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Abstract - The increasing complexity of modern power 

systems highlights the need for effective system identification 
techniques for the successful control of power system. This 
paper proposes a robust continually online trained neuro-
identifier to predict the outputs of turbogenerator - terminal 
voltage and speed deviation. The inputs to the neuro-identifier 
are the changes of the plant’s outputs and plant's inputs. It 
overcomes the drawback of calculating deviation signals from 
reference signals for different operating points in previous work. 
Simulation results show that the neuro-identifier can provide 
accurate identification under different operating conditions. 
Furthermore, the neuro-identifier can learn the dynamics of the 
system in a short period of time, which makes it suitable for use 
with an online adaptive controller for the control of 
turbogenerators. 
 

Index Terms—Neural networks, online identification, turbo-
generator, and power system. 

I.  INTRODUCTION 
OWER systems are complex combination of multiple 
electrical and mechanical devices. These devices are 

nonlinear and their parameters vary with operating 
conditions, load changes, and unpredictable random 
disturbances. In power systems, turbogenerators are widely 
used and models of these machines play important roles in 
power system dynamic and transient studies.  

Many synchronous machine models have been developed 
for different propose such as [1]-[3]. These models are good 
for analysis purposes but are not sufficient for design of 
nonlinear controllers. Firstly, the detailed high order models 
are too expensive to build and too computationally intensive 
to be used online [4]. Secondly, there are still lots of 
dynamics and nonlinearities that cannot be modeled in 
precise mathematical terms. Consequently, there are needs for 
effective identification technique that can accurately model 
the generators [5]. 

Artificial Neural networks (ANN) have excellent 
nonlinear mapping ability. They can adaptively model a 
dynamic nonlinear multi-input multi-output system on-line 
even when the system dynamics are changing. In recent 
years, lots of works have been done on the identification of 
power system using neural networks. According to the 
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difference in network structures, these neuro-identifiers can 
be classified as feedforward types (multilayer perceptron - 
MLP, such as [6]-[10] and radial basis function network - 
RBF [5], [11]) and recurrent types, such as [12]-[13]. But 
effective identification technique that is suitable for online 
identification and can provide accurate prediction over a wide 
range of operating conditions is still a changeling work.  

In this paper, a new neuro-identifier that can accurately 
estimate the outputs of the turbo-generator one time step 
ahead is proposed. In previous work ([6], [14]), the inputs to 
the neural network identifier are deviation signals. To 
compute these deviation signals, knowledge of their reference 
values ahead of time is required which is impossible in 
practice especially when random disturbances occur. In this 
paper, the inputs to the neuro-identifier are the changes 
between two consecutive plant outputs, so knowledge of the 
reference values ahead of time is not required. Simulation 
results show that the neuro-identifier is fast to learn and can 
provide accurate estimation over a wide range of operating 
conditions. 

The power system model is described in section II. The 
design of the neuro-identifier is described in section III. 
Simulation results for training and testing are presented in 
section IV. Finally, the conclusions in section V.  

II.  POWER SYSTEM CONFIGURATION 
The single machine infinite bus power system model used 

in this paper is shown in Fig. 1.  
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Fig. 1. Plant model used for on-line identification 

 (Z1=Z2=0.025+i0.7559) 
 

The plant to be identified consists of a generator, a 
turbine, an exciter and a transmission line connected to an 
infinite bus. The generator is described by a seventh order d-
q axis set of equations with the machine current, speed and 
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rotor angle as the state variables [1, 3]. The parameters of the 
3kW, 220V, 3-phase synchronous generator is given in Table 
1 [6].  

 
TABLE I: SYNCHRONOUS GENERATOR PARAMETERS 

 

Td0
'=6.69s Tq0

''=0.25s Xd
'=0.205pu 

Td
'=0.66s Tq

''=27ms Xd
''=0.164pu 

Td0
''=33ms Tkd=38ms Xq=1.98pu 

Td
''=26.4ms Xd=2.09pu Xq

''=0.213pu 

 
The transfer function block diagrams of the turbine and 

the exciter are shown in Figs. 2 and 3 respectively. The time 
constants of the turbine and exciter are given in Table II. The 
exciter’s saturation factor Se is given by: 

 
Se=0.6093exp(0.2165Vfd)      (1) 
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Fig. 2 Block diagram of the turbine 
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Fig 3 Block diagram of the exciter 

 
TABLE II: TURBINE AND EXCITER TIME CONSTANTS 

 
Servo time constant, Tg1 0.15s 

Entrained steam delay,  Tg2 0.594s 

Steam reheat time constant,  Tg3 2.662s 

pu shaft output ahead of re-heater, F 0.322pu 

Exciter time constant, Te 0.47s 
 

In these models, Pref represents the turbine input power, 
Vref represents the exciter input voltage, ∆ω represents the 
speed deviation and VT represents the terminal voltage. The 
neuro-identifier is used to estimate the outputs of the 
turbogenerator, ω̂∆  and TV̂ . Two types of training are 

conducted and are discussed in section IV. During first type 
of training the switches S1 and S2 in Fig. 1 are closed in order 
to add pseudorandom binary signals (PRBS) ∆Pref to Pref and 
∆Vref toVref. During second type of training, S1 and S2 are 
opened. S3 is used to simulate three phase line to ground 
fault. S4 is used to simulate a transmission line impedance 
change. In this paper the plant refers to the combination of 
generator, exciter, turbine transmission line and infinite bus. 

III.  THE NEURO-IDENTIFIER DESIGN 
During large operating condition changes, the turbo-

generator outputs ∆ω and Vt change a lot. But when the plant 
operates around its stable operating conditions, the changes 
are very small. If the plant outputs are directly fed into the 
neuro-identifier, the identifier can either learn severe or small 
changes. So some kind of transformation is needed to learn 
both small and large changes simultaneously. 

In previous papers ([6], [14]), the inputs to the neuro-
identifier are combination of deviation and actual signals. 
These means that the real values of the plant outputs are 
subtracted from their reference values in order to compute the 
deviation signals. In reality, since the changes in the 
operating conditions are random, it becomes impossible to 
compute the correct deviation signals for all instances.  

In this paper, the plant outputs’ changes over two 
consecutive time steps are calculated and mapped to limit 
range before they are fed into the neuro-identifier. The 
definitions of the twelve input nodes are shown in Table III. 
The three stages in the design of the neuro-identifier are 
described below.  

 
TABLE III:  DEFINITION OF INPUT NODES OF NEURAL NETWORK  

 
NO. DEFINITION NO. DEFINITION 

1 arctan(k1δ∆ω(t)) 7 k3Pref(t) 

2 arctan(k1δ∆ω(t-1)) 8 k3Pref(t-1) 

3 arctan(k1δ∆ω(t-2)) 9 k3Pref(t-2) 

4 k2Vref(t) 10 tan(k4δV(t)) 

5 k2Vref(t-1) 11 tan(k4δV(t-1)) 

6 k2Vref(t-2) 12 tan(k4δV(t-2)) 

A.  Pre-Neuro-Identification Stage 
It has been shown that discrete-time nonlinear systems can 

be represented by the following difference equation [15]: 
 

Y(k+1)=Fs[Y(k),Y(k-1),…Y(k-ny),U(k),U(k-1),…,U(k-nu)]   (2) 
 

Where, FS(.) is nonlinear function; U and Y are plant’s 
input and output respectively; nu and ny are delay values of 
the input and output respectively. The neuro-identifier 
proposed in this paper is similar to this and the model IV 
proposed in [16]. Here, Y denotes the estimated outputs of 
plant, speed deviation )ˆ( ω∆  and terminal voltage )ˆ( TV . nu 
and ny are both selected to have three time delays. The 
definition of U is described in the following paragraphs. 

Since Vref and Pref  are per-unit values and between 0 and 
1, they can be fed into the neuro-identifier directly. The 
changes in speed deviation and terminal voltage can be 
expressed as: 

δ∆ω=∆ω(t) - ∆ω(t-1) 
δV=Vt(t) - Vt(t-1)                        (3) 

To map δ∆ω, Pref, Vref and δV all into similar range, they 
need to be multiplied by some scaling factor. According to 
their numerical range, the scaling factors used are k1=105, 
k2=1; k3=1, k4=103 respectively. During natural training δ∆ω 
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and δV are 104 bigger than that of during the steady state 
conditions. To avoid severe spikes into the neuro-identifier, 

arctangent functions are used to transform them to (-π/2, π/2). 
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Fig. 4.  Structure of the neural network identifier 
 

 

B.   Neuro-Identification Stage 
Simulation results using recurrent neural networks for 

online identification of turbogenerator show that recurrent 
networks cannot improve the performance apparently and 
they need more computation for training. So feedforward 
network structures seem to be more preferable for online 
application. It is well known that Multi-Layer Perceptron 
(MLP) trained with Back-Propagation algorithm (BP) 
sometimes have problems with convergence. However, 
global convergence is not as important for online training as 
it is for offline training. Furthermore, the performance of 
MLP can be further improved by some modified kind of BP.  

The neuro-identifier is a MLP with three layers, input, 
hidden and output layers. There are 12 neurons in the input 
layer (decided by the dimension of input vector). The outputs 
of the neuro-identifier are the estimated changes of the plant 
outputs at next sample time - )1(ˆ ,)1(ˆ ++ tt

V∆ω
δδ . The 

number of neurons in the hidden layer is 14, which is found 
by trial and error. The sigmoid function used in the hidden 
layer is defined as: 

 
f(x)=(1-ex)/(1+ex)           (4) 

 
Since it maps the input to the range of [-1, 1], there is no 

need to use biases in the hidden layer. Simulation results 
show that small learning rate (0.04) using BP is better for the 
identifier to learn the dynamics of the plant gradually. 

Another important issue is when to stop the training 
process for each training sample. There are two conflict 
criteria to be considered; one is the desired training error, the 

other is the maximum time for training (decided by the 
control sample time, can be defined as maximum training 
steps).  Based on observations on convergence speed of the 
training process, the number of training steps for each 
training sample is set to 5.  

 

C.  Post Neuro-Identification Stage 
The outputs of the neuro-identifier are the estimations of 

the changes in the plant outputs, )1(ˆ +∆ ∆ tωδ  and 

)1(ˆ +∆ tVδ . To get the estimations of the plant outputs - 

)1(ˆ +∆ tω  and )1(ˆ +tVt , the output values ∆ω(t) and Vt(t) at 
time t are added to the changes estimated, as shown by (5). 

 

)1(ˆ)()1(ˆ
)1(ˆ)()1(ˆ

++=+

++∆=+∆ ∆

ttVtV

ttt

Vtt δ

δωω ω     (5) 

 

IV.  SIMULATION RESULTS 
Two kinds of training are carried out to train the neuro-

identifier, one is called the forced training and the other is 
called the natural training.  

A.  A. Forced Training 
During forced training, pseudorandom binary signals 

(PRBS), ∆Vref and ∆Pref are added to the input of exciter and 
turbine respectively to excite all possible dynamics of the 
plant being identified by closing the switches S1 and S2 in Fig. 
1. The magnitudes of the PRBS signal ∆Vref and ∆Pref are set 
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to be 0.1 times of the magnitude of Vref and Pref respectively. 
Examples of the PRBS inputs applied to the turbine and the 
exciter at P=0.33pu and Q=0.001pu are shown in Figs. 5 and 
6 respectively. The initial weights of the neuro-identifier are 
set to random value between -0.1 and 0.1. The learning rate 
for each training cycle is set to 0.04. The sampling frequency 
is set to 50 Hz. 
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Fig. 5 Training signal Pref applied to the turbine  

(P = 0.333pu, Q = 0.001pu) 
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Fig. 6 Training signal Vref applied to the exciter 

(P = 0.333pu, Q = 0.001pu) 
Fig. 7 shows the actual and estimated values ωδ∆ and 

ωδ∆
ˆ  of the changes in the speed deviation respectively. From 

the figures, it can be seen that the neuro-identifier needs very 
little time to learn the dynamics of the plant. Since the input 
and output signals to the neuro-identifier are both the changes 
in the speed deviation and these are much smaller compared 
with the actual value of the speed deviation, even if there are 
some errors between the actual and estimated speed deviation 
change, the estimated speed deviation is accurate therefore 
the separate curves are not visible in Fig. 8. Figures 9 and 10 
are about the comparison of terminal voltage change tV̂ and 
terminal voltage Vt respectively. After training, the weights of 
the neuro-identifier are fixed and tested under the same and 
different operating points. The results are similar to that of 
training. This means the identifier have learnt the dynamics 
of the plant around the operating point very well. This is very 
important for online identification since it can save time 
needed to update the weights of the identifier. 

The results for operating points change (P = 0.067pu, Q= 
- 0.0236pu to P = 0.333pu, Q = 0.001pu to P = 0.5pu, 
Q=0.048pu) are shown in Figs. 11 and 12. The operating 
points are changed by changing Pref and Vref at 5 and 10 
seconds respectively. From the figures it can seen that the 
neuro-identifier can estimate the output of the plant very well. 
After training, the weights of the neuro-identifier are fixed 
and tested at different operating points (P = 0.2pu, Q = - 

0.02pu to P = 0.4pu, Q = 0.017pu). Figs. 13 and 14 show that 
the neuro-identifier can estimate accurately for different 
operating points. 

 

0 5 10 15
-8

-6

-4

-2

0

2

4

6
x 10

-6

Time (sec)

S
pe

ed
 d

ev
ia

tio
n 

ch
an

ge
 (p

u)

Turbogenerator
Neuro-identifier

0 5 10 15
-8

-6

-4

-2

0

2

4

6
x 10

-6

Time (sec)

S
pe

ed
 d

ev
ia

tio
n 

ch
an

ge
 (p

u)

Turbogenerator
Neuro-identifier

 
Fig. 7 Actual and estimated speed deviation change with forced training  

(P = 0.333pu, Q = 0.001pu) 
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Fig. 8 Actual and estimated speed deviation with forced training 

(P = 0.333pu, Q = 0.001pu) 
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Fig. 9 Actual and estimated terminal voltage change with forced training  

(P = 0.333pu, Q = 0.001pu) 
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Fig. 10 Actual and estimated terminal voltage with forced training 

(P = 0.333pu, Q = 0.001pu) 
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Fig. 11 Actual and estimated speed deviation with forced training (P = 

0.067pu, Q= - 0.0236pu (0 - 5sec)  to P = 0.333pu, Q = 0.001pu (5 - 10sec)  
to P = 0.5pu, Q=0.048pu (10-15 sec)) 
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Fig. 12 Actual and estimated speed deviation with testing (P = 0.067pu, Q= - 

0.0236pu (0 - 5sec) to P = 0.333pu, Q = 0.001pu (5 - 10sec)  
to P = 0.5pu, Q=0.048pu (10-15 sec)) 
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Fig. 13 Actual and estimated speed deviation with testing (P = 0.2pu, Q = - 

0.02pu (0-5sec)  to P = 0.4pu, Q = 0.017pu (5-10sec)) 
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Fig. 14 Actual and estimated terminal voltage with testing (P = 0.2pu, Q = - 

0.02pu (0-5sec)  to P = 0.4pu, Q = 0.017pu (5-10sec)) 
 

B.   B. Natural training 
After forced training is fulfilled, ∆Vref and ∆Pref are set to 

zero and the operating conditions or the configurations of the 
system are changed at some time to do the so-called natural 
training. Two sets of natural training are conducted to 

simulate the changes in the configuration of the system, 
which are change in transmission line impedance and three 
phase short circuit fault. Switch S3 is used to simulate the 
three phase short circuit fault and switch S4 is used to 
simulate the transmission line impedance change. 

Figs. 15 and 16 show the performance of the neuro-
identifier when transmission line impedance changes at t = 2 
second. Figs. 17 and 18 show the performance of the neuro-
identifier when three phase short circuit occurs for the 
interval of [0.5 sec, 0.55 sec]. Limited by the length of the 
paper, the figures for δ∆ω and δV are not shown.  

From Figs. 15-18, it is clear to see that the neuro-identifier 
performs very well for these two sets of system configuration 
change. Since the plant outputs change severely at the 
beginning of these changes in system configuration, the 
neuro-identifier needs time to learn this type of change.  
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Fig. 15 Actual and estimated speed deviation with natural training 

(P = 0.333pu, Q = 0.001pu, switch 4 opened at 2sec) 
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 Fig. 16 Actual and estimated terminal voltage with natural training 

(P = 0.333pu, Q = 0.001pu, switch 4 opened at 2sec) 
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Fig. 17 Actual and estimated speed deviation with natural training 

 (P = 0.333pu, Q = 0.001pu, 3-phase short circuit happens between 0.5 and 
0.55sec) 
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Fig. 18 Actual and estimated terminal voltage with natural training 

 (P = 0.333pu, Q = 0.001pu, 3-phase short circuit happens between 0.5 and 
0.55sec) 

V. CONCLUSION 

Identification of the dynamics of a turbogenerator 
connected to a power system is important for the effective 
control of a turbogenerator. In this paper, a robust neuro-
identifier that can estimate the outputs of the turbogenerator 
one step ahead accurately is proposed.  The method proposed 
shows that inputs and outputs signals of the turbogenerator 
can be used as inputs to the neuro-identifier without having to 
know any reference signal values therefore, a more practical 
technique for real time power system implementations. 
Simulation results of the forced and natural training show that 
the neuro-identifier can estimate the outputs of 
turbogenerator accurately for a wide range of operating range 
and conditions. Furthermore, the neuro-identifier learns the 
dynamics of the plant very fast, which is very important for 
real time implementations, not only for power system 
applications but any nonlinear large scale system.  
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