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Abstract

Container terminals offer transfer facilities to move containers from
vessels to trucks, trains and barges and vice versa. Within the terminal the
container yard serves as a temporary buffer where incoming containers are
piled up in stacks. Only the topmost container of each stack can be accessed.
If another container has to be retrieved, containers stored above it must be
relocated first. Containers need to be transported to a ship or to trucks in a
predefined sequence as fast as possible. Generally, this sequence does not
match the stacking order within the yard. Therefore, a sequence of retrieval
and relocation movements has to be determined that retrieves containers
from the bay in the prescribed order with a minimum number of relocations.
This problem is known as the container relocation problem. We apply an
exact and a heuristic column generation approach to this problem. First
results are very promising since both approaches provide very tight lower
bounds on the minimum number of relocations.

1 Introduction

Container terminals serve as exchange hubs in intermodal transportation. They offer trans-
fer facilities to move containers from vessels to trucks, trains and barges and vice versa.
Container terminals consist of the quayside, the landside and the yard. Vessels are loaded
and unloaded by quay cranes at the quay. The landside is the terminal’s interface with the
inland transportation system (rail, road, waterway). The yard serves as a temporary buffer
for containers. Our study deals with grounded storage operations where containers are
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Figure 1: Illustration of blocks, bays, stacks and tiers

stacked on the ground in several levels. The yard is divided into several blocks and each
block consists of several bays. A bay consists of 6 to 10 stacks and each stack of 4 to 7 tiers.
Figure 1 illustrates these terms. Since containers are piled up, only the topmost container
of each stack can be accessed. If another container needs to be moved, containers that are
placed on top of the required one have to be relocated. These unproductive movements are
called reshuffles or rehandles.

The objective of yard optimization is to minimize storage and retrieval times of contain-
ers while maximizing storage space utilization. To achieve this goal several problems have
to be addressed. Inbound and outbound containers have to be allocated to storage blocks
while balancing the workload between blocks. Then, each container has to be assigned to a
slot within the block. The objective is to avoid reshuffles at a later time. However, few in-
formation about the retrieval time of a container is known at the moment it has to be stored
and reshuffling later on cannot be avoided. Container terminals use less busy periods to
rearrange the yard as new information becomes available. The aim is to reduce the number
of reshuffles necessary during the subsequent retrieval process. This rearrangement cannot
always be done. If the yard is not prearranged the objective is to retrieve containers from
the bay in the given sequence as fast as possible. This paper deals with this last problem
which is known as the container (or block) relocation problem. Section 2 introduces the
container relocation problem and discusses existing work. Section 3 details our exact and
heuristic column generation approaches and the underlying bounding mechanisms to solve
this problem. Section 4 compares the results of our column generation approaches with the
results of a binary model and a simple heuristic. Section 5 indicates the continuation of this
work.

2 Container relocation problem

Vessels have to be loaded according to a stowage plan. This stowage plan imposes the
loading sequence of containers and thereby also the retrieval sequence of containers from



the yard. Trucks are also loaded in a specified order (e.g., FIFO). The retrieval sequence
may either specify precedence constraints among single containers or among groups of
containers. In order to minimize vessel and truck turnaround times retrieval operations have
to be executed as fast as possible. It is impossible to stack containers in a non-blocking way
since only partial information about future retrievals is available at the time the container
is stored. Therefore, non-productive reshuffles are necessary during the retrieval process.
A common procedure is to relocate containers within the bay since relocations between
bays are very time consuming. The time it takes to retrieve a container from the topmost
position of a stack is similar for all stacks. The number of reshuffles has thus the biggest
influence on the retrieval time. The overall retrieval time is shortest for a minimum number
of relocations.

This motivates the container relocation problem. Its objective is to determine a se-
quence of movements with a minimum number of reshuffles to retrieve containers from
the bay in the given order. The problem definition relies on assumptions A1 to A6. Most
studies also include assumptions A7.

A1: The initial bay layout and the retrieval order of single containers or groups of con-
tainers are known in advance.

A2: No new containers arrive during the retrieval process.

A3: Only the topmost container of a stack can be picked up. A relocated container can
only be put on the top of another stack or on the ground.

A4: The maximum number of stacks and tiers per bay are given and containers are only
relocated within the bay.

A5: Containers in the same bay can be piled up in any order.

A6: The distance traveled within one bay has no impacts on the time to reshuffle or to
retrieve a container.

A7: Only containers located in the same stack as and above the current target container
are allowed to be relocated.

We give an overview of studies dealing with the container relocation problem. For a
broader review of literature on container stacking refer to Caserta et al. [2]. The container
relocation problem is shown to be NP-hard by Caserta et al. [3]. This implies that only
small instances can be solved with exact methods in reasonable time. That is why only
few papers present exact solution approaches. Lee and Hsu [8] present different integer
linear programming models based on a multi-commodity flow problem with a set of side
constraints for several stacking problems. An adaptation to the container relocation prob-
lem is also shown. Caserta et al. [3] present two binary programming models. The models



contain state variables to represent the bay layout and movement variables to represent re-
trievals and relocations of containers. They also propose a simple heuristic based on the
computation of a stack score.

Kim and Hong [7] study the problem with priorities among single containers and among
groups of containers. They use a branch and bound algorithm that branches over all pos-
sible bay layouts resulting from the retrieval of a target container. They also propose a
heuristic rule based on the expected number of additional relocations based on probabilities
for container relocations. In a similar approach, Wu and Ting [10] apply different branch
and bound based heuristics using different simple relocation strategies. Zhang et al. [11]
present an iterative deepening A* algorithm (IDA*) and introduce new lower bound mea-
sures. Forster and Bortfeldt [6] present a tree search procedure. In contrast to all other
studies, all containers and not only the ones stacked above the target container can be relo-
cated. Their approach is based on a classification of feasible moves, a greedy approach to
find a initial solution, a lower bound for the number of moves and a branching scheme.

Wu et al. [9] use tabu-search to tackle the problem. They use a one-dimensional vector
to represent reshuffle and retrieval operations. Two simple heuristics are used to generate
the initial solution and two move operators are applied to obtain neighborhood solutions.
Caserta et al. [5] present a dynamic programming scheme and use it in a metaheuristic
fashion within the corridor method algorithm. The corridor method reduces the exponen-
tially large number of possible states by adding exogenous constraints to limit the number
of possible relocations. The dynamic programming scheme is then applied to the restricted
solution space. Caserta et al. [1] and Caserta and Voß [4] present two implementations for
a random based procedure. For a container to be relocated, a neighborhood of the current
configuration that can be reached from the current bay layout is defined. A greedy score is
calculated for each configuration and a roulette-wheel mechanism is applied to select the
next configuration and its associated move. Caserta et al. [1] propose a binary description
of the problem and apply this random based procedure. In Caserta and Voß [4] the corridor
method is used to define the neighborhood of the current configuration within the random
based procedure.

3 Column generation for the container relocation problem

Branch and bound techniques are often used to solve integer programming models. In these
cases, the gap between the bound computed at each node of the search tree and the optimal
integer solution should be minimized to speed up the solution process. Generally, linear
relaxations of integer programming models provide weak bounds. Column generation may
be used to tighten the linear relaxation and to improve the quality of the bounds.

Column generation calculates the linear relaxation of a reformulation of the original
problem to determine a linear relaxation of the original problem. The relaxed reformu-
lation is called master problem MP(Ω) where Ω is a large set of variables (also called
columns). Generally, the optimal solution of MP(Ω) cannot be determined with a standard



linear programming approach due to the size of Ω. In the optimal solution of MP(Ω) most
of the variables equal zero. The idea behind column generation is to use only a subset
of variables to determine the optimal solution of MP(Ω). The so-called restricted master
problem MP(Ωr) is instantiated with a subset Ωr of variables (Ωr ⊂ Ω). Then, Ωr is ex-
tended progressively, by the so-called subproblem, until an optimality criterion assures that
the optimal solution of MP(Ωr) is also the optimal solution of MP(Ω).

Column generation is an iterative approach where MP(Ωr) and the subproblem are
solved repeatedly. The subproblem determines variables in Ω\Ωr that have the poten-
tial to improve the objective value of MP(Ωr) (so-called variables with negative reduced
costs). These calculations are based on the values of dual variables of the current solution
of MP(Ωr). Then, MP(Ωr) is updated and resolved and the subproblem determines further
variables Ω\Ωr to be added to MP(Ωr) for the new values of its dual variables. The pro-
cess stops if no more variables in Ω\Ωr have the potential to improve the objective value
of MP(Ωr).

3.1 Master problem
The master problem is a reformulation of the binary model presented in Caserta et al. [3].
They consider a bay with W stacks and H tiers. Each slot within the bay is addressed with
coordinates (i, j) where i ∈ {1, . . . ,W} and j ∈ {1, . . . ,H}. The initial configuration con-
tains N containers, labeled 1, . . . ,N. Containers have to be retrieved in ascending order, e.g.
container 1 is the first one to be retrieved and container N the last one. At each time period
t (t ∈ {1, . . . ,T}) exactly one container (n = t) is retrieved and several containers may be
relocated. But, only containers blocking the container to be retrieved may be relocated.
Their objective is to minimize the number of relocations.

They identify two sets of binary variables. Configuration variables bi jnt represent the
layout of the bay. All bi jn1 with t = 1 are parameters which indicate the initial configuration
of the bay. Movement variables xi jklnt and yi jnt represent the relocation and retrieval of
containers:

bi jnt =

{
1 if block n is in (i, j) at the beginning of period t,
0 otherwise;

xi jklnt =

{
1 if block n is relocated from (i, j) to (k, l) in period t,
0 otherwise;

yi jnt =

{
1 if block n is retrieved from (i, j) in period t,
0 otherwise.

To model the master problem for column generation we also use the configuration vari-
ables bi jnt . We introduce new variables representing sequences of movements to retrieve
and relocate containers. Each sequence determines a series of movements to retrieve one
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Figure 2: Transformation of the bay by applying a sequence

container or to retrieve one container and to relocate containers stacked above it. Let s
design such a sequence. In this case, ys

i jnt and xs
i jklnt are parameters of the sequence with

values fixed to 0 or 1. The cost of a sequence cs is equal to the number of relocations to
be executed if sequence s is applied (cs = ∑i ∑ j ∑k ∑l ∑n ∑t xs

i jklnt). Figure 2 illustrates the
transformation of the bay for a given sequence (only ys

i jnt and xs
i jklnt 6= 0 are indicated).

Remember that only container n = t can be retrieved at period t. Let Ωk design the set
of all sequences that may be applied at period k (k ∈ {1, . . . ,T − 1}). For all sequences
s ∈Ωk, all parameters ys

i jnt and xs
i jklnt with t 6= k are zero. To solve the container relocation

problem, we have to chose those sequences that empty the bay in the prescribed order with
a minimum number of relocations. We introduce variables θ s with

θ s =

{
1 if sequence s is applied,
0 otherwise.

The the master problem for the container relocation problem can then be formulated as
follows:

min
T−1

∑
t=1

∑
s∈Ωt

cs ·θ s

s.t.

(1)
N

∑
n =t

bi jnt ≤ 1 ∀i = 1, . . . ,W, j = 1, . . . ,H, t = 1, . . . ,T

(2)
N

∑
n =t

bi jnt ≥
N

∑
n=t

bi j+1nt ∀i = 1, . . . ,W, j = 1, . . . ,H − 1, t = 1, . . . ,T

(3)bi jnt+1 = bi jnt + ∑
s∈Ωt

W

∑
k=1

H

∑
l=1

θ
s · xs

kli jnt − ∑
s∈Ωt

W

∑
k=1

H

∑
l=1

θ
s · xs

i jklnt

∀i = 1, . . . ,W, j = 1, . . . ,H,n = t + 1, . . . ,N, t = 1, . . . ,T − 1



(4)bi jtt − ∑
s ∈Ωt

θ
s · ys

i jtt = 0 ∀i = 1, . . . ,W, j = 1, . . . ,H, t = 1, . . . ,T − 1

(5)∑
s ∈Ωt

θ
s = 1 ∀t = 1, . . . ,T − 1

(6)θ
s ≥ 0 ∀t = 1, . . . ,T − 1,s ∈ Ωt

(7)bi jnt ≥ 0 ∀i = 1, . . . ,W, j = 1, . . . ,H,n = t, . . . ,N, t = 2, . . . ,T

The objective function minimizes the total number of relocations. The last period T is
not included since the last remaining container has to be retrieved from and no relocations
occur. Note that at the beginning of period t only containers n≥ t are in the bay. Constraint
(1) makes sure that each slot (i, j) is occupied by at most one container. Constraint (2) pre-
vents gaps within stacks. If a container needs to be retrieved from position (i, j) containers
at positions (i, j′) with j′ > j must also be moved. Moreover, no container can be relocated
to a suspended position. Constraint (3) links the bay layout at period t with the layout
at period t + 1 via the relocations to be carried out for the chosen sequences. Constraint
(4) makes sure that container n = t is retrieved from the bay in period t. Constraint (5)
imposes that exactly one sequence is chosen per period. Constraints (6) and (7) represent
the domain definitions of the linear variables. Remember that all ys

i jnt and xs
i jklnt are binary

parameters that are defined for each sequence s.

3.2 Restricted master problem
The restricted master problem is also defined by Constraints (1) to (7). It is instantiated
with a subset of variables Ωt

r (Ωt
r ⊂ Ωt for at least one t ∈ {1, . . . ,T − 1}). To determine

variables to be added to the restricted master problem, a feasible solution of the restricted
master problem has to be known. We use the heuristic presented in Caserta et al. [3] to
determine such a subset. The idea of their heuristic is based on some simple relocation
rules. A stack score si is determined for each stack i in the bay. si equals the highest
priority (lowest n) in the stack or N +1 if the stack is empty. Suppose that container t has
to be relocated. If there is at least one stack with si > t (the stack contains no containers
with higher priorities than container t), relocate container t to the stack with the smallest si,
since stacks with large si are valuable. If there is no stack with si > t, then choose the stack
with the highest si as container t will cause an additional relocation anyway.

3.3 Subproblem
The objective of the subproblem is to determine new sequences in Ω\Ωt

r to be added to Ωt
r

that reduce the objective value of the restricted master problem. In other words, sequences



with negative reduced costs have to be determined. Let γi jnt be the dual variables of Con-
straint (3), δi jt the dual variables of Constraint (4) and µt the dual variables of Constraint
(5). We are looking for sequences s satisfying Constraint (8).

(8)cs −
W

∑
i =1

H

∑
j =1

W

∑
k =1

H

∑
l =1

N

∑
n =t+1

xs
kli jnt ·

(
γi jnt − γklnt

)
+

W

∑
i =1

H

∑
j =1

ys
i jtt · δi jt + µt < 0

We use enumeration to create all feasible sequences for each Ωt based on the initial bay
layout. The initial configuration at period t = 1 is given. For periods t = 2, . . . ,T −1, pos-
sible configurations depend on the initial bay layout and on the relocations and retrievals of
previous periods. We iterate from period 1 to period T −1 to create all feasible sequences.
For each period t, all feasible sequences Ωt are generated and attainable layouts for the next
period are determined. If at least one sequence of Ωt satisfies Constraint (8), the iteration
stops after period t all sequences of Ωt satisfying Constraint (8) are added to Ωt

r.
In order to be feasible, a sequence has to meet several criteria. Obviously, containers

can only be picked up from positions that they may occupy and can only be put into po-
sitions that may be free and are not suspended. In period t, only container n = t may be
retrieved. If the target container may be stored beneath other containers, those containers
(and only those) have to be relocated within the bay to another stack. If two or more con-
tainers have to be relocated the LIFO order has to be respected. This means that if container
n is stacked below container n′ before the relocation, n cannot be stacked below container
n′ after the relocation.

We observed that the enumeration process is very slow since several millions of se-
quences have to be created. To speed up the subproblem, we present two bounding mech-
anisms to limit the number of possible relocations per sequences and hence the number of
sequences to be created.

Bounding mechanism 1 This method uses lower and upper bounds on the total number
of relocations to determine the maximum number of relocations per period. The initial bay
layout at t = 1 makes it possible to determine a lower bound LBt on the number or reloca-
tions needed to retrieve container n = t for each period t = 1, . . . ,T −1. LBt represents the
number of containers that have to be relocated for sure to retrieve container t. We iterate
from t = 1 to T −1. For each period t, LBt is set to the number of containers placed above
container t. Then, container t and all containers placed above it are deleted from the layout
to avoid counting them twice. The consequence is that we have no information on relocated
containers and their lower bounds have to be set to 0. In addition to LBt , we can determine
the minimum number of additional relocations ARt that relocations at period t will cause in
later periods. This may happen if a container has to be placed on a stack with at least one
container with a higher priority. LBt and ARt are similar to the lower bounds used in Kim
and Hong [7] and Zhang et al. [11].

Figure 3 illustrates the calculation of LBt and ARt . Containers 1 and 2 are at the topmost
positions of their stacks and can be retrieved without any relocation (LB1 = 0, LB2 = 0).
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Figure 3: Calculation of lower bounds and additional relocations

To retrieve container 3, only container 16 has to be relocated since container 2 is already
retrieved (LB3 = 1). Each stack contains at least one container with a higher priority than
container 16. Consequently, the relocation of container 16 will cause an additional reloca-
tion in a later period (AR3 = 1). The lower bounds and the number of additional relocations
for containers 4, 5, 6 and 13 are calculated accordingly. The lower bounds and the number
of additional relocations for relocated containers 7, 8, 9, 10, 12, 14 and 15 are set to 0.

We also use the fact that the heuristic presented in Section 3.2 provides an upper bound
UB on the total number of relocations over all periods t = 1, . . . ,T − 1. LBt , ARt and UB
enable us to determine the maximum number of admissible relocations per period k to
obtain a solution with no more than UB relocations. Only sequences respecting Constraint
(9) limiting the number of relocations at period k are generated.

(9)cs ≤ UB−
k−1

∑
t=1

LBt −
T−1

∑
t=k+1

LBt − ARk ∀s ∈ Ωk, k=1,. . . ,T-1

The limit of this bound is that LBt and ARt equal zero for all relocated containers. For
initial bay layouts where containers with high priorities are stacked near the ground, most
of the LBt and ARt will be zero. Thus, Constraint (9) may become cs ≤UB and has no or
little impact.

Bounding mechanism 2 We simply impose that cs≤ initial stack height - 1 for all periods
t = 1, . . . ,T − 1. This bounding mechanism does not guarantee that the optimal solution
for the restricted master problem is also optimal for the master problem. But, remember
that only containers located above the container to be retrieved may be relocated. For
that reason, few realistic initial bay layouts exist where more than initial stack height - 1
relocations are needed to solve the master problem optimally.



4 Preliminary results

We implemented an exact and a heuristic version of column generation. The exact column
generation uses the bounding mechanism 1 to limit the number of generated variables. It
guarantees that an optimal solution of the restricted master problem is also an optimal solu-
tion of the master problem. The heuristic column generation uses bounding mechanisms 1
and 2. In this case, the optimal solution of the restricted master problem is not necessarily
an optimal solution of the master problem.

To evaluate the performance of both approaches we compare them with the perfor-
mance of the binary model and the heuristic introduced by Caserta et al. [3]. We slightly
modified their binary model by adding a constraint to make sure that the relocations are
represented correctly and fixed several variables to zero to speed up the solution process.
The heuristic is implemented according to their principles which were already presented in
Section 3.2. The binary model and the restricted master problems are solved with Cplex
12.1. The heuristic and the exact and the heuristic subproblems are coded in C++. Ex-
periments are carried out on the instances introduced by Caserta et al. [3]. Each instance
H-W -x describes the initial configuration of the N = W ·H containers in a bay with width
W and initial stack height H. Five instances (x = 1, . . . ,5) are given for each H-W . The
maximum bay height is limited to H + 2. All experiments are run on a computer with In-
ter(R) Xeon(R) CPU clocked at 2.67GHz (dual core), 3.48GB RAM and operating with
Windows XP Professional.

Results of this comparison are shown in Table 1. Column 1 identifies the instances.
Column 2 shows the optimal solution (minimum number of relocations) of Caserta’s binary
model (MC) and column 3 the solution time. Columns 4 and 5 show the same results for
Caserta’s heuristic (HC), columns 6 and 7 for the relaxation of the binary model (rMC),
columns 8 and 9 for the exact column generation (eCG) and columns 10 and 11 for the
heuristic column generation (hCG). Instances that could not be solved with MC, eCG or
hCG because Cplex run out of memory are marked by “mem”. All instances for which the
optimal binary solution is obtained are highlighted in bold for each solution method,. All
instances for which the optimal solution value is obtained but variables are not binary are
highlighted in italic for each solution method,.

The difficulty of an instance depends on the ratio of initial stack height to bay width
and on the initial configuration of the bay. In general, instances with high initial stacks and
instances where high priority containers are stacked close to the ground are more difficult to
solve. For these instances, probabilities that containers have to be relocated one or several
times are high. For MC, the number of variables depends on the size of the bay and on
the number of containers. MC performs well for smaller instances 3-3 to 3-7 and 4-4, but
less well for instances 3-8, 4-5 and 4-6 where execution times go up and memory problems
arise. HC obtains almost always the optimal solution for instances with H = 3. Around
75% of the instances with H = 4 are solved optimally. The run time of the heuristic is
always below 0.1 seconds. rMC provides very weak lower bounds on the optimal solution



Table 1: Comparison of the binary model, two column generation approaches and the
heuristic

MC HC rMC eCG hCG
Inst. Nb. rel CPU Nb. rel CPU Nb. rel CPU Nb. rel CPU Nb. rel CPU

time [s] time [s] time [s] time [s] time [s]

3-3-1 6 0.1 6 <0.1 6.0 0.1 6.0 0.2 6.0 0.1
3-3-2 5 0.2 5 <0.1 4.2 0.1 5.0 0.1 5.0 0.0
3-3-3 2 0.1 2 <0.1 2.0 0.1 2.0 0.0 2.0 0.0
3-3-4 4 0.1 4 <0.1 3.1 0.1 4.0 0.1 4.0 0.0
3-3-5 1 0.1 1 <0.1 1.0 0.1 1.0 0.0 1.0 0.0

3-4-1 5 0.3 5 <0.1 4.2 0.3 5.0 0.3 5.0 0.1
3-4-2 3 0.7 3 <0.1 3.0 0.3 3.0 0.0 3.0 0.0
3-4-3 7 0.6 7 <0.1 5.3 0.3 7.0 0.1 7.0 0.1
3-4-4 5 1.3 5 <0.1 4.3 0.4 5.0 0.2 5.0 0.1
3-4-5 6 1.2 6 <0.1 4.8 0.4 6.0 0.2 6.0 0.1

3-5-1 6 2.2 6 <0.1 5.2 1.0 6.0 0.4 6.0 0.1
3-5-2 7 3.7 7 <0.1 5.2 0.7 7.0 0.0 7.0 0.0
3-5-3 8 9.8 8 <0.1 5.9 1.1 8.0 0.9 8.0 0.2
3-5-4 6 7.3 6 <0.1 4.2 0.9 6.0 1.5 6.0 0.6
3-5-5 9 3.4 10 <0.1 9.0 0.8 9.0 382.5 9.0 5.1

3-6-1 11 44.3 11 <0.1 8.6 2.5 9.5 3848.6 9.5 69.6
3-6-2 7 14.4 7 <0.1 6.6 2.1 7.0 0.0 7.0 0.0
3-6-3 11 8.7 11 <0.1 8.7 1.9 mem mem 11.0 11.9
3-6-4 7 18.3 7 <0.1 5.9 2.2 7.0 0.3 7.0 0.3
3-6-5 4 9.7 4 <0.1 3.1 1.8 4.0 0.0 4.0 0.0

3-7-1 7 8.9 7 <0.1 5.7 3.6 7.0 1.6 7.0 0.6
3-7-2 10 65.9 10 <0.1 6.8 5.8 10.0 5.2 10.0 0.6
3-7-3 9 10.4 9 <0.1 7.3 3.1 9.0 667.4 9.0 13.0
3-7-4 8 36.5 8 <0.1 6.3 5.4 8.0 1.0 8.0 1.0
3-7-5 12 36.8 12 <0.1 10.8 4.9 12.0 4836.1 12.0 86.8

3-8-1 8 34.9 8 <0.1 7.0 6.1 7.0 76.7 7.0 29.5
3-8-2 10 188.2 10 <0.1 5.3 14.5 10.0 15.9 10.0 0.8
3-8-3 mem mem 9 <0.1 5.6 18.5 9.0 0.7 9.0 0.7
3-8-4 10 66.6 10 <0.1 7.9 6.9 10.0 29.8 10.0 3.0
3-8-5 mem mem 13 <0.1 6.8 16.3 13.0 4878.1 13.0 620.4

4-4-1 10 13.2 10 <0.1 8.4 1.1 10.0 173.6 10.0 34.0
4-4-2 10 40.1 10 <0.1 5.7 1.8 10.0 4.8 10.0 4.3
4-4-3 10 6.6 11 <0.1 8.0 1.3 10.0 299.5 10.0 55.2
4-4-4 7 4.2 7 <0.1 6.4 1.2 7.0 0.0 7.0 0.0
4-4-5 9 7.6 10 <0.1 8.2 1.3 9.0 2.0 9.0 1.9

4-5-1 16 20279.8 16 <0.1 8.0 7.7 mem mem mem mem
4-5-2 10 1561.6 11 <0.1 7.0 10.1 10.0 498.2 10.0 421.1
4-5-3 13 1144.7 13 <0.1 8.7 3.1 12.2 467.9 12.2 383.1
4-5-4 8 47.5 8 <0.1 6.8 2.8 8.0 16.5 8.0 1.5
4-5-5 16 19209.5 16 <0.1 10.5 5.5 mem mem mem mem

4-6-1 mem mem 18 <0.1 9.0 7.6 mem mem mem mem
4-6-2 8 156.5 8 <0.1 5.0 13.6 7.0 2.8 7.0 2.8
4-6-3 13 49.5 13 <0.1 9.6 7.0 mem mem mem mem
4-6-4 14 811.2 16 <0.1 10.8 11.2 mem mem mem mem
4-6-5 mem mem 15 <0.1 10.5 10.6 14.3 2548.7 14.3 413.4



of MC. The gap between the optimal solution of rMC and the optimal solution of MC may
be as big as 50% and is almost never 0%. Like for MC, instances with large bays (3-8, 4-5
and 4-6) are the most difficult ones to solve.

The numbers of variables for hCG and eCG depend on the initial configuration and the
initial stack height. The bounding mechanism 1 works fine for wide bays with low stacks,
but not so well for narrow bays with high stacks. In general, eCG performs well for instance
classes 3-3 to 3-8, but not so well for classes 4-4 to 4-6. But, for instances where high
priority containers are stored at close to the ground, the bound provided by the bounding
mechanism 1 is very weak and these instances need much time to be solved. Bounding
mechanism 2 limits the influence of the initial bay layout and explains why these effects
are less drastic for hCG. eCG finds the optimal binary solution for 60% of all instances
and the gap equals zero for another 16% of the instances. For all tested instances, hCG
obtains the same results than eCG and hence the optimal solution of the master problem.
hCG finds the optimal binary solution for 69% of all instances and the gap equals zero for
another 9% of the instances. We may thus conclude that hCG and eCG provide very strong
lower bounds for the optimal solution of MC and that hCG outperforms eCG.

Remember that eCG and hCG perform well for wide bays with low stacks and MC for
small bays with few containers. That is why eCG and hCG perform better for instances 3-3
to 3-8 and MC better for 4-4. For 4-5 and 4-6, hundreds of millions of variables have to be
created for eCG and hCG and Cplex breaks down more often than for MC. But, for those
instances that eCG and hCG solve, they perform better than MC.

Table 2 evaluates the performance of the two bounding mechanisms introduced in Sec-
tion 3.3 and their impacts on column generation. The figures represent the average over
all five instances of each class for columns 2 to 6 and the average over all instances solved
with eCG and hCG for columns 7 to 10. Column 1 indicates the instance class. Column
2 shows the number of feasible sequences that are created if no bounding mechanism is
applied. Columns 3 and 4 indicate how many sequences are created if the bounding mech-
anism 1 (BM1) is applied and the time needed to do so. Columns 5 and 6 show how many
sequences are created if bounding mechanisms 1 and 2 (BM1+2) are applied and the exe-
cution time. Columns 7 and 8 show how many sequences are added to the restricted master
problem and how often the subproblem is called for eCG. Columns 9 and 10 show the same
parameters for hCG.

BM1 reduces the number of columns to be created drastically. It works especially
well for instances 3-7 and 3-8 where the number of columns to be enumerated is reduced
by 99%. Using BM2 in addition to BM1 reduces the number of created sequences even
further. BM2 performs especially well for instances with H = 4. Using BM1+2, instead
of BM1, speeds up the enumeration process considerably. Due to memory restrictions the
variables cannot be registered and have to be recreated every time the subproblem is called.
In addition, eCG needs more iterations that hCG to obtain the optimal solution for the
restricted master problem. All these facts explain why hCG is solved faster than eCG, as
we have seen in Table 1. Both, eCG and HCG add only a small percentage



Table 2: Comparison of bounding mechanisms BM1 and BM2

No bounding BM1 BM 1 + 2 eCG hCG
Inst. Generated Generated CPU Generated CPU Added Iter- Added Iter-
class columns columns time [s] columns time [s] columns ations columns ations

3-3 81.8 79.2 0.1 63.8 <0.1 23.6 4.8 22.0 4.6
3-4 1 594.6 424.0 <0.1 297.6 <0.1 78.8 7.2 76.0 7.2
3-5 1 342 497.8 355 589.8 3.9 19 148.2 0.2 9 569.2 14.2 1 577.8 10.6
3-6 30 694 056.4 16 597 984.4 263.1 93 570.0 0.8 198 631.3 18.0 9 519.3 17.3
3-7 127 412 801.2 1 003 561.6 21.8 233 469.8 2.0 112 695.8 31.2 1 762.4 19.0
3-8 225 395 905.5 1 185 319.0 23.0 235 450.4 2.6 204 112.0 30.0 58 846.8 23.2
4-4 312 643.4 285 191.0 7.7 69 759.8 1.6 34 847.2 16.8 9 789.6 17.4
4-5 283 559 725.8 232 843 810.4 3 604.8 11 615 308.6 127.6 26 558.3 32.7 31 597.0 36.0
4-6 628 145 323.8 416 072 882.0 8 519.5 26 613 126.4 364.3 42 063.0 62.5 15 091.0 53.5

For instances that we could not solve with eCG or hCG yet, more than 16 000 000
variables are created. We observe that eCG and hCG use only a small percentage of all
generated sequences to solve the restricted master problem. To be able to solve bigger
instances and to speed up the solution process further investigation to reduce the number
of created variables has to be done.

5 Outlook

We presented an exact and a heuristic column generation approach for the container re-
location problem. In both cases, the master problem represents the bay layout over time
via configuration variables and movement variables. The configuration variables indicate
the position of each container in the bay at each period. Each movement variable, called a
sequence, represents a series of movements to retrieve one container and to relocate other
containers. The subproblem enumerates all possible sequences. We use two very effective
bounding mechanisms to reduce the number of created sequences and to speed up the so-
lution process. First experiments are very promising since both approaches provide a very
tight linear relaxation of the binary problem and need only a small number of sequences
and iterations to obtain that solution. In around 70% of the cases, we obtain the optimal
binary solution.

For bigger instances however, several millions of sequences have to be enumerated.
This takes a long time and Cplex cannot handle all these variables. It is thus necessary to
reduce the number of generated sequences to be able to solve bigger instances and to speed
up the solution process. One possibility is to improve the quality of the lower bounds LBt
used in the bounding mechanism 1. In addition, column generation has to be embedded in
a branching procedure to determine the optimal binary solution for the few cases where it
does not provide the optimal binary solution.
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