; �  �A � �D / �212 % �� % �	�$767=89
8>�: ?767

89�:   

� ∑ ."��$ 4 <∑ ."�	$ 4 <∑ ."�;$ 4 ." �A � �D / �212 % �� % �	 % �;�$767=89=8>
8B�: ?767=89

8>�: ?767
89�:   

� ∑ ."��$ 4 <∑ ."�	$ 4 <∑ ."�;$ 4 <∑ ." �A$ 4 ."�D$ /767=89=8>=8B
8F�:

767=89=8>
8B�:

767=89
8>�:

767
89�:

�212 % �� % �	 % �; % �A�??? (18) 

Therefore, using the probability of being within the range of the control limits, the 
type I error rate, ,’, is, 

 

1 % ,’ �  ."�� � �	 � �; �  �A � �D / 012$ - ."�� � �	 � �; �  �A � �D 3 212$ 

,’ � 1 % �."�1 � �2 � �3 �  �4 � �5 / 012$ - ."�� � �	 � �; �  �A � �D 3 212$) (19) 

We have shown a probabilistic approach to determine the Type I and II errors for 
sample sizes of 2, 3, 4, and 5. To compute them, we developed a model in C++.  The 
program computes the Type I errors for different values of �, �, m, and n  using 
conditional probabilities.  To make changes to the values of �  and � in the model, the 
user modifies input values.  To alter the number of subpopulations, m, additional 
constants for � and � with input values for each must be created.  Finally, to change the 
value of the number of SKUs sampled, n, the constant called dim in the code must be 
altered to represent the desired number of SKUs to be sampled.  Using this code, the 
results for the Type I and II errors for problems containing n=2, 3, 4, and 5 are obtained. 

 
4.      Results 

4.1. Problem Structures Considered 

This section provides the type I errors for a balanced set of experimental conditions 
across values of λI and �� for a given m and n.  These different structures are examined in 
the next section.  The various problem structures presented are for examples consisting of 
n=2 and n=3 SKUs being sampled.  These problem structures are designed to give a 
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broad representation of possible designs for real world mixture distributions when the 
number of subpopulations is five.  The modifications made to each of these models 
consist of the following alterations to �  and �: 

 
�: Skewed Left (SL), Skewed Right (SR), and Fixed (F) 

 
�: Equal, Minimum–Maximum, Maximum–Minimum, Weighted Left (WL), 

Weighted Right (WR) 
 
Examples of the individual parameter values of each of the scenarios can be seen 

below: 
 

�  -  SL: 0.025, 0.025, 0.025, 0.025, 0.9 

SR: 0.9, 0.025, 0.025, 0.025, 0.025 

 F: 0.2, 0.2, 0.2, 0.2, 0.2 

 � -  Equal: 0.5, 0.5, 0.5, 0.5, 0.5 

  MinMax: 0.1, 0.2, 0.3, 0.4, 0.5 

   MaxMin: 0.5, 0.4, 0.3, 0.2, 0.1 

  WL: 0.9, 0.1, 0.1, 0.1, 0.1 

  WR: 0.1, 0.1, 0.1, 0.1, 0.9 

We have taken these scenarios and developed a total of 15 different models to be 
examined for each value of n.  The type I errors for each of these models are shown in the 
next section. 

   
4.2. Results Using Enumeration 

This section provides the results for all of the combinations of problem structures 
discussed in the previous section.  Using these pdf’s the type I error rates for n=2 can be 
summarized in Table 2.  

 
Table 2:  Type I error for n=2  
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This table shows that the combinations have type I errors that are very small, but they 
exceed the traditional view of .0027 under the classic assumption of normality. They 
compare favorably if the probability of a type I error is designed to be less than 5%.  
There are some differences in the type I errors, and it is important to note that all of the 
values are small enough to consider the model to be effective in terms of type I error for 
all of the different problem structures.  There are also several patterns evident in this 
chart.  First, is when the values of � are equal, the type I error for all values of � are the 
same.  This logically makes sense because the E(X) and Var(X) will be the same for all 
three structures.  Next, when the values of � are fixed, the type I error for the Min-Max 
and Max-Min structures are the same because the calculations involved are the same, the 
numbers are just multiplied in reverse order.  The same can be said for fixed � values for 
the weighted left and weighted right structures.  The final patterns in the chart are the 
diagonal values of the Min-Max and Max-Min, and Weighted Left and Weighted Right.  
These diagonal values are equal for both skewed left and skewed right �  values.  Once 
again, this is because the numbers being multiplied are essentially the same as those 
being multiplied in reverse order.  These patterns are useful to note, but the most 
important result of the graph is that all of these type I error values are significantly small, 
showing that the model is effective for a broad spectrum of problem structures.  The type 
I error rates for n=3 are be summarized in Table 3.  

 
Table 3:  Type I error for n=3  

 

This table shows that the type I errors for n=3 follow a very similar trend to the n=2 
values.  All of the patterns for the n=2 values are also evident in this chart.  The most 
important conclusion that can be drawn is once again, that all of these type I errors are 
small enough to demonstrate that the model is effective for all of the different problem 
structures.  

Equal Min-Max Max-Min Weighted Left Weighted Right

Skewed Left 0.003659847 0.016830027 0.029747787 0.029875375 0.008513164

Skewed Right 0.003659847 0.029747787 0.016830027 0.008513164 0.029875375

Fixed 0.003659847 0.004914922 0.004914922 0.010460924 0.010460924

Lambda

Alpha

Type I Error for n=2

Equal Min-Max Max-Min Weighted Left Weighted Right

Skewed Left 0.004455981 0.003748813 0.008903452 0.01098578 0.005020188

Skewed Right 0.004455981 0.008903452 0.003748813 0.005020188 0.01098578

Fixed 0.004455981 0.016825077 0.016825077 0.024336803 0.024336803

Type I Error for n=3

Lambda

Alpha
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4.3. Results Using Conditional Probability 

The first step in analyzing the results with this approach using the C++ program is to 
compare the results for n=2 and n=3 to the results that were obtained from complete 
enumeration for the Type I and II errors.  As mentioned earlier, the complete enumeration 
results serve as a foundation to compare the results obtained from our program to confirm 
their accuracy.  Results using the conditional probability approach are compared to the 
results using complete enumeration.  Specifically, we compare the table of the type I 
errors obtained from the program to the table of type I errors obtained from the complete 
enumeration.  The type I errors for all of the structures examined are nearly identical for 
both n=2 and n=3.   

The next step is to increase the value of n to try and reach a more practical level.  For 
this work, the value of n is increased to 4 and 5.  The type I error rates for n=4 are 
summarized in Table 4.  

 
Table 4:  Conditional Probability Type I Errors for n=4 

 

This shows the type I errors for all the problem structures examined in this paper 
when the sample size is four.  It is also evident that the patterns that were illustrated in 
the charts for n=2 and n=3 are still present.  The type I error rates for n=5 are summarized 
in Table 5.   

 
Table 5:  Conditional Probability Type I Errors for n=5  

 

The results for n=4 and n=5 show that our method provides small values for the Type 
I error rates.  Furthermore, these values illustrate a tendency to decrease as the value of n 

Equal Min-Max Max-Min Weighted Left Weighted Right

Skewed Left 0.004328 0.003503 0.017428 0.019515 0.008041

Skewed Right 0.004328 0.017428 0.003503 0.008041 0.019515

Fixed 0.004328 0.010013 0.010013 0.01555 0.01555

Type I Error for n=4

Lambda

Alpha

Equal Min-Max Max-Min Weighted Left Weighted Right

Skewed Left 0.003989 0.003126 0.005423 0.007335 0.00611

Skewed Right 0.003989 0.005423 0.003126 0.00611 0.007335

Fixed 0.003989 0.005951 0.005951 0.009955 0.009955

Lambda

Alpha

Type I Error for n=5
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increases.  This is significant, because in practice, the method of using a mixture 
distribution to monitor inventory accuracy would likely involve using higher values of n.  
Low type I error are realized, and as expected, the rate continues to decrease as the 
samples size increases.   

We now investigate the type II error rates of small and large shifts for n = 2, 3, 4, and 
5.  This is done by assuming that the underlying distribution is going to be the model of 
fixed � values and equal � values (assumed “in-control” condition), and the type II errors 
are determined by overlaying each scenario on the assumed “in-control” condition.  
Making this assumption provides a basis to compute the type II error rates.  This does not 
provide a complete examination of all of the type II error rates, but it presents an idea of 
how these models perform in terms of type II errors.   

The type II errors for n=2 are summarized in Table 6.   
 

Table 6:  Type II Errors for n=2  

 

As seen in this table, the type II errors are all relatively large and demonstrate that 
small shifts in λ are hard to detect.  The type II errors for n=3, 4, and 5 respectively are 
summarized in the following tables: 

 
Table 7:  Type II Errors for n=3  

 

Table 8:  Type II Errors for n=4 

Equal Min-Max Max-Min Weighted Left Weighted Right

Skewed Left 0.996340153 0.996810259 0.999958387 0.999796682 0.96985181

Skewed Right 0.996340153 0.999958387 0.996810259 0.96985181 0.999796682

Fixed 0.996340153 0.999255895 0.999255895 0.997371137 0.997371137

Lambda

Alpha

Type II Error for n=2

Equal Min-Max Max-Min Weighted Left Weighted Right

Skewed Left 0.995544019 0.996251187 0.999982229 0.999905216 0.955404222

Skewed Right 0.995544019 0.999982229 0.996251187 0.955404222 0.999905216

Fixed 0.995544019 0.999365281 0.999365281 0.997905047 0.997905047

Type II Error for n=3

Lambda

Alpha
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Table 9:  Type II Errors for n=5  

 

These tables show that the performance is similar to the results for n=2.  This gives us 
an idea of how our model performs in terms of type II errors.   

To represent a large shift, the values for � in each of our problem structures will be 
multiplied by 3.  This means that if the MinMax problem structure is multiplied by 3, the 
shifted values would change to .3, .6, .9, 1.2, 1.5.  For these large shifts, we once again 
assume that the underlying distribution is going to be the model of fixed � values and 
equal � values (at the original values,) but this time the actual distributions are assumed 
to be the inflated values of 3 times the original � values for each structure.  The following 
tables present the type II errors for n=2, 3, 4, and 5 and inflated values of 3 times the 
original � values.   

 
Table 10:  � Inflated 3 Times Type II Error for n=2 

 

Table 11:  � Inflated 3 Times Type II Error for n=3 

Lambda

Equal Min-Max Max-Min Weighted Left Weighted Right

Alpha Skewed Left 0.995672 0.996497 0.999999 0.999999 0.944491

Skewed Right 0.995672 0.999999 0.996497 0.944491 0.999999

Fixed 0.995672 0.999657 0.999657 0.999999 0.999999

Type II Error for n=4

Equal Min-Max Max-Min Weighted Left Weighted Right

Alpha Skewed Left 0.996011 0.996874 0.999999 0.999999 0.936976

Skewed Right 0.996011 0.999999 0.996874 0.936976 0.999999

Fixed 0.996011 0.999831 0.999831 0.999999 0.999999

Lambda

Type II Error for n=5

Equal Min-Max Max-Min Weighted Left Weighted Right

Skewed Left 0.815263245 0.835176042 0.996033985 0.990227394 0.459125164

Skewed Right 0.815263245 0.996033985 0.835176042 0.459125164 0.990227394

Fixed 0.815263245 0.948812464 0.948812464 0.915564198 0.915564198

λ Inflated 3 Times Type II Error for n=2

Lambda

Alpha
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Table 12:  � Inflated 3 Times Type II Error for n=4 

 

Table 13:  � Inflated 3 Times Type II Error for n=5 

 

These tables confirm that our model is much more effective at detecting type II errors 
when the shift is larger.  In fact, there is more than a 50% chance that shifts of these 
orders will be detected with a sample of five on the very next sample.  These tables also 
show the trend of the type II errors decreasing as the sample size n increases.   

5. Conclusions   

There are several conclusions that are drawn after completely enumerating the mixture 
distribution problem.  The first is that solving example problems with complete 
enumeration establishes a foundation for further analysis.  Specifically, the sample sizes 
of 4 or 5 become quite detailed; therefore, we switch from complete enumeration to using 
probability as shown in [18] and [19].  The results from complete enumeration were 
utilized to validate the [18] models as deployed in a C++ program.  In our results, we 
examine a wide variety of mixture distribution structures.  Inspecting these different 

Equal Min-Max Max-Min Weighted Left Weighted Right

Skewed Left 0.702930435 0.737237134 0.996249783 0.990395103 0.277976337

Skewed Right 0.702930435 0.996249783 0.737237134 0.277976337 0.990395103

Fixed 0.702930435 0.926219341 0.926219341 0.899825346 0.899825346

Lambda

Alpha

λ Inflated 3 Times Type II Error for n=3

Equal Min-Max Max-Min Weighted Left Weighted Right

Skewed Left 0.606680 0.652683 0.996957 0.991967 0.168131

Skewed Right 0.606680 0.996957 0.652683 0.168131 0.991967

Fixed 0.606680 0.908847 0.908847 0.889443 0.889443

λ Inflated 3 Times Type II Error for n=4

Lambda

Alpha

Equal Min-Max Max-Min Weighted Left Weighted Right

Skewed Left 0.525048 0.582937 0.997601 0.993082 0.101876

Skewed Right 0.525048 0.997601 0.582937 0.101876 0.993082

Fixed 0.525048 0.894962 0.894962 0.881996 0.881996

λ Inflated 3 Times Type II Error for n=5

Lambda

Alpha
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structures shows that there are several patterns or similarities that can be identified 
between different structures.  In essence, we find that our approach to using the C chart as 
a means for monitoring inventory adjustments yields very low Type I errors and provides 
a great deal of sensitivity to detection of significant changes.  Our analysis as presented 
here is limited to samples sizes of five, and we realize that extensions to sample sizes of 
25 to 100 will be more reasonable in application.   

At the poster session, we will present some preliminary findings based upon 
simulation results that demonstrate the effectiveness of the SPC approach to more 
realistic situations.  We continue to work closely with the industry to investigate and 
support the application of this approach. 
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