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Dispersion Comparison for DSI- and 
Tensor-B ased Nonorthogonal FDTD 

Hao Shi and James L. Drewniak 

Abstract-An explicit formulation of the finite-difference time- 
domain4iscrete surface integral (FDTD-DSI) technique has al- 
lowed a rigorous study of numerical dispersion for the method. 
The study shows that the DSI- and tensor-based FDTD methods 
do not have the same numerical dispersion relation. It also 
clarifies the recently reported discrepancies in the dispersion 
relation between the two approaches. This study also shows 
that the tensor-based FDTD algorithm exhibits better dispersion 
properties for a two-dimensional uniformly skewed mesh. 

I. INTRODUCTION 
INITE-difference time-domain (FDTD) [1]-[3] is a pow- F erful numerical technique for solving many electromag- 

netic problems. The conventional FDTD Yee algorithm em- 
ploying a rectangular grid is less efficient in handling compli- 
cated geometries when accuracy is required. Nonorthogonal 
FDTD methods that have been developed include the discrete 
surface integral (DSI) [4] and tensor-based algorithms [5], [6]. 
The numerical dispersion relation (NDR) for the Yee algorithm 
is well understood; however, the behavior of the NDR for 
nonorthogonal FDTD methods is less so. Due to the complex- 
ity of algebra associated with the derivation of a NDR in an 
arbitrary grid, a three-dimensional (3-D) or two-dimensional 
(2-D) uniformly skewed grid is often employed. Ray has 
provided an analytical formula for a general nonorthogonal 
algorithm on a 2-D uniformly skewed mesh [7]. A general 
formula for the NDR of the tensor-based FDTD method has 
been given by Navarro et al., for a 3-D uniformly skewed 
mesh [8]. When applied to a 2-D uniformly skewed mesh, the 
NDR for the tensor-based FDTD [8] differs slightly from that 
given by Ray [7]. Navarro et al., suggested a mistake in the 
derivation of [7]. However, this study shows that both results 
are correct and that the two methods in fact do not have the 
same dispersion relation. 

An explicit formalism of FDTD-DSI has been developed 
[9] that allows a rigorous derivation of the NDR for the DSI 
method. For a 2-D uniformly skewed mesh, the results are 
consistent with those given by Ray [7]. Comparison of the 
dispersion relations indicates that the DSI- and tensor-based 
nonorthogonal FDTD methods behave distinctly, and the NDR 
presented by Ray [7] is applicable to the DSI-based method, 
while the formula given by Navarro et al., [SI is applicable 
to the tensor-based method. Further. the tensor-based FDTD 
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method exhibits less numerical dispersion than the FDTD-DSI 
method in the special case of a 2-D uniformly skewed grid. 

11. DISPERSION FOR FDTD-DSI METHOD 
A detailed description of the DSI method can be found in 

the literature [4], [IO], and only a brief summary is given 
here. A structured grid with hexahedral cells shown in Fig. 1 
is employed here for demonstration, although the DSI method 
is generally applicable to unstructured grids. A secondary grid 
is introduced by taking the center-of-mass points of all cells 
in the primary grid (the initial grid) as nodes. The dotted 
lines in Fig. 1 are the primary edges, and the solid or dashed 
lines are the secondary edges. The &field is sampled along 
the primary edges and the I?-field along secondary edges. 
The integral form of Ampere's law applied on a loop in the 
secondary grid yields @ . ii, where fi is the unit face normal 
vector of a secondary cell-face. The effective face normal and 
area can always be uniquely defined, even if the four nodal 
points are nonplanar [9]. In general, a secondary face normal 
vector will not be aligned with its corresponding primary-edge, 
as is the case for a Cartesian grid, complicating the E-field 
time-marching scheme. First, Ampere's law is applied in all 
face-loops in the secondary grid to give $24 in the (secondary 
grid) face normal direction. Then, corresponding to each E'- 
field sampling Point P along a primary edge i p ,  the $ . ii 
values at Point P's nine (including the face Point P is directly 
associated with) neighboring secondary faces are used to yield 
a vector quantity ( % ) I F  thru an elaborate reconstruction and 
weighted-averaging procedure [4]. Finally, finite differencing 
in time yields (g ) J p  . i p  = 4, and a time-marching 
equation for Ep results. The net consequence of the DSI 
algorithm is that the time-marching equation of E p  is related 
to Point P's 20 neighboring magnetic lield components. 

An explicit FDTD-DSI algorithm for a structured grid h2s 
been developed [9]. At any location with index [ i , j ,  k ] ,  the E- 
field is represented by three scalar components { El ,  E2, E3). 

The time-marching equation for one E' field component is 

pfl- 

where €1 is the average value of permittivity for cell ( i ,  j ,  k ) ,  
and ~ f , ~  are geometric coefficients incorporating contribu- 
tions from the 20 surrounding l?-+field components. Similar 
time-marching equations for the H-field components can be 
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result [9]. Since {E:, E:, E,", H! , H i ,  H,"} are in general 
nonzero, the determinant must vanish, which yields the nu- 
merical dispersion relation. For the 2-D uniformly skewed grid 
analyzed by Ray, 0 2 3  = 

(cat)2 sin2 (F) 
sin ~ 1 2 ~  

= 90", k3 = 0, and the NDR is 

1 - - 

1 1 

x sin2 

x sin(kAZ1 cos a )  . sin[kAZ2 cos(a - 012)] 

where the relations k l  + k2cos6112 + kcosa ,  and k2 + 
k l  cosQl2 + kcos(a  - 012) are used, with a the angle of 
direction of wave propagation with respect to the S O 1  axis, 
as Seen in Fig. 2. Equation (2) is identical to that given by Fig 1 

neighboring magnetic-field components 
A typlcal sampling point ( P )  of electric field ,@ and Its 20 

R ~ Y  ~71. 

Fig, 2. Cell configuration for a 3-D uniformly skewed grid. 

obtained with geometric coefficients 7tq incorporating con- 
tributions from the 20 surrounding I?-field components. The 
{r;rq, r;+} coefficients are determined by the mesh geometry, 
and explicit formulas are available [9]. For a 3-D uniformly 
skewed mesh defined by cell dimensions {LIZ1, A h ,  AZ3) and 
angles between the basis vectors (012 ,023 ,  031} (as seen in 
Fig. 2) r;,q = rt,q = rp,q fo rp  = 1 ,2 ,3 ,  and q = 1 ,2 , .  . . ,20. 
The relations for rp,q are then relatively simple, for example 

cos 03 1 - 
71,i = v123LzzA13 , . . . , 71,5 = 4LT1z3A11A12 ,. . . , 7 1 , ~  - 

4vlz:aZ1 ( "%? - ~ ) , . . . ?  and r1,17 = m(r - 
cos 831 -), a 1 2  . . . where Vlz3 = 11 . (12 x Z3) = (All . A12 . AZ3) 
(1-cos2 Q12-cos2 0 2 3 - c o ~ '  Q ~ ~ + Z C O S O ~ ~  C O S O ~ ~ C O S O ~ ~ ) ~ / ~  

is the unit cell volume. 
Von Neumann's approach [I I ]  is employed with the explicit 

FDTD-DSI formulation to analyze the dispersion properties of 
the algorithm. For a monochromatic plane wave with propaga- 
tion vector and frequency w numerically propagating through 
the mesh, a time-harmonic solu_tion for a field component is 
E ~ ( Z , ? ,  k )  = ? , O ( z , j ,  / ~ ) e ~ ( " ~ - ' "  -+ '1 . L et t = nAt, and, F = 
zhll/ l+3~32Z2+kA/3/3,  k = 1~1il+kzi2+&3. Upon insert- 
ing the steady-state solution for all six field components into 
the time-marching equations of the explicit FDTD-DSI, a set 
of linear simultaneous equations in {E:, E;, E,", Hy , H:, H:) 

case 1 1 C O S ~ I Z  

111. COMPARISON BETWEEN THE NUMERICAL DISPERSION 
OF FDTD-DSI AND FDTD-TENSOR BASED METHODS 

The general NDR for the tensor-based nonorthogonal algo- 
rithm is 

3,3 
sin2 (+At) = 923 sin (5) sin (%) (3 )  

in terms of the conjugate metric tensor and the covariant 
components of [6] ,  181. In a 2-D uniformly skewed mesh, 
(3) can be simplified as 

(cAt)2 sin2 (F) 
sin 01z2 

2=1,3=1 

1 - - 

kAl1 cos a 

+- sin2 [ 
x sin ( ~ ~ A z I  cos a )  

( A W  

(4) 

The NDR's (2) and (4) for the two FDTD methods differ 
only in the last term on the right-hand sides. The last term of 
the NDR for the DSI-based FDTD method can be written as 

COS 812 1 
- 2  sin ( p k ~ l l  cos a 

sin2 e 1 2 a i l ~ i 2  
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Fig. 3. Normalized phase velocity vs. the normalized grid spacing for a = 0, 
0 = 4 S 0 ( 0 ) ,  60°(0),  7So(o), and 9Oo(A). The filled A’s are exactly on 
top of the open A’s. cAt/Al = 0.5. 

1.00 y - - j  
1.07 //i“.k 

0.95 0.07 0.0 il 30.0 60.0 90.0 120.0 150.0 180.0 
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Fig. 4. Normalized phase velocity versus CY. 0 = 45’(0) ,  60°(0) ,  
75’(0), and 90°(A). The filled A’s are exactly on top of the open A’s. 
cAtlAl = 0.5, and Al/A, = 0.1. 

and the real difference with that for the tensor-based FDTD 
method is a multiplier 

A = cos ( i kAl l  cos a!) cos [ ikAZz cos(a! - 812) . (6) 1 
When Q = 90” or a! = fIl2 f 90°, i.e., for waves propagating 
normal to one of the grid axes, the last term in the NDR 
for both methods vanishes, and the tensor-based FDTD and 
FDTDDSI methods have the same NDR. The normalized 
phase velocity v p / c  is plotted versus the normalized grid 
spacing Al/Xo by Ray and Navarro et al. for varying mesh 
skewness. When N / X o  -+ 0, u p / c  --+ 1 and the continuous 
dispersion relation is recovered. 

In most cases A # 0, and the tensor-based FDTD and 
FDTD-DSI have different NDR’s. The normalized phase 
velocity is plotted versus the normalized grid spacing in Fig. 
3 with an angle of propagation Q = 0 for several values 

of 8. In Figs. 3 and 4, the filled and open symbols are for 
the tensor-based and DSI-based FDTD methods, respectively. 
Fig. 3 illustrates that the DSI- and tensor-based methods 
have significantly different dispersion characteristics. The DSI- 
based method is sensitive to a change of 8. For 8 = 45” 
and a = 0”, the normalized phase velocity for Al/Xo = 0.1 
deviates as much as 5% from unity. Conversely, the tensor- 
based method is less sensitive to a change in 8, with a deviation 
of the normalized phase velocity from unity of about 1% for 
Al/Xo = 0.1. The normalized phase velocity is plotted versus 
a! in Fig. 4 for several values of 0 ‘and Al/X = 0.1. The 
maximum deviation of the normalized phase velocity from 
unity is about 7% for the DSI-based method and 0.5% for the 
tensor-based method. Overall, these results indicate that the 
FDTD tensor-based method exhibits less dispersion than the 
FDTD DSI-based method for a 2-D uniformly skewed grid. 

IV. CONCLUSION 

This study has demonstrated that the tensor- and DSI-based 
nonorthogonal FDTD methods do not have the same NDR. 
The NDR presented by Ray [7] is correct for DSI-based 
FDTD method, while the NDR presented by Navarro et al. 
[SI is correct for the tensor-based FDTD method. The tensor- 
based FDTD method exhibits less numerical dispersion than 
that of the DSI-based method for the 2-D uniformly skewed 
mesh studied, and similar results might be expected in 3-D. 
The DSI method, however, is very general and applicable 
to an unstructured mesh. Improvements in the NDR of the 
DSI method might be obtained by modifying the vector 
reconstruction and averaging scheme of the algorithm. 
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