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Abstract −−−−The algorithms of extracting the Lorentzian- 
and Debye-curve parameters of dielectric and magnetic 
materials from the results of measurements at several 
frequency points are presented. These algorithms are 
based on an analytical solution of systems of non-linear 
equations with physical constraints that follow from the 
fundamental principle of causality. The extracted 
parameters are useful for FDTD modeling of 
electromagnetic structures containing such dispersive 
media. Some examples are presented. 
 

I. INTRODUCTION 
 

Structures containing dispersive materials, including 
novel composite media for various EMC applications, 
can be effectively modeled using the FDTD technique. 
Linear dispersive materials can be treated by recursive 
time-domain convolution of magnetic or dielectric 
susceptibility and corresponding field components [1]. 
However, to fulfill this, the corresponding frequency-
domain susceptibility must have a causal Fourier (or 
Laplace) transform that contains a sum of complex 
exponential functions of time. The simplest example is a 
Debye model for comparatively low-frequency (from 
RF, UHF to the lower part of microwave band) behavior 
of a dispersive medium associated with dipolar 
polarization of molecules in dielectrics, or with domain 
wall movement in magnetic materials. At higher 
frequencies (from microwaves and mm-waves to IR, 
visible, and UV waves) resonance effects are due to 
ionic and electronic polarizability in dielectrics, and 
electron spin magnetic moments precession in magnetic 
media [2]. These effects can be taken into account by a 
Lorentzian model. A general equation for a single-pole 
Lorentzian dispersion law for the permittivity of a 
single-component material is  
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where amplitude parameter is ∞ε−ε= SA ; Sε  and ∞ε  
are static dielectric constant and optic region 
permittivity; f0 is the resonance frequency. The 

relaxation frequency parameter is f/ff 2
0rel ∆= , 

where f∆ is the width of the Lorentzian resonance line 
at –3 dB level. The second term in (1) is the frequency-
domain susceptibility function responsible for 
polarization of the dielectric molecules. The last term in 
(1) takes into account the conductivity loss in the 
material, eσ is the d.c. electric conductivity of the 
material, and ε0 is the permittivity of free space. 
 
The Debye dispersion law is a particular case of the 
more general formula (1) when ∞→0f , 
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The relaxation frequency is ( )πτ= 21frel , where τ is the 
Debye loss constant, which is a characteristic property 
of each material. 
 
The dispersion law for the Lorentzian magnetic material 
permeability is written in the similar way as (1),  
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(3) 

 
but there is no term associated with conductivity. The 
resonance amplitude parameter A for the magnetic 
material depends on the type of the magnetic material. 
For the Debye magnetic material the last term in 
denominator of (3) is omitted. 
 
In most cases parameters of Lorentzian or Debye curves 
for dielectric or magnetic materials are unknown, but 
some reference and experimental data are available. 
Frequently, measurements are fulfilled using 
narrowband cavity techniques to increase the sensitivity, 
and the data only in a few frequency points are available 
[3]. The Debye or Lorentzian parameters can be 
extracted from these data using the algorithms described 
below. 
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However, in actual materials the dispersion curves are 
frequently of more complex shape. In dielectrics, the 
Cole-Cole dispersion law or its modifications result in 
smoother frequency dispersion than the Debye model 
[4]. In magnetic materials, complex magnetic spectra 
with multiple Lorentzian lines are typical [5]. In these 
cases, introduction of the conductive term in the 
generalized dispersion law allows distortions of the 
dispersion curves to be fit within a finite frequency 
range while retaining a rational form of the law that is 
of importance for FDTD applications.  
 

II. THE LORENTZIAN MODEL 
 

Extracting the Lorentzian model parameters from 
measurements is based on solving a system of non-
linear equations. The frequency–domain susceptibility 
function for a dielectric in (1) or magnetic in (3) is 
complex, 
 

)f(j)f()f( χ ′′−χ′=χ , ( 4 ) 
 
and its  real and imaginary parts are 
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and 
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There is no necessity to measure exactly the resonance 
line width, resonance frequency and corresponding 
resonance amplitude. It is sufficient to have suitably 
accurate measurements of χ’ or χ” at three frequency 
points, with at least two points at different slopes of the 
resonance curve. The imaginary part of susceptibility 
associated with attenuation is usually measured at 
microwave frequencies by means of a waveguide or 
cavity technique [3]. In this case, the three measured 
values of χ″  at three frequencies are, correspondingly,  
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(7) 

 
This system of three non-linear equations with three 
unknowns can be solved analytically. However, since 
the analytical solution is cumbersome, a MATLAB 
program was developed to apply physical constraints on 
the region of possible solutions. Only physically 

reasonable solution satisfying the following conditions 
is permitted:  
 
� the values A, frel, and f0 are real and positive; 
� the resultant resonance frequency satisfies  

either 201 fff <<  , or 302 fff << . 

This method of extracting parameters for the Lorentzian 
curves deals with susceptibility and can be applied to 
magnetic media. As for dielectrics, when the d.c. 
conductivity σe is not taken into account, four equations 
are needed to find frel, f0, static dielectric constant εs, and 
optical permittivity ε∞. These may be measurements of 
both real and imaginary parts of susceptibility at two 
frequency points.  Additional conditions when solving 
such a system are that εS and ε∞ are real and positive, 
and εS > ε∞. In many cases, the single-pole Lorentzian 
dielectric media that exhibit substantial loss at high 
frequencies is of interest, and the d.c. conductivity can 
be neglected.  

However, if the conductivity term contributes 
significantly, then five equations are needed for 
extracting five unknowns (frel, f0, σe, εS, and ε∞). The 
conductivity σe is required to be real and positive. The 
system of equations then, for example, is the following: 
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(8) 

 
If the number of experimental data available is larger 
than the number of unknown parameters, the accuracy 
of the dispersion curve reconstruction can be improved.  
The system of equations can be solved for all possible 
combinations of the experimental data (points) when the 
number of points is equal to the number of the 
unknowns. Then, averaging of all these results allows 
minimizing the uncertainty of the reconstructed 
parameters.  
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III. RANDOM MEAN SQUARE METHOD 
FOR THE LORENTZIAN CURVE 
RESTORATION 

 
If the dispersion law of a material is characterized by a 
single pole, i.e. includes a single frequency-dispersive 
term, then another technique for the reconstruction of 
the parameters of dispersion curve is available. In this 
case, only the data on the dielectric loss is exploited 
which requires twice as much experimental data. This 
method of reconstruction is less cumbersome and more 
straightforward. 
 
The frequency dependence of the imaginary part of 
permittivity following from the general normalized 
Lorentzian form (1) with omitted d.c. conductivity is 
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A new set of parameters x, y can be introduced as 
 

ε ′′== fy,fx 2  (10) 

 
From (9) and (10) it follows that y is a quadratic 
function of x, 
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To find the parameters for the Lorentzian curve, the 
experimental data are fit to the quadratic function (11). 
The fit uses the random mean square method, which 
involves searching the parameters of the quadratic 
dependence by solving the system of linear equations:  
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and xi and yi are related by (11) to the i-th of n available 
experimental data. The best fit for the parameters a, b, 
and c is given by the solution of system (13). Once these 
parameters are known, the parameters of the dispersion 
curve, namely A, f0, and frel can be found from (12). To 
find the optical permittivity, ε∞, data on the real part of 
permittivity are necessary.  
 

This technique was applied to process the frequency 
dependence of the transmission coefficient obtained in a 
permittivity measurement with the resonance cavity [6].  
 

IV. THE DEBYE MODEL 
 
A method for extracting the Debye dielectric parameters 
with low-frequency conductivity losses using 
measurement data at two frequency points is described 
in [7].  The system of four non-linear equations for 
ε’(f1), ε”(f1), ε’(f2), and ε”(f2) is solved numerically, 
however, there is a problem with the solution 
convergence. To obtain the solution, some 
approximation factors Ki (i=1…4) are introduced in [7]. 
However, the resultant system of non-linear equations is 
unstable with respect to the factors Ki . Even less than  
0.1% variation in Ki can result in impossibility to 
converge to a solution. 
 
A new method, free from this convergence problem 
described here, is based on a direct analytical solution of 
a system of equations and application of physical 
constraints.  
 
The system of the equations for the Debye dielectric 
with a conductivity term is the following: 
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(15) 

 
The restrictions are that all the unknown solutions (A, 
ε∞, σe, frel ) must be real and positive; if f1<f2, then 

)f()f( 21 ε′>ε′ , and since loss tangents are 

)f(tan)f(tan 21 δ<δ , )f()f()f()f( 2121 ε ′′ε′<ε′ε ′′ ,  
 
The system (15) is solved analytically by the ordered 
elimination method of variables, and the MATLAB 
program, analogous to that described in Section II, 
selects regions of physically possible solutions at every 
elimination step. 
 
The relaxation Debye frequency frel is derived from (15) 
in a simple form 

12

2211
rel

fff
ε′−ε′

⋅ε ′′−⋅ε ′′
= . 

 
(16) 

 
The conductivity is calculated as 
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and the optical and static permittivity values, 
correspondingly, are 
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A similar procedure can be done for Debye magnetic 
materials.  
 

V. EXAMPLES 
 

Example 1. 
Extraction of the Lorentzian-curve parameters can be 
demonstrated using some experimental data for 
electrodynamically isotropic powder of an M-type 
Barium hexagonal ferrite: 
 
 
 
 
 
The parameters for the Lorentzian curve are A=3.82, 
f0=10.1 GHz, and frel= 99.03 GHz, which corresponds to 
the width of the ferrite resonance line ∆f=1.03 GHz.  
 
Since for the hexagonal ferrite the parameters of the 
Lorentzian curve are related to the physical parameters 
as [8] 
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where µ0= m/H104 7−⋅π  is permeability of vacuum, 
γ= 111076.1 ⋅ C/kg is the gyromagnetic ratio, HA is the 
crystallographic anisotropy field, ∆H is the resonance 
line width in terms of magnetic field, and MS is the 
saturation magnetization  of the hexagonal ferrite. 
 
The extracted parameters of the Lorentzian curve 
correspond to the physical parameters of the hexagonal 
ferrite:   
� HA=2.87⋅105 A/m= 3.57 kOe; 
� kOe 1.85 A/m 1048.1 5 =⋅=∆H ; 
� kGs. 4.88M4 A/m; 1065.5M S

5
S =π⋅=  

The extracted frequency dependencies are shown in 
Figure 1 (a, b).  
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(b) 
Figure 1. Extracted curves for the M-type Barium 
hexagonal ferrite: (a) real part; (b) imaginary part of 
magnetic susceptibility. 
 
Example 2. 
The parameters of the dispersion curves for the 
dielectric FR-4 used in the printed circuit boards are 
obtained from the manufacturer’s data, as described in 
Sections II. For the Lorentzian model the extracted 
parameters are εs=4.301; ε∞=4.096; σe=2.294⋅10-3 S/m, 

f0=39.5 GHz; ∆f =200 GHz. For the corresponding 
Debye model the parameters are εs =4.301, ε∞=4.096, 
σe=2.294⋅10-3 S/m, τ=2.294⋅10-11s. The corresponding 
frequency characteristics are shown in Figure 2 (a, b). 
 
A two-sided copper-clad board having the dimensions 
200x150 mm used in S-parameters measurements and 
FDTD modeling that allowed taking into account 
Lorentzian dispersion of the dielectric, is shown in 
Figure 3. Positions of Ports 1 and 2 are indicated in mm. 
Figure 4 shows the FDTD modeled and measured 
frequency dependence of |S21| for the test board with the 
described above dielectric. The measured and FDTD 
modeled results agree well in the frequency range up to 
5 GHz, and this indicates that the parameters of the 
dielectric are extracted correctly. 
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Figure 2. Debye and Lorentzian dielectric models of a 
test substrate containing FR4: (a) real part of 
permittivity, and (b) imaginary part of permittivity.  
 

 
 
Figure 3. Schematic of the test double-sided copper 
cladded substrate with dispersive dielectric in between. 
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Figure 4. The FDTD modeled and measured |S21| 
parameter for a double-sided PCB with FR-4 dielectric.  
 
Example 3. 
Experimental frequency characteristics of the 
narrowband (NB) composite dielectric Lorentzian 
material [9, Fig. 7(a, b)], approximation curves, as well 
as the characteristics of some fictitious wideband (WB) 
Lorentzian material are presented in Figure 5 (a, b). The 
extracted parameters for the NB material obtained by 
the random mean square method are εs=10.1, ε∞=6.8, 
f0=8.6, ∆f=2.8 GHz. The fictitious WB material, the 
frequency characteristic of which is also presented in 
Figure 5, has the same parameters as the NB material, 
except that the width of the resonance line is ∆f=17.8 
GHz.  
 
WB and NB Lorentzian materials differ by the ratio of 
the half-width of the resonance curve at –3 dB level to 
the resonance frequency. When 1)f2/(f 0 ≥∆ , it is a 
wideband Lorentzian material with frequency 
characteristics similar to the Debye model, as shown in 
Figure 2 (a,b) for FR-4. When 1)f2/(f 0 <∆ , it is a 
narrowband Lorentzian material suitable for resonance 
effects and highly absorbing media modeling. For 
modeling WB and NB materials, different recursive 
convolution procedures in FDTD should be used, as 
shown in [10]. The NB or WB materials in FDTD 
modeling were placed between two perfect electric 
conductor (PEC) planes to compose the same test board 
as shown in Figure 3. The frequency dependence of the 
S-parameters of the test board over the frequency range 
from 0 to 15 GHz is presented in Figure 6 (a, b). The 
figure demonstrates the possibility of a stop-band filter 
design based on the NB material that has the extracted 
parameters. 
 



 6

 

0 5 10 15 
2 

4 

6 

8 

10 

12 

14 

Frequency (GHz) 

NB material, approximated      
NB material, experimental  
fictitious WB                  

εε εε ′′ ′′
 

 
(a) 

 

0 5 10 15 
0 

2 

4 

6 

8 

10 

12 

Frequency (GHz) 

NB material, approximated      
NB material, experimental  
fictitious WB material         

εε εε ″″ ″″
 

 
(b) 

Figure 5. Permittivity for the Lorentzian narrowband 
and wideband dielectrics: (a) the real part, and (b) the 
imaginary part.  
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Figure 6. FDTD modeled |S21| results for a wideband 
and a narrowband Lorentzian dielectrics.  

VI. CONCLUSIONS 
 

Algorithms and numerical examples of extracting the 
Lorentzian and Debye curves for dielectric and 
magnetic materials are based on the solution of systems 
of non-linear equations with physical constraints that 
follow from the fundamental principle of causality. For 
a Lorentzian curve just three frequency points are 
enough, so that at least one of the points would be on 
each slope of resonance curve. For the Debye dielectric 
model with conductivity loss, real and imaginary parts 
of permittivity at just two frequency points on different 
sides of the resonance curve should be known. The 
extracted parameters are useful for FDTD modeling of 
electromagnetic structures containing such dispersive 
media.  
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