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Abstract 
 

This paper studies random storage in a live-cube storage system 
where loads are stored multi-deep. Although such storage systems are still 
rare, they are increasingly used, for example in automated car parking 
systems. Each load is accessible individually and can be moved to a lift on 
every level of the system in x- and y-directions by a shuttle as long as an 
open slot is available next to it, comparable to Sam Loyd’s sliding 
puzzles. A lift moves the loads across different levels in z-direction. We 
derive the expected travel time of a random load from its storage location 
to the input/output point. We optimize system dimensions by minimizing 
the expected travel time.  

 
  

1 Introduction  

Live-cube storage systems are recently introduced automated storage systems which can achieve 
high storage density together with short response times. In live-cube storage systems, the highest 
storage density can be achieved while unit loads can individually move in a 3-dimensional space. 
They have many applications, which can be found in parking systems (e.g. “Park, Swipe, Leave” 
parking systems [1], “Space Parking Optimization Technology” or SPOT [2], “Hyundai 
Integrated Parking” or HIP Systems [3], “Wohr Parksafe” [4]). They are also applied in 
warehouses and cross-dock systems (e.g. “Magic Black Box” [5]) and container yards (e.g. 
“Ultra-high Container Warehouse” or UCW systems [6]). 

Such storage systems operate with electrically powered shuttles and lifts, which lead to 
significantly reduced fossil fuel and energy consumption, and CO2 emissions. Table 1 compares 
the energy consumption and CO2 emission of a typical live-cube and a traditional multi-storey 



 

car parking system of the same capacity (192 cars), and for different types of power plants 
generating the energy needed for operation (lighting, ventilation, moving the cars).  

Table 1. Energy consumption and CO2 emissions of live-cube parking system and traditional 
multi-storey car park* 

Generated by Fossil-fuel power plant Nuclear power plant 
 

Biomass-fuel power 
plant 

Parking type Live-cube 
parking 

Traditional 
car park 

Live-cube 
parking 

Traditional 
car park 

Live-cube 
parking 

Traditional 
car park 

Average CO2 emission (gram/car) 96 4369 1 200 0 184 

Average S/R energy consumption 
(kWh/car) 

0.12 4.94 0.12 4.94 0.12 4.94 

Average lighting energy 
consumption (kWh/car) 

0.00 0.25 0.00 0.25 0.00 0.25 

Average ventilation energy 
consumption (kWh/car) 

0.00 5.00 0.00 5.00 0.00 5.00 

Total (kWh/car) 0.12 10.19 0.12 10.19 0.12 10.19 

*Input data retrieved from [3] and [7]. 

As Table 1 shows, a live-cube parking system significantly reduces the energy consumption 
and CO2 emissions compared to the traditional multi-storey car park. This saving is even more 
significant for CO2 emissions if electricity is provided by a fossil-fuel power plant.  

A live-cube storage system contains multiple levels of storage grids, shuttles, a lift, and a 
depot, or an Input/Output (I/O) point. Shuttles can move in x- and y- directions (as long as there 
is an empty space) while carrying a unit load. These moving patterns can be compared to solving 
a Sam Loyd’s 15-puzzle game [8]. A lift takes care of movements across different levels in z- 
direction (see Figure 1). We assume the I/O point is located at the lower left corner of the system. 
When idle, the lift waits at the I/O point. The performance of a storage system in service 
industries is often measured in terms of its response time. This paper optimizes dimensions of a 
live-cube storage system under random storage policy. In order to do this, we define a 
mathematical model for the expected retrieval time of an arbitrary unit load as a function of 
system dimension sizes. 

 

Figure 1. A live-cube storage system  



 

2 Mathematical model 

A random retrieval location can be denoted by (X ,Y ,Z) where X, Y and Z refer to 
coordinates in x-, y- and z- directions respectively. The system capacity is a known 
positive constant. A random storage policy is assumed. It is also assumed that the 
utilization of the system cannot exceed ( max{ , }) /V L W V′ ′− , where V´, L, and W represent 
the capacity of the system in number of storage locations, the number of columns in each 
level, and the number of rows in each level, respectively. 

Theorem 1. If there is at least one empty location in each row and each column of 
each level of a live-cube storage system (i.e. max utilization ( max{ , }) / )V L W V′ ′≤ − , the 
minimum retrieval time of a random unit load stored at location (X, Y, Z), can be 
estimated by the following equation:  

( , , ) max{ , }T X Y Z X Y Z Z= + + . (1) 

Proof. Theorem 1 can be proven by using mathematical induction, which is omitted 
here. 

Using this theorem, we obtain the expected retrieval time given by Equation (2) and 
the mathematical model of the problem as below (Model MGM):  

   
{ , , , }

min [ ]i i
i A B C D

u E T
∈
∑ ,  (2) 

subject to:  
   lwh V= ,  (3) 
   0l w− ≥ , (4) 

   
{ , , , }

1i
i A B C D

u
∈

=∑ , (5) 

   ( ) 0Au w h− ≥ , (6) 

   ( ) 0Bu h w− ≥ , (7) 

   ( ) 0Bu l h− ≥ , (8) 

   ( ) 0Cu h l− ≥ , (9) 

   ( ) 0Cu l w h+ − ≥ , (10) 

   ( ) 0Du h l w− − ≥ , (11) 
Decision variables: 0, 0, 0l w h> > > , 
and {0,1} for { , , , }.iu i A B C D∈ ∈   

Equation (2) minimizes the expected retrieval time E[T]. Constraint (3) makes sure that the 
given capacity (V) is achieved. Constraint (4) ensures the length is at least equal to the width of 
the system. Constraint (5) guarantees exactly one of the cases is considered in the objective 
function. Constraints (6)-(11) take care of the feasibility of the solutions of each case. Length (l), 
width (w) and height (h) are expressed in time units.  

The model is non-linear and mixed integer; however, we can optimally solve it by 
splitting it into several solvable sub-models and reducing the feasible area of the decision 
variables without losing the optimal solution. In order to solve the model we have to 



 

derive the expected retrieval time in Equation (2). The expected retrieval time for any 
live-cube system with a given capacity can be calculated as follows:  

max{ , }

0
[ ] ( )

w l h h

t
E T tf t dt

+ +

=
= ∫ ,  (12) 

where, t represents the retrieval time for any retrieval location. ( )f t represents the 
probability density function of retrieval time t, 0 max{ , }t w l h h≤ ≤ + + . In order to 
calculate the expected retrieval time, we need to derive ( )f t . By knowing the cumulative 
distribution function of the retrieval time ( ( )F t ) we can then derive ( )f t . The cumulative 
distribution function can be calculated as follows: 

( ) ( ) (max{ , } ) ( 2 )F t P T t P X Y Z Z t P X Y Z t Z t= ≤ = + + ≤ = + + ≤ ∩ ≤ .  (13) 

The two conditions, X Y Z t+ + ≤ and 2Z t≤ are not independent of each other and 
therefore cannot be separated. Figure 2(a) illustrates the optimal shape which includes all 
the locations with retrieval time less than or equal to t. Therefore, for any value of 
retrieval time, t, the probability that the random variable T is less than or equal to t can be 
calculated as: 
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(a) (b) 

Figure 2. (a) The region formed by x y z t+ + ≤ and 2z t≤  (b) cubic shape of a multiple-
level system with its corner points 

However, the region in Figure 2(a) may be restricted by the cubic system. The cubic 
shape of multiple-level live-cube system is illustrated in Figure 2(b). Therefore, it may 
not possible to include all the locations with the retrieval time less than or equal to t 
because of the system restriction. The shape in Figure 2(a) will be transformed to 
different shapes depending on relative sizes of rack dimensions (system configuration) 
and retrieval time t. Each shape is related to a specific formula, which returns the volume 

volume of the region  in the system( ) ( )
volume of the system

T tF t P T t ≤
= ≤ =  (14) 



 

of the shape and therefore we can derive for each shape a specific cumulative and 
probability density function. The classification is due to different ways of calculating the 
probability density function in each case other than the other cases. Each case can be 
shown to have only one formula for E[T]. 

By simultaneously considering two conditions, the calculation of E[T] can be done 
into four different complementary cases, each referring to a specific configuration of the 
system. The four cases of system configuration are listed as follows: 

• case A: h w≤ , 
• case B: w h l< ≤ , 
• case C: l h l w< ≤ + , 
• case D: l w h+ < . 

3 Results 

We obtain the optimal solution of Model MGM by comparing the solutions of four cases. 
The following equations give optimal values of E[TA], E[TB], E[TC], and E[TD] as a 
function of volume of the system V. 

* 1/3[ ] 1.53097AE RT V=  (15) 
* 1/3[ ] 1.53789BE RT V=  (16) 
* 1/3[ ] 1.54167CE RT V=  (17) 
* 1/3[ ] 1.81889DE RT V=  (18) 

As it can be seen from Equations (15-18), the solution of case A ( h w≤ ) gives the 
minimal E[T] for Model MGM. Figure 3 illustrates the optimal E[T] of four cases for 
varying volume of the system. 

Therefore, the Equations (19) and (20) give the optimal solutions of Model MGM. 
For any volume of the system, a system with the following dimension sizes is the system 
with minimum expected retrieval time.  
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Figure 3. Optimal E[T] for cases A, B, C, and D versus system volume 



 

* 1/3( ) 0.874461h V V=  
(19) 

* * 1/3( ) ( ) 1.069374w V l V V= =  (20) 

4 Conclusion  

A live-cube system can realize high storage density since virtually no transportation 
aisles are needed. In addition, the system significantly reduces the energy consumption 
needed for operation and CO2 emissions compared to a traditional storage system (as 
shown in our car park example). The system can respond fast to customer orders due to 
independent and simultaneous movements of its components in 3-dimensional space. One 
of the most important performance measures is the customer response time. In this study, 
we derive the expected retrieval time of the system as a measure to compare the 
performance of such a system with other storage systems under random storage policy. 
However, the response time of such a system is heavily dependent on its configuration. 
Therefore, we propose a mathematical model to obtain the optimal dimensions of the 
system leading to the minimum response time. The model can be optimally solved by 
splitting it into several solvable sub-models without losing the optimal solution.  

Several research questions regarding the live-cube storage systems remain open. 
While we have studied live-cube storage systems with lifts, results for other live-cube 
storage systems with different vertical movement mechanism may also prove worthwhile 
investigating. It is also possible to study the live-cube storage system with other storage 
policies such as class-based storage policy and compare the results with the results 
obtained here in this study.  
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