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AN EXTENDED DOUBLE ROW LAYOUT PROBLEM

Chase C. Murray
Auburn University

Xingquan Zuo
Beijing University of Posts and Telecommunications

Alice E. Smith
Auburn University

Abstract

The double row layout problem (DRLP) seeks to determine opti-
mal machine locations on either side of an aisle, where the objective
has been defined as the minimization of material flow cost among ma-
chines while meeting machine clearance constraints. In this paper, we
extend existing DRLP formulations in two respects. First, we consider
the minimization of layout area besides the usual material flow cost
objective. Second, we present a mixed integer linear programming for-
mulation that permits non-zero aisle widths. This new formulation also
includes new constraints that eliminate layout “mirroring,” thus reduc-
ing the solution space significantly and thus solution times. Although
small-scale problems may be solved optimally by commercial integer
programming solvers, solution times are highly sensitive to the number
of machines in a layout. A tabu search heuristic is shown to work well
for moderately-sized problems. Numerical examples demonstrating the
impact of both flow and area objectives, as well as aisle widths, are
included.

1 Introduction

In this paper we consider a facility layout problem where rectangular machines of
unequal size must be placed in two rows separated by a straight aisle of predetermined
width. Each pair of adjacent machines must be separated by at least a minimum pre-
specified clearance. It is assumed that the load/unload port of each tool is located
at the midpoint of the tool’s width. In this problem, machines must be placed such
that both the total cost of material flow and the area consumed by the layout are
minimized. While the material handling facility layout literature has focused on cost
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of material flow, generally area consumed has been ignored, or at most, treated as
a fixed constraint. However, for some industries and situations, floor space is at
a premium and the area objective can be an important one. Such a problem has
widespread application particularly in the semiconductor industry, where material
flow can be complex and clean room construction costs are approximately $3,500 per
square foot [9].

While the particular problem of interest here shares similarities with other existing
facility layout problems, there are some key characteristics that prohibit the direct
application of these mathematical models. The first similar problem is the double
row layout problem (DRLP), for which the first mathematical model was proposed
by [1] and was later corrected by [12]. In the DRLP, the problem is to minimize the
total weighted cost of material flow by placing machines in one of two rows. Adjacent
machines must be separated by at least a minimum pre-determined distance. Thus,
this problem is unique in that it contains both combinatorial and continuous aspects.
However, previous DRLP formulations assume aisle widths of zero and the area of
the layout is not considered. We demonstrate that ignoring these aspects can lead to
inferior solutions.

The incorporation of a center aisle of fixed width was considered by [6] and [11] in
the context of semiconductor layout and material handling configurations. In these
models, tools are assigned to equally-sized rectangular blocks, thus making the precise
determination of each tool’s location difficult.

Another related problem is the multi-row layout problem (MRLP). While the
MRLP would appear to be a generalization of our problem, it has not allowed ma-
chines to be separated by a distance greater than the minimum required clearance
(c.f., [2]). Furthermore, the MRLP has not sought to minimize the area of the lay-
out. Yet another related study is provided by [4]. However, his model relies upon an
absolute value expression in the objective function and a nonlinear constraint, thus
making optimal solution approaches difficult. Because that model does not require
straight aisles between rows of machines, resulting layouts may not be applicable to
semiconductor fabs or other production environments. Facility layout problems that
are formulated as quadratic assignment problems (QAP), such as [8], assume prede-
fined possible machine locations and therefore do not address the continuous nature
of the problem at hand.

A block layout problem that mixes combinatorial and continuous aspects was con-
sidered by [5]. Machine centers are assigned to pre-specified zones within a layout
of fixed dimensions. Once machine centers are assigned to a zone, the input/output
points of the center are determined in continuous space. To solve this problem,
ant colony optimization is utilized to determine the assignment of centers to zones,
followed by the solution to a linear programming problem to determine optimal lo-
cations of the input/output points. A similar problem, the continuous facility layout
problem, was addressed by [10]. This problem did consider minimum clearance re-
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quirements between machines, however neither aisle widths nor area minimization are
included. A branch-and-bound solution approach was tested on problems with up to
12 machines.

And finally, unlike [1], who encountered runtimes of two hours when solving prob-
lems involving only 10 machines, we demonstrate that our formulation can solve
10-machine problems optimally using CPLEX in less than 30 seconds. This runtime
reduction is driven by improvements in the formulation of the model, including two
simple, yet highly effective, constraints that significantly decrease solution times by
reducing symmetry in the problem.

To summarize, our work makes the following contributions. First, unlike other
related studies on the DRLP, our model allows non-zero aisle widths and considers
layout area minimization. Numerical examples demonstrate that the consideration
of aisle width and area minimization can significantly alter the best layout design.
Second, the proposed mathematical formulation allows the minimization of layout
area via a linear objective function and linear constraints. Finally, a tabu search
heuristic that utilizes the mathematical formulation is shown to be effective and
tractable for problems of reasonable size.

The remainder of this paper is organized as follows. The proposed mixed integer
linear program (MILP) is formulated and explained in Section 2. Section 3 provides
numerical examples to highlight the impact of ignoring aisle widths and area. A
tabu search heuristic, integrated with the MILP model, is described in Section 4.
Numerical analysis of the proposed tabu search heuristic is provided in Section 5.
Finally, Section 6 concludes with a summary and suggestions for future research.

2 Mathematical Formulation

The notation and mathematical model are rooted in previous DRLP research by [1]
and [12]. Two important features that distinguish the proposed model from previous
DRLP models are the non-zero aisle width and the minimization of total layout area.
We assume rectilinear travel for material flow across and along the aisle.

Notation for parameters and decision variables are defined in Tables 1 and 2,
respectively.

The following MILP model serves to minimize material handling costs and total
layout area. These two (possibly) competing objectives are incorporated in a linearly
additive fashion by virtue of a scaling parameter 0 ≤ α ≤ 1, such that if α = 1 the
objective is to minimize material handling cost only and if α = 0 the objective is to
minimize the total area only.
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Table 1: Parameters

m Number of machines
I Set of machines, where I = {1, ...,m}
R Set of rows, where R = {1, 2} specifies the upper (1) and lower (2) rows
wi Width of machine i ∈ I
di Depth of machine i ∈ I
aij Minimum clearance required between machines i ∈ I1 and j ∈ I2, where

I1 = {1, ...,m− 1} and I2 = {i+ 1, ...,m} for all i ∈ I1.
fij Flow frequency times unit cost between machines i ∈ I and j ∈ {I \ i}.
c Width of the aisle (corridor) separating the upper and lower rows.

Table 2: Decision Variables

xir Continuous decision variable representing the location of machine i ∈ I in row
r ∈ R, such that xir = 0 if i is not placed in row r.

yir Binary decision variable, such that yir = 1 if machine i ∈ I is placed in row
r ∈ R.

zrij Binary decision variable, such that zrij = 1 if machine i ∈ I is placed to the
left of machine j ∈ {I \ i} in row r ∈ R.

W Width of the resulting layout. This is the maximum distance between the left
side of the first machine in either row and the right side of the last machine
in either row.

sr Area consumed by the machines in row r ∈ R.
A Total area consumed by the resulting layout, as determined by the area of

the smallest rectangle enclosing all machines (and the aisle between the rows).
Clearance space for end machines of rows is not considered.

qij Binary decision variable, such that qij = 1 if machines i ∈ I1 and j ∈ I2 are
placed in the same row.

Minimize α
∑
i∈I1

∑
j∈I2

(fij + fji)
(
v+ij + v−ij + c(1− qij)

)
+ (1− α)A (1)

subject to: xir ≤Myir, ∀ i ∈ I, r ∈ R, (2)∑
r∈R

yir = 1 ∀ i ∈ I, (3)

wiyir + wjyjr
2

+ aijzrji ≤ xir − xjr +M(1− zrji) ∀ i ∈ I1, j ∈ I2, r ∈ R,
(4)
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wiyir + wjyjr
2

+ aijzrij ≤ −xir + xjr +M(1− zrij) ∀ i ∈ I1, j ∈ I2, r ∈ R,
(5)∑

r∈R

xir −
∑
r∈R

xjr = v−ij − v+ij ∀ i ∈ I1, j ∈ I2, (6)

zrij + zrji ≤ yir ∀ i ∈ I1, j ∈ I2, r ∈ R, (7)

zrij + zrji ≤ yjr ∀ i ∈ I1, j ∈ I2, r ∈ R, (8)

zrij + zrji + 1 ≥ yir + yjr ∀ i ∈ I1, j ∈ I2, r ∈ R, (9)

W ≥ xir +
1

2
wiyir ∀ i ∈ I, r ∈ R, (10)

xir −
1

2
wiyir ≥ 0 ∀ i ∈ I, r ∈ R, (11)

sr ≥ diW − diM(1− yir) ∀ r ∈ R, i ∈ I, (12)

A = s1 + s2 + cW, (13)

qij =
∑
r∈R

(zrij + zrji) ∀ i ∈ I1, j ∈ I2, (14)

xir ≥ 0 ∀ i ∈ I, r ∈ R, (15)

v+ij , v
−
ij ≥ 0 ∀ i ∈ I1, j ∈ I2, (16)

yir ∈ {0, 1} ∀ i ∈ I, r ∈ R, (17)

zrij ∈ {0, 1} ∀ i ∈ I, j ∈ {I \ i}, r ∈ R, (18)

qij ∈ {0, 1} ∀ i ∈ I1, j ∈ I2, (19)

sr ≥ 0 ∀ r ∈ R, (20)

A ≥ 0, (21)

W ≥ 0. (22)

The objective function (1) seeks to minimize the weighted total cost of material
handling plus the weighted area of the resulting layout. Constraints (2) and (3) ensure
that each machine is placed in exactly one row. Constraints (4) and (5) guarantee
that the minimum clearance between adjacent machines is satisfied. The absolute
value of the horizontal distance between machines is determined by Constraint (6).
Constraints (7) – (9) relate binary decision variables zrij and yir, such that when
machines i and j are both assigned to row r (i.e., yir = yjr = 1), either zrij or zrji
should be equal to 1; otherwise, zrij = zrji = 0. Due to the difficulties associated
with calculating the area of a layout via linear relationships, Constraints (10) – (12)
are employed to determine lower bounds on the width (horizontal dimension) and
area of a layout. The objective function term that seeks to minimize the total layout
area, A, serves to make constraints (10) and (12) binding. Constraint (13) determines
the total area of the resulting layout as the sum of the areas of the upper row, the
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lower row, and the corridor (aisle) separating the rows. Again, the objective function
seeks to minimize the total area of the layout. Constraint (14) determines whether
machines i and j are in the same row. Finally, (15) – (22) describe the decision
variable definitions. The constant M is a sufficiently large number, and may be given
by

M =
∑
i∈I

wi + max
j∈I
j 6=i

(aij)

 .

It should be noted that decision variable qij may be defined as continuous, but
bounded between 0 and 1. One of the nice properties of this formulation is that these
decision variables will necessarily be binary. Thus, the only decision variables that
must be explicitly solved as integer are yir and zrij. Intuitively, this reduction in
the number of integer decision variables should reduce solution times. Preliminary
testing indicates that modest performance improvements are observed by relaxing the
integer requirement on qij. However, results from these tests are not included here
due to numerical issues within CPLEX, which produced some solutions containing
fractional values of qij. The exact cause of these issues is unknown. Therefore, in all
problem instances we explicitly define qij to be binary.

A feature of layout problems is that they are often plagued by “mirroring” issues.
For example, suppose an optimal solution is found where machines in the upper row
are arranged in the following sequence: 1, 5, 2, 7. There is also an optimal solution
whereby these machines may be arranged in reverse (i.e., 7, 2, 5, 1). Furthermore,
there are optimal solutions containing these sequences of machines in the lower row.
This behavior significantly increases the computational complexity of the problem.
This behavior was observed by [7], who proposed a symmetry-breaking constraint for
layout problems of known widths. Fortunately, the effects of symmetry may also be
reduced in our problem, where the width is unknown, using the following constraints:

yi∗,1 = 1 (23)

xi∗,1 ≤
W

2
(24)

In these constraints, machine i∗ may be chosen randomly. However, to improve the
bounds on the area of resulting layouts, we have chosen to define i∗ to be the machine
with the maximum depth (i.e., di∗ = max

i∈I
{di}). Constraint (23) forces machine i∗ to

be placed in the upper row (row 1). Constraint (24) locates machine i∗ in the left half
of the upper row. It is important to note that these are valid constraints, in that they
do not prohibit the determination of a globally optimal solution. They do, however,
prevent mirror layouts from being considered.
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For the particular case of α = 1 (i.e., the objective is solely to minimize the flow
cost), the symmetry-elimination constraints may not work well. This is due to the
fact that there is no active objective function term that seeks to minimize the value
of A. Therefore, Constraint (10) is not guaranteed to be tight, and W (the width of
the layout) can become an arbitrarily large number. Furthermore, the value of W can
become decoupled from the location of the right-most machine in the layout. One
option to address this issue would be to limit α to be strictly less than 1. We believe
a better option is to incorporate the following constraints when α = 1:

W ≤ xi1 +
wi

2
+M

(1− yi1) +
∑
j∈I
j 6=i

z1ij + (1− l)

 ∀ i ∈ I, (25)

W ≤ xi2 +
wi

2
+M

(1− yi2) +
∑
j∈I
j 6=i

z2ij + l

 ∀ i ∈ I, (26)

l ∈ {0, 1}. (27)

Constraints (25) and (26) establish an upper bound on the width of the layout. Note

that
∑
j∈I
j 6=i

zrij equals zero if machine i is the right-most machine in row r. The binary

decision variable l, which assumes a value of one (zero) if the upper (lower) row is
the longest, ensures that either constraint (25) or (26) will be active.

To assess the effectiveness of the mirror-prevention constraints, 80 10-machine
problem instances were solved optimally both with and without these additional con-
straints. Details about the manner in which these problems were generated are con-
tained in Section 5. When only constraints (2) – (22) were employed, the average
solution time was 46.33 seconds. However, when constraints (23) – (27) were added,
the average solution time decreased to 20.51 seconds. The results of this analysis
indicate that the mirror-prevention constraints offer dramatic decreases in average
runtimes which means that problems of larger size may be solved optimally.

3 Numerical Example and Observations

This section presents an analysis of a small-scale numerical example to demonstrate
the impacts of aisle widths and area on optimal layouts. Information related to
material flow costs, minimum required clearances, and machine sizes are described in
Tables 3, 4, and 5, respectively. All of the representative layouts were solved optimally
via CPLEX 12.0 in under 30 seconds.
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Table 3: Cost of material flow between machines, fij.

from\to 1 2 3 4 5 6 7 8 9 10
1 - - 32 - - 33 - 40 - 33
2 - - 56 - - - 20 - - -
3 - - - - 33 - - 58 55 -
4 - - 23 - - - - - - 23
5 73 35 33 - - 30 - 23 - -
6 - 20 - 23 - - - 33 - 30
7 33 - - - - - - - - -
8 32 - - 23 35 23 - - - 40
9 23 32 - - - - - - - -

10 - 33 - - 33 - - 30 - -

Table 4: Minimum required clearance between machines, aij.

from\to 1 2 3 4 5 6 7 8 9 10
1 - 1.13 1.54 1.79 1.17 2.13 0.59 1.94 0.59 0.83
2 1.13 - 0.62 0.95 2.05 1.75 1.98 0.43 1.7 1.25
3 1.54 0.62 - 0.36 2.15 1.42 1.82 0.35 1.76 0.94
4 1.79 0.95 0.36 - 0.58 0.84 1.88 0.34 1.49 1.7
5 1.17 2.05 2.15 0.58 - 1.76 0.43 1.44 1.61 0.96
6 2.13 1.75 1.42 0.84 1.76 - 0.45 1.44 0.67 1.57
7 0.59 1.98 1.82 1.88 0.43 0.45 - 1.81 1.41 1.72
8 1.94 0.43 0.35 0.34 1.44 1.44 1.81 - 0.57 0.29
9 0.59 1.7 1.76 1.49 1.61 0.67 1.41 0.57 - 0.71

10 0.83 1.25 0.94 1.7 0.96 1.57 1.72 0.29 0.71 -

Table 5: Machine sizes.

Machine, i 1 2 3 4 5 6 7 8 9 10
wi 1.14 0.51 0.75 0.82 1.36 0.76 0.84 1.48 1.27 1.32
di 0.81 1.18 1.19 0.70 1.15 0.50 1.40 1.13 1.46 1.10

Figure 1 contains layouts resulting from changes to the width of the aisle sep-
arating the two rows of machines for the two extreme values of α. This example
demonstrates that the width of the aisle can dramatically affect the optimal layout.
Such a consideration was overlooked in all previous research on the DRLP, where
aisle widths were assumed to be zero.
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Total Area: 27.08

Total Flow Cost: 2363.82

9 1 5 4 6

7 2 3 8 10

Total Area: 41.16

Total Flow Cost: 3213.68

9 2 3 8 4 6

7 5 1 10

(a) α = 1, Aisle width = 0.0 (b) α = 1, Aisle width = 1.5

Total Area: 19.32

Total Flow Cost: 2708.31

9 6 7 5 4

2 3 8 10 1

Total Area: 30.25

Total Flow Cost: 3673.26

9 6 7 5 4

2 3 8 10 1

(c) α = 0, Aisle width = 0.0 (d) α = 0, Aisle width = 1.5

Figure 1: Effects of changing α and aisle width.

Figure 2 demonstrates layout changes as focus is shifted from minimizing total
cost of material flow (α = 1.0) to minimizing total area of layout (α = 0.0). It
should be noted that α = 0.5 does not imply that the minimization of total flow
cost and area are equally weighted due to the significant differences in the scale of
these two metrics. For example, the optimal layout with an aisle width of 1.5 and
α = 0.5 has a total flow cost of 2675.82 and consumes an area of 31.82, which is
the same as the case of α = 1.0 (Figure 2a). Similarly scaled individual objective
function contributions are seen in Figure 2c, with α = 0.01, where the weighted
area is (24.16)(0.99) = 23.92 and the weighted flow cost is (2824.29)(0.01) = 28.24.
Future research opportunities exist for transforming this problem into a bi-objective
formulation which would avoid the issue of scaling the two objectives. Comparing the
layouts in Figures 1 and 2 indicates that the consideration of both aisle width and
total layout area are important when developing a design for two rows of machine,
especially if space is expensive or constrained.
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Total Area: 31.82

Total Flow Cost: 2675.82

9 1 5 4 6

7 2 3 8 10

Total Area: 27.85

Total Flow Cost: 2677.66

9 2 3 8 10

7 1 5 4 6

(a) α = 1.00 (b) α = 0.25

Total Area: 24.16

Total Flow Cost: 2824.29

9 6 4 5 7

2 3 8 10 1

Total Area: 22.96

Total Flow Cost: 3111.04

9 6 7 5 4

1 10 8 3 2

(c) α = 0.01 (d) α = 0.00

Figure 2: Effects of changing α for a fixed aisle width of 0.5.

4 Tabu Search Heuristic

A tabu search (TS) heuristic is proposed for large-scale DRLP instances that cannot
be solved by CPLEX within reasonable computational time. TS is a meta-heuristic al-
gorithm that has been successfully applied to a variety of combinatorial optimization
problems [3]. It is especially effective and efficient for problems with a good neigh-
borhood structure, which we believe exists here. The procedure starts with an initial
randomly-generated solution, s, which represents the sequence of machines in each
row of a layout. In each iteration of the procedure the current solution is replaced by
a neighboring solution via the two operators described below. To limit search cycles,
a tabu list containing a history of recent operators employed to obtain neighboring so-
lutions is maintained. Operators contained in the tabu list, whose length may change
over time, are forbidden when constructing candidate solutions. As new operators are
added to the list, old operators are removed, thus maintaining only a recent history
of forbidden moves. The procedure terminates when either a pre-specified maximum
runtime, maxTime, is encountered, or the number of consecutive iterations for which
no improving solutions are found, maxIter, is reached.

Candidate solutions in the neighborhood of s are first determined by a move
operation. A move is designed to swap the locations of any two machines in a solution.
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In each iteration, all possible moves of current solution s are calculated to compose
the move set V (s). For a problem with n machines, the number of solutions that can
be reached by all moves of current solution s is n(n−1)/2. The solutions obtained by
utilizing the moves in V (s) comprise the neighborhood of s. The best non-forbidden
move selected from V (s) is applied to the current solution, resulting in a new solution,
s′. By default, the objective function value of this new solution, represented by
f(s′), is determined by separating each machine in the sequence s′ by its minimum
clearance with all adjacent machines. Later we describe a procedure in which the
integer programming formulation is employed to determine the optimal location of
each machine given a particular sequence.

The move used to create s′ is added to the tabu list, T , which contains the most-
recently swapped machine pairs. The proposed procedure utilizes a dynamic tabu
list, such that every 20 iterations the length of the tabu list is determined by a
random integer within pre-specified lower and upper bounds. It has been noted in
the literature that a dynamic length tabu list tends to result in more robust search.
If T is full, the earliest move in the list is removed and the current move is appended.
At this point, new solution, s′, replaces the previous solution (i.e., s = s′).

Next, a permutation operator considers changing the assignment of each machine
from one row to the other. For a problem with n machines, if the current solution has
p machines in row 1 and q machines in row 2 (p + q = n), then the total number of
solutions produced by the permutation operator is 2pq+n. These solutions comprise
the permutation set U(s). The best one, s′′, is selected from U(s) to compare with
current solution s. Unlike the move operator, which will always update the current
solution with a new solution, the permutation operator will only result in an update
to the current solution if s′′ represents a better solution than s. Thus, if f(s′′) < f(s)
then s is replaced by s′′. This part of the TS essentially acts as local search after
the best swap move has been determined. It serves to search areas that change the
number of machines per row (which the swap operator cannot do).

The steps of the proposed TS heuristic are as follows, where s∗ represents the
best-known solution, iter is an iteration counter, and time reflects the elapsed time:

Step 1: Randomly initialize the current solution, s; let s∗ = s, T = ∅, and iter = 0.

Step 2: Calculate the move set V (s) of current solution s. Let iter = iter + 1.

Step 3: Choose the best non-forbidden move v ∈ V (s), then v is applied to current
solution s to produce a new solution s′. Let s = s′. Update tabu list T .

Step 4: Calculate the permutation set U(s) of current solution s.

Step 5: Choose the best solution s′′ ∈ U(s). If f(s′′) < f(s), then let s = s′′;
otherwise, s′′ is discarded.

11



Step 6: If f(s) < f(s∗), then let s∗ = s, iter = 0 and return to Step 2.

Step 7: If (iter < maxIter) and (time < maxTime), then return to Step 2; other-
wise TS stops.

As previously mentioned, the TS heuristic defaults to using minimum machine
clearances when determining the objective function value. However, for a given se-
quence of machines in each row, optimal layouts when considering material flow may
require additional clearance between some pairs of machines. Fortunately, the deter-
mination of optimal machine locations for a given sequence can be easily obtained by
solving the mixed integer program defined in Section 2. Specifically, a sequence ob-
tained by TS is used to set the values of the binary qij, yir, and zrij decision variables.
The only remaining unknown decision variable values are for continuous variables.
Thus, the optimal machine locations (xir decision variables) may be obtained by solv-
ing a linear program, which may be solved very quickly. Montreuil et al. [5] employed
a similar approach using ant colony optimization for a block layout problem.

In the next section we investigate the four following methods in which the linear
program may be employed within the TS heuristic:

TS-0: Tabu search using only minimum clearance separation between tools. The
linear program is not employed.

TS-1: Tabu search with only the final solution sent to CPLEX (i.e., the linear pro-
gram is solved once and only after the completion of Step 7).

TS-2: Tabu search with only the best candidate neighbor solution sent to CPLEX
(i.e., the linear program is solved once per neighborhood and only for the best
solution obtained in Step 5).

TS-3: Tabu search with all neighbors (candidate moves) sent to CPLEX (i.e., the
linear program is solved for each solution investigated in Step 5).

5 Numerical Analysis

In this section we examine the effectiveness of the tabu search heuristic and its vari-
ants. Table 6 contains the parameter settings used to generate the test problems,
where 80 test problems were created for each value of m (20 distinct settings of ma-
chine sizes, clearances, and flow costs (that is, 20 problem instances); two values of
α; and two aisle widths).

To generate realistic product flow frequencies, we assumed that p distinct product
types exist, where p ∼unif[8, 10], such that each product within a particular type
visits the same sequence of machines. Let r equal the percentage of machines visited
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by each product type’s route, where r ∼unif[0.25, 0.75]. The number of products
of each type, n, is such that n ∼unif[20, 50]. Assuming unit costs, the fij values
were calculated as the sum of products whose routes included machine i immediately
preceding machine j. All problem data is available upon request from the authors.

Table 6: Parameter values for problem instance creation.

Parameter Values
m 10, 15, 20, 25
α 0, 1
wi ∼unif[0.5, 2.5]
di ∼unif[0.5, 2.5]
c 0, (max

i∈I
{di}+ min

i∈I
{di})/2

aij ∼unif[0.25, 1.5]

Tabu search parameter settings for each problem size are described in Table 7.
These parameter values were chosen after preliminary testing on other randomly-
generated test problems. The TS is not particularly sensitive to these values – the
main idea is to scale up the parameters as problem size grows.

Table 7: Tabu search parameter configurations.

TS List Length Termination Criteria
m min max maxIter maxT ime [sec]
10 2 4 800 300
15 3 5 1200 300
20 5 8 1500 300
25 6 9 1700 300

A comparison of the four TS heuristics is shown in Table 8. In this analysis, 80
problem instances (20 settings of tool sizes × 2 settings of α × 2 settings of c) were
solved for 10-machine layouts, where corridor clearance values were chosen to be
either zero (c = 0) or equal to the average of the minimum and the maximum values
of the tool depths (c = avg). Each TS heuristic was executed for one iteration, with
maxTime = 300 seconds. The integer programming formulation of Section 2 was
solved optimally via CPLEX. These optimal solutions were used in the determination
of the average gap for each TS variant. Each TS heuristic ran for the full allotment
of 300-seconds, while the average runtime for CPLEX was 20.51 seconds. Although
these results do not suggest that any of the TS variants are recommended over CPLEX
for small problems, they do indicate that TS-2 appears to be the most effective of
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the variants. Furthermore, as we will see shortly, TS-2 becomes a more attractive
approach relative to CPLEX for larger problem sizes. These results also demonstrate
the value of not only considering the minimum clearances. Note that TS-0 which
does not use CPLEX to adjust the machine locations in continuous space does very
poorly.

Table 8: Gap comparison of TS heuristics on 80 10-machine problem instances.

α = 0 α = 1
c = 0 c = avg c = 0 c = avg Avg. Gap # Optimal Solns

TS-0 1.30% 0.80% 1.17% 1.12% 1.10% 26 of 80
TS-1 1.30% 0.80% 0.39% 0.43% 0.73% 46 of 80
TS-2 1.22% 0.80% 0.00% 0.05% 0.52% 63 of 80
TS-3 1.39% 0.82% 0.21% 0.30% 0.68% 59 of 80

A separate analysis involving 20 10-machine problems, with α = 0.75 and an
aisle width equal to the average of the minimum and maximum machine depths, was
conducted to determine solution variability due to the random number seed used in
TS-2. Six replications were run for each problem instance. In 16 of 20 problems all six
seeds produced identical objective function values. For the remaining four problems,
the average standard deviation corresponded to 0.6% of the lowest objective function
value. As a result, it is apparent that the TS heuristic is not very dependent upon
the random number generator.

Results of the numerical experiments are summarized in Table 9, where 80 problem
instances were investigated for each value of m. All problems were restricted to a
5-minute (300-second) maximum runtime. With the exception of CPLEX on the
10-machine problems, both solution approaches were terminated due to the runtime
limit. The average gap is reported with respect to the best solution obtained by either
method. The last three columns of the table contain the number of problem instances
in which each method determined the best known solution.

Table 9: TS-2 heuristic performance over varying problem sizes.

Avg. Gap # Best Solutions
m TS-2 CPLEX TS-2 CPLEX Tie
10 0.52% 0.00% 0 17 63
15 0.79% 4.10% 53 25 2
20 0.44% 6.55% 71 9 0
25 0.08% 10.16% 78 2 0
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6 Summary

This paper presented an extended formulation of the DRLP, where machines are
placed on either side of an aisle, subject to minimum clearance requirements between
machines. While previous DRLP formulations assumed aisle widths of zero, the pro-
posed formulation considers arbitrary aisle widths. Furthermore, unlike most existing
layout formulations that seek to minimize material flow costs only, this formulation
also considers the minimization of the layout area. Numerical results demonstrate the
effects of non-zero aisle widths and area minimization on optimal layouts and show
that ignoring area and assuming zero width aisles would identify layouts that would
be far from optimal. Furthermore, considering machine placement at more than the
minimum required clearance is important. For most of our test problems, machines
were not placed at their minimum clearance only, but rather extra space was used to
reduce flow costs.

For small-scale problems, the proposed MILP formulation may be solved opti-
mally via commercial integer programming solvers quite quickly, in part due to the
inclusion of our symmetry-elimination constraints. However, even for moderately-
sized problems, exact approaches become time-prohibitive. Therefore, a tabu search
heuristic was developed. This heuristic determines sequences of machines in each row
of the layout, which is fed to CPLEX for exact solving of the best machine spacing
for a given sequence. Numerical analysis shows that the tabu search heuristic coupled
with CPLEX significantly outperforms CPLEX alone for problems of non-trivial size.

Future research opportunities on this topic include effective methods for deter-
mining Pareto optimality in a true bi-objective context (as opposed to the linearly-
additive manner in which the objectives of minimizing flow cost and layout area were
treated in this paper). This problem could also be extended to consider multiple
rows. Finally, more effective exact solution methods that exploit the structure of the
problem could be developed to solve larger-scale problems.
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