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Abstract 
 

A warehouse needs to have sufficient open locations to be able to deal 
with the change of item inventory levels, but due to ongoing storage and 
retrieval processes, open locations usually spread over storage areas. 
Unfavorable positions of open locations negatively impact the average 
load retrieval times. This paper presents a new method to manage these 
open locations such that the average system travel time for processing a 
block of storage and retrieval jobs in an automated warehousing system is 
minimized. We introduce the effective storage area (ESA), a well-defined 
part of the locations closest to the depot; where only a part of the open 
locations –the effective open locations-, together with all the products, are 
stored. We determine the optimal number of effective open locations and 
the ESA boundary minimizing the average travel time. Using the ESA 
policy, the travel time of a pair of storage and retrieval jobs can be 
reduced by more than 10% on average. Its performance depends hardly on 
the number or the sequence of retrievals. In fact, in case of only one 
retrieval, applying the policy leads already to beneficial results. 
Application is also easy; the ESA size can be changed dynamically during 
storage and retrieval operations.  

Keywords: Distribution science, warehousing; AS/RS; storage and 
retrieval; open locations 

 
1     Introduction 

 
Warehouses or distribution centers are key nodes in supply chains. They decouple 
demand from supply in space, quantity, and time. They therefore play a crucial role in 
realizing high supply chain efficiency and service levels. Since the seminal papers of 
Hausmann et al. (1976), Graves et al. (1977), and Han et al., (1987), warehouse design 



 

and management have received vast attention in management literature (Johnson and 
Meller, 2002; De Koster et al., 2007; Gu et al., 2007).  

In order to run a warehouse storage system efficiently, a sufficient number of open 
locations (or empty slots) are necessary. This number depends on the change of the 
inventory levels over time and the way the system operates. If the number is insufficient, 
much time can be required in storage (and later in retrieval) because of lack of chance to 
find an open location close to the depot for incoming storage loads or difficulty in pairing 
open locations and retrieval locations. According to Tompkins et al. (2003, p. 403), the 
rule of thumb in practice is: “when a warehouse is more than 80% full, more space is 
needed” and “this rule is based on the fact that when a warehouse reaches this capacity, it 
takes longer to put something away”. For automated unit load warehousing systems 
(where pallets or totes are stored and retrieved by a storage and retrieval -S/R- machine) 
several researchers (e.g., Graves et al., 1977; Han et al., 1987; Meller and Mungwattana, 
1997) have shown that, by sequencing a given block of storage and retrieval jobs, the 
average travel time of an S/R-machine for a pair of storage and retrieval jobs decreases 
with an increasing number of available open locations (see Figure 1). The more open 
locations the system has, the easier the system finds them to store incoming loads, and to 
optimally combine the storages with retrievals. However if the number of open locations 
increases beyond a bound, (e.g. em  in Figure 1), increasing the number has little effect on 
further reducing the cycle travel time.Although present in academic results (reviewed in 
Section 2) in past decades, this effect has not been noted in past literature. 
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Figure 1: The Effect of the Number of Open Locations on the Average Travel Time of a 

Pair of Storage/Retrieval Jobs 
 

We make use of this phenomenon by no longer allowing all the open locations (see 
Figure 2(a)) to be available to incoming storage jobs, but only those locations in an 
Effective Storage Area (ESA) (see Figure 2(b)). The ESA contains only a part of the open 
locations closest to the depot and all the products stored. The open locations within the 



 

ESA are called effective open locations. The other, or ineffective open locations, are 
located outside the ESA and form an Ineffective Storage Area (ISA) (see Figure 2(b)). In 
order to create an ESA of a given size, unit loads stored outside have to be swapped with 
inside open locations. Once the ESA has been created, it is easy to maintain. In situations 
where only double plays are carried out (a storage job combined with a retrieval) we only 
store and retrieve unit loads within the ESA. 

As stored products may have to be retrieved at any location within the entire ESA, 
after some time of operation, the open locations will be scattered randomly within the 
ESA and the ESA will look like in Figure 2(b). 
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Figure 2:  Effective Storage Area (ESA) and Ineffective Storage Area (ISA) 

 
The number of effective open locations influences the average storage and retrieval 

time as it determines, together with the given number of stored unit loads, the size of 
ESA. If the ESA contains too many open locations it becomes large, which negatively 
impacts the average storage and retrieval time. If it contains too few open locations, it is 
difficult to match a retrieval to a close storage job leading to too long average storage and 
retrieval times. Our main research questions therefore are: (1) how many effective open 
locations ( em ) should the ESA have and (2) what is the optimal boundary of the ESA to 
minimize the average travel time of a pair of S/R jobs. Equivalently, we want to 
minimize the makespan of a given block of S/R jobs that have to be carried out. 

The idea of storing and retrieving loads using a shrunk and optimized ESA looks 
intriguingly simple and intuitive. However, it has not been studied in previous literature. 
Although in practice many different storage policies are used, depending on situation and 
possibilities (like class-based storage, or pre-shuffling known future retrievals in idle 
periods), we are not aware of companies that persistently manage the positions of open 



 

locations. We show use of the ESA policy can lead to substantial reductions in average 
travel time for storage and retrieval jobs in case of random demand compared to the 
situation where open locations are not explicitly managed, i.e. they are scattered over the 
storage area. 

We model the research problem for a given block of storage and retrieval jobs that 
have to be processed. The problem is complex due to the nonlinearity of the objective 
function, nonlinearity of constraints and integrality of the decision variable: the number 
of effective open locations, as we will show later. Fortunately, we can obtain the optimal 
solution numerically in an efficient way. 

In the model we use the same warehousing system as described in several seminal 
papers (e.g. Hausman et al., 1976; Graves et al., 1977; Han et al., 1987), namely an 
automated storage and retrieval system (AS/RS). These systems have been widely used 
to replace conventional manual warehouses since the 1950s (Lee and Schaefer, 1996). 
Typically, an AS/RS consists of a storage/retrieval (S/R) machine, a storage rack, a depot 
(or I/O point), and products stored on unit-loads (standardized pallets or totes). The unit-
loads enter and leave the system at the depot. They are stored and retrieved by the S/R 
machine to and from the storage rack. In an AS/RS, the S/R machine’s capacity normally 
is one unit-load. Therefore the system can operate in two command modes: 

Single-command Cycle (SC) mode: In a travel cycle of the S/R machine a single 
job, either a storage or a retrieval, is performed. To store a unit-load, the S/R machine 
picks up a unit-load from the depot, moves, and deliveries it to an open location. After 
that, the S/R machine returns to the depot to complete the SC. To retrieve a unit-load, the 
process is reversed. 

Dual-command Cycle (DC) mode: In a travel cycle of the S/R machine a storage is 
paired with a retrieval. The S/R machine picks up a unit load from the depot to store it at 
an open location, and then moves emptily to a retrieval location to retrieve a unit-load. 
After this, the S/R machine returns to the depot and completes the DC. The empty travel 
time between the storage and retrieval location is called the interleaving travel time. 

In operation, the DC mode is preferred because it can bring approximately 30% travel 
time reduction compared with the SC mode (Graves et al., 1977) for a pair of S/R jobs. 
Rather than comparing the performance of a single pair of storage and retrieval jobs, our 
research is based on processing a given block of dual command cycles (or S/R jobs). For 
this, a policy to sequence these DCs has to be selected. 

For a given block of S/R jobs, the unit loads to be stored arrive and commonly wait 
on an accumulating conveyor in front of the depot. Only the first load can be picked up 
by the S/R machine. Therefore storage jobs can only be served in a first-come first-served 
(FCFS) sequence. The storage locations can be selected among all open locations in the 
rack. Retrievals can be sequenced freely as every retrieval location in the rack face is 
reachable by the S/R machine. Therefore the sequencing policies mainly focus on how to 
pair an open location and a retrieval as a DC and how to sequence multiple retrievals. 
This paper adopts the nearest neighbor policy, which sequences retrieval jobs based on 
the interleaving distance between storage and retrieval locations. The smallest one is 
processed next. 



 

The remainder of the paper is organized as follows. In Section 2, we review literature. 
In Section 3, we formulate a mathematical model to determine the optimal number of 
effective open locations and the boundary of the ESA. In section 4, we develop an 
algorithm to obtain the optimal solution of the model based on some solution properties. 
In section 5, we evaluate the ESA policy by various numerical examples. In Section 6, we 
discuss how to implement the ESA policy in practice. Lastly, in Section 7, we conclude 
the paper and provide some future research directions. 

 
2     Literature Review 

 
This section reviews papers related to open location selection, retrieval sequencing 
policies and the decreasing marginal effect of adding open locations illustrated in Figure 
1. 

Open location selection. To our knowledge, no academic literature directly focuses 
on open location management in terms of positioning and numbering of open locations. 
However there is some literature about open location selection where each time one open 
location is selected from all open locations for a storage job. For example, the COL 
(closest open location) storage policy stores every incoming pallet at the open location 
closest to the depot (Schwarz et al. 1978). The implementation of the policy can form a 
forward area (closer to the depot) with pallets and few open locations, and a backward 
area (further from the depot) with open locations. However, due to lack of proper 
management of the open locations, Schwarz et al. (1978) and some others have shown 
that eventually the COL performs almost at the same level as a pure random storage 
policy with a FCFS policy for storages and retrievals. All sequencing policies mentioned 
in the next two paragraphs also contain some rules about selecting open locations for 
storages. However, none consider explicitly managing open locations. 

Retrieval sequencing. Optimal sequencing a block of storage and retrieval jobs is a 
NP-hard problem under random or class-based storage (Han et al., 1987; Bozer and 
White, 1990; Gu et al., 2007). Therefore most literature focuses on solving the problem 
with various sequencing heuristic policies and storage policies such as FCFS (first-come-
first-served) (Graves et al., 1977; Han et al., 1987; Gu et al., 2007), NN (nearest-
neighbor) (Han et al., 1987), SDC (shortest dual command cycle) (Lee and Schaefer, 
1996), and 1+ε optimization where ε indicates a tolerance gap between the objective 
value of a solution and a problem lower bound (Lee and Schaefer, 1996). In the above 
papers, the most frequently cited and effective policy to sequence a block of storage and 
retrieval jobs one is NN. Compared with FCFS for sequencing storage jobs and retrievals 
and COL for storage location selection, the results in the above papers show NN can 
increase the throughput by 10-15%, by reducing the travel-between time with 50% or 
more. The travel time savings depend on the number of open locations and the block size: 
the number of storage and retrieval jobs. The savings decrease for increasing numbers of 
open locations and increasing block size. Mahajan et al. (1998) have shown numerically 
that NN provides near optimal solutions with only 3-6% gaps from a lower bound. In 



 

experiments of Lee and Schaefer (1996) gaps are mostly within 4% from the optimal 
solution. Therefore NN has been adopted as retrieval sequencing heuristic by many 
researchers for different system configurations and demand patterns. Meller and 
Mungwattana (1997) for example, use NN and a variant (RNN-reverse nearest neighbor) 
for a multi-shuttle AS/RS where the S/R machine has twin- and triple-shuttles with 
quadruple-command or sextuple-command operational modes, respectively. Eben-
Chaime (1992) uses NN as a dispatching rule in an AS/RS with stochastic demand and 
finds similar results. This paper therefore selects NN. 

Decreasing marginal effect of increasing the number of open locations (see Figure 
1). This phenomenon, appears to exist in unit-load warehousing systems with different 
sequencing heuristics (e.g. Graves et al., 1977; Han et al., 1987; Lee and Schaefer, 1996), 
storage policies (e.g. Graves et al., 1977; Lee and Schaefer, 1997), different types of 
retrieval machines (e.g. Meller and Mungwattana, 1997), and demand patterns (e.g. 
Schwarz et al., 1978; Eben-Chaime, 1992). As an example, Graves et al. (1977) study 
retrieval sequencing for an AS/RS with class-based storage. An inbound load has to be 
stored in its appropriate class. Then the first K jobs in the retrieval queue are sequentially 
examined to find a retrieval in the same class as the storage load to construct a DC. If no 
such load can be found the first job in the retrieval queue is selected. Schwarz et al.(1978) 
apply the same sequencing policy, under a dynamic setting. The block size changes 
dynamically due to stochastic product demand. Lee and Schaefer (1996) propose a 
shortest dual command cycle (SDC) heuristic and an ε -optimum algorithm for the 
sequencing problem, where ε  indicates a tolerance gap between the objective value of a 
solution and a problem lower bound. They compare these heuristics and several other 
ones, such as NN, and shortest leg, for different system shapes and block sizes. Lee and 
Schaefer (1997) discuss a sequencing problem in an AS/RS using dedicated storage. Six 
algorithms, including a static assignment algorithm (ASSTA), a static heuristic algorithm 
(HRSTA), and a dynamic assignment algorithm (ASDYN), are tested. More examples 
supporting the curve in Figure 1 can be found in (Sarker et al., 1991; Eynan and 
Rosenblatt, 1993; Van den Berg and Gademann, 1999), and some relevant review papers 
(Van den Berg, 1999; De Koster et al., 2007; Gu et al., 2007). However, to our 
knowledge, disadvantages of having too many open locations have not been studied yet. 

 
3     Model Formulation 

 
3.1     Assumptions and Notations 
 
The assumptions for the system described in the introduction are as follows (see also 
Graves et al., 1977; Han et al., 1987): 
• Storage and retrieval jobs are carried out one block after another. The system handles 

a new block of storage and retrieval jobs only when its preceding blocks have been 
completed. This assumption is relaxed in Section 6. 



 

• The system operates in dual command cycle mode. 
• The system objective is to minimize the expected travel time per DC. 
• The total storage capacity, the speed of the depth movement mechanisms, and the S/R 

machine’s speeds in the horizontal and vertical directions are known and constant. 
• The depot is located at the lower left-hand corner of the rack.  
• The rack is considered to be a continuous rectangular pick face. 
• The machine can move simultaneously in horizontal and vertical directions, so that 

travel time is the maximum of horizontal travel time and vertical travel time. When 
the S/R machine is idle, it stops at the depot. The pick-up and deposit time of a load is 
not considered (this time is fairly constant for real systems). 

• Storage jobs are performed in a FCFS sequence. 
• The effective open locations for storage jobs and the retrieval locations for retrieval 

jobs are selected by the NN policy to form pairs of DCs. 
The length (L) and the height (H) of the storage rack form the horizontal and vertical 

dimensions of the system. The speeds of the S/R machine in the horizontal and vertical 
directions are cs  and hs , respectively. We define /h ht L s=  as length (in time) of the rack 
and /v vt H s=  as height (in time) of the rack. Let max{ , }h vT t t=  and min{ , } /h vb t t T=  
represent the shape factor of the rack. If 1b = , we call the rack shape square-in-time 
(SIT), and NSIT (non-SIT) otherwise. Without loss of generality, we discuss the problem 
in the dimensions of h vt t× =1×b by setting T=1. The corresponding results can then be 
generalized to other rectangular rack dimensions by multiplying them by T ≠1 (see also 
Hausman et al., 1976; Han et al., 1987). The other key notations are: 

 
Sets and parameters: 

NC  The system storage capacity expressed in number of unit loads. 
S  and R  The sets of initial effective open and retrieval locations, respectively. 
n  The number of retrievals | |R , or the block size, or the number of DCs. 
u  Storage space utilization of the system. 
m  The total number of open locations in the rack, (1 )Nm C u= − . 

eb  The shape factor of the ESA, /e e eb y x= . 
ETB  Expected travel-between (i.e., interleaving) time in a DC. 
ESC  Expected SC travel time. 
EDC  Expected DC travel time of a DC using the ESA policy. 

NNEDC  Expected DC travel time of a DC without using the ESA policy (the NN 
policy is used). 

Decision variables: 
ex  The length (in time) of the ESA, 0 1ex< ≤ . 
ey  The height (in time) of the ESA, 0 min( , )e ey b x< ≤ . Without loss of 

generality, we assume e ey x≤ . 
em  The number of effective open locations in the ESA, | |em S= . 



 

 

3.2     Model 
 
We obtain a model, denoted as M, to optimally dimension the ESA and determine em  as 
follows: 

Model M: 
 min ( , , ) ( , , ) ( , , )e e e e e e e e eEDC x y m ESC x y m ETB x y m= +  (1) 

 ( ) ( 1)e N
e e

N

m C u b x y
C
+ ⋅

× = ⋅  (2) 

 0 1ex< ≤  (3) 
 0 min( , )e ey b x< ≤  (4) 
 1 em m≤ ≤  (5) 
Decision variables are ex , ey , em , and em  is an integer. 
The objective (1) is to minimize the expected DC travel time for the case where a 

block of n DCs is processed by the NN policy. Following the results for ESC  and ETB  in 
Bozer and White (1984) and Han et al. (1987), we can obtain: 

 2( , , ) / (3 )e e e e e eESC x y m y x x= + , (6) 
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0
( , , ) ( )e

e

n me
e e e kk m

xETB x y m z g z dz
n

+ −

=
= ∑ ∫ , (7) 

where   1( ) [1 ( )] ( ) 0 1k
k e eg z k F z f z z−= − < ≤ , (8) 

with          
2

2

(2 )( )[2 ( )] 0
( )

2 1

e
e ee

e

z zz z z b
b bF z

z z b z

⎧ − − < ≤⎪= ⎨
⎪ − < ≤⎩

, (9) 

and 
22(1 )( )[2 ( )] (2 )( )(1 ) 0

( )
2(1 ) 1

e
e e e ee

e

z z zz z z z b
b b b bf z

z b z

⎧ − − + − − < ≤⎪= ⎨
⎪ − < ≤⎩

. (10) 

are the cumulative density function (CDF) and the probability density function (PDF), 
respectively. /e e eb x y=  is the shape factor of the ESA. 

Constraint (2) implies the ESA stores all unit-loads ( NC u⋅ ) and effective open 
locations ( em ). Constraints (3), (4) and (5) determine the lower and upper bounds for 
variables ex  ey , and em , respectively. 

Both the objective function (1) and constraint (2) are nonlinear. em  is an integer 
variable. The model therefore is non-linear integer. With standard software such as 
Mathematica5.2 (2005), ( , , )e e eETB x y m  cannot be evaluated analytically within a 
reasonable time (e.g. less than one hour) for realistic sizes of the rack and retrieval 
blocks. We therefore have to rely on numerical methods. 

 



 

4     Algorithm and Properties 
 

Because ex  and ey  are continuous variables, it is impossible to enumerate every 
combination to obtain an optimal solution of Model M. To simplify the computation 
process, in subsection 4.1 an algorithm is developed to obtain the optimal solution of 
Model M based on some properties. After that, Section 4.2 proves some other properties 
(Theorems 3-6) helpful in explaining numerical results. 
 

4.1. Algorithm 
 
The best ratio of ex  and ey  for Model M is proved in Lemma 2 by making use of Lemma 
1 below. 

LEMMA 1. Let 
1

0
( ) ( ) ( )kB k u z g z dz= ∫  where ( )u z  is a continuous, increasing function 

of z, 0≤z≤1 where k is a positive integer and ( )kg z  is defined by (8). We have 
( ) ( 1)B k B k≥ +  and “=” only holds for ( )u z  being a constant. 

Proof. See Appendix A. 
LEMMA 2. Consider a given system with fixed n , m and em , and two different shapes 

of the ESA with the same area size. The shape of the ESA closer to SIT leads to a smaller 
value of ( , , )e e eEDC x y m .  

Proof. See Appendix B. 
Lemma 2 is intuitive, since the S/R machine can drive and lift simultaneously, 

implying locations placed on a square (in time) around the depot require the same travel 
time. 

Based on Lemma 2, we obtain Theorem 1 to determine the optimal *
ex  and *

ey  as a 
function of em . 

THEOREM 1. For a given rack of dimensions 1×b, and a given em  between 1 and m,  

(a) if 1 ( )e Nm C b u≤ ≤ − , the shape of the optimal ESA is SIT and the optimal ESA 
dimensions as a function of em  are  

 * *( ) ( ) ( ) /e e e e e N Nx m y m m C u b C= = + ⋅ . (11) 
(b) if max{ ( ),1}N eC b u m m− < ≤ , the shape of the optimal ESA is NSIT and the optimal 

ESA dimensions are 
 *( ) ( ) /e e e N Nx m m C u C= + ⋅ , (12) 
 * ( )e ey m b= . (13) 
Proof. According to Lemma 2, if the ESA can be feasibly constructed in SIT shape, it 

will be the optimum, otherwise the feasible non-SIT shape closest to SIT (i.e. with the 



 

largest eb = * *( ) / ( )e e e ey m x m ) will be the optimum. That is, for a given em  the optimal 
*( )e ex m  and * ( )e ey m  can be determined by the feasible ESA shape closest to SIT. 

For Theorem 1(a), because ( )e Nm C b u≤ −  (i.e., ( ) /e N Nm C u b C b b+ ⋅ ≤ ⋅ ), we can 
construct a SIT shape ( eb =1) with * *( ) ( )e e e ex m y m= = ( ) /e N Nm C u b C+ ⋅ , which does not 
violate any Constraints (1)-(5). Therefore, Equation (11) holds and Theorem 1(a) has 
been proved. 

For Theorem 1(b), because max{ ( ),1}N eC b u m m− < ≤  (i.e., ( ) /e N Nm C u b C b b+ ⋅ > ⋅ ), 
the shape of the ESA closest to SIT with feasible ey  makes Constraint (4) binding with 

* ( )e ey m =b, while *( )e ex m = ( ( ) /e N Nm C u b C+ ⋅ )/b= ( ) /e N Nm C u C+ ⋅ . This results in the 
largest value of eb . Therefore, Equations (12) and (13) hold and Theorem 1(b) has been 
proved.  

Using Equations (11)-(13), we can simplify Model M by eliminating ex  or ey . Model 
M can therefore be split into two sub-models; one is for the case: 1 ( )e Nm C b u≤ ≤ −  
(denoted by Model M1) where the ESA is SIT, and the other is for the case: 
max{ ( ),1}N eC b u m m− ≤ ≤  (denoted by Model M2) where the ESA is NSIT. We treat these 
models subsequently. 

For Model M1 (only applicable if ( ) 1NC b u− ≥ ), substituting Equation (11) into 
Equation (6), we obtain ESC  as a function of em  equaling 

( ) 4 ( ) / / 3e e N NESC m m C u b C= + ⋅ ,   1 ( )e Nm C b u≤ ≤ − .                                         (14) 
By substituting Equation (11) into Equation (7), we can obtain ETB  as a function of 

em  equaling 
1 1 1

0

1( ) [ ( ) / [1 ( )] ( ) ]
e

e

n m
k

e e N N e e
k m

ETB m m C u b C zk F z f z dz
n

+ −
−

=

= + ⋅ −∑ ∫ ,.1 ( )e Nm C b u≤ ≤ − . (15) 

The objective function of Model M1 is now a function of em , denoted as ( )eEDC m , 
and is the sum of Equations (14) and (15). 

For the constraints of Model M1, we replace Constraints (2)-(4) of Model M with 
1 ( )e Nm C b u≤ ≤ − . 

For Model M2, in analogy to Model M1, ESC , as a function of em , equals 
 2( ) / (3( ) / ) ( ) /e e N N e N NESC m b m C u C m C u C= + ⋅ + + ⋅ , (16) 

and  
1 1 1

0

1( ) [( ) / [1 ( )] ( ) ]
e

e

n m
k

e e N N e e
k m

ETB m m C u C zk F z f z dz
n

+ −
−

=

= + ⋅ −∑ ∫ , (17) 

where max{ ( ),1}N eC b u m m− ≤ ≤ . 
The objective function for Model M2 is the sum of Equations (16) and (17). 
The constraints of Model M2 are obtained by replacing Constraints (2)-(4) with 

max{ ( ),1}N eC b u m m− ≤ ≤ . 
Therefore, the overall optimal solution is the optimal solution of either Model M1 or 

Model M2 that provides the minimum objective value. As Model M1 and Model M2 both 



 

are a function of a single decision variable em , they then can be solved optimally by 
enumerating em  between 1 and m considering their constraints on em .  

Theorem 2 below shows it is not necessary to enumerate every em  for finding the 
optimal *

em . 
THEOREM 2. ( )eEDC m  has a unique global minimum in Models M where ( )eEDC m  is 

the combination of objective functions of Models M1 and M2 given in Equations (14)-
(17). 

Proof. See Appendix C. 
Normally ( )eEDC m  is not a convex function of em  although it has a “U” (or partly 

“U”) -shape.  
According to Theorem 2, we can choose golden section search (Press et al., 2007) to 

find *
em  and then use Theorem 1 to determine * *( , )e ex y . 

 

4.2   Some Other Properties 
 
The phenomenon described in Figure 1 is proved by Theorem 3, and a similar 
phenomenon for EDC as a function of n is proved by Theorem 4. In these two theorems, 
the ESA policy is not used (by setting em m= , ex =1 and ey =b in Model M). 

THEOREM 3. For a fixed n , with an increase in m ,  
(a) NNEDC  decreases, 
(b) the marginal reduction in NNEDC  decreases. 
The proof is omitted here.  
THEOREM 4. For a fixed m, with an increase in n, 
(a) NNEDC decreases, 
(b) The marginal reduction in NNEDC  decreases. 
The proof is omitted here. 
Theorem 5 below shows that an increase in m has more effect on reducing NNEDC  

than the same increase in n does. 
THEOREM 5. Based on a given m and n, an increase in m brings a larger reduction of 

NNEDC  than the same amount of increase in n does. 
The proof is omitted here. 
Although Theorem 5 is implicit in the numerical results of some literature, like Han et 

al. (1987), it has not been explicitly noted before. It can be understood by noticing that an 
added open location (m) can provide one more candidate storage location for all the DCs 
in the block of DCs, to reduce its travel time. However, an added retrieval can only 
reduce its own DC travel time by selecting a proper open location while it may increase 
the total travel time of its previous DCs. 

If the ESA policy is used ( em m≤ ), we can derive a theorem similar to Theorem 4: 



 

THEOREM 6. The minimal expected DC travel time, * * * *( , , )e e eEDC x y m , is a decreasing 
function of n. 

The proof is omitted here. 
However, * * * *( , , )e e eEDC x y m  generally is not a convex function of n because, with an 

increase in n, *
em  and the optimal ESA shape factor * * */e e eb y x=  change simultaneously. 

 
5     Numerical Examples 

 
This section conducts numerical experiments to evaluate how much the ESA policy can 
outperform NN under various combinations of different parameters: the rack shape b, the 
system capacity NC , the system utilization u, and the number of retrievals n. 
 

5.1    Experimental Setup 
 
We start with a base example with the parameter values: u =0.75, 0.75b = , NC =1500, and 
n =20. After that we vary NC , b , u , and n  in the ranges of [500, 3000], [0.25, 1], [0.55, 
0.95], and [1, 100], respectively. These values are based on expert judgments, and cover 
parameter values used in previous papers (e.g., Han et al., 1987; Lee and Schaefer, 1996). 
Moreover, we have tested examples with all possible combinations of NC =500, 1000, 
1500, 2000, 2500, 3000; b =0.25, 0.5, 0.75, 1; u =0.55, 0.65, 0.75, 0.85, 0.95; and n =1, 5, 
10, 20, 30, 50, 100. 

The algorithm steps are programmed in C++, and run on a DELL D630 notebook 
with CPU Duo 2.4 GHz, and 2GB of RAM. All results are normalized to a rack area of 1 
square seconds by setting (1 / )T b= . 

 

5.2    Results 
 
For the base example, the results are * * *( , , )e e ex y m = (0.90, 0.87, 43), and *EDC =1.23 when 
using the ESA policy. Using NN yields an expected DC travel time of NNEDC =1.39. 
Hence, *EDC  outperforms NNEDC  by 11.5%. Obviously, the phenomenon described by 
Figure 1 (proved by Theorem 3 for the NN policy) does not hold if the ESA policy is 
used. 

The results corresponding to the sensitivity analyses of NC , b , u , and n  are shown in 
Figures 3-6 respectively. In each figure, the optimal number of open locations *

em , *EDC , 
and NNEDC  are provided. The computation time of each instance evaluated is within a 
second. 

From Figures 3-6 and the other related results, we make the following observations. 



 

1) Figures 3-6 show the ESA policy reduces the DC travel time significantly. For all 
the possible combinations we have tested, the ESA policy outperforms NN by 14.5% on 
average. 

2) The optimal number of effective open locations, *
em , depends on n , NC , b , and 

u . *
em  decreases with an increase in n while it increases with an increase in NC , and b .  
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Figure 3:  Influence of the Number of Retrievals (i.e. Block Size n ) on *
em  and EDC 

 
3) Open locations have more impact in reducing the average travel time than the 

same number of retrievals; In Figure 3, the values of EDC* at (n=1, m=52) and (n=100, 
m=21) are almost the same, which means that the contribution of 100-1=99 retrievals in 
reducing EDC can be approximately replaced by 52-21=31 open locations if the ESA 
policy is applied. To some extent, this can be explained by Theorem 5. 

4) EDC* is quite insensitive to the number of retrievals n  (i.e., the block size of DCs) 
although Theorem 6 holds. Figure 3(b) shows EDC* decreases by less than 1% if n 
changes from 1 to 100. Executing retrievals one by one (i.e. n=1) is only slightly worse 
than cleverly sequencing them in a block size as large as 100. A similar phenomenon 
happens to EDCNN in spite of Theorem 4. However, in many past papers (e.g., Han et al., 
1987), it is stated that an increase in number of retrievals or a good sequence of retrievals 
can bring a significant reduction in the DC travel time. The “contradiction” states that for 
large m there is a much smaller marginal effect of increasing n than for smaller values of 
m. In those previous papers fewer open locations are tested (mostly less than 15) than the 
number (me) in the ESA policy (between 21 and 52 in Figure 3(a)). In practice, m 
normally is more than 50 even for a system with a high space utilization of 90% and low 
capacity of 500 unit loads. In conclusion, the larger number of open locations in our cases 
makes increasing retrievals have little impact on reducing EDC. 
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Figure 4:  Influence of System Capacity ( NC ) on *
em  and EDC 

 
5) With an increase in the system capacity ( NC ), the DC travel time reduction of the 

ESA policy over NN increases. In Figure 4(b), it can be seen that the reduction increases 
from 10.5% at NC =500 to 12.2% at NC =3000. The reason can be found in Figure 4(a); 
with increasing NC , the density of *

em  in the ESA decreases from 4.3% at NC =500 to 
3.2% at NC =3000. This leads to a relatively smaller size of the ESA, and contributes to 
the increase of the reduction. 
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Figure 5:  Influence of Rack Shape (b) on *
em  and EDC 

 
6) Figure 5 shows the performance of the ESA policy is less sensitive to a change of 

the rack shape factor b compared with that of NN. Moreover, the skewer (smaller b) the 
rack shape is, the larger improvement the ESA policy obtains over NN (see Figure 5(b)). 
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Note. *
em  density in the ESA = ( *

em /(the capacity of the ESA in number of unit loads))×100%. 

Figure 6:  Influence of System Utilization (u ) on *
em  and EDC 

 
7) Figure 6 shows the reduction of the DC travel time of EDC* over EDCNN highly 

depends on the system utilization (u). If the system utilization u=0.55, the reduction 
reaches 23.5%. However, when u=0.95, the reduction is less than 1%. For common 
values of u between 0.65 and 0.85, the reductions are between 6% and 17%, which 
become larger if b becomes smaller. 

8) *
em  is not very sensitive to changes in u. Figure 6(a) shows increasing u  from 

0.75 to 0.95 does not cause an increment of *
em  at all. This is due to the combined effect 

of the decrease in * */e ey x  (the shape of the ESA) and the increase of the ESA size. From 
observation 4 we know decreasing * */e ey x  reduces *

em . On the other hand, increasing the 
size of the ESA increases *

em . The two combined effects obviously outweigh each other 
for a great deal.  

 
6     Implementing the ESA Policy in Practice 

 
Figure 3(b) shows EDC* is rather insensitive to the size of n: EDC* at n=1 hardly differs 
from EDC* at n=50. This leads to a valuable suggestion for implementing the ESA 
policy in practice: 

Fix the block size n=1, and the number of effective open locations, em  to be *
em  (at 

given n=1). 
With this we can obtain a near-optimal solution of the ESA policy, while the 

implementation becomes much easier as the number of effective open locations in the 
ESA is fixed regardless of the block size. We can even handle retrievals in block sizes of 
1, for example by retrieving them in sequence of urgency, without noticeable impact on 
the expected DC travel time. 

The suggestion is very easy to implement as n=1. Still, according to Theorem 4, a 
larger block size can reduce the DC travel time further. We can simply dynamically 



 

change n, in line with the queue length of waiting storage and retrieval jobs. We therefore 
suggest the following implementation. 

Keep the block size ,n, equal to the queue length of storage and retrieval jobs, and fix 
the number of effective open locations ( em ) to be *

em  for n=1. 
For the base example in Section 5, the first suggestion obtains a near optimal EDC 

solution with maximum gaps of 0.97% from the optimum for n=50, where the “gap” is 
the gap between EDC* at n=50 and EDC* at n=1. The gap becomes 0.2% by using the 
second suggestion. 

We have tested the above suggestions for a wide variety of possible combinations of 
NC , b , u , and n  (see Section 5.1) with similar results. 

These suggestions show the first assumption in Subsection 3.1 can be relaxed. We do 
not have to fix the block size beforehand, but we can dynamically adapt it with close to 
optimal results.  

In line with past research (e.g., Graves et al., 1977; Han et al., 1987), we so far have 
only considered DC modes. In this mode, once the ESA has been created, it can be 
maintained automatically. However, in practice we may be forced to carry out single-
command cycles sometimes. The system utilization and then ( *

em , *
ex , *

ey ) may have to be 
changed correspondingly. In case of storage jobs only, me drops below *

em , and in case of 
only retrieval jobs me exceeds *

em . To see what the impact is of this is, we deliberately let 

em  deviate from *
em  within a given range between *

em  at n=1 (i.e., *
em =52), and *

em  at 
n=30 (i.e., *

em =39). Figure 7(a) shows EDC increases by less than 0.2% for the base 
example. We have tested all the combinations of NC , b , u , and n  (given in Section 5.1). 
The results show that EDC deviates from EDC* by less than 1% for CN≥1000, and for 
most cases of CN=500. Therefore, we can dynamically change ( em , ex , ey ), while EDC 
deviates little from EDC*. This small deviation of EDC from EDC* can be explained by 
looking at Figure 7(b). The difference becomes large only when em  is quite far from *

em . 
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Figure 7:  Influence of the Number of Effective Open Locations (me) on EDC 



 

If the number of effective open locations deviates too far from the optimum, the 
optimal situation can be restored in idle periods by the automated S/R machine. 

In conclusion, the implementation of the ESA policy is quite easy and flexible. With a 
change of n and u, the number of effective open locations ( em ), and the boundary, 

ex × ey , of the ESA can be well managed without extra effort. 
 

7     Conclusions and Further Research 
 

To our knowledge, this paper is the first to focus on modeling the management of open 
locations in warehouses. We propose the ESA policy to manage open locations for 
minimizing the cycle travel time of a block of storage and retrieval jobs. A model, some 
properties and an algorithm are developed to determine the optimal number of open 
locations, and the boundary of the ESA. From the results of the paper, we obtain the 
following managerial insights: 
• The ESA policy can outperform nearest neighbor (NN) by between 17% and 6% of 

the cycle travel time for realistic rack utilizations between 65 and 85%. Savings can 
be more than 20% if the system utilization is less than 65%. 

• The optimal solution of the model depends on system capacity, system shape, and 
rack utilization. Our algorithm can determine the optimal number of open locations 
and the ESA boundary within a second for any real practical system size on an 
ordinary computer. 

• Application of the ESA policy is fairly easy by using the suggestions in section 6. The 
suggestions make it possible to apply the ESA policy under varying conditions, even 
when the job queue changes or when there are only single commands to be 
performed. 
We obtain several findings differing from those in previous research. 

• The block size, n, of storage and retrieval jobs normally has little influence on the 
average DC travel time. However, all previous papers (e.g., Han et al., 1987; Lee and 
Schaefer, 1996; Mahajan et al., 1998) demonstrate that a large block size can 
significantly reduce the DC travel time. This can be explained as in these papers, due 
to calculation complexity, the number of open locations has only been evaluated for 
small values, e.g. <10. In practice the number of open locations in such a system is 
usually much larger. A typical aisle in an AS/RS system of about 70 pallets long and 
10 pallets high contains 1400 pallets; with 95% rack utilization this implies 70 empty 
slots. The optimal number of effective open locations is normally less than 40 in such 
a case.  

• Changing the sequence of retrieval jobs normally has little influence on the DC travel 
time. As sufficient effective open locations are readily available in practice, our 
research, supported by Theorems 5&6 and numerical examples, shows that NN 
reduces the DC travel time mainly due to the smart selection of open locations, rather 
than cleverly sequencing retrievals. 



 

The above differences greatly reinforce the advantages of the ESA policy. According 
to our first suggestion in Section 6 it is not necessary to intentionally lengthen the queue 
of retrievals in practice, especially as accumulating retrievals needs waiting time. The 
policy can be used dynamically by considering new incoming jobs and job urgency with 
little impact on the travel time. 

This paper may trigger a new sub-research area in warehousing and distribution 
science to study the management of open locations. Based on this paper, further research 
directions at least include: 
• Open location management in different warehousing systems: AS/RSs with multiple 

shuttles, end-of-aisle AS/RS systems, carousel systems, and conventional multi-aisle 
systems. 

• Open location management under different storage policies: class-based storage, 
dedicated storage, duration-of-stay (DOS), etc. 

• Combinations of open location management with S/R machine dwell point selection, 
product prepositioning, etc.  

• The possible effects of open location management on different warehousing system 
designs, such as system dimensions, and depot selection problems. 
Finally, with the increasing application of compact 3D storage warehouses (Yu and 

De Koster, 2009b), open locations can also be managed for reducing the total cycle travel 
time in such systems. However, because open locations normally change dynamically 
during storage and retrieval processes in these systems, the related research could be 
much more challenging than in a conventional warehousing system.  



 

Appendices: 
 
Appendix A. Proof of Lemma 1 
 
To prove ( 1) ( )B k B k+ − , we first prove: 1( ) ( )k kg z g z+ ≥  for 10 (1 / ( 1))ez F k−≤ ≤ + , and 

1( ) ( )k kg z g z+ ≤  for 1(1 / ( 1)) 1eF k z− + ≤ ≤ .                                                            (18) 
by changing k to k+1, we have 1( ) ( )k kg z g z+ − = 1( 1)(1 ( )) ( ) (1 ( )) ( )k k

e e e ek F z f z k F z f z−+ − − −   
= 1[( 1)(1 ( )) ] (1 ( )) ( )k

e e ek F z k F z f z−+ − − ⋅ − .     (19) 
Letting 1( ) ( )k kg z g z+ − =0, we have 1(1 / ( 1))ez F k−= + where 0< 1(1 / ( 1))eF k− + <1 as 

0<1/(k+1)<1. 
In Equation (19), because 1( )(1 ( ))k

e ef z F z −− >0, and (1- ( )eF z ) is a decreasing function 
of z, we have 

 1

0 0
( ) ( )

0 1k k

if z a
g z g z

if a z+

≥ ≤ ≤⎧
− ⎨< < ≤⎩

.  

where 1(1 / ( 1))ea F k−= + . Therefore (a) has been proved. 
With Equation (18), 

( 1) ( )B k B k+ − =
1 1 1

1 10 0 0
( ) ( ) ( ) ( ) ( )[ ( ) ( )]k k k ku z g z dz u z g z dz u z g z g z dz+ +− = −∫ ∫ ∫  

=
1 2

( ) ( )
R R

u z dydz u z dydz−∫∫ ∫∫ where 1 1{( , ) | 0 , ( ) ( )}k kR y z z a g z y g z+= ≤ ≤ ≤ ≤ , 

2 {( , ) | 1R y z a z= ≤ ≤ , 1( )kg z y+ ≤ ( )}kg z≤ . 
Because ( )u z  is an increasing function of z, we have 
 

1 1

( ) ( )
R R

u z dydz u a dydz≤∫∫ ∫∫ , and 
2 2

( ) ( )
R R

u a dydz u z dydz≤∫∫ ∫∫ . (20) 

Where “=” only holds for ( )u z  being a constant. 
Because ( )kg z  (i.e., Equation (8)) is a PDF,  

1 1 1

0 0
( ) [1 ( )] ( ) 1k

k e eg z dz k F z f z dz−= − =∫ ∫ , k∀  is a positive integer,  (21) 

we have 
1 2R R

dydz dydz=∫∫ ∫∫ . As ( )u a  is a constant, we have 

 
1 2

( ) ( )
R R

u a dzdy u a dzdy=∫∫ ∫∫ . (22) 

Using Equations (20) and (22), we have 
1 2

( ) ( )
R R

u z dzdy u z dzdy≤∫∫ ∫∫ . That is 

( 1) ( ) 0B k B k+ − ≤  (“=” only holds for ( )u z  being a constant) and Lemma 1 has been 
proved. 
 

Appendix B. Proof of LEMMA 2 



 

To keep the ESA equally sized, while changing its shape, without loss of generality we 
normalize the ESA area to have size=1 by setting 1 /e ex b=  and ey = eb .  

According to Bozer and White (1984), for a storage area (1 / )e eb b× ,  

 ( , , )e e eESC x y m =
2 1

0

2 2( )e

e

b

b
ee

z dz zdz
bb

+∫ ∫ .  

Next, from Equations (7)-(10), for a storage area (1 / )e eb b×  we have 
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0
( ( , , )) e

e

b

k e e e e A e Bb
E Z x y m x P dz x P dz= +∫ ∫  . (23) 

where 
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( , , )e e eEDC x y m = ( , , )e e eESC x y m + ( , , )e e eETB x y m  can now be expressed as a function of 
eb  (denoted as ( )eEDC b ). We have 

( )eEDC b
1 12 1

0

4 1 2 1( ) ( )
e e

e

e
e e

n m n mb A B
b

k m k me e e e e

P Pz zdz dz
n nb b b b b

+ − + −

= =

= + + +∑ ∑∫ ∫ .  

Lemma 2 can be proved by demonstrating that ( )eEDC b  is a decreasing function of be 
(i.e., ( ) / 0e edEDC b db ≤  with 0< eb ≤1) which is intuitive and its proof can be found in Yu 
and De Koster (2009a). Therefore Lemma 2 has been proved. 

 

Appendix C. Proof of THEOREM 2 
 
From Equations (14)-(17), the objective function (1), as a function of me, becomes  
 ( ) ( ) ( )e e eEDC m ESC m ETB m= + .  

We can prove Theorem 2 by demonstrating that ( ) /e edEDC m dm  either is a 
monotonous function of em , or has a unique global minimum. Without loss of generality, 
we assume em  is a continuous variable, 1 em m≤ ≤  here. The theorem can be proved in 
three Steps. Step 1 calculates ( ) /e edEDC m dm  and analyzes some properties of Model M1 
for further analysis; Steps 2, 3 and 4 prove that Model M1, M2 and then M have the 
property in Theorem 2 respectively. 

Step 1. For Model M1, the ESA is SIT, and we have  
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Therefore we have ( ) 1 2 3e
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− −∑ ∫ . Unfortunately, ( ) /e edETB m dm  is 

not analytically integrable. We therefore analyze the properties of these three parts for the 
further proof. 

1 0Part >  as 0, 0, 0e Nb x C> > > . Moreover, it converges to 0 polynomially with the 
increase in em  as 2 / (3 )e Nb x C  is positive with ex  given by Equation (11). 

2 0Part >  as ( ) 0ef z ≥ , 1 ( ) 0eF z− ≥ , * ( )e ex m >0 and 
*( ) 0e e

e

dx m
dm

>  where all the “=” can 

only hold at the extreme points of z=0 or 1. Moreover, it equals 0 if z=0. And if z<1 
2Part  converges to 0 exponentially with the increase in em  as em  is on the power of 

1 ( )eF z−  and 0 1 ( ) 1eF z≤ − < . 
3 0Part <  as ( ) 0ef z ≥ , 0 1 ( ) 1eF z≤ − ≤ , and ln(1 ( )) 0eF z− ≤  where all the “=” can only 

hold at the extreme points of z=0 or 1. Moreover, Part3 equals 0 if z=0. And if z<1 3Part  
converges to 0 exponentially with the increase in em  as em  is on the power of 1 ( )eF z−  
and 0 1 ( ) 1eF z≤ − < . 

Step 2. There are three possible cases for the result of ( ) /e edEDC m dm ; Case 2.1: 
( ) / 0e edEDC m dm >  , Case 2.2: ( ) /e edEDC m dm <0, and Case 2.3: Otherwise. 

Case 2.1. In this case, ( )eEDC m  reaches its minimum at 1em = . 
Case 2.2. if ( ) / 0e edEDC m dm <  for em =1, 2,…,m, then ( )eEDC m  reaches its 

minimum at em m= . 
Case 2.3. There is at least one em  satisfying ( ) / 0e edEDC m dm = . Denote the smallest 

em  satisfying ( ) /e edEDC m dm = 1Part + 2Part + 3Part =0 as 0m . That is 
1Part + 2Part =| 3Part | at 0m . From the above analysis, with the increase in em , 



 

1Part + 2Part  converges to 0 polynomially with the increase in em  as 1Part  converges to 
0 polynomially and 2Part  converges to 0 exponentially. Meanwhile, 3Part =0 for z=0, or 
converges to 0 exponentially with the increase in em  for z>0. It means that ,with 
increasing em ,once 1Part + 2Part =| 3Part | at 0m , | 3Part | will become less than 

1Part + 2Part  (converging to 0 polynomially) at em > 0m . That is, for 0m m> , 
1Part + 2Part -| 3Part |= 1Part + 2Part + 3Part  = ( ) /e edEDC m dm  will be positive, and 

converges to 0. Moreover, as ( ) /e edEDC m dm >0 for 0em m> , and 0m  is the smallest to 
make ( ) /e edEDC m dm =0 at 0em m= , we have ( ) /e edEDC m dm ≤ 0 for 0em m< . 

Therefore we have, for Model M1, ( )eEDC m  has a unique global minimum. It is a 
decreasing function of em  if em  is less than 0m , and an increasing function of em  if em  is 
larger than 0m . 

Step 3. For Model M2, using a similar process, we can prove the property for Model 
M2. Note that for the proof, 3Part  will become more complex as eb  will not be 1, and is 
a function of em . However, it does not change the property that 3Part =0 or converges to 
0 exponentially with the increase in em .  

Step 4. From the result of Steps 2&3, if ( ) 1NC b u− ≤  or ( )NC b u m− ≥ , Model M1 or 
M2 is equivalent to Model M. The properties in Theorem 2 hold for Model M. Otherwise, 
1 ( )NC b u m< − < . In this case, ( )e Nm C b u= −  is the intersection point (denoted as im ) of 
the objective functions of Model M1 & M2. At e im m= , there are four possible cases for 

( ) /e edEDC m dm . Case 4.1: ( ) /e edEDC m dm ≤0 for both Model M1&M2, Case 4.2: 
( ) /e edEDC m dm ≥0 for both Model M1&M2, Case 4.3: ( ) /e edEDC m dm ≥0 for Model M1, 

but ≤0 for Model M2, and Case 4.4: ( ) /e edEDC m dm ≤0 for Model M1, but ≥0 for Model 
M2.  

Case 4.1. For Model M1, if ( ) /e edEDC m dm ≤0 at ( )e Nm C b u= − , according to the 
proof in Step 2, we have ( ) /e edEDC m dm ≤0 for all ( )e Nm C b u≤ − . ( )eEDC m  obtains its 
minimum at ( )e Nm C b u= − .  

For Model M2, because ( ) /e edEDC m dm ≤0 at ( )e Nm C b u= −  and ( )eEDC m  is a 
continuous function of em  for [1, ]em m∈ , the minimal value ( )eEDC m  of Model M1 is 
only a feasible solution of Model M2. With the result in Step 3, the unique global optimal 
value em  of Model M2 will become *

em  of Model M.  
Case 4.2. For Model M2, according to the proof in Step 2, ( ) /e edEDC m dm ≥0 for all 

( )e Nm C b u≥ − , and ( )eEDC m  gets the minimum at ( )e Nm C b u= − . For Model M1, 
because ( ) /e edEDC m dm ≥0 at ( )e Nm C b u= −  and ( )eEDC m  is a continuous function of em  
for [1, ]em m∈ , the minimal value ( )eEDC m  of Model M2 is only a feasible solution of 
Model M1. With the result in Step 2, the unique global optimal value em  of Model M1 
will become the optimal value *

em  of Model M. 



 

Case 4.3. We prove that this case does not exist by reduction to absurdity. For Model 
M1, ( ) /e edEDC m dm ≥0 at ( )e Nm C b u= − . According to the proof in Case 2, if em  
increases further to an em  while the ESA shape still keeps in SIT, ( )eEDC m  would 
increase to a high value (denoted as 'EDC ). Moreover, according to Lemma 2, this value 
is less than any other value of ( )eEDC m  in NSIT, which corresponds to a solution of 
Model M2. Denoting the NSIT value of Model M2 as ''EDC , we obtain 

''EDC > 'EDC > ( )( )
e Ne m C b uEDC m = − , which contradicts ( ) /e edEDC m dm ≤0 for Model M2. 

We therefore can eliminate this case. 
Case 4.4. For Model M1, if ( ) /e edEDC m dm ≤0 at ( )e Nm C b u= − , according to the 

proof in Step 2, we have ( ) /e edEDC m dm ≤0 for all ( )e Nm C b u≤ − . Similarly, for Model 
M2, ( ) /e edEDC m dm ≥0 for all ( )e Nm C b u≥ − . We therefore have ( )e Nm C b u= −  is the 
global optimal solution *

em  of Model M.  
Summarizing the cases 4.1-4.4, we obtain that ( )eEDC m  is a decreasing function of 

em  if em  is less than *
em , and an increasing function of em  if em  is larger than *

em . 
Therefore Step 4 is done and Theorem 2 has been proved. 
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