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Humanitarian Logistics – The First Week 

Selina Begum and Bill Ferrell 
Clemson University 

 
Abstract 

 Decisions made on material flow during the first week of a natural 
disaster are critical for victims. Currently, decision makers appears to 
be making important choices based on experience and intuition with 
little or no support from quantitative approaches because they do not 
exist.  This research proposes a paradigm and offers two supporting 
models that will assist decision makers regarding the routing of 
materials during the first week of a disaster.  It explicitly includes 
information regarding the victims’ needs and the degree to which 
routes are available in a quantitative way that allows updating as 
information improves. The paradigm involves the use of information 
gap theory adapted to the this situation for deciding on the types of 
supplies to send and the Canadian traveler problem for making 
decisions on the routes to take.          

 
1  Introduction 
Humanitarian logistics is important – really important.  In 2010, there were 385 
natural disasters that killed 300,000 people, impacted another 2 million, and 
accounted for economic damage estimated to be $123.9B [1, 2].  To reduce suffering 
and save lives, relief operations have been launched by a large number of 
organizations around the world creating an extensive and somewhat disorganized 
humanitarian relief chain.  Whether trying to control this diverse mix of entities or 
organize efforts in large and mature organizations, logistics and materials handling is 
the heart of disaster relief. Some researchers have suggested this is the most 
expensive part of relief operations [3] while others have noted that it is unfortunate 
that logistics has been considered a cost that organizations had to absorb. In fact, they 
recommend that logistics be viewed as a strategic component of the relief effort and 
suggest that this would increase the efficacy of the work humanitarian logisticians 
performs off and on the field [4]. 
 Material handling – actually handling, storing and routing of relief supplies - has 
been identified as critical elements of relief operations and has received an increased 
emphasis in recent years from researchers as illustrated by [5,6]. The literature that 
we have found focuses on a variety of topics ranging from prepositioning supplies to 
establishing efficient distribution centers and many aspects of relief operations in 
between; however, there is a conspicuous gap regarding logistics decisions in the first 
week after the onset of a disaster. During this initial response phase, operating the 



 
 

disaster supply chain has one goal, responsiveness, while efficiency and cost 
effectiveness take a back seat. There is pressure to deliver supplies as quickly as 
possible because their receipt can literally be a matter of life and death.  On the other 
hand, the time immediately after the onset of a disaster is when maximum uncertainly 
exists. Information about resource availability, characteristics of supplies, status of 
infrastructure like roads, and delivery schedule of suppliers is limited.  For example, 
there might be several surface routes from the staging areas for relief operations to the 
disaster site but whether the roads are passable or not is unknown.  Despite these 
obstacles, a disaster supply chain network must be established immediately and relief 
efforts commenced as quickly as possible. In this research, we begin exploring a 
paradigm for making decisions during this first week of humanitarian relief efforts 
when needs are high and information reliability quite low. 
 The need for models to support decision making regarding the dispatch and 
routing of relief supplies during the first week is not only common sense need but one 
that has been well established in the literature [7-9]. Recent major disasters in Haiti 
2010, Pakistan 2010, and Japan 2011 are cases where by the efficiency of logistics 
systems were tested to their fullest and illustrated the complexity faced by the human 
decision maker in these situations. Better tools to help the decision maker during this 
chaotic time can save lives immediately and establish a supply chain that can both 
save lives and improve the situation on the ground more quickly. This research 
focuses on the response phase of a disaster when prepositioned items need to be 
deployed after the onset of a disaster and humanitarian operations start distributing 
relief goods to the beneficiaries. Since this aspect of disaster relief has not been 
addressed in the literature and anecdotal evidence suggests that this is done in reality 
on an ad hoc basis, we submit this work fits the definition of a “paradigm paper” 
since we will be exploring a new framework for decision making in the first week of 
a disaster.   
 This research focuses on two aspects of this challenge. This first acknowledges 
that information about the situation including needs and infrastructure will be very 
poor; however, better information will be collected every day so it improves – 
potentially at a rather rapid rate – during the first week.  To facilitate decision making 
during this time, we adopted information gap theory [10] as a framework.  The 
second aspect is selecting routes to deliver the supplies to the affected site.  These two 
aspects are highly connected during the first week of a disaster.  For example, it is 
clear that water, food, shelter and medical supplies are four categories of supplies that 
are critical to disaster relief.  The information that is available about a situation can 
dictate the strategy for delivering these suppliers; that is, trying to deliver everything 
immediately might not necessarily the best approach.  This can be especially true if 
little information is known about the more direct routes to affected area.  Suppose the 
most direct routes have a reasonably high probability of not being passable while a 
longer route has high likelihood of being open.  What do you do?  These are the types 
of situations that the new paradigm is being built to address.   
 
  



 
 

2   Decisions using Info Gap 
 
Info gap has three primary elements: system model, uncertainty model and 
performance requirement. It focuses on quantifying the information gap and 
predicting possible system behavior based on what is already known and the impact 
of varying parameters in the solution space. In this research, we concentrate on 
determining which supplies to move to the disaster site in each time interval. 
 We begin with a brief discussion of the info gap model, specifically, the major 
components of the model.      
 
2.1  System Model 
The system model specifies the functional relationship that connects the input-output 
structure of the system to the choice of alternatives, the utility, and the uncertainty. 
The exact nature of the relationship can be as complicated or simple as needed.  In 
disaster relief decision making, a common scenario is that a decision maker has 
alternative action plans, each with a different utility. The goal is to mobilize resources 
using one of these alternatives. For example, a simple system model based on 
expected utility could be valuable for disaster relief like the one presented in equation 
(1). Historical data can be used to parameterize the model based on previous disasters 
and the model is sufficiently simple and robust that repeatedly solving it within the 
info gap framework could easily be accomplished in a short period of time. 
 
                     (1) 
 
where 
i states of the system defined by the nature and intensity of the disaster, i=1,2,…,n 

ja  the alternative j chosen from set of alternatives {a1, a2, …, am} 
pi the probability of a disaster intensity (low, moderate, high or catastrophic)  
vij the utility of a chosen alternative aj given a system state i 
 
2.2  Uncertainty Model 
 
Uncertainty is associated with both the available information regarding the state of 
the system and the utility of each alternative. The uncertainty model captures this data 
by representing the fact that each alternative may deviate from the estimates.  While 
there are a number of possible implementations, an interval bound model is one 
choice that seems suitable for this application because of the nature of the problem 
and the simplicity associated with it that translates into ease of updating and quickly 
regenerating solutions to the entire model.  The interval of uncertainty (α) measures 
the deviation from the observed system. ( , )U pα %  and ( , )U vα %  are defined as the info 
gap model of uncertainty for probability and utility, respectively.  Uncertainties (.)U
embody the prior information about the uncertain vector u and each alternative as it 
captures the deviation from the predicted and observed system. For the predicted 
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system and utility models, uncertainty in probability and utility is an infinite set of 
values of the vectors p and v, and the model is an unbounded family of nested sets, 

(.), 0U α ≥ . Equations 2(a) and 2(b) define the absolute functional errors of the 
estimated probability and utility, and limits these values to an amount α.  
 
 
                     (2a) 

 
 
                     (2b) 

 
where 
α the horizon of uncertainty 
pi  the states of the system, defined by the intensity of disaster 
vij  the utility of option aj given a system state i 

ip%  the estimated value of state probability 

ijv%  the estimated value of an alternative option given a system state i 
 Based on the estimates of uncertainty in Equation 2(a) and (b), equations 3(a) and 
3(b) frame the uncertainty model where the probability of the system state [0,1]ip∈
and the utility of alternative given a system state vij lies between some maxima and 
minima dictated by the uncertainty parameter α. .   
 
                     (3a) 

 

 

                     (3b) 

 

No uncertainty (i.e., perfect information is available regarding the state of the system 
or utility of an alternative) is indicated when α = 0 while any value α ≥ 0 indicates 
presence of uncertainty. Equations 3(a) and 3(b) indicate that at the horizon of 
uncertainty, the values of uncertain probability and utility lie within the range defined 
by the uncertainty α.  
 
2.3  Performance Criteria 
 
In relief operation the performance of an organization can be measured in terms of 
time to mobilization and number of the beneficiaries reached. In this research we 
selected utility of the service provided which considers the utility of the alternative. A 
performance measure is usually a value derived from the process model. So, for 
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example, a simple performance criterion could be requiring it to exceed a minimum 
threshold: 
                     (4) 
 
2.4  Robustness Function 
 
Info gap theory seeks to identify the strategy that is good enough but simultaneously 
prevents an unwanted outcome. The robustness function identifies the degree of 
resistance to both uncertainty and immunity to failure. A robustness measure like the 
one presented in equation (5) has potential in this application. 
 
 
                     (5) 
 
 
Selecting this function is important because it determines the quality of the solution in 
an uncertain environment like that encountered in the first week of a disaster.  Large 
robustness values for any alternative indicate that selecting it will satisfy the critical 
requirements of the model even if the system model is prone to error. On the other 
hand, a low robustness implies that the outcome is vulnerable to model uncertainty. 
As you can see, info gap was selected as the framework for part of this paradigm 
because it is rather flexible in construct, especially in how it handles the way 
parameters are varied which is important in the first week of disaster relief because 
information is so unreliable. 
 The second part of the paradigm deals with selecting surface routes during the 
first week.  Once the choice has been made to respond to a disaster and the items have 
been secured, a decision must be made regarding the routes to take to reach the 
disaster area, mode of transportation, and quantities to be delivered. To address this 
issue, we focus on the problem of how routes can be selected so that crews and 
materials safely reach the disaster site to conduct relief and rescue activities in a 
reasonable amount of time. The motivation for this work is rather obvious; during a 
disaster, particularly in the early stages, accurate information about the extent of the 
damage to the infrastructure is very scarce yet effectively and quickly deploying 
resources in a way that they safely reach the affected areas can be a matter of life and 
death for many people. For example, should all of the water be sent along the shortest 
path when it contains segments with a high likelihood of being impassable and 
backtracking can take a much longer amount of time that choosing a longer but more 
secure path?  Or, should part of the water be sent along the shortest path and the rest 
sent along the route with the highest likelihood of being passable?  Or, should all be 
send along the most likely passible route?  We explore this aspect of decision making 
in the first week using the Canadian traveler problem (CTP) [11] as a starting point.  
The CTP is a stochastic variation of the shortest path problem where the goal is to 
provide decision makers with information regarding travel time and alternative routes 
that will improve the efficiency and effectiveness of their efforts.  
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3  Routing Decisions using CTP 
The basic problem supposes that a traveler has to go from site S to site T in the 
undirected graph G(V, E). The graph G(V, E), where the nodes V corresponds to the 
set of sites and edges E correspond to the set of roads between sites, is known to the 
traveler. Each edge e∈E has a non-negative length associated with it and length can 
be, interpreted as the time it takes to traverse the road or the cost to traverse. An edge 
is accessible or blocked with probability p or (1-p), respectively. From the above 
description of parameters an instance of the CTP can defined as a 6-tuple [12] 

0 *, , , , ,I V E p c v v= where  

,V E    is a connected undirected graph with set of vertex V and set of edges E 

[ ): 0,1p E →  is the probability that a road (edge) is not accessible 

 defines the travel cost of the road  

0,v v V∗ ∈   are the locations of source and destination location of the traveler. 

Humanitarian logisticians face the problem of incomplete information during the 
initial phase of disaster. Although a map of the location is available and some general 
information might be known, it is not known with certainly to the decision maker if a 
path is traversable or not. We assume that once an area becomes accessible, it remains 
accessible for the rest of the time while the organization is there conducting relief 
work and propose that the CTP can be adapted to this situation. As such, the solution 
can be used by the decision maker to direct the relief efforts. Finding meaningful 
solutions to this problem are an interesting challenge. Several approaches have been 
investigated and a modified Dijkstra’s is one interesting possibility.   
 
3.1  Resolving the CTP 
 
The CTP falls in the category of online algorithms since it seeks to minimize the cost 
of reaching a target in a weighted graph where some of the edges are unreliable and 
the traveler only learns that after they reach an adjacent node and can pass no further.  
Here, online algorithms refer to problems in which decisions must be based solely on 
information that is available at a point in time whereas offline algorithms generate 
optimal solution given complete information of the problem; hence, the difference 
between the shortest path problem (SPP) and the CTP.  The fact that online 
algorithms so closely match real decision making in the first week of a humanitarian 
crisis and offline algorithms are so ill suited is the key reason the CTP was chosen.  
Another reason is, it captures critical question of exploiting the information that a 
decision maker must make in that first week. Since there is a cost associated with 
gathering more information in terms of time and resources, CTP addresses the 



 
 

challenge of balancing making an immediate decision and investing further in 
exploring the region to gather better information. 
 CTP is PSPACE complete and there are many algorithms that solve this particular 
problem optimally, some of which are described in [12].  In this research, Dijkstra’s 
algorithm for resolving the SPP is modified (henceforth called CTP-D) to resolve the 
CTP.   
 Dijkstra’s algorithm optimally solves a single source SPP problem under the 
assumption that all edges have non-negative weights using a greedy approach. The 
algorithm starts at the source node and grows in a greedy manner until the destination 
node is reached and all nodes reachable from the source are considered. Dijkstra’s 
algorithm requires that the lengths along all edges are known a priori and it 
systematically moves from the source node to every other node in the network so that 
at each step the shortest distance from the source to another node is determined. The 
algorithm terminates if there is no more nodes that can be reached. Although 
Dijkstra’s algorithm can provide shortest distance between any two points in the 
network, it has limitations in terms of not being able to handle the stochastic nature of 
the CTP so it is modified in this research. To resolve the CTP, every node is assigned 
a probability of being blocked and, as the algorithm executes, one or more nodes 
might get blocked. To include this feature in the CTP, a random number generator is 
used in conjunction with the probability of a node being blocked to determine which 
nodes, if any, are blocked during an iteration of the algorithm. If a node is blocked, 
the algorithm calculates a revised cost of finding an alternative route or waiting at the 
previous node or both. The pseudo code for the CTP-D algorithm is found in Figure 
1. 

As CTP-D progresses, a random number determines if a node is permanently or 
partially blocked thereby increasing the travel time or forcing the algorithm to 
reevaluate the node and finding the shortest path under given probability of block. 
 
3.2  Numerical Example 
 
A sample data set is used to illustrate features of this methodology. The shortest path 
route is calculated using both Dijkstra’s algorithm for the SPP assuming deterministic 
information known a priori and using the CTP-D when paths can be blocked at 
random during execution of the algorithm. Four different sources and 13 different 
destinations with 36 vertices and 85 edges are considered. Table 1 reports the results 
of initial experimentation using these scenarios with the time required to travel from 
all origins to all destinations using Dijkstra’s algorithm in the SPP and the modified 
Dijkstra’s algorithm on the CTP. 
   



 
 

 
1 function CTP_Dijkstra(Graph, source, probBlock): 
2  for each vertex v in Graph:            
3   dist[v]:= infinity;      
4  dist[source] := 0;                  
5  Q: = the set of all nodes in Graph; 
6  while Q is not empty:               
7   u: = vertex in Q with smallest distance in dist[]; 
8     remove u from Q; 
9            for each neighbor v of u:      
10                 ran_num = random(); 
11    if ran_num >= probBlock 
12          alt: = dist[u] + dist_between(u, v); 
13    else 
14          alt: = dist[u] + dist_between(u, v) + ran_num; 
15    if alt < dist[v]:              
16                     dist[v]:= alt; 
17                    previous[v]:= u; 
28                    decrease-key v in Q;       
19         return dist[] 
20  end CTP_Dijkstra           

Figure 1: Modified Dijkstra’s algorithm (CTP-D) applied to CTP 
 
Due or the fundamental nature of the problem, it is clear that the online algorithm can 
never perform better than the offline algorithm using known data and, in fact, solving 
the SPP optimally provides a lower bound on CTP-D. Because of this fact, online 
algorithms are usually evaluated using the competitive ratio which reflects how 
closely the solution found by the online algorithm follows the offline counterpart. The 
competitive ratio is defined as the worst case ratio between the minimum distance as 
reflected by the solution using the online algorithm and the length of the shortest 
source target path [13]. 
 The competitive ratios for the scenarios explored in this numerical example are 
shown in Table1.  



 
 

Table 1: Time required traveling between origins and destinations using the Dijkstra 
(SPP) and CTP-D. 
 

From 
To 

Origin 1 Origin 2 
SPP CTP Ratio SPP CTP Ratio 

Destination 1 366 502 1.37 369 573 1.55 
Destination 2 549 697 1.27 446 594 1.33 
Destination 3 643 814 1.27 479 627 1.31 
Destination 4 538 622 1.16 541 849 1.57 
Destination 5 611 641 1.05 212 386 1.82 
Destination 6 771 1002 1.30 455 619 1.36 
Destination 7 639 982 1.54 436 619 1.42 
Destination 8 377 620 1.64 541 814 1.50 
Destination 9 308 387 1.26 472 797 1.69 
Destination 10 283 283 1.00 552 812 1.47 
Destination 11 1021 1467 1.44 560 741 1.32 
Destination 12 724 1073 1.48 322 573 1.78 
Destination 13 824 1293 1.57 363 538 1.48 
 

From 
To 

Origin 3 Origin 4 
SPP CTP Ratio SPP CTP Ratio 

Destination 1 284 458 1.61 284 874 3.08 
Destination 2 467 615 1.32 716 1152 1.61 
Destination 3 561 858 1.53 749 1074 1.43 
Destination 4 456 604 1.32 811 1006 1.24 
Destination 5 529 875 1.65 482 630 1.31 
Destination 6 689 758 1.10 725 831 1.15 
Destination 7 557 626 1.12 706 758 1.07 
Destination 8 362 441 1.22 811 1179 1.45 
Destination 9 293 454 1.55 742 911 1.23 
Destination 10 373 525 1.41 822 1439 1.75 
Destination 11 939 1469 1.56 549 697 1.27 
Destination 12 642 1053 1.64 339 582 1.72 
Destination 13 742 1041 1.40 380 380 1.00 
 
 In all the cases except one the ratio lies between 1.0 and 2.0, indicating 
consistence performance. The model was applied to other example reflecting 
differing scenarios and the worst competitive ratio was 3.0. It is important to 



 
 

understand that the intention here is merely to illustrate the performance of the CTP-
D relative to the deterministic SPP using Dijkstra’s algorithm for a few scenarios. 
There is no implication that more general conclusions can be drawn because they 
cannot.  There is much additional research that must be performed in this area.  On 
the other hand, we strongly believe that these results suggest that CTP-D can be a 
important part of the new paradigm for helping decision makers during the first week 
of a disaster and prosing this new paradigm is the main contribution of this research. 
 Looking at the solutions provided by the algorithms reinforces intuition about the 
underlying problem and the difficulty that decision makers face.  Deciding on how to 
route relief supplies from point A to point B in the first week of a disaster are 
difficult.  The solutions associated with routing supplies from Origin 2 to Destination 
1 in this numerical example is now considered and illustrated in Figure 2.  At the 
outset, the decision maker has knowledge of the possible paths between origins and 
destinations as well as the degree to which they can be traversed before the disaster 
occurs.  Figure 2a illustrates the minimum distance route found by solving the SPP 
with Dijkstra’s algorithm when it is assumed that all edges are traversable and remain 
so during the entire time.  The minimum distance is 300.  
 Now, the decision maker knows that in reality three things can happen: all of the 
edges remain traversable, some of the edges become partially traversable, and/or 
some of the edges can become completely blocked.  In this new paradigm, CTP-D is 
used to investigate rerouting for partially blocked or blocked edges.  Figure 2b 
illustrated how CTP-D finds a new shortest path when the traveler finds that the edge 
from the fourth node is completely blocked.  The algorithm finds an alternative path 
involving rerouting (black node) and it calculates the revised cost for the rerouted 
path. In Figure 2c, some edges are partially blocked and one node is completely 
blocked resulting in the worst performance of the three options.  In all cases the edges 
blocked/partially available are shown in dashed lines. Also in the figure 2c, the solid 
node indicates that the solution includes different nodes to reach the destination 
because rerouting was cheaper than waiting for the edge to become available. 
  



 
 

2

Figure a Shortest path from origin 2 to destination 1 using 
Dijkstra’s algorithm

Figure b Shortest path from origin 2 to destination 1 using CTP algorithm 
with rerouting only

Figure c Shortest path from origin 2 to destination 1 using CTP algorithm and 
random delay time and routing.
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Figure 2: A visual illustration of paths resulting from Dijkstra’s algorithm and CTP-D 
   
4  Conclusions 
 
In conclusion, this research explores a paradigm for addressing material flow in 
humanitarian logistics during the first week after the onset of a disaster.  Info gap 
theory and the Canadian traveler problem are adapted to assist in the making 
decisions on which items to send, the origins to send them from, when to send them, 
and the route to use in the face of uncertain information. This paradigm is quantitative 
so results are repeatable and understandable but flexible because the information 
available to the decision maker at the onset of the disaster can be very sketchy and 
unreliable but can improve dramatically as the week progresses. As such, it is 
important for the paradigm and supporting models to accurately translate the types of 
information that will most likely be updated in useful output.  For example, it is likely 
that more precise information on the types of supplies needed at various destinations 



 
 

and the degree to which road segments can be passed will be improved dramatically 
as the first relief workers move towards and arrive at different disaster areas.  The 
associated material flow decisions that must be made are exactly which suppliers to 
send from which locations and along which routes.  As this paradigm and the 
supporting models become more fully developed and tested, we believe they will 
provide decision makers and logisticians in the field with valuable insights into 
available alternatives along with measures of effectiveness and chances of a success.  
This approach will quickly translate updated information on the situation into 
information the decision maker can use to guide his or her actions resulting in better 
decisions and improved operations to assist the victims of natural disasters in the first 
week.  
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