MISSOURI

S&l

Library and

Learning Resources Scholars' Mine
Masters Theses Student Theses and Dissertations
1961

Scatter matrix analysis of plane waves in a layered media

Bill W. Ashworth

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

b Part of the Electrical and Computer Engineering Commons
Department:

Recommended Citation

Ashworth, Bill W., "Scatter matrix analysis of plane waves in a layered media" (1961). Masters Theses.
2778.

https://scholarsmine.mst.edu/masters_theses/2778

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.


https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F2778&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F2778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/2778?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F2778&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

SCATTER MATRIX ANALYSIS OF PLANE
WAVES IN A LAYERED MEDIA

PHELPS COUNTY, MISSOURI
BY.

BILL W. ASHWORTH

A
THESIS
submitted to the faculty of the
SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI
in partial fulfillment of the work required for the

Degree of

Rolla, Missourl

1961

. Approved by




i1

ABSTRACT

The problem was the application of matrix theory
to the solutlon of the reflection and transmission co-
efficlients for a plane wave incldent on a layered medla.
Background material relating to the problem was reviewed.
Equations that were used in the solution of the problem
were elther derlved or explained. The derlvations for
the reflectlon and transmisslon. coefficlents were
carried out in order, starting with the simple case of
normal inecidence on a Junction of two 1nfinitermedia
and progressing thrdugh the more difficult case of
obllque incidence on a layer of finite thickness separ-
atiﬁg two infinite media. Scatter matrix analysis for
electrical networks was reviewed and was applied to the
layered media. Possible simplificatlons of the resulting

equations were considered.
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CHAPTER I
INTRODUCTION
I. THE PROBLEM

Statement of the problem. The purpose of thls

study was (1) to review the present methods of deter-
nining the transmission and reflection coefflclents

for plane wave transmission through a layered medla,

and (2) to apply matrix theory, the scatter matrix in
particular, to the problem. A layered media is shown
in Figuré l. For this problem, the layers were orliented
with the boundries perpendicular to the z directlon.
The-solution was to apply to layers with any combina-
tion of dlelectric, magnetic, or conductive losses.

Importance of the study. Meny methods of solving

the reflection and transmission coefficients for layered
media havekbeen presented. These methods, however, .
requlre the cbntinhed re-use of complicated transmls-
sion equations or graphical éids, such aé the Smith
_chart or nomographs. It was the intention o% the author
to express the solution in matrix form, in order that
the matrices could be solved with the ald of computers.
Thié would greatly reduce the work required in 1ayéred

medla calculatlions.
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II. ©SCOPE OF THE INVESTIGATION

The study made was entirely theoretical. Back-
ground equations were derived whenever it was believed
that a derivation was necessary in the understanding
of the use of the equatlion in the solutlion of the
problem. The application of matrix theory to the
problem was limited to the scatter and transmission
matrices. Special cases of the layered medla problem
were conslidered with the intention of simplifying the

resulting equations.



CHAPTER IT
REVIEW OF LITERATURE

The methods presented, in the literature, for the
analysis of wave transmission through a layered media
have been varied. Some authors have considered only
perfect (lossless) dlelectric layers. Some have con-
sidered layers which have only conductive dielectric
losses (which require the use of complex permittivity).
Still others have analyzed layers which have both a
complex permittivity and a complex permeability (which
accounts for magnetic losses other than those resulting
from hysteresis and eddy currents).

Most authors, including Von Hippell, Stratton?, and
BrekhOVSkikhB, give the reflection and transmission co-
efficients at the Junction of two infinite media in
terms of the wave lmpedances of the media and the angles
of incidence andArefraction. - These équations are well
known as Fresnel's equaiions..

Brekhovskikh and Ramo4 have found the réflection.
and transmlssion coefficients at a layer of finite thick-
ness in terms of the input impedanceAto the layer. The

solution of the input lmpedance requires the use of a

lAlllreferences are in the bibliography



transmission equatlon in which all terms are complex
except the.thickness of the layer. The input impedance
was recognized as the 1dad on the source side of the
layer and the reflection and transmission coefficients
could then be calculated.

. When many layers are cascaded, the problem of
determining the reflection and transmission coefficients
lncreases. Ramo gives a method by which one would start
at the last (nﬁh) layer of the media and find the input
impedance., This impedance was recognlized as the load
on the n - 1 layer. The input impedance to the n- 1
layer would be calculated and become the load impedance
on thé n - 2 layer. This process would bé repeated
until the input impedance to the first layer was found.
The reflection and transmission coefficlents could then
be determined. ZEach step would requlre the solution of
the transmission equation.

of coﬁrse, the steps in the solution as presented
by Ramo could be greatly simplified by the use of a
Smith chart or a nomograph which can be found in an
article by Cai‘feratas° Although Cafferata's nomograph
was intended for the purpose of calculating the input
lmpedance of feeders and cables terminsted in a complex
load, it applies equally well to the case of a layered

medila,



Brekhovsklikh has given one other possible solu-
tion to the problem. The equations for the tangential
components of the electric and magnetic fields in the

Jth

reflected magnitudes. By letting J range from 1 to

region are written in terms of the incident and

n (where n is the number of layers) 2n equatlons

would be formed. These equatlons could be solved

for the reflected magnitude at the 1lst layer and the

transmitted magnitude passing through the n‘t'h layer.

However, when moré then two or three layers are present

this method becomes so unwieldy as to render 1t useless.
In the investigation of the problem no material

was found on the use of the scatter matrix in layered

media calculations.



CHAPTER IIIX
PRESENTATION OF BACKGROUND THEORY

In this chapter all equations used in the solution
of the problem were elther derived or explained. It was
believed that the derivations were necessary for & complete
understanding of the steps to be taken later imn the body

of the thesis,

‘ Starting with Maxwell's equations for a media with
complex permeability.and complex permittivity, the wavo
equation was derived and a solution of the wave equatvtion
wvas given. The expressions for the reflection and trans-
mission coefficients were derived starting with the
gimple case of normal incidence on a junction of two
infinite medla and progressing through the more difficuld
solution for oblique incidence on a layer of finite thick-

ness separating two infinite media.

I. DERIVATION OF THE WAVE EQUATION FOR A MEDIUM
OF COMPLEX PERMEABILITY AND COMPLEX PERMITTIVITY

The wave equatlon was derived for propagation in a
media which has both conductive and magnetic losses,
This was accomplished by starting with Maxwell's equa-

tions given by Von Hippel as

—_ d
VXE=-M""3¢



and —

— * d
VXH=¢€ 3¢
where
/é(#: /{,{/—-J /(,L”
and

€= € -J €

In the above equations A and €?are the complex
prermeabllity and complex permittivity, respectively.

The imaeginary components of 4* and €% are added so
that the magnetic and dlelectrlc and conductlive losses
can be taken into account in the solution.

For this problém 1t was assumed that only the x
component of electric field and y component of magnetic
field weré present as shown in Flgure 2. This represents
a plane wave traveling in the +z direction.

For this problem, then,

:ATE’;(.
H=5FHy
here
N Ex= f(a.t)
Hy=3(3.¢)
Taking the curl of E gives
L7 K
= _ |+ > I +— JEvx r 4E¥
UXE=|3x 39 37 |=3 33 "KW
Ex @) O




Y

FIGURE 2

ELECTRIC AND MAGNETIC FIELD COMPONENTS
OF PLANE WAVE TRAVELING IN THE +Z DIRECTION
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Bud
VXE = /d#j,lz "—/Qd';“(,c Hx +5 g*!-R-//g)

Equating' expressions

+JdEx_=dEx _ wd_ [T - =
Jggx_ d*f - — U &té/{xm Hy + & /-/3)

But Ex doeeg not vary with y and H = Hy = 0. Then

T SEx _ T u*JdHy
) 2

JdE & :
6 e gt (1)

From the curl of H

or

L 3T K
T e, o 4| __~dHy = JH
VXH =l 39 43| =74 I *“'37'3
o Hy o
also _
JdE _ _ - .
VXH ' 3t —64'33—‘%—@ Ex +5 Ey-f-KE;z)

~ But Hy does not vary with x and Ex = EZ = 0., Therefore,
— dH — x dE
? *T

J * JE
= 5____ (2)

or

b ul
B

From (1)




or
315)( _ ,4'0(9‘/-/
From (2)
3 Ex
=& )—_,5*%?( )
or
d*Hy _  _a J*E
Seap =~ € St (4)

Equating the left side of (4) to the right side of (3)
yields

J2ExX #ea J2Ex
P = LTE T (5)
This is the wave equatlon for the electric fileld.
A similar procedure would give the wave eguation for

‘the magnetic field in the form

ol":;(:; ot 5;}4;3 (6)

II. SOLUTION OF THE WAVE EQUATIONS IN A SINGLE LAYER
CONTAINING COMPLEX PERMEABILITY AND COMPLEX PERMITTIVITY

The solution for the electric and magnetic figld
components for a plane wave wefe obtained from wave equa-
tions (5) and (6), It was assumed the field components
had a time variation given by e-i“'t °
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Since the time variation of the field is known,
- wave equation (5) for the electric field can be written

as

____&CC’:;_ = —WPUTE™ Fx

Thls can be rewritten as

(7)
{;%%&-—-h"1£5(::CD (8)
r=Ww\@es

The solution to (8) can easily be determined as

where

Ex=Lo €Y%+ F,eT2 (9)
It is unders’cood’ that Ex varies with time through eJ“‘*.

Equation (9) contains two terms, the first repre-
senting an "incident" wave traveling in the +z direc-
tion and the second term representing a "reflected"
wave traveling in the -z direction.

The term,§ , 1s seen to be complex and therefore
affects the mangltude and phase of the wave, the magni-
tude of the effect belng dependent on the angular fre-
quehcy () and the characteristics of the media ¥ and
6*.. This term has been named the "propaga;cion constant".

If there were no change in the media through which

the wave 1s propagating, there would be no reflected
wave and Ex = £, e %% (10)
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A solutlion for H_ can be found by the use of (10)

and (1) as shown in the steps below.

JEXx #» JH
dm =~ It

Ji?—(Eo €)= —; WM Hy

—VEo €% = jwaul Hy

YEyY = B UJ/(/C*/L/ﬁ

Hep = YEX _ JwVYUTET Ly
9= s0me~ S wuar

or

Hy= \Ems Ex (11)

ITII. SOLUTION FOR INTRINSIC IMPEDANCE

Since the ratlo of electric field intensity to
magnetic fleld 1ntensity has the units of impedance,

the intrinsic impedance of the medla 1s defined as

IV. DERIVATION OF REFLECTION AND TRANSMISSION
COEFFICIENTS AT THE JUNCTION OF TWO INFINITE MEDIA
FOR NORMAL INCIDENCE OF A PLANE WAVE

Filgure 3 shows the condltlone for a plane wave

incldent normally on the Jjunctlion of two infinite medla.
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FIGURE 3

PLANE WAVE INCIDENT NORMALLY ON BOUNDRY
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In this figure the subseripts 0, 1, and 2 indicate the
incident, reflected and transmitted waves, respectively.
The electric fields are shown in the x direction and the
magnetic flelds are shown in the y dirsection. From the
continuity of tangential components at a boundry, the

following equations may be obtained.

Eo+ E, = £, (13)
and
Ho+ H, = Ha (14)
But
52 -n, ";ET;I":"T)' ) 5: =7 (15)
From (14)
Ha= Ho + H,
(16)

EZ: EO _—__E_-L
N. 7, k

Multiplying both sides of (16) by 7])a gives

= N _ 7= (17)
E’\_ 7«), EO 77/ El
Moltiplying (13) by ’7”41 ylelds
]
R4S _ Y- Y= (18)
n Ex= 3, Eet 37 B

Adding (17) and (18) gives

N R4ER
E(i+ %)= 57 e,
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or
&7)2- E—
= o a4, ~o = 7" £Eo
E,;. 7}9-’}'77/ (19)
where “T° 1s the transmission coefficlent and is given
by
7'/:, __&_‘r—l&"’
Vla.-i'?’h (20)

Subtracting (17) from (18)
n _an
(_ﬁ:;_of}._ .._--,i*-E; | (21)

Substituting E; from (19) into (21) gives

AN — .  &7a
—ﬂ:a.fl)n’-'m» Ee = 4k E, (22)
Equation (22) reduces easily to the form
= ;ZLE:ZQL~EE- = fjé; (23)
! 724+N,  ° °

where f’ 1s the reflection-coefflclent and is glven by

P = Na=7)i (24)
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V. DERIVATION OF THE INPUT IMPEDANCE TO
A MEDIA OF FINITE THICKNESS

The electric and magnetic field equations at the
back (load) side of the layer were found and transferred
back towards the front (source) side of the layer, a
distance equal to the thickness of the layer. The input
impedance was then found by forming the ratio of electric
and magnetic flelds at that point,

Figure 4 was used in the followlng derivation of
this input impedance.

The electric field in region 2 is determined from
(9) as

Ex=E. € *%rE ™% (25)

From (15)

Ey the use of (15) and (25) the expression for the
magnetic field in region 2 is found to be

Hy = Lo o PP £ o2z (26)

L Nz

But from‘(23)

£ = 77 Eo



REG/ION /
T

INFINI/ITE
THICAKNESS

Z/N a—>

18
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Equations (25) and (26) can now be written as

. _ -\’i-’? - N2 Va (27)
Ex-—Eo[e +(F) e ""‘j

L 77 Ya (28)
[e N3 +772.) 9]

To find the expressions for Ex and Hy at the

and

Junction of regions 1 s8nd 2, z 1s set equal to - 4

in (27) and (28).

Ex g=Eo [e“‘" 7,;’73"31‘;)6_&&] (29)
fad_ Ns— Ve -Yad
/L/g 9‘—4_ [e 7’)14»?)1.) € ] (30)

Since the tangential components are continuous at
& boundry, the above expressions hold, also, immediately
to the left of the 1 - 2 junction. The ratio of E_ %o
H ad zo - 4 is the‘ impedance the wave "sees" at this

y
junction and is, therefore, the input impedance to

rogion 2.
¥ad N3-N=2 —-Ya d
Ex = +(‘7’73 +7)L) (31)
= = —] =

73 +772.
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This reduces to the form

s (e59 ), (% %) | (32)
N (eﬁi e"\":-d) + ﬂB(e\'zd~ —\’ad)

223~a,= 711

Dividing top and bottom of (32) by 2 gives

—
~¥ad ~Yad
 (ete™) o (e
'Z/~&=na _ (33)
. eﬁwL+e?GJ Yod e;rhd
N +MN3 e =
- ER =X
From the identities o
Coshu= €% +¢&
=
sicvha= % — e
, ) -
equation (33) can be written in the form
e e, |2 Coshad + 7 Siwhtnd | (34)
* ﬂz. Cosh Yad +M3 5_/‘/\»4 Yad

Recognizing that 73 is the load on region 2, the
input impedance to the léyer can be put in the desired

form

(35)

| Z = V¥ Z 1 CoshYad + Va Siak rad
- T Ma Cosh Yad + Z1L Siwh Vad
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VI. REFLECTION AND TRANSMISSION COEFFICIENTS AT FRONT
FACE OF A FINITE LAYER SEPARATING TWO
INFINITE MEDIA FOR NORMAL INCIDENCE

With the use of equation (35) it was possible to
determine the expressions for ihe’reflection and trans-
‘mission coefficients under conditlons of normal incidénce

upon a finite layer separating two infinite medla.
First, equations (20) and (24) caﬁ be rewritten as

’7"’:: _"2’__“_7":_.‘:—— (36)
Z,+ M,
and
Z,l_—-‘yll
= 37
€ = 7, (37)

since Nz 1s the load on region 1, this makes the
equations more general and will allow the use of the
equations whenever the load impedance on region 1 can
be determined. | |

In the previous sectlon, 1t was explained that
Zinz = ;Ll’ since the ratio of the tangentiai electric
field to tangential magnetic field 1s the same immedl-
atelf to the right or left of the Junction.

Reallzing this, the reflection and transmission
coefficients can be found by s0lving for Zy po from (35)



and using this result in equations (36) and (37) as

shown below.

22

_ _ L2 CoSl) r&d ‘f‘ﬂl S-/"VA Y-’“J (38)
Z L —Z”V’“— N N2 Coshad + ZZpa Sinh r‘-‘-J '
7= ziz f;; (22)
/ ’ ’
2Z s "77’
_ (40)
f> Eig/ + V),

VII. REFLECTION AND TRANSMISSION COEFFICIENTS AT THE
JUNCTION OF TWO INFINITE MEDIA FOR OBLIQUE INCIDENCE

A new term, the wave impedance for obligque inci-
dence, waé deflined and proﬁed useful in ﬁhe determina~
tion of the reflectibn and transmission coefficlents
for oblique incidence. The reflection and transmission
coefficients weré derived for two polarizat;ons of the
incidentfwave; that 1s, with the electric field in the
plane of iﬁcidence and with the electric field perpen-
digulaf td thé plane of incldence. |

Equations (39) and (40) apply, as written, only

for normal incidence. These equations can be modified .

to apply in the case of oblique incidence by considering

the tangential components of electric and magnetic fields

only.
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First, the wave impedance for oblique incidence
1s defined as the ratio of electric to magnetic field
components parallel to the boundry. The reason for this
is the continuity of the tangential components at the
poundry and, therefore, the equality of the ratio of
the tangential electric field to tangential magnetic
field on either side of the boundry. Then, if this
ratio 1s computed as the input impedance to the region
on the right of the boundry, it is also the load impe-
dance on the region to the left of the bouhdry. The

wave impedance 1s defined as

£
Z=—

Figure 5(a) shows =2 plaﬁe wave iIncident obliquely
on a boundry. The wave 1s polarlzed with the electric
field in the plane of incidence. The angle of incldence
can be shown to be equal to the angle of reflection as
indicated in Figure 5. The tangential components of

electric and magnetlc fields are
Eot = FoCos O,
Eit= E) Cos 6
Eat = EaCos 6:
Hot = Ho -
H ¢ H
Hat = Ha

i

)
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FIGURE 5
PLANE WAVE INCIDENT ON A BOUNDRY

(a) Polarized with the electric
fleld in the plane of incidence
(b) Polarized with the electric
fleld perpendicular to the plane
of incidenco
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The relationships between the tangential components
of electric and magnetic fieldslin the inclident, reflected

and transmitted are shown by Ramo to be

[
Hot = 21 =N Cos ©,

Eit - = " 41
:ZZ;;-~"25 7),Cos B, ( }

£at = o 2
Hat Za 77LC O

Figure 5(b) shows a plane wave incident upon a
boundry. The wave is polarized with the electric field
perpendicular to the plane of incidence. The tangen-

tial components of electric and magnetic field are

Eo'é —_— Eo
Eit = E,
Eat = Ea

| Hof = /‘/o Cos 91
Hit = Hi Cos O,

f{zt‘::./%z<:as'€%L

The relatlonships between the tangentlial components

of the incident, reflected and transmitted waves are

-—-f/;a-;sé':— ,'-'-‘7’);58(‘.91

—ib ==, =7), SecO,
_E_‘i‘é_z le -5669:..
/%xi '77L

(42)
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‘With the wave impedance for obligque lncldence so
defined, the reflection and transmission coefficients
for oblique incidence can be derived.

Figure 6 represents a plane wave incident obliquely
on a boundry. No directions for the electric field are
shown so that the solution will be valid for elther type
of polarization considered. The sum of the incident

and reflected waves in medla 1 may be written as

o p -8 = . ¢ /
F-F € V°LE e ¥ (43)

where E. and E, are reference values at the orgin.
However, it 1s desired to express equation (43) in
terms of x, y, z coordinates. The following conver-

sions are seen to apply:
5 = X Sinv 6, —{»-? Cos 6,

and

!

59 :)(S/NQ;-'Q Cos &,
Equation (43%) may now be written as

— = _y(xSwBrpCesB) _ _y, (X1 B, = 5le38))
E:Eoer'( 4 +E‘er( 7 (44)

The tangential component of the electric field

in media 1 is ) )
: A (XSIN 9,"‘?6039! - (x SIN@I"" GSQ'
E,=Et€ +PEE >
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or

' Cos® | - xS5in8@
Eo= Eoe {:e““?“°9+€en'” : ]e” e (45)

where Eo¢ will equal £, or £, os ©, depending on the

polarization of the wave. At z = O (45) becomes .
- SI
Fe= Eoe (140) @ ¥ ™e (a6)

The expression for Hy at 2z = 0 1s writien, with

reference to equations (41‘),.and (42) as
=t = Exk (1= €) e O (a7
Thé retio of E; to Hy at z = O becomes
— 1+€ ) (48)
A/e = Z, (/ '

This ratio is con’clnuous across the boundry and must
also equal Zos which will eQual either ')’),_C,,S 6, or
Y. Sec ©a. depending on the polarization of the wave.

Then
|+€\ _
Z, TT:E') = Za (49)
This equation, when solved for € , gives |

€: Zz."';l (50)
25+ =
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And since the reflection and transmission coefficlents
are releted by 7=/+ € +the transmission coefficlent
can be solved 1n the form

A 2£
Za + 2,

Thus, the trancsmission and reflection coefficlients

—
—

(51)

for oblique lncidence on a boundry can be determined by
solving for the wave impedances 1n each medla and using

equations (50) and (51).

VIII. REFLECTION AND TRANSMISSION COEFFICIENTS AT FRONT
FACE OF A LAYER SEPARATING TWO INFINITE
MEDIA FOR OBLIQUE INCIDENCE

The input impedance looking into a finite layer
separating two inflnite media was determined. Thls was
recognized as the load impedance presented to the tan-
gential components in the reglon on the source side of
the layer. Equations (50) and (51) were then used to

solve for the reflection and transmission coefficlents.

Consider Figure 7 which shows the transmission of
a plane wave through such a layer. With reference to
equations (45), (47), and (50), the equations for the

tangential electric and magnetic fields in region 2, can
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PLANE WAVE TRAXSMISSION THROUGH
A LAYER OF FINITE THICKNESS
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be written as

X - Son
Fe=Lot [e-ngcosa,, ‘:.;;iajeﬁyésﬂe Y2 XSa G (52)

and

Eot -\"7.7069» Ze-2Z ra.?asaa -\",.X.Sﬁvéa.
T ——— 3 Dee 5
Ht Za [e . " 2Z3t+ZE c c (53)

The tangential components at the front face of the
1ayer can be found by letting z = -4 and x = -X in equa-
tions (52) and (53). Performing this step glves

_ Y2.dCos Oa Zy-Za —Y2dCosB: r:.)(Sw Ea (51{.)
Fe= Eue Ee 15 )e ]e

and

_ Lot YadCos 62 Zy—Z ~Yad CosBa| aXsi~nBa
/-/f- Za E (Z,-I-Zz)e € (55)
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The ratio of E, to H, is the input impedance to
region 2. Taking this ratio results in

JG 9,\ -‘(uJGsO CosBy ~¥adCos
Zar S 2, e ) g @ i) (56)
e a E *%sa, e naasq)+z (e\'“zcosgi_ e-!s.dc»e;)

Dividing top and.bottom of (56) by 2 glves

dCosO, =~GdCosO, adCos Oz ~Yid Cos 6
z’/e “ +& + Z, e e
= =
Zowa= 2_—7:. ( 57 )
dGs8z —GdCosh, dCosBs _1ndCosO
i“'—:._/e +€ )+23 (e— S *
\ 2 2 ]

By .the use of the identities

Coshuw = M
P 8
and '
AL -0
Sinhw= & —€

=

equation (57) can be written in the form

Z/ua. = Z;L

l}s(kshradQ.sQ; -+ 2;. 5”4 r;-choSQL _.
(58)

L%@Coslv dCosB, + &3 S/ wh YS.cleo:Q

‘Since Zg,, = Z q, the reflectlon and transmission
coefficlents at the front face of a layer may be deter-

mined with the use of equations (50) and (51) as

- éz Z/Iva. '
T_ z//va'f' =, ' (59)
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and

€= Zma—- 21
Z-uv:g"" ZI

(60)

The wave impedance in eguations (58), (59), and
(60) will bé the intrinsic impedance of the particular
region multiplied by either Cos &On or Sec. O~ , depend-
ing on the polarization of the electric with respect to
the boundry.

IX. SNELL'S LAW

The use of the idea of wave impedance to deter-
mine the input impedance to a region and, therefore,
the reflection and transmission coefficients, requires
the use of the physical aluéles in the regions concerned.
Snell's law may be used to complete this step in the
analysis.

Consider a wave, incident at angle ©, and re-
fracted at angle ©,;, as shown 1n Flgure 8. The
sine of &, may be found from Snell's law as

SivOa _ || el (61)
Sinv S, AT e

With a real angle of incidence, &, , it 1s seen that,
in general, sin &, and, consequently, cos &, will be

complexo:
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One interesting point that is easily shown by the
use of Snell's law 1s that for any number iayers, 1f the
entrance media to the layers is the same as the exlt
media, the physical exit angle 1s the same as the initial
angle of incidence.

By the use of Snell's law and the idea of wave im-
pedance 1t 1s possible to determine the reflectlion and
transmission coefficlents for obligue incidence.

It should be mentlioned at thls point that the solu-
tion to the problem will hold only when conditions are
such that Snell's law holds. That 1s, the arrangement of
the layers and the angles of incldence must be such that
the slne of the angle of refraction in any layer will

have a magnltude no greater that unity.



CHAPTER IV
APPLICATION OF MATRIX THEORY TO THE PROBLEM
I. THE SCATTER MATRIX FOR A TWO-PORT NETWORK

The appllcation of matrices to electrical networks
is not a new idea, Dunn and Ross6 have presented a very
concentrated lntroduction to the application of the
scatter matrix to electric circult analysis. In this
section an introduction following that of Dunn and Ross
is presented.

Conslder the general four terminal two-port network
of Filgure 9. The incldent and reflected waves at port 1
are represented by 84 and bl’ respectively, and a, and
b2 are the incident and reflected waves, respectively,
at port 2.

The reflected waves are related to the incident

waves by the following
b;= 511@.,—}- Sia Qs (62)

ba= Sa@, + SsaQs (63)

From (62) 811 = be/a1 with a, = O or simply 1s the
reflection coefficient at port 1 with a perfect termlina-

tlon on port 2.
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a, . Aa
b ba Z
PORT / PORT 2
FIGURE 9

GENERAL FOUR TERMINAL NETWORK
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From (63), Sop = bg/&l with a, = O or Sy is the
transmission coefficlent at port 1 with a perfect ter-
mlination on port 2.

From (63),7822 = b2/a2 with a; = O and is the re-
flection cogfficient at port 2 with port 1 perfectly
termninated.
= O and 1s the

From (62), S,, = 1/a.2 with a

12 1
transmission coefficient at port 2 with port 1 perfectly
terminated.

Equations (62) and (63) can be written in matrix

form as [B] =[SJ[AJOI"

b, - Su Sia Q.
b:_ ' B Sa Saz ! Q,

SI( Sl‘l.
vhere the matrix i1s termed & scatter matrix.
Sa Saa

Whenever the equivalent circuit of the network is
avallable or can be determined, the elements of the
scatter matrix may be determined, The reader 1is

referred to Appendix A for an example of thls procedure.
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II. THE OVER-ALL TRANSMISSION MATRIX
FOR N CASCADED NETWORKS

When networks are cascaded, as shown in Flgure 10,

it is convenient to define a new matrix, called the T

matrix. The T matrlx for the n,t"h network 1ls defined as
b;uv Q... . € 42 QM_'
S IS VR I e IO . (64)
QZN baﬂ-/ 'ﬁ_*' é;a bM‘I
The reason for defining the T matrix in this fashlon
will become clear in the following steps.
From Figure 10, it 1ls clear that for the first
network b2 = aB and 2y = b3 g0 that
ba 03 Q,
o | Z = T (65)
For the second network b4 = a5 and ay = b5 80 that
b As Qs
Y = = 7: (66)
Ay bs bs

But from (65)
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FOUR TEBRMINAL NETWORKS IN CASCADE
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so that
by | Qs
[}
= = T. 7 (67)
a'f b.g' . b,
- — T a—
For the third network ag = b7 and b6'= ar so that
Qe - b7 B bj
L — | —
But from (&67)
aS T al
= 7,
bj & 1y bl
Therefore,
Q, a,
b7 3 72 T Eh
The pattern can now be seen &nd for n networks
the output waves and input waves are related by
bau a.-;
= | T Taey oo0 77 | o (70)
aa.;v ’ bl

The over-all transmisslon matrlx, T, is defined as

7 2 ToTa-1°0cT; ., Now (70) can be written in the form

S U LS (71)
aaN] T [ b :I

Equation (71) is seen to give the output waves in

terms of the input waves for a chaln of networks,
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III. THE OVER-ALL SCATTER MATRIX S
FOR N CASCADED NETWORKS

No attempt was made to prove the matrix conver-

- slons glven in this section. The reader is referred

to Appendix B for the zroof of these converslons.
The relationship between the transmission, T,

matrix and the scatter, S, matrix is given by

/ —AS Saa

- 1 (72)
7— T Sia
-Su |
where
AS-: Sn Sz.:."Su:. Sa.i
and
[ —tu ’
S = (73)
tan |ANT £,
where

AT - tu ta'&.—fu. t:-l

Therefore, once the over-all transmission matrix,
T, has been found, the conversion to the over-all scatter

matrix, S, may be carried out with the use of (73).

IV. OSUMMARY OF SCATTER MATRIX ANALYSIS
OF CASCADED NETWORKS

The solutlion of a chaln of networks by the use of

the scatter and transmission matrices i1s summarized in
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in the following steps:
1. Find the scatter matrix of each network.

2. Convert the scatter matrix to a transmission
matrix by (72).

3. Multiply 2ll transmission matrices in the
order given in (70) to obtain an over-all
transmission matrix, T.

4, Convert the T matrix to an over-2ll scatter
matrix, S, by (73).

5. The elements Sll and S21 of S will be the

reflection and transmission coefficlente when
the network is driven (wave incident) at port
1.

V. THE SCATTER MATRIX FOR A LAYERED MEDIA

In this section the scatter matrix was used to
solve for the reflectlon and transmission coefficients
for a plane wave incident upon a layered medla.

Figure 11 illustrates a pleane wave transmission
through a media consisting of n layers. The effects
of the layers on the wave are a function of A* ana €*
of the layers only, since Cos © = + Cu*, é*).
Equation (61) indicates that Ces ® 1s a function of
%, EX

If the entrance and exlt media are free space,
Oun+i = ©o as has been pointed out previously.

It is assumed that in Figure 11 the entrance and
exlt medla are the seme. The layers may be thought

of as separate individuzl networks as shown in
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Filgure 12, the characteristics of which depend upon
A* end €%. The scatter matrix of these "networks"
may be found and the over-all system anzlyzed as in
the case of simple electric circuits in cascade.

To determine the scatter matrix of the nth layer,
it is hélpful to first review the definltions of the
scatter elements.

The element, Sll’ i1s the reflectlon coefflclent
at the left face of layer n with a perfect termlnation
on the right side of the layer.
| The element, 812, i1s the transmission coefficient
at the right face of layer n with a perfect termina-
tion on the left face.

The element,szl, is the transmlssion coefficient
at the left face of layer n with a perfect termina-
tion on the right face.

The element, 522, i1s the reflection coefficient
at the right face of layer n with a perfect termine-
tlon on the left face.

Since, in thls problem, the transmission system
is free space, a perfect termination on the right or
left face requires that a region of free space of
infinite extent be tovthe right or left of the face.

th

To determine the scatter metrix of the n layer,

refer to Figure 12. The angles in the various layers
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may be determined easlly by the use of Snell's law.
Then the input impedance at the left face of the layer

can be found from (58) as

Z Z ZO Cosh Yudw Cos On + Zw~ Simvh r:vdn Cos On (74)
= N T

i 2w Cosh Yy CosOw + Zo Sywh Tudw CosOn

where

Z”zn,vCoseN or 7),‘, SeC e~

and
Z°=77° CosBo ov n" Sec B,

The reflection coefflclent, Sll’ can be calcu-
lated from (60) and the transmission coefficient, Sp15
can be calculated from (59).

It is apparent that thé network 1s symetrical
and that 812 = 521, and that 822 = Sll‘ The elements
of the scatter matrix of the nﬁh layer have been found.
Each scatter matrix 1s found by the same procedure;
that is, solving for Z; . and calculating € ana T

from equations (59) and (60).

VI. OSUMMARY OF SCATTER MATRIX ANALYSIS
OF LAYERED MEDIA

The steps for the determination of the reflec-
tlon and transmission coefficients for a media of n
layers are given below:

1. Determine Cos © 1in each layer by the use of
Snell's law.



Determine the scatter matrix elements by the
use of equations (74), (60), and (59).

Convert each scatter matrix to a transmls-
sion matrix by ecuation (T72).

Multiply all transmission matrices in the
order given in equation (70).

Convert the resulting over-all transmission
metrix to an over-all scatter matrix by
equation (73).

The elemen*c,:s.'s11 and S, of the over-all

scatter matrix will be the reflection and
transmission coefficients, respectively,
for the multi-layer system.



CHAPTER V
ATTEMPTS AT SIMPLIFICATION

In this chepter speclal cases were considered
in an attempt to reduce the work involved in the so-
lution of the problem. A simplificatlon was defined
as elther a reduction in the number of steps to be
performedbor aﬁy process which makes the completion

0of an individual step easler,

I. EFFECTS OF THE CHARACTERISTICS
OF THE LAYERS

"First consider a perfect (lossless) non-magnetic
layer. For this layer both the permitti#ity and the
permeability would be purely real. In the determination
of the scatter matrix for this 1ayer, the layer would be
separated from the system and considered a separate
element with air on either slde, as was explalned in
the previous chapter. Most dlelectrics have a dielectric

constant greater than unity. From Snell's law

jDAté%;z\Shvé%\);éggigg_

where the subscripts o and 4 refer to air and the
dlelectric layer, respectlively. Since the layer under

24 &
consideration has H#d = Mo snda €I =€) = E,,
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SinBd = SinBs V ll<d

where Kd 1s the dielectric constant for the layer.
It is seen thet S/~ B4 will be real and less than

unity. Therefore, since

Cos Od -';\}I— S/inOd

the Cos &d will also be real and less than unity.
Looking now at the expression for the propaga-

tion constant, ¥,

which for the ideal 1ayer under consideration reduces

Xa = JwVKJ/.l.oéo = /84

The propagation constant 1s seen to be purely

to

imaglinary.
The scatter element for the layer were given

in (59)band (60) as

A Zﬂvd

7"-’:- Sa=531 =
Zivd + Z=o

=51 = Sa2 = Zovd — Zo
Zowd 1+ Zo




where Zind is

Z,y = 2y |EeCesh®dCosOd +Zd Suh ¥ad CosOd
“ Zd Cosh Yad CosOd + 2o Sinh Yad Cos 6d

as defined in (58).

In the above equation, all Z's will be purely
real and ¥y will be purely imaginery, making it
possible to write the equation in the form

2o +J Bd CanBad Cos Od
Zlﬂd = Zd -
B 4 Fot v Bad Cos Od

With the use of this simplified equation and (59)
and (60), the scatter elements of the layer can be de-
termined.

Now consider a layer in which magnetic and/or
dielectric losses are present. This requires the use
of 2 complex permeability and/or complex permittivity.
From Snell's law S/~ &Sd wlll be complex and, therefore
Cos Od will be complex. The expression for the propa-
gation constant 1s also complex for the layer. 1t may
be salid, then, that whenever a layer with losses 1is
being consldered, no simplifications can be made on the
original results.

The chances of simplifying the results by takling

into account the characteristics of the layer are seen

51
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to be small. Even in the ldeal case of no losses, each
step must be completed as in the case of a layer with
losseé. However, the act of completing the steps 1is
simplified since some of the calculations would involve
purely real numbers, and the hyperbolic functions of (58)
could be replaced by trigonometric functions. Whenever a
layer has elther magnetic or dlelectric losses and the

losses must be consldered, no reduction can be made.
II. EFFECT OF THICKNESS OF LAYERS -~ THIN LAYERS

General. It is possible for a system to be
composed of thin layers (with respect to the waeve
length) of different materials. In the solution of
the problem, each layer would be analyzed separately.
That 18, the scatter elements would be determined for
each layer, individually. Any possible simplification
would have to Dhe éarried oﬁt through the reduction_of

(58) which is given as

Zo Cosh KBJ CosOd + ZZd Sinh Yad Cos 64
Zd CoshVad Cos@®y + ZEo Srevh Yad CosOd

Z/Nd = Zd

At first glance, i1t seems that for very thin
layers Ss~vh ¥ad Cos B4 could be dropped from the eque-

tion. If this were done (58) would be simplified as
Zuvd = 2o |



which indicates that for this particular layer, theré
would be, to good approximation, no reflection, phase
shift or attenuatlion. However, even though the effects
of each layer may Dbe smali? each must be considered
because the system as a'whole mlght have a very gfeat
effect on the attenuation or phase shift of the wave,

The case of a thin layer 1in a system of thick
layers is entirely different.AIn such a system the
thick layers will determine, almost entirely, the over-
all effects on the wave and the thin layer may be omit-
ted in the solution of the problem.

Of course, the possibility does exist, 1f‘41§ and

EF are very great, that even though the layer 1s thin

wlth respect to the other.lajers of the system,xgd(kgeh
may be grea£ enough 8o that the effects of the layer
cannot be lgnored 1n the analysis.
g The results may be simplified by considering the
thickness of the layer and the magniﬁude of ﬁhe propa-
gation constant in conjunction with the characteristics

of the other layers of the system.

Thin alterating 1ayérs of two dielectrics. Many

writers sudh as Brekhovskikhj,,COllinS, and Kirschbaum

and Chen9 have pointed out the fact that two thin homo-

geneous‘isotropic layers will behave on the whole as one

homogeneous anlsotropic system having different charac-

teristics-along different axes. Brekhovsklkh has given

53
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the effective values for permeablllity and permlittivity

for the system as

& o
efre - dledn '::3.63 (75)
‘ ~
aQ . i~
Mfe = ST eal (76)
4 >
: o
e* - €7es Cdl +da.)
_ & .
A = A UE (o +da) (78)

di UF + dy ¥

The effective values to be used depends on the
direction of propagation and polarization of the field.
When the wave is polarized with the electric field par-
allel to the boundry of the dieleétrice and propagation
takes place parallel to the boundries, L(3Fe and €A,ﬂé
would be used. _When the wave 1s polarized with the
electric field perpendicular to the boundry and propaga-
tion is parallel to the boundry U¥e and €5e would be
used. IWhen_propaga'tion -‘be,kes place perpendicular to the
boundry L% and €% would be used.

‘I'he use of the effective values for permeablility

and permittivity allows one to treat the two layers as
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a homogeneous system for propagation in one directlon.

Collin has pointed out an interesting point.
Although equations (75) through (78) were derived for
thin layers (with respect to the free space wave length)
the effectlive values for thicker layers differ only a '
few per cent from those of thin layers. This has been
confirmed by Kirschbeaum and Chen who have stated that
tests have shown the use of the effec¢tive vzlues as
given is justified up to frequencies at which di+d; < R.(3)
where A,1s the wave length of the radiation in free
spa.ce.

Reellzing the limitations of this method, namely,
that d,+da < Aol3)and that propagatlion must take
place in one directlion only; the posslible reduction
in the analysis is obvious.

If a system conslsted of 2n layers of dielectrics
(n layers of each dielectric), the effective values of
£7ana €%would be found from equations (75) through
(78) depending on the polarization of the field and
the direction of propagation. After the effective
values of A" and €% are é.et.e‘rmined the system may be
treated as & single layer of thickness d = n( 4y + de)
and having characteristics dependent upon the effective

values of A% and €*. The input impedance to this layer



could be determined and the reflection and transmission

coefficlents determined easily.

56



CHAPTER VI
SUGGESTIONS FOR ADDITIONAL DEVELOPMENT

The problem investigated considered pPlane waves
with two types of polarization - with the electric
field in the plane of incidence and with the electiric
field perpendicular to the plane of incidence. In
manyAcases the electric field may lie neither in the
plahe of incidence nor perpendicular to the plane of
incidence. This problem should be investigeted. The
solution may prove simple, being a.problem of super-
vosition of the two cases considered in this thesis.

In the solution given-for the reflection and
transmission coefficienté fof plane wave propagatlion:
through a layered media, the effects of an individual
layer on the ﬁransmission of a waﬁe are lost.

The effects of a 1ayef are 1dst in the scatter
matrix to transmission matrix cohversion, in the mul-
tiplicétion of the transmission matrices, and in the
conversion from the over-all transmiséion matrix to
the over-all scatter matrix.v It would be desirable
to find a method of determining, in a simple mannér,
the effects of one layer as part of the system of

1ayers{



It was found that the problem could be simplified
for the case of thin alternating layers by the use of
effective values of permeabllity and permittivity for
the two layers treated as a single layer. However,
the simplification held only for certaln polarizations
of the incident wave and for propagation in only one
direction. Although it may prove very difficult to
do so, it would be desirable to obtaln expressions for

effective values for the permeability and permittivity

58

for oblique incldence. The effectlive values would be a

function of the angles of incidence, réflection end

transmission.



CHAPTER VII
SUMMARY

The scatter matrlix can be applled in the solution
of the reflection and transmission coefficients for the
propagation of a plane wave through a layered medla.

This process consists of determining‘the elements of

the scatter matrix for each layer, converting each
~sca£ter matrix to a transmission matrix, multiplyling
all transmission matrices, and converting the over-all
trensmission matrix to an over-all scatter matrix. The
elements éf the over-all scatter matrix will give the
reflection and transmission coefficients for the layered
system.

The main drawbeck to the solutlon as presented is
that the effects of an individual layer, as part of the
sysﬁem, are lost in the matfix-manipulationS. The effects
of an individual layer would have to be deﬁermined by
performing the matrix_analysis twlce, once with the layer
in the system and once with the layer omittéd from the
system. The results would then‘be compared to determine
the effects of an individual layer on the trensmission of
the wave.

Aith@ugh an attempt was made to find ways to simpli-

fy or reduce 1in number the steps to be taken 1n the
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solution, very few simplifications could be mede. The
simplifications were limlted to a thin layer 1n a system
of thick layers and to the case of an artificlal aniso-
troplc media, in which instance effective values of per-
meabllity and permittivity would be used. The effective
values to be used were determined by the dlrection of
propagation (elther perpendicular or parallel to the

boundry of the layers) and polarization of the incident

wave.
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APPENDIX A

EXAMPLE OF SCATTER MATRIX ANALYSIS
FOR A SIMFLE NETWORK

For the purposes of this example, conslder the
network of Figure 13. The shunt impedances, Z1 and
Zg, will be treated as cascaded networks, and the re-
flection and transmission coefficients at the front of
"the set of the cascaded nétworks will be found by use
of the scatter matrix.

First, consider Z1 as an individual network. To
find the scatter coefficlents of this network, it will
be driven from port 1 with a perfect termination on
port 2, as shown in Flgure 14, The load looking into

port 1 is
Z:_‘-: ;—Xl__:;_/_a e

The reflection and transmission coefficlents can now be

calculated as

= - 22 _ axA3 _ 4
T=Sar= Z 7. — T¥35 = /5
.P: Su = Ze—Zo - 3/3""‘ - - //5

T Z. +Ze 2/3 4+ 1
The elements Slé and 522 are the transmission and

reflection coefficients, respectively, when the network
is driven from port 2 with a perfect termination on port

l. It is eesily seen that 822 = Sll and 812 = 821°



CASCADED
NETWORKS
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FIGURE 13
A SIMPLE ELECTRIC NETWORK



65

— —— — — — —— —— — Qi S a—

Sy c— — — — a—

]

— s — — — qu—

FIGURE 14

SHUNT ELEMENT TREATED AS A NETWORK



The scatter elements for the second network can be
determined from Figure 15. In this case, Z; = 3/4 and

the scatter elements are

T = Siaz= €7

€= Su= — /7
The scatter matrix for circuit 1 1is
-lls 4 s
[5]-
, 45 ~ifs
with ASl = -3/5 = determinant ofESl]

The scatter matrix of circult 2 is

~!lq ¢/

[:Sé} - 6%7 . —117

with As, = -5/7 = determinent of {?é]

The (5] to [T] metrix conversion is given as

-AS 5.:.7.
l _
T = 2
[ Sia ~-Sy J

so that

<)

mm—

3s s 7 Yy
/

|

/ 5 { 7;/ 57,y

66



67

1N

— e o— — — —

FIGURE 15

SHUNT ELEMENT TREATED AS A NETWORK



and
_ /7 ~ Y % /A
[:79_.]: 76 =
7t I Yo 7
The over-all transmission matrix is defined as
T = Tm Tt === 77
so that

- e Yo Yy ~%
[T :I —_ o
“ 7% %o Y

Performing the matrix multiplication glves

i %: "?Z&
7l S

with the determinent of [T = &T= [,

The ET] to[ S| . conversion is glven as

( "f‘;, /
[S]: €aa a7 iz

~ 2 ! ~5lr %7

L
o L7 12
! 7 iz —%

I
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This is the over-a2l1l scatter matrix and the elements
Sll and 821 give the reflection and transmission coeffi-

clents as

S = f’==°“€W7

Say=7T'= /2/77

This result can be verlified by considering the
original circulit of Figure 1l. The load impedance 1s

/

_ - & n
Z, = Y2 + 3 + ] Z

The reflection and transmlission coefficients are cal-

culated in the followlng steps:

f= Zi~2o _ Y -1 _ -5/,
ZiL+ 2, e+ 1




APPENDIX B
PrROOF OF [s] 1o [T] anp [T] To [S] MATRIX CONVERSIONS

The converslions between the [ﬁ] and [i] were given
by equations (72) and (73) as

) —AS s
[7]- ==
—Su /
with
AS = Su Saar— S, Sa,
and
"éy.: l
/
[5]= z
ax | AT £,
with

ANT = i‘,, Z.é;u.’—‘ Zf/z. éa./
For the proof of the [ﬁ] to [i] conversion the fol-
lowlng equations are given,
b,=5,Q, + Siala
brz=5S2,8,+ Sasa Q5
To prove the [ﬁj to [i] conversion, it is only
necessary to show that the resulting matrix will give
the same initial equations. For a partlcular network,

the output waves are related to the input waves by the



[T] matrix in the form

But the EE] natrix in terms of the elements of the

scatter matrix is

pr—— -—1 apes—
—-AS  Saa - Si1 Szt 512 Sas Saa
l 5(& 51:.
!:T = - =
Sia
-5Sn / — S __I__..
| ] | Si> S 2 |
Therefore,
. . "‘S-Il 532-"'5;3. Sa.; .S'.-,._.‘,_.—-1
[ b;_ _ S S7a- Q;
Q, | °
— S { b’
L‘ S)a St
oxr
-SuSaatSiaSa a
b, ( S 'f‘ ba-
a.| ~ |
— S bi
| Sia- Q. Sr> |
The equations which this matrix represent are
‘99-:’ (— 5)45::.+513.5:.>Q S':..‘:- b,.
S o

and

i
Qa= _“j’” oy + Sia

b,
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From the latter equation
b=S1@, + Sia0a

Substituting this into the former equation gives

ba-‘- (s,,s;u-s,:.sa; Q +_ (5;, Q,+5)a.a-2.)
Sia.

or

bs = S Q. + Sz Qo

The orig?.na.l equations are obtained which verifies
the ES] to [‘l‘] matrix conversion.
- To show the valldity of the EJ.‘J to ES] converslon,
consider the equations

ba=%y @, + Zia by,
= 259.1 d_., + Zan bl

which may be wrlitten in matrix form as
bx '6" ‘éw. a,
Qo - -'é,_. taa bl

If the El‘] to [S] conversion 1s valid, the result-
ing matrix must give the original equations.
For a particular network the input and output

waves are related by the scatter matrix in the form

b, . s Q,
ba Qs
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But the scatter metrix in terms of the elements

of the EI‘] matrix is

~t,, l—m1 —Zta ‘ {
| Laa % 2a
5 |= & _
22
- AT i 'éu'éa.x—'éu.’ézl IFS
| > | ‘o Cas |
Therefore,
-—ta.l { ]
bl] _ 'é?-)- 'é;.;_ | al
L. 1 dntaa-tata ‘4 2%
“aa ‘taa
or et —
~€al A 2
19l tan &‘ + taa
b, |~
(‘éui:-a.—f,a:ézla + f'*

The equations which thls matrix represents are

‘é?-% ‘é:.?-

1

and

ba

{

#utar— f/:.?fa-l> £ |
( Zaa &’ + z;a— A2

These equatlons can be solved for b? and a, as

ba = tua, + 4,2 b,



and
a}-’- -62) a.a + 'é'.\-:. b,

Thus, the validity of the El‘] to [S] conversion
has been established.
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