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Abstract — In power system controls, simplified analytical 

models are used to represent the dynamics of power system and 
controller designs are not rigorous with no stability analysis. One 
reason is because the power systems are complex nonlinear 
systems which pose difficulty for analysis. This paper presents a 
feedback linearization based power system stabilizer design for a 
single machine infinite bus power system. Since practical 
operating conditions require the magnitude of control signal to be 
within certain limits, the stability of the control system under 
control limits is also analyzed. Simulation results under different 
kinds of operating conditions show that the controller design not 
only can damp the power system oscillations very well but can 
also minimize the impact on the terminal voltage.  In addition, the 
Brunovsky Canonical form of the power system model presented 
in this paper can be used for other forms of controller design.  
 

Index Terms—Power system, nonlinear systems, power system 
stabilizer, feedback linearization 

I. INTRODUCTION 
urrently most of the generators are equipped with voltage 
regulators to control terminal voltage. It is known that the 
voltage regulator has a detrimental impact upon the 

dynamic stability of the power system. During changes of 
operating conditions, oscillations of small magnitude and low 
frequency often persist for long period of time and in some 
cases even present limitations on power transfer capability. 
Power system stabilizer (PSS) is designed to damp the low 
frequency oscillations of power systems. The issues of power 
system stabilizing control have received a great deal of 
attention since 1960's.  

Earlier researches on stabilizing control are based on linear 
system model. For example, the widely used conventional 
power system stabilizer (CPSS) is designed using the theory of 
phase compensation and introduced as a lead-lag compensator. 
The parameters of CPSS are determined based on linearized 
models of power system around some nominal operating point. 
To have the CPSS provide robust damping, its parameters need 
to be fine tuned for different operating points and different 
types of oscillations. To overcome this problem, there are 
techniques based using intelligent optimization algorithms 
(such as simulated annealing, genetic algorithm, and tabu 
search) to get the "optimal parameters" of CPSS by optimizing 
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an eigenvalue based cost function. In addition, fuzzy logics and 
neural networks are also applied to adjust the parameters of 
CPSS online after some initial offline training. Since power 
systems are highly nonlinear systems, with configurations and 
parameters changing with time, the designs based on linearized 
model cannot guarantee its performance in practical operating 
environment. Thus, adaptive stabilizing control schemes based 
on nonlinear model of the power systems are preferred [1]. 

Recently, different kinds of techniques have been reported 
for the design of adaptive stabilizing controllers or PSS, such as 
adaptive fuzzy logic control, direct and indirect adaptive neural 
network control, adaptive critic designs [2] and other nonlinear 
control techniques. Most of which only demonstrated the 
effectiveness of the controller design through simulation while 
not showing the stability analysis. One reason maybe the power 
systems are large complex nonlinear systems which are 
difficult for analysis. But industry will be reluctant to accept 
such a controller design if the stability cannot be guaranteed. 
Furthermore, since the implementation of the controller lacks 
the guidance of stability analysis, the controller parameters 
have to be adjusted by trial and error which is a time consuming 
job and limits the applications of such controller design. 
Therefore, stable PSS designs are necessary. 

In the past decade, there appear some stabilizing controller 
designs based on the analysis of the control system [3–10], 
most of which are based on feedback linearization. In those 
papers, controls are implemented through either the turbine 
governor or the excitation system; the controlled variables are 
selected to be either rotor/power angle or the speed; the control 
systems are either single machine or multi-machine systems. If 
the stabilizing control is implemented in the excitation system 
together with the controls of the terminal voltage, these two 
kinds of control may interact with each other. But few papers 
investigated the performance of the terminal voltage under the 
proposed PSS design. Since the change of operating condition 
is unknown, it is difficult to set the reference signal to the rotor 
angle. Furthermore, to simplify stability analysis, most 
controller designs are based on simplified model. While 
simplified model cannot reflect the actual complex dynamics of 
power system, accurate multi-machine model is desired for 
practical controller design. Though practical operating 
conditions require the magnitude of the control signal to be 
within certain limit, none of the above mentioned papers 
consider the control limit constraints.  

In this paper, the control objective is selected to be the speed 
because the desired value of which is always a constant given 
by fπ2 . The control algorithm is developed based on a single 
machine infinite bus power system model. The design of 
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decentralized control algorithm for multi-machine power 
system is under development and results will be reported in the 
future. The stability of the control system when the control 
signals are subjected to magnitude constraints is also 
investigated. Simulations under different operating conditions 
show satisfactory performance for both stabilizing and voltage 
controls. 

The organization of the paper is as follows. The 
mathematical model of the single machine infinite bus power 
system is described in section II. The design and stability 
analysis of the feedback linearization based power system 
stabilizer is shown in section III. Simulation results are 
provided in section IV, and finally the conclusion in Section V. 

II. SINGLE MACHINE INFINITE BUS POWER SYSTEM MODEL 
Fig. 1 shows the configuration of the single machine infinite 

bus power system. The system consists of a synchronous 
generator, an exciter, an automatic voltage regulator (AVR) 
and a transmission line which connects the generator bus to the 
infinite bus. The control signal (PSS) is added to the inputs of 
AVR. 
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− Power
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Fig. 1. Single machine infinite bus power system configuration 
 

The dynamics of the single machine system is expressed 
using a Flux-Decay model as is shown in (1). The first three 
equations describe the dynamics of the synchronous generator, 
the fourth and fifth equations describe the dynamics of the 
exciter and AVR respectively [11].  
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where, dI , qI  and tV  are subjected to the constraints of (2) 

and (3) respectively: 
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with, 
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In above equations, δ  is the rotor angle, ω  is the speed, 

fdE  is the field voltage, rV  is the output of the automatic 

voltage regulator (AVR), mT  is the mechanical torque, V  is 
the terminal voltage at the generator bus, refV  is reference used 

to control the terminal voltage, eR  and epX  form the 

impedance of the transmission line between the generator and 
infinite bus, vssV θ∠  are the voltage of the infinite bus, and pssV  

is the control signal.  
Table I shows the value of the parameters in the above 

model [11]. 
 

TABLE I 
SYSTEM PARAMETERS 

0.6'
0 =dT  8958.0=dX  1198.0' =dX  8645.0=qX  

4.6=H  377=sω  0125.0=fwD  314.0=eT  

01.0=aT  20=aK  025.0=eR  085.0=epX  

III. CONTROLLER DESIGN 

Feedback linearization control is a nonlinear state feedback 
technique in which some of system outputs are constrained to 
behave as a linear system [12].  

A. Model Transformation 
Since in the model, the right hand side of the differential 

equations includes some variables (such as dI , dI  and tV ) 
which are not the states, it is necessary to express these 
variables using the state variables. After that, the system model 
is transformed into: 
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                     (6) 
The definitions of the constants 1k  to 28k  are given in the 

Appendix. 
 

B. Input-Output Linearization based Controller Design 
Since the control objective is speed ω , this is a single input 

single output control problem. Defining the speed deviation as 
se ωω −= , then the control objective is to regulate e  to zero. In 

order to get the expression of the speed deviation with respect 
to the control signal, we need to differentiate e  several times 
until the control signal appears. The process is shown below: 
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Where X  stands for the original state variables δ , ω , '

qE , 

fdE  and rV . Since ω  is selected as the control objective, the 

control signal pssV  appears at the fourth derivative of ω . The 

feedback linearized system is fourth-order rather than the 
original fifth-order. Since the uncontrolled state δ  satisfies 

sωωδ −= , δ  is bounded when ω  is stabilized to sω . So 
even if δ  is not defined as one of the states in the feedback 
linearized system, the system is still stable. Now defining the 
new state variables as: 
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then the system is transformed into: 
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where u  stands for the control signal pssV . Defining the 

reference signals and the error signals as (17) and (18) 
respectively: 
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Then error dynamics of the system can be expressed as: 
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Since fs πω 2=  is a constant value, all of its derivatives are 
zeros. So the error dynamics equals to: 
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According to the theory of feedback linearization, the ideal 

control signal v  can be chosen as: 
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where vK  is gain vector which is defined as: 

][ 1234 aaaaKv =        (22) 
 

and 1a , 2a , 3a  and 4a  are a set of suitably chosen parameters 
to make the closed loop system stable, i.e. 

012
2

3
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4 =++++ asasasas  is Hurwitz). Then the closed-loop  



 4

 
 
 

+

+
_

v u
vK

maxu

maxu−

Single Machine
Power System



















=

ω
ω
ω
ω

x

dxxe −=


















=

s

s

s

s

dx

ω
ω
ω
ω

)(
1
xg+_

_

)(xf

 
 

Fig. 2. Structure of the feedback linearization control system 
 
dynamics can be transformed into the linear system with no 
magnitude constraint ( vu = ): 
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With an appropriate selection of 1a , 2a , 3a  and 4a , it can 

be shown that (23) is asymptotically stable ( 0→e ). Since the 
actual control signal is subjected to magnitude constraints, the 
applied control signal u  is given by 
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where maxu  is the maximum allowed control signal magnitude. 
The structure of the controller is shown in Fig. 2. 
 

C. Stability Analysis 
Defining a new variable u∆  as 
 

vuu −=∆          (25) 
 

where u∆  is the difference between the ideal and actual control 
signal. Then, the dynamics of closed loop system become: 
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Case 1, maxuv ≤ , 0=∆u  
This is the ideal case, the system is linearized to a linear 

system (23) which is stable and its performance is decided by 
the selection of vK . 

 
Case 2, maxuv > , 0≠∆u  

Given the fact that )(xg  and u∆  are both bounded, 
equation (25) is a linear stable system driven by a bounded 
input. According to linear system theory, the error should be 
bounded. The error bound depends upon the bound on u∆ . 
Note that u  is always bounded due to the magnitude 
constraint, and v  is shown to be bounded if no limits are in 
place from (23). As a result, u∆  is bounded. Therefore all the 
states of the closed loop system are bounded. 

IV. SIMULATION RESULTS 
The proposed control algorithm is tested under three kinds 

of operating conditions, which are 3-phase short circuit at the 
infinite bus; the change of operating points and change of 
impedance between the generator and the infinite bus.  

For comparison purpose, the performance of the proposed 
feedback linearization based controller is compared to the cases 
when no PSS is applied and when conventional power system 
stabilizer (CPSS) is applied. The transfer function of the CPSS 
used here is shown in (27) which is a simplified version of 
IEEE Std. 421.5 [14]. The values of the parameters are chosen 
by try and error as Kpss=25, T1=0.76, T2=0.1. 

)(
1
1

)(
2

1 s
sT
sT

KsV psspss ω∆
+
+

=       (27) 

During simulations, the hard limit max
pssV  for the proposed 

feedback linearization based PSS design is set to 5.0max =pssV . vK  

is selected to be [ ]3032515002500  corresponding to the 
desired closed loop poles  -10, -10, -5 and -5.  

 

A. 3-phase Short Circuit at the Infinite  
Figs. 3-5 show the system responses to a 100ms 3-phase 

short circuit fault happened at 0.5 second (P=0.5pu, Q=0.1pu). 
Fig. 3 shows the comparison of speed deviation response, Fig. 
4 shows the comparison of terminal voltage response and Fig. 5 
shows the comparison of control signals.  

It can be seen from Fig. 3 that case b provides the best 
response, the performance of case d is much better than that of 
case c and similar to case b. Fig. 4 shows the comparison of the 
terminal voltage responses, it can be seen that the performance 
of voltage control is kept under the designed PSS. Fig. 5 
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explains the differences in performance. It can be seen the 
performances  highly depend on the period and times when the 
ideal control signal overshoot the hard limit. Shorter period and 
fewer times will result in better performance. Similar results 
can be seen in B and C.  
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Fig. 3. Speed deviation responses to a 3-phase short circuit fault (P = 0.5pu, Q = 
0.1pu)  
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Fig. 4. Terminal voltage responses to a 3- phase short circuit fault (P = 0.5pu, Q 
= 0.1pu)  
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Fig. 5. Control signal responses to a 3-phase short circuit fault (P = 0.5pu, Q = 
0.1pu)  

B. Change of Operating Points 
Figs. 6-7 show the system response to a change of the 

operating point at 0.5 second (P=0.5pu, Q=0.1pu to P=0.7pu, 
Q=0.2pu). Fig. 6 shows the comparison of speed deviation 
response, and Fig. 7 shows the comparison of control signals. 
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Fig.6. Speed deviation responses to operating point change (P = 0.5pu, Q = 
0.1pu to P = 0.7pu, Q = 0.2pu) 
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Fig.7. Control signal responses to operating point change (P = 0.5pu, Q = 0.1pu 
to P = 0.7pu, Q = 0.2pu) 

 

C. Change of Impedance Connected to the Infinite Bus 
Figs. 8-9 show the system response to a change of the 

impedance connected to the infinite bus at 0.5 second 
( 025.0=eR , 085.0=epX  to 05.0=eR and 17.0=epX  
while P=0.5pu, Q=0.1pu). Fig. 8 shows the comparison of 
speed deviation response, Fig. 9 shows the comparison of 
control signal 
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Fig. 8. Speed deviations responses to change of bus impedance (P = 0.5pu, Q = 
0.1pu)  
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Fig.9. Control signal responses to change of bus impedance (P = 0.5pu, Q = 
0.1pu) 

V. CONCLUSION 
This paper presents a feedback linearization based power 

system stabilizer design. Unlike pervious papers which often 
consider simplified power system models, here, the control 
algorithm is based on more detailed of a single machine infinite 
bus power system model. This paper also considered the limits 
on the magnitude of control signal and analysis the stability of 
the control system. Since the stabilizing control is implemented 
in the excitation system together with the voltage control, these 
two controls may interact with each other. The effect of the 
proposed PSS on the control of voltage is investigated through 
simulation. Simulation results under different kinds of 
operating conditions show the effectiveness of the proposed 
PSS design.  

The Brunovsky Canonical form of the power system model 
presented in this paper can be used for other forms of controller 
design. Since feedback linearization require the model of the 
system to be known exactly so as to linearize it, future research 
can use neural networks or fuzzy logic approximators to 
overcome this requirement for the design of controllers.   
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