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Abstract 
 

The strategic design of a robust supply chain has as goal the 
configuration of the supply chain structure so that the performance of the 
supply chain remains of a consistently high quality for all possible future 
scenarios.  We model this goal with an objective function that trades off 
the central tendency of the supply chain profit with the dispersion of the 
profit as measured by the standard deviation for any value of the weights 
assigned to the two components.  However, the standard deviation, used as 
the dispersion penalty for profit maximization, has a square root 
expression which makes standard maximization algorithms non 
applicable.  The focus in this article is on the development of the strategic 
and tactical models.  The application of the methodology to an industrial 
case will be reported.  The optimization algorithm and detailed numerical 
experiments will be described in future research. 

 
1 Introduction 
 
The design and planning of an efficient supply chain is of critical importance for the 
competitive success of manufacturing corporations.  Many definitions for a supply chain 
have been proposed.  One of the early definitions is “A supply chain is a network of 
organizations that are involved through upstream and downstream linkages in the 
different processes and activities that produce value in the form of products and services 
in the hands of the ultimate customer,” Christopher (1998).   

The planning decisions with respect to a supply chain range from short-term 
decisions such as vehicle dispatching and routing to long-term decisions such as the 
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definition of the corporate mission.  Depending on the permanence of the decisions, they 
are typically divided into strategic, tactical, and operational planning.  At the strategic 
level the planning includes decisions with respect to the location and the capacity of 
production and distribution facilities and the selection of suppliers.  At the tactical level 
the planning decisions include the product flows and product storage throughout the 
supply chain.  The goal of the strategic planning is to determine the configuration of the 
supply chain so that its long-term performance over the planning horizon is maximized.  
Given the long permanence of the configuration decisions, the future conditions during 
the planning horizon cannot be known with certainty.  Configuring a supply chain that 
will perform efficiently in a variety of unknown future environments belongs to the 
decision problem class of strategic planning under uncertainty and the supply chain 
configuration itself is called a robust design.   

Multiple definitions of robust design exist in the literature.  In the area of strategic 
planning under uncertainty, related notions such as agility, adaptability, responsiveness, 
resilience, and flexibility also have been used.  A recent survey of strategic supply chain 
planning and robust design is given in Klibi et al. (2010).  One distinction they make with 
respect to robust design is between model, algorithm, and solution robustness. A design is 
defined as “model robust” if this design is “almost” feasible when the input data varies 
(Mulvey et al., 1995; Yu and Li, 2000; Leung and Wu, 2004; Aghezzaf, 2005). A design 
is called “algorithm robust” if the algorithm performance is not affected by the presence 
of noise in the data. A design is called solution robust if the solution remains “close” 
when the input data changes (Mulvey et al., 1995; Yu and Li, 2000; Leung and Wu, 
2004; Aghezzaf, 2005).  Solution robustness corresponds to the desired robust supply 
chain configuration and is the focus of this research.  Solution robustness itself has two 
components.  Solution configuration robustness requires that the same (robust) supply 
chain configuration is used in the different scenarios and is required by the 
nonanticipativity property; solution value robustness measures the variability of the 
objective function value (profit) over the different scenarios. 

Several modeling techniques have been used in design under uncertainty.  In many 
stochastic programming models the uncertainty is assumed to be known and modeled as a 
set of scenarios with known probabilities.  For the strategic supply chain design a two 
phased model is used, where the supply chain configuration is decided in the first stage 
and the material flows and inventories are treated as recourse variables in the second 
stage.  The objective is to maximize the expected value of the profit of all scenarios, i.e. 
the goal is to find a median type of solution. Ahmed and Sahinidis (2003) solve a 
stochastic capacity expansion problem with a given set of scenarios.  Santoso et al. 
(2005) propose the use of a random sampling strategy, the sample average approximation 
scheme, to solve large-scale stochastic supply chain design problems.  These approaches 
focus on the solution configuration robustness and do not explicitly consider the 
robustness of the solution value, which may vary widely between the different scenarios. 

One approach in the field of robust optimization when the probabilities of the 
scenarios are not available is to either minimize the maximum regret or to maximize the 
minimum profit over all possible scenarios (Atamtürk and Zhang, 2007).  If a particularly 
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bad scenario exists, even though it has a very low probability of occurrence, then this 
scenario may determine the supply chain configuration.  The goal in this case is to find a 
center type of solution.  Another approach assumes that the probabilities of scenarios are 
known and considers the tradeoff between expect value, model robustness, and solution 
robustness. The value robustness is evaluated either with its variance (Mulvey et al., 
1995) or absolute deviation (Yu and Li, 2000; Leung and Wu, 2004). 

In the strategic design of supply chains there may be many thousands of parameters 
whose value is not known with certainty at the decision time.  Even if the probability 
distributions of the individual parameters were known, constructing a joint probability 
distribution function for the scenarios in function of the parameters is not possible.  In the 
following approach the uncertainty of the future is modeled by means of scenarios whose 
probabilities are assumed to be known.  Scenarios may be grouped in classes or sets, such 
as best-guess, best case, and worst case scenarios, or represent high-impact, low-
probability events.   

The extended definition of solution robustness will be used in the following which 
considers simultaneously solution configuration and solution value robustness, i.e., the 
supply chain configuration has to remain unchanged over all scenarios and the variability 
of the solution value is penalized.  Specifically, the objective is to find Pareto-optimal 
configurations with respect to their expected value and standard deviation of the scenario 
profits.  The configurations can be plotted in a risk analysis graph with the expected value 
on the horizontal axis and the standard deviation on the vertical axis.  The use of the 
standard deviation instead of the variance of the scenario profits allows for the 
computation of the coefficient of variation of the solution value.  This coefficient is 
dimensionless which yields a more intuitive comparison between configurations and 
avoids dependencies on the units of the profit.   

Figure 1 shows an example of a mean-standard deviation risk analysis graph.  For 
this particular example, all possible supply chain configurations were evaluated and three 
Pareto-optimal configurations exist. The stochastic programming approach will find the 
configuration with maximum expected profit value which is generated by the 
configuration (110110) and shown as a triangle.  If the decision maker is extremely risk-
seeking, this configuration will be selected.  The robust optimization approach using the 
min-max regret objective will select the configuration with minimum standard deviation 
which is the configuration (010011) and is shown as a diamond.  If the decision maker is 
extremely risk-averse then this configuration will be selected.  Neither approach will 
identify the configuration (011011) which is shown as a square even though this 
configuration is also Pareto-optimal. The methodology developed will identify all Pareto-
optimal configurations and compute for which range of the coefficient of variation each 
of them is dominant.  A particular configuration may be dominant for a large fraction of 
the range of the coefficient of variation but be different from the configurations found by 
stochastic optimization and robust optimization.  The final selection of the supply chain 
configuration to be implemented can then be based on the risk tradeoff of the decision 
maker and on other considerations not included in the model, but no a priori tradeoff ratio 
or weight is required.   
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2 Model 
 
In this section the mathematical formulations are developed that correspond to the robust 
design problem as defined in the previous section.  The common notation is developed in 
the next section.  The strategic model for the first stage and the tactical model for the 
second stage are described in the sections 2.2 and 2.3. 
 
2.1 Notation 
 
Because supply chains have many components the corresponding planning models have 
many variables and constraints.  However, their structure is relatively simple, even 
though the replication of the components may yield very large problem instances.   
 
2.1.1 Components 
 
The logistics objects in the tactical supply chain model are collected in the following sets. 

 
SF Suppliers, indexed by i 

P Products, indexed by p (and v) 

CF Customers, indexed by k  

T Periods, indexed by t (and u) 

TF transformation facilities or transformers, indexed by j 

R Resources required for product flows in supplier and transformation 
facilities, indexed by r 

TR, AR, IR Resources required for product throughput (TR), assembly (AR) and 
product inventory (IR) in transformation facilities, respectively.  These are 
sub sets of the resource set R. 

O = SF TF∪  Origin facilities, i.e. suppliers and transformation facilities 

D TF CF= ∪  Destination facilities, i.e. transformation facilities and customers 

OD Transportation channels, indexed by the combination of their origin and 
destination facilities 

S Scenarios, index by s 
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2.1.1 Decision Variables 
 
The symbols for most decision variables related to material flows end on the letter q 
which indicates a quantity. 
 

iptpq  amount purchased from supplier i of product p during period t 

ijptx  amount of product p transported from facility i to facility j during time 
period t 

,jpt jptitq otq  amount of product p respectively transported into and out of facility j 
during time period t 

jptiq  amount of product p stored (carried as inventory to the next period) at 
facility j from time period t to time period t+1 

kptubq  amount of product p delivered to customer k during period t that is used to 
satisfy the demand of this customer for this product during time period u, 
where u is smaller than t.  This is the backorder quantity. 

jptaq  amount of product p assembled, i.e. manufactured or produced, at facility j 
during time period t 

jptcq  amount of component product p used in assembly (manufacturing) at 
facility j during time period t 

kptdq  amount of product p delivered to customer k during period t to satisfy the 
demand during this period and possible backordered quantities of prior 
periods.  The presence of backordering allows the quantities delivered to 
be different from customer demand for a particular period 

jy  binary status of transformation facility j indicating if the facility is 
established (open), i.e. part of the supply chain configuration, or not 

ip  probability that scenario i will occur 

sz  maximum profit achievable through tactical planning in scenario s and 
without the profit ceiling constraint.  This will also be called the 
unconstrained scenario profit. 

v ceiling for the profits in all scenarios 



6 

( )szc v  maximum profit achievable through tactical planning in scenario s when 
subject to the profit ceiling constraint equal to v.  This will also be called 
the ceiling-constrained scenario profit 

 
SR total sales revenue for a scenario.  Used in a the tactical model for an 

individual scenario so scenario subscript is required. 

TC total system cost for a scenario.  As above used for a specific scenario in 
the tactical model. 

 

 
2.1.1 Parameters 
 
The symbols for most unit cost parameters end with the letter (lower case) c which 
indicates the cost rate.  Parameters related to capacities on flow start with the letter t, 
while capacities related to production and inventory start with the letters a and i, 
respectively.  The latter two are only defined at transformation facilities. 
 

jrttcap  aggregate capacity of throughput resource r at supplier or at 
transformation facility j during period t for all products combined.  Note if 
the capacity is by product and supplier or facility capacity, jptcap  with 
three subscripts is to be defined and is no longer called aggregate. 

jrtacap  aggregate capacity of resource r at transformation facility j during period t 
for all products combined produced.  Note if the capacity is by product 
and transformation facility capacities, jrtacap  with three subscripts is to be 
defined and is no longer called aggregate. 

jrticap  aggregate capacity of resource r at transformation facility j during period t 
for all products combined held in inventory, respectively.  Note if the 
capacity is by product and transformation facility capacities, jrticap  with 
three subscripts is to be defined and is no longer called aggregate. 

jprttres  units of resource r consumed by one unit of product p at facility j (be it 
either a supplier or transformer facility) during period t.  The model can 
incorporate resource consumption rates that vary by period, e.g. to 
approximate learning curves. 

jprtares  units of resource r consumed by one unit of product p produced at 
transformation facility j during period t.  The model can incorporate 
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resource consumption rates that vary by period, e.g. to approximate 
learning curves. 

jprtires  units of resource r consumed by one unit of product p stored at 
transformation facility j during period t.  The model can incorporate 
resource consumption rates that vary by period, e.g. to approximate 
learning curves. 

jrttrc  unit resource cost for resource r at facility j during period t 

jrtarc  unit resource cost for production resource r at transformation facility j 
during period t 

jrtirc  unit resource cost for inventory resource r at transformation facility j 
during period t 

kptdem  aggregate demand for product p at customer k during period t 

iptpc  purchase cost for a unit of product p from supplier i during period t 

ijpttc  transportation cost for a unit of product p from facility i to facility j during 
period t 

jptfc  flow (throughput) cost for a unit of product p at facility j during period t 

jptac  assembly (production, manufacturing) cost for a unit of product p at 
facility j during period t 

jpthc  holding (inventory) cost for a unit of product p at facility j from time 
period t to the next period t+1 

kptubc  delay cost, i.e. delay penalty or backorder cost, for delivering one unit of 
product p during period t to satisfy demand during period u at customer k 

jpvt1bom  number of units of component p required to assemble one unit of assembly 
v during period t in facility j where component p is an element of the 
single level bill of material of product v 

_ jpinit inv  initial inventory of product p at facility j 
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jtfac  fixed cost for having transformation facility j established during period t.  
A facility is established for the full time horizon or not, but it may have 
different fixed costs during the different periods in the horizon 

kptsr  sales revenue for selling on unit of product p at customer k during period t.  
This revenue does not incorporate any backorder penalty. 

 

2.2 Strategic Model 
 
The strategic model has as goal to identify the supply chain configuration and the profit 
ceiling that will maximize the weighted sum of the expected value and the standard 
deviation of the constrained scenario profits.   

The expected value, variance, and standard deviation the for the scenario value of 
( )szc v  are then defined as the following functions. 
 
( ) { }min ,s szc v z v=  (1) 

 

( ) ( ) { }min ,zc i i i i
i i

exp v p zc v p z v= ⋅ = ⋅∑ ∑  (2) 

( ) ( ) ( )
2

zc i i j j
i j

var v p zc v p zc v
 

= ⋅ − ⋅ 
 

∑ ∑  (3) 

( ) ( ) ( )
2

zc i i j j
i j

std v p zc v p zc v
 

= ⋅ − ⋅ 
 

∑ ∑  (4) 

The robust objective functions MVO and MSDO are defined in function of the scenario 
profits jz .  In both cases the central tendency characteristic is equal to the expected 
value.  In the MVO and the MSDO the dispersion is equal to the variance and the standard 
deviation of the scenario profits, respectively.  The penalty factors are λ and κ, for the 
MVO and MSDO respectively, are both nonnegative.  Both objectives belong to the class 
of bi-criteria objective functions. 
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[ ] [ ]{ }
2

max

max i i j j i i j j
i j i j

MVO exp Z var Z

p zc p zc p zc p zc

λ

λ

= − ⋅

       = − − −           
∑ ∑ ∑ ∑

 (5) 

[ ] [ ]{ }
2

max

max i i j j i i j j
i j i j

MSDO exp Z std Z

p zc p zc p zc p zc

κ

κ

= − ⋅

       = − − −           
∑ ∑ ∑ ∑

 (6) 

A single supply chain configuration can thus be plotted in the mean-variance or mean-
standard deviation graph.  In the following the mean will be plotted by increasing values 
along the horizontal axis and the variance and standard deviation will be plotted by 
increasing values along the vertical axis.  A point in the graphs can then be Pareto-
optimal or dominant.  Points which are not Pareto-optimal are said to be dominated.  For 
different values of the penalty factors are λ and κ different configurations may become 
optimal. 
 
Theorem: 
The set of configurations that are Pareto-optimal with respect to the MSDO is identical to 
the set of configurations that are Pareto-optimal with respect to the MSVO. 
The proof is omitted for brevity. 
 

The above theorem allows the algorithm to search for all Pareto-optimal points for 
the MVO objective and then use the same points for the MSDO objective.  This removes 
the square root from the objective function but introduces square terms in the objective.  
The strategic problem thus belongs to the class of mixed-integer quadratic objective or 
MIQO problems.  This type of problems can be solved by CPLEX version 11 or newer. 

Observe that the master problem has no constraints besides defining that the decision 
variables jy  have to be binary.  Linear constraints in the decision variables can be added 
to impose additional restrictions on the supply chain configuration without changing the 
fundamental structure of the problem.  A common example is an upper bound on the total 
number of established facilities. 
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Model 1.  Strategic Robust Supply Chain Model 

( ) ( ) ( ) ( )
2

max i i j j i i j j
i j i j

p zc v p zc v p zc v p zc vλ
       − ⋅ − − ⋅           
∑ ∑ ∑ ∑  (7) 

{ }. . 0,1js t y ∈  (8) 

0v ≥  (9) 

The profit associated for a given supply chain configuration and for a specific 
scenario is maximized by the tactical model.  In addition, the strategic model specifies a 
profit ceiling for the tactical scenario profit.  Depending on this profit ceiling the tactical 
model will yield a different profit.  The expected value and variance of all the profits will 
also change.  A single configuration will have a continuous curve of performances in the 
risk analysis graph.  The strategic model will then select the configurations whose curve 
dominates the curves of the other configurations in a least one range of the profit ceiling.  
Graphically this is equivalent to determining the lower-right envelope of the performance 
curves of the configurations.  The tactical model is shown in the next section. 

 
2.3 Tactical Model 
 
A model is developed to support the tactical planning of the supply chain, including such 
decisions as supplier selection for the key components, transportation, and production 
planning.  The model maximizes the total profit which is the difference between the sales 
revenue and the total cost.  The total cost is computed as the sum of the purchasing 
(procurement), transportation, manufacturing, inventory, and backorder costs.  The total 
demand of a customer has to be delivered, even though delivery may be delayed beyond 
the due date through backorders.  The inventory cost at this time consists only of the 
holding costs at transformation facilities.  The model incorporates a penalty for delayed 
delivery to customers, which is also denoted as the backorder cost.  This model ignores 
the lead times for sourcing components of the various suppliers but it observes supplier 
capacities and transformation (manufacturing) capacities.   
 
2.3.1 Constraints 
 
The model contains four types of constraints: supply capacity, transformation (production 
or assembly) capacity, demand satisfaction, and conservation of flow at the 
transformation facilities.  The conservation of flow constraints may be by product or 
consider the bill of materials or BOM for the assembly process. 
 
2.3.2 Model 
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The complete tactical production supply chain model is given next.  The model can be 
further condensed by directly substituting variables, but it is given below in its more 
expanded form to clearer show its structure.  Modern linear programming solvers will 
make the substitutions in their pre-solving phase, so this more expansive version does not 
increase solution time significantly. 

Model 2.  Tactical BOM Supply Chain Model 

max zc  (10) 

. .s t zc SR TC= −  

zc v≤  (11) 

j jt
j t

ipt ipt ijpt ijpt
i S p t i O j D p t

jpt jpt jrt jprt jpt
j TF p t j TF p r TR t

jpt jpt jrt jprt jpt
j TF p t j TF p r AR t

jpt jpt
j TF p t

TC y fac

pc pq tc x

fc otq trc tres otq

ac aq arc ares aq

hc iq

∈ ∈ ∈

∈ ∈ ∈

∈ ∈ ∈

∈

 =  
 
⋅ + ⋅ +

⋅ + ⋅ ⋅ +

⋅ + ⋅ ⋅ +

⋅

∑ ∑

∑∑∑ ∑∑∑∑

∑∑∑ ∑∑∑∑

∑∑∑ ∑∑∑∑

∑∑

, 2 ,

jrt jprt jpt
j TF p r IR t

kptu kptu
k C p t T t u T u t

irc ires iq

bc bq
∈ ∈

∈ ∈ ≥ ∈ <

+ ⋅ ⋅ +

⋅

∑ ∑∑∑∑

∑∑ ∑ ∑

 (12) 

kpt kpt
k p t

SR sr dq= ∑∑∑  (13) 

, ,iprt ipt irt
p

tres pq tcap i t r⋅ ≤ ∀ ∀ ∀∑  (14) 

, ,ipt iptpq tcap i p t≤ ∀ ∀ ∀  (15) 

, ,ipt ijpt
j

pq x i p t= ∀ ∀ ∀∑  (16) 

, ,ijpt jpt
i

x itq j p t= ∀ ∀ ∀∑  (17) 

_ 0 , , 1jpt jpt jp jpt jpt jptitq aq init inv iq cq otq j p t+ + − − − = ∀ ∀ =  (18) 
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1 0 , , 2.. 1jpt jpt jpt jpt jpt jptitq aq iq iq cq otq j p t T−+ + − − − = ∀ ∀ = −  (19) 

1 0 , ,jpt jpt jpt jpt jptitq aq iq cq otq j p t T−+ + − − = ∀ ∀ =  (20) 

, ,jkpt jpt
k

x otq j p t= ∀ ∀ ∀∑  (21) 

, , ,jpt jpvt jvt
v

cq 1bom aq p v j t= ⋅ ∀ ∀ ∀ ∀∑  (22) 

, ,jprt jpt jrt j
p

ares aq acap y j t r⋅ ≤ ⋅ ∀ ∀ ∀∑  (23) 

, ,jpt jpt jaq acap y j p t≤ ⋅ ∀ ∀ ∀  (24) 

, ,jprt jpt jrt j
p

tres otq tcap y j t r⋅ ≤ ⋅ ∀ ∀ ∀∑  (25) 

, ,jpt jpt jotq tcap y j p t≤ ⋅ ∀ ∀ ∀  (26) 

, ,jprt jpt jrt j
p

ires iq icap y j t r⋅ ≤ ⋅ ∀ ∀ ∀∑  (27) 

, ,jpt jpt jiq icap y j p t≤ ⋅ ∀ ∀ ∀  (28) 

, ,jkpt kpt
j

x dq k p t= ∀ ∀ ∀∑  (29) 

, ,kpt kput kptu kpt
t u u t

dq bq bq dem k p t
< <

+ = + ∀ ∀ ∀∑ ∑  (30) 

, , , , , 0pq x bq iq aq cq ≥  (31) 

The objective function computes the total cost as the sum of the individual unit costs 
multiplied by the corresponding quantities.  The model has capacity constraints and 
conservation of flow constraints.  Typically capacity limitations at suppliers are either for 
individual products or for all products combined.  The model allows both simultaneously 
but usually either constraint (14), which models the joint capacity, or (15), which models 
the capacity for an individual product, are defined but not both.  The equivalent is true for 
transformation capacities modeled by constraints (23), which models the joint capacity, 
or (24), which models the capacity for an individual product as well as for the throughput 
and inventory capacity constraints at the transformation facilities. 
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The remaining constraints are all conservation of flow constraints.  Backorder flows 
can only occur at customers, inventory flows can only occur at transformation facilities.  
There are four types of conservation of flow constraints at the transformation facilities, 
indicated by space, space-time, creation-space, and creation-space-time, respectively.  
The flow diagrams for the four types are shown in the next figures. 

In its most general form, the conservation of flow constraint for a product in a period 
for a transformation facility has six flows.  The three input flows are transportation 
receipts, inventory held from the previous period, and production during the period.  The 
three output flows are transportation shipments, inventory held to the next period, and 
consumption of the product during the period when it is used as a component in the 
production process.  The most general form has been used in the tactical model.  The type 
of conservation of flow constraint used can be adjusted based on the requirements of the 
particular supply chain in question.  If the time dimension is present, three variants of the 
conservation flow constraint need to be created since the equation is different for the first, 
intermediate, and last periods of the planning horizon.  During the first period there is 
only the initial inventory which is a parameter and during the last period there is no 
inventory held to the next period. 

Constraints (16) and (29) ensure that all the products purchased get transported from 
the suppliers and all finished goods produced get transported to the customers, 
respectively.  Constraints (18) through (20) ensure the conservation of flow for a 
transformation facility for the first, intermediate, and last periods, respectively.  The 
model uses a parameter for the initial inventory of a product at a facility.  Constraint (22) 
ensures that the correct amount of component products is consumed in the assembly 
facility to be assembled into finished goods.  Finally, constraint (30) ensures that the 
goods delivered to a customer and backorders from future periods are allocated to satisfy 
either the demand of that period or satisfy backorders in previous periods. 

 
 
3 Numerical Examples 
 
3.1 Small Example 
 
The model was applied to a small pedagogical example.  The supply has two echelons.  
The first echelon contains 3 manufacturing plants and the second echelon contains 3 
distribution centers.  There are 3 customers.  The robust design is based on 3 scenarios.   

The MIQO optimization problem was solved by CPLEX within 20 seconds.  The 
mean-standard deviation risk analysis graph is shown in Figure 1.  Three Pareto-optimal 
configurations are found.  Two of the Pareto-optimal configurations are the stochastic 
optimization (SO) configuration with a standard deviation penalty equal to zero and the 
robust optimization (RO) configuration with a large positive penalty for the standard 
deviation.  But there exist a third dominant configuration with achieves 98% of the 
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maximum expected profit of the SO configuration but at 76% of the risk as measured by 
the standard deviation. 
 
3.2 Industrial Example 
 
The model was also applied to an industrial case.  Elkem is a global manufacturer of 
specialty additives in the metallurgic industry.  The company and its supply chain are 
described in Ulstein (2006), but the case data used in this example are different.  The 
supply chain has 10 products, 35 customers, 15 suppliers, 9 transformation facilities, and 
one period.  The robust design is based on 30 scenarios.   

The MIQO optimization problem was solved by CPLEX within 1200 seconds.  The 
mean-standard deviation risk analysis graph is shown in Figure 5.  Only two 
configurations are Pareto-optimal, namely the stochastic optimization (SO) configuration 
with a standard deviation penalty equal to zero and the robust optimization (RO) 
configuration with a large positive penalty for the standard deviation.  However, the 
company can specify different profit ceilings and the SO configuration will have a 
different performance.  At the crossover point between the dominance of the SO and RO 
configuration the company can achieve 93% of the expected profit with 19.7% of the risk 
as measured by the standard deviation.  Another point on the performance curve of the 
SO configuration achieves an expected profit of $57 million, this is 97% of the maximum 
profit of the SO configuration ($58.5 million) but at 5% of the risk as measured by the 
standard deviation. 
 
4 Conclusions 
 
The robust design methodology described above allows manufacturing companies to 
design a supply chain that corresponds to their risk preferences.  The full gamma of 
Pareto-optimal configurations can be identified and shown in the mean-standard 
deviation graph and desirable candidate configurations can be selected for further 
detailed study.  By specifying a profit ceiling, the corporation can make their supply 
chain have a more or less risky performance.  This specification of the profit ceiling can 
even be done for existing supply chains. 

This methodology is currently being validated with an extensive numerical 
experiment.  Inclusion of a larger number of scenarios increases the problem instance size 
significantly.  The number of continuous variables in the tactical model grows linearly 
with the number of scenarios but the number of discrete variables remains constant.  This 
indicates that for very large number of scenarios a primal decomposition strategy may 
have to be employed.   
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Figure 1:  Mean-Value versus Standard Deviation Risk Analysis Graph. 
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Figure 1.  Conservation of Flow of Type 1 (Space). 
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Figure 2.  Conservation of Flow of Type 2 (Space-Time). 
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Figure 3.  Conservation of flow of type 3 (Creation-Space). 
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Figure 4.  Conservation of flow of type 3 (Creation-Space-Time). 
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