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ABSTRACT 

The problem was the application of matrix theory 

to the so1ut1on of the reflection and transmission co­

efficients for a plane wave incident on~ layered media. 

Background material relating to the problem was reviewed. 

Equations that were·used in the solution of the problem 

were either derived or explained. The derivations for 

the reflection and transmission ... coefficients were 

carried out in order, starting with the simple case of 

normal incidence on a junction of two infinite media 

and progressing through the more difficult case of 

oblique incidence on a layer of finite thickness separ­

ating two infinite media. Scatter matrix analysis for 

electrical networks was reviewed and was applied to the 

layered media. Possible simplifications of the resulting 

equations were considered. 
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CHAPTER I 

INTROOOCTION 

I. THE PROBLEM 

Statement of~ problem. The purpose of this 

study was (1) to review the present methods of deter­

mining the transmission and reflection coefficients 

for plane wave transmission through a layered media, 

and (2) to apply matrix theory, the scatter matrix in 

particular, to the problem. A layered media is shown 

in Figure l. For this problem, the layers were oriented 

with the boundries perpendicu~ar to the z direction. 

The solution was to apply to layers with any combina­

tion of dielectric, magnetic, or conductive losses. 

Importance of ~ stud:y:o Many methods of solvi_ng 

the reflection and transmission coefficients for layered 

media have been presented. These · methods, _however., . 

req~ire the continued re-use of complicated transmis­

sion equations or graphical aids, such as the Smith 
I 

. chart or nomographs. It was the intention of the author 

to express the solution in matrix forni, in order that 

the matrices could be solved with the aid of computers. 

This would greatly· reduce the work required in layered 

media calcula~ions. 
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FIGURE 1 

A LAYERED MEDIA 



II. SCOPE OF THE INVESTIGATION 

The study made was entirely theoretical. Back­

ground equations were derived whenever it was believed 

that a derivation was necessary in the understanding 

of the use of the equation in the solution of the 

problem. The application of matrix theory to the 

problem was limited to the scatter and transmission 

matrices. Special cases of the layered media problem 

were considered with the intention of simplifying the 

resulting equations. 

3 



CHAPTER II 

REVIEW OF LITERATURE 

The methods presented, in the literature, for the 

analysis of wave transmission through a layered media 

have been variedo Some authors have considered only 

perfect (lossless) dielectric layers. Some have con­

s;ide1..,ed layers which have onl.y conductive dielectric 

losses (which require the use of complex permittivity)o 

Still other~ have analyzed layers which have both a 

complex permittivity and a complex permeability (which 

accounts for magnetic losses other than those resulting 

from hysteresis and eddy currents)o 

_Most authors, including Von Hippel1 , Stratton2, and 

Brekhovskikh3, give the reflection and transmission co­

efficients at the junction of _two infinite media in 

t·erms of the wave impedance·s of the media and the angles 

of incidence and refraction.· These equations are well 

known as Fresnel's equationso. 

Brekhovskikh and Ramo4 have found the reflection. 

and transmission coefficients at a· layer of finite thick­

ness in terms of the input impedance to the layero The 

solution of the input impedance requires the use of a 

1All. references are in the bibliography 



t~ansmission equation in which all terms are complex 

except the -thickness of the layer. The i~put impedance 

was recognized as the load on the source side of the 

layer and the reflection and transmission coefficients 

could then be calculated. 

5 

When many layers are cascaded, the problem of 

determining the reflection and transmission coefficients 

increases. Ra.mo gives a method by which one would start 

at the last (nth) layer of the media and find the input 

impedance. This impedance was recognized as the load 

on then - l layer. The input impedance to then - 1 

layer would be calculated and become the load impedance 

on then - 2 layer. This process would be repeated 

until the input impedance to the first layer was foundo 

The reflection and transmission coefficients could then 

be determined. _ F.a.ch step would require the solution of 

the transmiesion equation. 

Of course, the steps in the solution as presented 

by Ramo could be .greatly simplified by the use of a 

Smith chart or a nomograph which can be found in an 

article by Cafferata5o Although Cafferata•s nomograph 

was intended for the purpose of calculating the input 

impedance of feeders and cables terminated in a complex 

load, it applies equally well to the case of a layered 

media. 



Brekb.ovskilm has given one other possible solu­

tion to the problem. The equations for the tangential 

components of the electric and magnetic fields in the 

jth region are written in terms of the incident and· 

reflected magnitudes. By letting j range from 1 to 

n (where n is the number of layers) 2n equations 

would be formed. These equations could be solved 

for the reflected magnitude at the 1st layer and the 

transmitted magnitude passing through the nth layer. 

However, when more than two or three layers are present 

6 

this method becomes so unwieldy as to render it useless. 

In the investigation of the problem no material 

was found on the use of the scatter matrix in layered 

media calculations. 



CHAPTER III 

PRESENTATION. OF BACKGROUND THEORY 

In this chapter all equations used in the solution 

of the problem were either derived or explainedo It was 

believed that the der1 vations ,-rere necessary for a. complete 

understanding of the steps to be taken later in the body 

of the thesiso 

Starting ,11th I,1a.xuel1 1 a equa tiona for a medie. tri 'th 

complex permeability and complex permitt1vity0 the wa.vo 

equation 1·1as der1 ved and a solution of the wave equation 

\'las given. The expressions :for the reflection a.nd t~­

mission coefficients were derived starting with the 

simple case of normal incidence on a junction of two 

1nf1n1 te media and progressing through the more difficult, 

solution for oblique incidence on a layer of finite thick­

ness separating ttro inf1n1 ta mediao 

Io DERIVATION OF THE WAVE EQUATION FOR A MEDIUM 

OF COMPLEX PERMEABILITY AND COMPLEX PERMITTIVITY 

The wave equation was derived for propa~ation in a 

media which has both conductive and magnetic lossaso 

Thia 1·ras accomplished by starting ,-11th Maxwell's equa-

tiona given by Von Hippel as 

* cJ H VX E:: -.M IT 



and 

where 

and 

VX H 
1r JE 

E dt 

~;t == MI -j ,))_" 

C ~ / • LI/ 
c:... = E -J c. 

In the above equations .;<,lst and €* are the complex 

permeability and complex permittivity, respectivelyo 

The imaginary components of J..l* and 6* are added so 

that the magnetic and dielectric and conductive losses 

can be taken into account in the solution. 

8 

For this problem it was assumed that only the x 

component of electric field and y component of magnetic 

field were present as shown in Figure 20 · This represents 

a ·plane wave traveling in the +z directiono 

For this problem, then, 
E.==A-·E-1-. 

H = J fl~ 
where 

£;. = f(7J.)t) 

H-:J = <l (J; t) 
Taking the curl of E gives 

j 

E-,_ o o 
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FIGURE 2 

ELECTRIC AND MAGNETIC FIELD COMPONENTS 

OF PLANE WAVE TRAVELING IN THE +Z DIRECTION 



But 

'v X £ = -M..t j~ = -~-J.-t (Z f/-.t +J H,y +-'ff H-,) 

Equating expressions 

j JE~-Rlli. - -,A;(.17_L (,r/11+-:r~~ +x 11~) _"J?a d, ~ - ~-t \..:: "' t1 

But Ex does not vary with y and Hx =a,.= Oo Than 

j ~ E ,c ==- - -;- _,,U. * 2 J/"j 
d> d J cJ..-t . 

or 
JE" :-.M-& ~ 
o"J 

From the curl of ff 
A.. j i< 

- A.- J. ..L J t1'j - J H "a \Ix H - b.X. ~ d-~ =--~ 
~~ 

+k 
~)! 

0 H':J 0 
also 

· V x H = e~ ~~ = E4- f-E G: £"' +J Ey-,.. if E-;.)' 

·(l) 

But Hy does not vary with x and Ex~ Ez = Oo TherGfor0 0 

-~: ~=A.-:- E 4- J Ex_ 
d. 'U J.f 

or 

( 2). 

From (1) 
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or 

(3) 

From (2) 

or 

(4) 

Equating tne left side of (4) to the right side of (3) 

yields 

(5) 

This is the wave equation for the electric fieldo 

A similar procedure would give the wave equation for 

the magnetic field in the form 

(6) 

!Io SOLUTION OF THE WAVE EQUATIONS IN A SINGLE LAYER 

CONTAINING COMPLEX PERMEABILITY AND COMPLEX PERMITTIVITY 

The solution for the electric and magnetic field 

components for a pla.na wave were obtained from wave equa­

tions (5) and (6)0 It was assumed the field components 
. . wt. 

had a time va.ria tion gi van by e .J o 
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Since the_ time variation of the field is known, 

wave equation (5) for the electric field can be written 

as 

This can be rewritten as 

where 

..,..;d;......"-_£--"'.'x __ - o ,._Ex = o 
d 1)-'-

o= J W'J..tt*€* 

The solution to (8) can easily be determined as 

~ . r Ex= Etf) e..- ~-,. £, e 'JJ. 

(7) 

(8) 

(9) 

It is understood that Ex varies with time through eJwc. 
Equation (9) contains two terms, the first repre­

senting an "incidentn wave traveling in the +z direc­

tion and the second term representing a "reflected" 

wave traveling in the -z direction. 

The term, o , is seen to be complex and therefore 

affects the mangitude and phase of the wave, the magni­

tude of the effect being dependent on the angular fre­

quency W and the characteristics o'f the media A.J.*' and 

E./e. This term has been named the "propagation constant". 

If there were no change in the media through which 

the wave is propagat~ng, there would be no reflected 

wave and Ex = ED e-~11: (10) 



A solution ror ~ can be found by the use or (lQ) 

and (1) as shown in the steps below. 

or 

~ ~x = -~* dj?-
f/f o e-Y1J) = -..; wfi"' H.11 

-0£0 e_-Y-J = -jwµ* H-';J 
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(11) 

III. SOLUTION FOR INTRINSIC IMPEDANCE 

Since the ratio of electric field intensity to 

magnetic field intensity has the units of impedance, 

the intrinsic impedance of the med1.a is defined as 

IV. DERIVATION OF REFLECTION AND TRANSMISSION 

COEFFICIENTS AT THE JUNCTION OF TWO INFINITE MEDIA 

FOR NORMAL INCIDENCE OF A PLANE WAVE 

Figure 3 shows the conditions for a plane wave 

1no1dent normally on the junction of two infinite media~ 
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R£GION2 
n,_ 

/ 
--l> 

FIGURE 3 

PLANE WAVE INCIDENT_ NORMALLY ON BOONDRY 
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In this figure the subscripts O, 1, and 2 indicate the 

incident, reflected and transmitted waves, respectively. 

The electric fields are shown in the x direction and the 

magnetic fields are shown in they direction. From the 

continuity of tangential components at a boundry, the 

~ollowing equations may be obtained. 

Eo + E, = £:,.... 

and 

Ho+ H,:::. H;.. 

But 

Eo =Y1, ; _E_L.=- _ r], > £~ =- YJ~ 
Ho H, HtJ.-

From ( 14) 

E~ _ Eo E, 
n ,_ - 77 I --=rr;-

Multiplying both eidea of (16) by 1'}1-- gives 

£,-.. =- ~E.o - 71
"&. E, 

11, n, 
Multiplying (13) by yields 

Adding (17) and (18) gives 

( 1:,) 

(14) 

(15) 

(16) 

(17) 

(18) 
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or 
:t rJ ;z. E r::-

E - rJ o==l~o "" - n :J. -t I 
(19) 

where'( is the transmission coefficient and is given 

by 

(20) 

Subtracting (17) from (18) 

(21) 

Substituting E2 from (19) into (21) gives 

(22) 

Equation (22) reduces easily to the form 

(23) 

where f is the reflection'coeffi.cient and is given by 

(24) 
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V. DERIVATION OF THE INPUT IMPEDANCE TO 

A MEDIA OF FINITE THICKNESS 

The electric and magnetic field equations at the 

back (load) side of the layer were found and transferred 

back towards the front (source) side of the layer, a 

distance equal to the thickness of the layero The input 

impedance was then found by forming the ratio of electric 

and magnetic fields at that pointo 

Figure 4 was used in the following derivation of 

this input impedanceo 

The electric field in region 2 is determined from 

(9) as 

From (15) 

£, - - n 
- - ::L H, 

By the use of {15) and (25) the expression for the 

magnetic field in region g is found to be 

But from ( 23 ). 

(25) 

(26) 



REGION I 
71 I 

INFINITE 
THICHNESS 

REGION c. REGION 3 

,=-d 

11.2.. ?1.3 

FIGURE 4 

INFINITE 
THICKNESS 

FINITE LAYER SEPARA'rING TWO INFINITE MEDIA 

18 
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Equations (25) and (26) can now be written aa 

(27) 

· and 

To find the expressions for Ex and Hy at the 

junction of regions 1 snd 2p z is sat equal to - d 

in (27) and (28)o 

(28) 

Sinoa the tangential components are continuous at 

a boundry 0 the above expressions hold, also, immediately 

~o the le~t of the~ - 2 junctiono The ratio of Ex to 

Hy a~ z o - dis the impedance the wave "sees" at this 

junction and is, t .hererore 0 the input impedance to 

r<Z>gion 2o 



This reduces to the :rorm 

Dividing top and bottom of (32) by 2 gives 

From the identities 
Cosh u = eM- + e--'<­

;;J-

s, Nh M _ = e...«. - e.-A 
;;k. 

equation (33) can be written in the form 

20 

(32) 

(33) 

(34) 

Recognizing that 1l3 is the load on region 2, the 

input impedance to the layer can be put in the desired 

form 



VI. REFLECTION AND TRANSMISSION COEFFICIENTS AT FRONT 

FACE OF A FINITE LAYER SEPARATING TWO 

INFINITE MEDIA FOR NORMAL INCIDENCE 

With the use of equation (35) it ·w~s possible to 

21 

determine the expressions for the reflection and trans­

mission coefficients under conditions of normal incidence 

upon a finite layer separating two infinite media. 

First, equations (20) and (24) can be rewritten as 

and 

f'= 

Since 11.~ is the load on region 1, this makes the 

equations more -general and will allow the use of the 

equations whenever the load impedance on region 1 can 

be determined. 

In the previous section, it was explaine~ that 

Zin2 = 2t1 , since the ratio of the tangential electric 

field to tang~nt:1al magnetic field is the same immedi-. 

ately to the right or left of the junction. 

{ 36) . 

(37) 

Realizing this, the reflection and transmission 

coef~icients can be found by eo1qi~ for z1n2 from (35) 
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and using this result in equations (36) and (37) as 

shown below. 

r-
~I +?1, 

(39) 

F-

VII. REFLECTION AND·TRANSMISSION COEFFICIENTS AT THE 

JUNCTION OF TWO I:NFINITE MEDIA FOR OBLIQUE INCIDENCE 

A new term, the wave impedance f'or oblique inci-
·. 

dence, was defined and proved useful in the determina-

tion of the reflection and transmission coefficients 

(40) 

for oblique incidence. The reflection and transmission 

coefficients were derived for two polarizations of the 

incident ,: wave; that is, with the electric field in the 

plane of incidence and with the electric field perpen­

dicular to the plane of incidence. 

Equations (39) and (40) apply, as written, only 

for normal incidence. These equations can be modified . 

to apply in the case . of' oblique incidence by considering 

the tangential components of electric and magnetic fields 

only. 
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First, the wave impedance for oblique incidence 

is defined as the ratio of electric to magnetic field 

components parallel to the boundry. The reaso~ for this 

is the continuity of the tangential components at the 

boundry and, therefore, the equality of the ratio of 

the tangential electric field to tangential magnetic 

field on either side of the boundry. Then, if this 

ratio is computed as the input impedance to the region 

on the right of the boundry, it is also the load impe­

dance on the region to the left of the boundry. The 

wave impedance is defined as 

Figure 5(a) shows a plane wave incident obliquely 

on a boundry. The wave is polarized with the electric 

field in the plane of incidence. The angle of incidence 

can be shown to be equal to the angle of reflection as 

indtcated in Figure 5. The tangential components of 

electric and magnetic fields are 

Eo-1; = Eo Cos e, 
E,t == £, Cos 9, 
E;J.-c :: £:,._ Cos e~ 
Ho-t == Ho 
H,t == H, 
H "t ::: /./ ;L. 
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FIGURE 5 

PLANE WAVE INCIDENT ON A BOUNDRY 

(a) Polarized with the electric 
field 1n tha plane of incidence 
(b) Polarized with the electric 
field perpendicular to the plane 
of 1nc1denoQ 
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The rela~ionships between the tangential components 

of electric and magnetic fields in the incident, reflected 

and transmitted are shown by Ramo to be 

!! = Z, = 71i Cos @, 

25 

E,t = - 7 =--7] Cose /-/rt .L:f I I 
(41) 

E, .. :t: = ~:z-= 7}2-CosS,.._ 
11~, 

Figure 5(b) shows a plane wave incident upon a 

boundry. The wave is polarized with the electric field 

perpendicular to the plane of incidence. The tangen­

tial compo~ents of electric and magnetic field are 

Eo-t .= Eo 
E, I: E, 
E-:i.i · £~ 
Hb-t Ho Cos e, 
H,t 1-1, Cos e, 
H;,..-c = H;J.. Cos e:J... 

The relationships between the tangential components 

of the incident, reflected and transmitted waves are 

Eat ::. -Z, = n, Sec e, 
1./oi 

=-Z, = -r), Sece, 

= Z=i- = . i]i.. Sec e";}... 

(42) 
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With the wave impedance for oblique incidence so 

defined, the reflection and transmission coefficients 

for oblique incidence can be derived. 

Figure 6 represents a plane wave incident obliquely 

on a boundry. No directions for the electric field are 

shown so that the solution will be valid for either type 

of p~larization consideredo The sum of the incident 

and reflected waves in media 1 may be written as 

- e-o,& E -Y-,b' 
£=£ + I e 

where Eo and E, are reference vc.lues at the orgin. 

However, it is desired to express equation (43) in 

terms of x, y, z coordinates. The following conver-

sions are seen to apply: 

& ==- x s;Ne, +11 Co.s e, 

and 
. I 

& ::: x 51NB1 - ;} Cose, 

Equation (43) may now be written as 

The tangential component of the electric field 

in media l is 
. . -Y, (X S1N s,+7iCos8,) -Yi (_x 5,N(!),-,G,sS,) 

Et=Eote. +eEote 

(43) 
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or 

where Eat will equal Eo or Eo Cose I depending on the 

polarization of the wave. At z = O (45) becomes 
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E-t = Eat (1 + e) e-r, )( s,,.,e, (46) 

The expression for Hy at z = O is written, with 

reference to equations { 41) . ., and ( 42) as 

The ratio or Et to Ht at z = O becomes 

Et=z c1+f') 
#t I I -e _ 

(47) 

(48) 

This ·ratio is continuous across the boundry and must 

also equal Z2, which will equal either 111. Cos e 2- or 

Yl1- Sec 8;,_ depending on the polarization of the waveo 

Then 

This equation, when solved for e, gives 

(50) 



And since the reflection and transmission ooe:fficients 

are related by "'!::::.I+ e the transmission coe:rrioient 

can be solved 1n the rorm 
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( 51) 

Thus, the transmission and rerleot1on coe:fficients 

for oblique incidence on a boundry can be determined by 

solving for the wave impedances in each media and using 

equations (50) and (51). 

VIII. REFLECTION AND TR.J.\.NSMISSION COEFFICIENTS AT FRONT 

FACE OF A LAYER SEPARATING TWO INFINITE 

MEDIA FOR OBLIQUE INCIDENCE 

The input impedance looking into a finite layer 

separating two infinite media was determined. Thia was 

recognized as the load impedance presented to the tan­

gential components in the region on the source side ot 

the layer. Equations (50) and (51) were then used to 

solve for the rerlection and transmission coefficients. 

Consider Figure 7 which shows the transmission ot 

a plane wave through such a layer. With reference to 

equations (45), (47), and (50), the equations for the 

tangential electric and magnetic fields in region g, can 
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FIGURE 7 

PLANE WAVE TRA~:SMISSION THROUGH 

A LAYER OF FINITE THICKNESS 
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be written as 

and 

( 53) 

The tangential components at the front face of the 

layer can be found by letting z = -d and x = -X in equa­

tions (52) and (53). Performing this step gives 

( 54) 

and 



The ratio of Et to Ht is the input impedance to 

region 2o Taking this ratio results in 

Dividing top and~.-bottom of (56) by 2 gives 

By.the use of the identities 

and 
e.u..- e-.M.. 

a.-
equation (57) can be written in the form 
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{ 57) 

( 58) 

Since 2in2 = 2Li' the reflection and transmission 

coefficients at the front face of a layer may be deter­

mined with the use or equations (50) and {51) as 

I= :I. Z-nv:t. 

,i!,1111~ + i! ' 
(59) 



33 

and 

( 60) 

The wave i~pedance in equations (58), {59), and 

(60) will be the intrinsic impedance of the particular 

region multiplied by either Cos eN or Sec S,v , depend­

_ ing on the polarization of the electric with respect to 

the boundry o 

IX. SNELL Is LAW 

The use of the idea of wave impedance to deter­

mine the input impedance to a region and, therefore 1 

the reflection-and transmission coefficients, requires 

the use of the physical angles in the regions concernedo 

Snell's law may be used to complete this step in the 

analysis. 

Consider a wave, incident at angle e, and re­

fracted at angle Sa , as shown in Figure 8. The 

sine of 6..;t. may be found from Snell's law as 

(61) 

With a real angle of incidence, 131 , it is seen that, 

in ge~eral, sin e.a. and, consequently, cos e~ will be 

complexo· 
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One interesting point that is easily shown by the 

use of Snell's law is that for any number layers, if the 

entrance media to the layers is the same as the exit 

media, the physical exit angle is the same as the initial 

angle of incidence. 

By the use of Snell's law and the idea of wave im­

pedance it is possible to determine the reflection and 

transmission coefficients for oblique incidence. 

It should be mentioned at this point that the solu­

tion to the problem will hold only when conditions are 

such that Snell's law holds. That is, the arrangement of 

the layers and the angles of incidence must be such that 

the sine of the angle of refraction in any layer will 

have a magnitude no greater that unity~ 



CHAPTER IV 

APPLICATION OF MATRIX THEORY TO THE PROBLEM 

I. THE SCATTER MATRIX FOR A TWO-PORT NETWORK 

The application of matrices to electrical networks 

6 is not a new idea. DUnn and Ross have presented a very 

concentrated introduction to the application of the 

scatter matrix to electric c1rcu1 t analysis. In this 

section an introduction fol1owing that of Dunn and Ross 

is presented. 

Consider the general four terminal two-port network 

of Figure 9. The incident and reflected waves at port 1 

are represented by a1 and b 1 , respectively, and a 2 and 

b 2 are the incident and ref1ected waves, respectively, 

at port 2. 

The reflected waves are related to the incident 

waves by the following 

b, == S,, Cl, + S, :a. Q,._ 

b_,...= s~,a, + ~a~ 

(62) 

(63) 

From (62) s11 = b2/a1 with a2 = O or simply is the 

reflection coefficient at port 1 with a perfect termina­

tion on port 2. 
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a., ,.. 
< b, 

PORT/ PORTZ 

FIGURE 9 

GENERAL FOUR TERMINAL NETWORK 



From ( 63), s.21 = b~a1 with a 2 = o or s21 is the 

transmission coefi'icient at port l with a perfect ter-

mination on port 2. 

From (63), s22 = b 2/a2 with 81. = 0 and is the re­

flection coefficient at port 2 with port 1 perfectly 

terminated. 
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~om (62), s12 = b1/a2 with a1 = o and is the 

transmission coe~ficient at port 2 with port 1 perfectly 

terminated. 

Equations (62) and (63) can be written in matrix 

form as [ey =[~[A]o~ 

[:~] - [;:. S,1.J • [·. 0., J 
S a.:2.. 1 Q. .:L 

where the matrix c511 s,:i 
s .. , s .. .:J 

Whenever the equivalent 

is termed a scatter matrix. 

circuit of the network is 

available or can be determined, the elements of the 

scatter matrix may be determined, The reader is 

referred to Appendix A for an example of this procedure. 
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II. THE OVER-ALL TRA.NSMISSION MATRIX 

FOR N CASCADED NETWORKS 

When networks are cascaded, as shm·m in Figure 10, 

it is convenient to define a new matrix, called the T 

matrix. The T matrix for the nth network is defined as 

[ O;tNJ [ J f~-J p,, 
Q,._., = TN • ~,..,_, = ~· • 

The reason for derining the T matrix in this fashion 

v.Jill become clear in the following steps. 

From Figure 10, it 1s clear that for the first 

[ :: J [ :: J = T, [ :: J 
For the second network b 4 = a 5 and a 4 = b

5 
so that 

[ :: J [: J = 7: [ :: J 
But from (65) 

(64) 

( 65) 

(66) 
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so that 

[ :: J -[ ~; J: 1; Ti [ :; J (67) 

For the third network a 6 = b 7 and b 6 ·= a, so that 

[::] = [ ~7]= TN [~] (68) 

But from (67) 

[ :; J = T~ T, [ :: J 
Therefore, 

[ :: ]= 7;7;T, [ :: J (69) 

The pattern can now be seen and for n networks 

the output waves and input waves are related by 

~::J = E ?;_, ••• T, JO [ ~: J (70) 

The over-all transmission matrix, T, is defined as 

T:::. 7iv TN-1 ° 0 0 Ti o Now ( 70) can be written in the form 

~:: J = T [ ~; J c11> 
Equation (71) is s.een to give the output waves in 

terms of the input waves for a chain of networkso 
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III. THE OVER-ALL SCATTER }L.\TRIX S 

FOR N CASCADED NETWORKS 

No attempt was made to prove the ~atrix conver-

sions given in this section. The reader is referred 

to Appendix B for the proof of these conversions. 

The relationship between the transmission, T, 

matrix and the scatter, S, matrix is given by 

T 
I 

S,a. 
(72) 

-s,, I 
where 

~5 = s .. s~2..- S,.a.. s.,_. 
and 

[ s ]= (73) 

where 

Therefore, once the over-all transmission matrix, 

T, has been found, the conversion to the over-all scatter 

matrix,~' may be carried out with the use of (73). 

IV. SUMMARY OF SCATTER MATRIX ANALYSIS 

OF CASCADED NETWORKS 

The solution of a chain of networks by the use of 

the scatter and transmission matrices is summarized in 



in the following steps: 

1. Find the scatter matrix of each network. 

2. Convert the scatter matrix to a transmission 
matrix by (72). 

3. Multiply all transmission matrices in the 
order given in (70) t2 obtain an over-all 
transmission matrix, T. 

4. Convert the T matrix to an over-all scatter 
matrix, s, by (73). 

5. The elements s11 and s21 of Swill be the 
reflection and transmission coefficients when 
the network is driven (wave incident) at port 
1. 

V. THE SCATTER MATRIX FOR A LAYERED MEDIA 

In this section the scatter matrix was used to 

solve for the reflection and transmission coefficients 

for a plane wave incident upon a layered media. 

Figure 11 illustrates a plane wave transmission 

through a media consisting of n layers. The effects 

of' the layers on the wave are a function of a- and E* 

of the layers only, since C o.s e = + (.M.,~ E*). 
Equation (61) indicates that Cose is a function of 

M*Je•. 

If the entrance and ex.it media are free ape.ca-, 

eN+I ::. eo as has been pointed OUt previously. 

It is assumed that in Figure 11 the entrance and 

ex1 t media are the same. The layers may be thought 

of as separate individual networks as shown in 
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Figure 12, the characteristics of which depend upon 

,(,{,* and e*. The scatter matrix of these "networks" 

may be found and the over-all system analyzed as in 

the case or simple electric circuits in cascade. 

To determine the scatter matrix of the nth layer, 

it is hel9ful to ~irst review the definitions of the 

scatter elements. 

The element, s11 , is the reflection coefricient 

at the left face of layer n with a perfect termination 

on the right side of the layer. 

The element, s12, is the transmission coefficient 

at the right face of layer n with a perfect termina­

tion on the left face. 

The element,s21 , is the transmission coefficient 

at the left face of layer n with a perfect termina­

tion on the right face. 

The element, s22 , is the reflection coefficient 

at the right face of layer n with a perfect termina­

tion on the left face. 

Since, in this problem, the transmission system 

is free space, a perfect t~rmination on the right or 

left face requires that a region of free space of 

infinite extent be to the right or left of the face. 

To determine the scatter matrix of the nth layer, 

refer to Figure 12. The angles in the various layers 
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may be determined easily by the use of Snell's law. 

Then the input impedance at the left face of the layer 

can be -found from (58) as 

where 

and 

.i=o ::; 1Jt'> Cos Bo O'r 110 sec eo 
The reflection coefficient, s11, can be calcu­

lated from (60) and the transmission coefficient, s21 , 

can. be calculated from (59). 

It is apparent that the network is symetrical 

and that s12 = s21 , and that s22 = s11 • The elements 
th of the scatter matrix of then layer have been found. 

Each scatter matrix is found by the same procedure; 

that is, solving for z1n n and calculating f' and I 

from equations (59) and (60). 

VI. SUM!'."1-.~RY OF SCATTER MATRIX ANALYSIS 

OF LAYERED :MEDIA 

The steps for the determination of the reflec-

tion and transmission coefricients for a media of n 

layers are given below: 

l. Determine Cos e in ea.ch layer by the use of 
Snell I s law. 
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2. Determine the scatter matrix elements by the 
use of equations (74), (60), and (59). 

3. Convert each scatter matrix to a transmis­
sion matrix by equation (72}. 

4. Multiply all transmission matrices in the 
order given in equation (70). 

5. Convert the resulting over-all transmission 
matrix to an over-all scatter matrix by 
equation (73). 

6. The elements s11 and s21 of the over-al1 
scatter matrix will be the reflection and 
transmission coefficients, respectively, 
for the multi-layer system. 
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CHAPTER V 

ATTEMPTS AT SIMPLIFICATION 

In this chapter special cases were considered 

in an attempt to reduce the work involved in the so­

lution of the problemo A simplification was derined 

as either a reduction in the number of steps to be 

performed or any process which makes the completion 

.of an individual step easiero 

I. EFFECTS OF~THE CHARACTERISTICS 

OF THE .. LAYERS 

"First consider a perrect (lossless) non-magnetic 

layero For this layer both the permittivity and the 

permeability would be purely rea1o In the determination 

of the scatter matrix . ror this layer, the layer would be 

separated from the system and considered a separate 

element with air on either aide, as was explained in 

the previous chaptero Moat a.1·e1ectr1cs have a dielectric 

constant greater than unityo From Snell's law 

where the subscripts o and d refer to eir and the 

dielectric layer, respectivelyo Since the layer under 

consideration has A .::. )Jo and £~:::::.. €.~ = Kd C-o..i 



where Kd is the dielectric constant for the layer. 

It is seen that 5/N ed will be real and less than 

unity. Thererore, since 

the Co :s Bet wiil also be real and less than unity. 

Looking now at the expression ror the propaga­

tion constant, r-:, 

which for the ideal layer under consideration reduces 

to 

The propagation constant is seen to be purely 

imaginary. 

The scatter element for the layer were given 

in (59) and (60) as 

,::. S,:,...:::.S;,.., =. 
Z U+,,:J + ,2:._ o 

-f= 5,, _ s~~ =- :Z:./Ard - ?o 
.z./Al'd -f-~ 0 
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·where zind is 

'7 - -z ~o Co:s I, r., d C..s e.i + iZ d. s;,., I, \';tel l'.os ehl 
z:;:; '"'d - z:: d ~d Cosl, 'rd.cl Cos~J + 2-6 S,N/, Ydd ~s6J 

as defined in (58). 

In the above equation, all Z's will be purely 

real and '(.J will be purely imaginary, making it 

possible to write the equation in the form 

With the use of this simplified equation and (59) 

and (60), the scatter elements of the layer can be de­

termined. 

Now consider a layer in which magnetic and/or 

dielectric losses are present. This requires the use 

of a complex permeability and/or complex permittivity. 

From Snell's law So,1 9d will be complex and, therefore 

Cos ec1 will be complex •. The expression for the propa­

gation constant is also complex for the layer. It may 

be said, then, that whenever a layer with losses :ts 

being considered, no simplifications can be made on the 

original results. 

The chances of simplifying the results by taking 

into account the characteristics of the layer are seen 

5l 
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to be small. Even in the ideal case of no 1oeses, each 

step must be completed as in the case of a layer with 

losses. However, the act of completing the steps is 

simp11ried since some o:f the calculations would involve 

purely real ntllllbers, and the hyperbolic functions o:f (58) 

could be replaced by trigonometric function_s. Whenever a 

layer has either magnetic or ~electric losses and the 

losses must be considered, no reduction can be made. 

II. EFFECT OF THICKNESS OF LAYERS - THIN LAYERS 

General. It is possible for a system to be 

composed of thin layers (with respect to the wave 

length) or different materials. In the solution of 

the problem, each layer would be analyzed separately. 

That is, the scatter elements would be determined for 

each layer, individually. ,Any possible simplification 

would have to be carried out through the redu~tion_of 

{ 58) which is gi van as 

At first glance, it seems that for very thin 

layers S,NJ, rac:L Cos ec1 could be dropped from the equa­

tion. i:r this were done {58) would be simplified as. 

;3. hvd ::: z:3. o 



which indicates that for this particular layer, there 

would be, t·o gooc;i approximation, no reflection, phase 

shift or attenuationo However, even though the effects 

o:r each layer may be small, each must be considered 

because the system as a whole might have a very great 

effect on the attenuation or phase shift of the waveo 

The case of a thin layer in a system o:r thick 

layers is entirely dif:ferento In such a system the 

thiok layers will determine, almost entirely, the over­

all effects on the wave and the thin layer m~y be omit­

ted in the solution of the problemo 

Of course, the possibility does exist, if A,,£~ and 

€2"· are very great, tha. t even though the layer is thin 

with respect to the other .layers o:r the system, '<ad Cosed 

may be great enough so that the erfects of the layer 

cannot be ignored.in the analysiso 

The results may be simplified by considering the 

thickness of the layer and the magnitude of the propa­

gation constant in conjunction with the characteristics 

of the other layers of the sy~temo 

Thin a.1terating layers of~ dielectrics. Many 
. 7 8 

writers such as Brekhovskikh ,, Collin, and Ia.rschbaum 

and Chen9 have pointed out the :fact that two thin homo-

geneous isotropic layers will behaye on the whole as one 

homogeneous anisotropic system having dirferent charac­

teristics along di:f:ferent axeso Brekhovskikh has given 
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the ef:rective values for permeability and permittivity 

for the system as 
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d, €f +daE~ 
d, +d~ 

{75) 

d, .u.-t; + d~...«1i 
d, + d~ 

€'; €'i (d, + d.,.) 
d, E:1 +d~et 

,,u~*,,u~(d, +d::,..) 
d, M7 +- d~ .,uf; 

The ef~ective values to be used depends on the 

(76) 

(77) 

(78) 

di~ection of propagation and polarization of the fieldo 

When the wave is polarized with the electric field par­

allel to the boundry of the dielectrics and propagation 

takes place parallel _to the boundries,~fe and €,~ 

would be used. When the wave is polarized with the 

electric field perpendicular to the boundry and propaga-

tion is parallel to the boundry A-f°e * and €.a..e. would be 

used. When propagation takes place perpendicular to the 

. * boundry ~,e and Efe would be usedo 

The use of the effective values for permeability 

and permittivity allows one to treat the two layers as 
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a homogeneous system for propagation in one direction. 

Collin has pointed out an int~resting point. 

Although equations (75) through (78) were derived for 

thin layers (with respect to the :rree space wave length) 

the e:r:rective values f'or thic1cer layers di:ffer only a 

:few per cent :from those of' thin layers. This has been 

con:firmed by Kirschbaum and Chen who have stated that 

tests have shown the use of the ef':fective values as 

given is justified up to frequencies at which d,+d~6 ;t
0
~3) 

where 1Lo i.s the wave length of the radiation 1n :free 

space. 

Realizing the limitations of this method, namely, 

that d 1 + d ;a. L.. "}... o,3)and tha_t propagation must take 

place in one direction only, the possible reduction 

in the analysis is obvious. 

If a system consisted of' 2n layers o:f dielectrics 

(n layers of each dielectric), the ef':fective values o:r 

~"°and €~would be found from equations (75) through 

(78) depending on the polarization o:r the :r1eld and 

the direction of propagation. After the effective 

values of ~,"* and G.-lr are determined the system may be 

treated as a single layer of' thickness d = n(d1 + d2 ) 

and having characteristics dependent upon the e~rective 

values ·o:r .,l,,,l.t and e*. The input impedance to this layer 



could be determined and the reflection and transmission 

coefricients determined easily. 
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CB.APTER VI 

SUGGESTIONS FOR ADDITIONAL DEVELOP11ENT 

The problem inv.estigated considered plane waves 

with two types of polarization - with the electric 

field in the plane of incidence and with the electric 

field perpendicular to the plane of' incidence. In 

many cases the electric field may li_.~ neither in the 

plane of incidence nor perpendicular to the plane of 

incidenceo This problem should be investigated. The 

solution.may prove simple, being a problem of super­

position of' the two · cases considered in th:1.s thesis. 

· In the solution given for the reflection and 

transmission coefficients f'or plane wave propagation · 

through a layered media, the effects of an individual 

layer on the transmission of' a wave are lost. 

The effects of a layer are lost i~ the scatter 

matrix to transmission matrix conversion, in the mul­

tiplication of the ~ransmission matrices, and in the 

conversion from the overi:-a.11 transmission matrix to 

the over-all scatter matrix. It would be desirable 

to find a method of determining, in a simple manner, 

the effects of' one laye·r as part of' the system of 

l~yers. 



It was found that the problem could be simplified 

for the case of thin alternating layers by the use o~ 

efrective values of permeability and permittivity for 

the two layers treated as a single layer. However, 

the simplification held only for certain polarizations 

of the incident wave and for propagation in only one 

direction. Although it may prove very difficult to 
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do so, it would be desirable to obtain expressions for 

effective values for the permeability and permittivity 

for oblique incidence. The effective values would be a 

function of the angles of incidence, reflection and 

transmission. 



CHAPTER VII 

SUMMARY 

The scatter matrix can be applied in the solution 

or the rerlection and transmission coefficients for the 

propagation of a plane wave through a layered media. 

This process c.onsists of determining~ the elements o~ 

the scatter matrix for each layer, converting each 

·scatte~ matrix to a ~ransmission matrix, multiplying 

all transmission matrices, and converting the over-all 

transmission matrix to an over-all scatter matrix. The 

elements of the over-all scatter matrix will give.the 

reflection and transmission coefficients for the layered 

system.· 

The main drawback to the solution as presented is 

that the effects of an individual layer, as part of the 

system, are lost in the matrix·manipulations. The effects 

of an individual layer would have to be determined by· 

performing the matrix_analysis twice, once with the layer 

in the system and once with the layer omitted from the 

system. The results would then be compared to· determine 

the effects of an individual ·layer on the transmission of 

the wave. 

Although an attempt was made to find ways to simpli­

fy or reduce in number the steps to be taken .in the 
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solution, very few simplifications could be raade. The 

s1mpl1f1cat1ons were limited to a thin layer in a system 

of thick layers and to the case of an artiricial aniso­

tropic media, in which instance effective values of per­

meability and permittivity would be used. The effective 

values to be used were determined by the ctl.rection of 

propagation (either perpendicular or parallel to the 

boundry of the layers) and polarization of the incident 

wave. 
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APPENDIX A 

E.t~\MPLE OF SCATTER MATRIX ANALYSIS 

FOR A SIMPLE NETWORK 

For the purposes of this example, consider the 

network o:r Figure 13. The shunt impedances, z1 and 

z2 , will be treated as cascaded networks, and - the re­

flection and transmission coefficients at the front of 

· the set of the cascaded networks will be :round by use 

of the scatter matrix. 

First, consider 2i as an individual network. To 

find the scatter coefficients of this network, it will 

be driven from port 1 with a perfect termination on 

port 2, as shown in Figure 14. The load. looking into 

port 1 is 

The re:rlection and transmission coefficients can now be 

calculated as 

~ d- ~,_ 
- I = S;,.1 = 

~1-+Zo 
-4/s 

.D- S - ~,_- ~o 
\ - II - -Z..&. -1- ~o 

The elements s12 and s22 are the transmission and 

reflection coefficients, respectively, when the network 

is driven from port 2 with a perfect termination on port 

1. It is easily seen that s22 = s11 and 812 = 821 • 
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CASCADED 

~o NETWORKS 

lrt. 
I 

I\) -z 31"'"'\ I 
Z::.,;t ..l ~ I 

I 

FIGURE 13 

A SIMPLE ELECTRIC NETWORK 
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FIGURE 14 

2.f1.. 

I 
. I 
I 
I 
I 

' I PORTZ. 
I 
I 
I 

SHUNT ELEMENT TREATED AS A NETWORK 
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The scatter elements f"or the second network can be 

determined from Figure 15. In this case, 2L = 3/4 and 

the scatter elements are 

·"'{= S,:1,..= t/7 

e = Sn= - 1 /7 

The scatter matrix f"or circuit 1 is 

-'[s '1/s 

[s] = 
4/s -

1/s 

wi th.as1 = -3/5 = determinant of [s1J 
The scatter matrix of circuit 2 is 

-I /7 '/7 

[sJ ~11 - '/7 

with ~s2 = -5/7 - determinant of" [s2l 
The [s] to [T] matrix conversion is given as 

-45 

S,:,.. 

so that 

3/s -~ 

'Is I 
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and 

-~ 

I 

The over-all tranEmission matrix is defined as · 

T= IN&-, .. ·T, 

so that 

0 

Performing the matrix multiplication gives 

[=rJ= 
with the determinant o:r [r J = ~ T =- I • 

The [r J to[_s]. conversion is given as 

so that 

[s]= 

[s]= _!_ -C..:a-1. 

,~ 
17 

-t;L, I 

LlT 

I 

-~ 
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This is the over-all scatter matrix and the elements 

s11 and s21 give the rerlection and transmission coef:fl­

cients as 

s~, == r = 121,1 

This result can be veri:fied by considering the 

original circuit of Figure ll. The load impedance is 

I --~~~--~~- -
'/~ + '/3 + J 

The re:flection and transmission coerricients are cal-

culated in the :following steps: 

F= 

_;i!L + ,!o 

"/11 - I 
'!11+ I 

== - 5A7 

,:;I_ )( ~ /11 
"/11 + I 



APPENDIX B 

PROOF OF Gs] TO [T] AND [T] TO [s] M~ATRIX co:KVERSIONS 

The conversions between the [s] and [TJ were given 

by equations (72) and (73) as 

with 

and 

with 

J 
s,4 

I 

~ s - S,, S;z..2. - S,2. SA, 

[ 5 ]== 
-t;J., I 

~' = t-11 -I:;,..,..- t:,:,.. t,-:,..., 
For the proof of the [s] to [TJ conversion the fol­

lowing equations are given. 

h, = s,, a, + s,';l...a,.__ 

b;,... = s~, a., + s~1-. a.;,_ 
To prove the [s] to [T] conversion, it is only 

necessary to show that the resulting matrix will give 

the same initial equations. For a particular network, 

the output waves are related to the input waves by the 



fr] matrix in the form 

[ ~:]== I [~:] 
But the [T] matrix in terms of the elements o:r the 

scatter matrix is 

-4S 
I 

- S,15.,_,._ +.5ia.S,-, 
.s,~ [-r ]= S,;a. 

I 

Therefore~ 

[~] 
or 

[ ~:] -

-Si, I 

-Su Sa~+s;~ s~, 
s,~ 

S11 
.s,~ 

_s" -s,~ 

0 

f s,,s~.a.+Si •• s.a~a. +~h 
. !:!,:,,. I I s,~ ;,.... 

-~Gl + 
Si~ 1 

.51:J-. 

-..S, :a. 

[ 1;] 

The equations which this matrix represent are 

b;,. = (- s,, s,.,,._ + Si:,. s,../\ ~ ,. + S.:r. ~ h 
s l;I.. J .s,~ I-· 

and 

.SI __!_ b Q,., :. - I A., + Sj:,.. I ,.. s,.__ I 
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From the la.tter equation 

Substituting this into the :rormer equation gives 

or 

bo1- : S.>--1 Cl I + s~~ a;;l... 

The origi:na.1 equations are obtained which veri:ries 
~ . 

the [s] to [T] .matrix convers:1.?n• 

· To show the validity o~ the [T] to (p] conversion, 

cons:1.der the equations 

which may be written in matrix form as 

[ :: J = [::. -1:,~] 
0 

[ a,J· 
-1:.,.~ b, 

If the Et'] to [s] conversion is -valid, the result­

ing matrix must give the original equations. 

For a particular network the input and output 

waves are related by the scatter matrix in the form 

[ =~} 5 [ ~~] 



But the sca.tter me.trix in terms of the elements 

o:r the [TJ me..trix is 

--t~, - -t.~, I 

[ s ]= -!: ~;l.. 
_L -C;,..;>.. 

-t:,_"J.. 
"C11 -C ;a.~--/:.,~ 1:. ~ I t,,,_ LlJ' -l,:,.. --6~-.. -t:;u .. 

Therefore, 

_ -,t,_' I 

[ ~~] = [~] -6. ~).. t-1-~ 
0 

t::. u-C.1--. - -f aa."f.'ll. I -c ,,.. 
i:. ;a.~ e .=a.:a. 

or 

L ::J 
-°C;;J.I a_ + a..,._ 
~ l i::-:a.~ --

~"Cut._..,. t,,._-t,,.9a. + 
-Eii. I 

The equations which this matrix represents are 

and 

These equations can be solved for b 2 and a 2 as 

13 



and 

Thus, the validity o:r the @'] to [s] conversion 

has been establishedo 

·, ... 
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