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Abstract--Based on Dual Heuristic Programming (DHP), a 

real-time implementation of a neurocontroller for excitation and 
turbine control of a turbogenerator in a multimachine power 
system is presented. The feedback variables are completely based 
on local measurements. Simulation and real-time hardware 
implementation on a three-machine system demonstrate that the 
DHP neurocontroller is much more effective than conventional 
PID controllers, the automatic voltage regulator, power system 
stabilizer and the governor, for improving dynamic performance 
and stability under small and large disturbances. 
 

Index Terms—Real Time Experimental Verification, Optimal 
DHP Neurocontroller Design, Power System Stability, 
Turbogenerator, Voltage Regulation, Multimachine Power 
System. 

I.  INTRODUCTION 
OWER systems containing turbogenerators are large-scale 
nonlinear systems.  The traditional excitation controllers 
for the generators are designed by linear control theory 

based on a single-machine infinite bus (SMIB) power system 
model.  These SMIB power system models are linearized at 
specific operating points and then excitation controllers are 
designed based on the linearized models.  The drawback of 
this approach is that once the operating point or the system 
configuration changes, the performance of the controller 
degrades.  Conservative designs are therefore used, 
particularly in multimachine systems, to attempt satisfactory 
control over the entire operating range of the power system.  

In recent years, renewed interest has been shown in power 
systems control using nonlinear control theory, particularly to 
improve system transient stability [1].  Instead of using an 
approximate linear model, as in the design of the conventional 
power system stabilizer, nonlinear models are used, and 
nonlinear feedback linearization techniques are employed on 
the power system models, thereby alleviating the operating-
point-dependent nature of the linear designs.  Nonlinear 
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controllers significantly improve the power system's transient 
stability.  However, nonlinear controllers have a more 
complicated structure and are difficult to implement relative to 
linear controllers.  In addition, feedback linearization methods 
require exact system parameters to cancel the inherent system 
nonlinearities, and this contributes further to the complexity of 
stability analysis.  The design of decentralized linear 
controllers to enhance the stability of interconnected nonlinear 
power systems within the whole operating region is still a 
challenging task [2].  However, the use of Artificial Neural 
Networks (ANNs) offers a possibility to overcome this 
problem [3].  

ANNs are able to identify/model time varying single 
turbogenerator systems and, with continually online training, 
these models can track the dynamics of the turbogenerator 
system, thus yielding adaptive identification. Moreover, ANN 
identification of turbogenerators in a multi-machine power 
system has also been reported [4].  Clearly, nonlinear 
controllers are needed for nonlinear systems.  Simulation 
studies on adaptive critic based neurocontrollers replacing the 
automatic voltage regulator and turbine governor on a single-
machine infinite bus system has been carried out [5].  With 
adaptive critics, nonlinear optimal neurocontrollers can be 
designed by using pre-recorded data from the power system 
operation, and offline training, before allowing the neural 
network to control the generator and therefore, the 
computational load of online training is avoided.   

A three-machine laboratory power system example is 
studied with a DHP neurocontroller on one generator and the 
conventional controllers on the second generator. The third 
generator is the infinite bus, with a fixed voltage and 
frequency.  The electric power grid is modeled using an 
artificial neural network which is used in the development of a 
neurocontroller based on derivative adaptive critics, to replace 
both the traditional automatic voltage regulator (AVR) and the 
turbine governor. Both simulation and real time hardware 
implementation results are presented to show that robust 
voltage regulation and system stability enhancement can be 
achieved with this proposed DHP neurocontroller, regardless 
of the changes in the system operating conditions and types of 
disturbances. This paper shows that adaptive critic design 
based neurocontrollers can be implemented in real time to 
control generators. 
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Multimachine Power System 
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II.  MUTLIMACHINE POWER SYSTEM 
For simulation studies the multi-machine laboratory power 

system in figure 1 is modeled in the MATLAB/SIMULINK 
environment using the Power System Blockset (PSB).  Each 
machine is represented by a seventh order d-q model. There 
are three coils on the d-axis and two coils on the q-axis and 
the stator transient terms are not neglected.  A three machine 
five-bus power system is chosen, to illustrate the effectiveness 
of a DHP adaptive critic based neurocontroller. The power 
system in figure 1 consists of two micro-alternators, each 
driven by a dc motor whose torque - speed characteristics are 
controlled by a power electronic converter to act as a micro-
turbine. 

The micro-machines research laboratory at the University of 
Natal is equipped with 3 kW, 220 V, three phase micro-
alternators which were designed to have all its per-unit 
parameters, except the field winding resistance, the same as 
those normally expected of a 1000 MW generator.  The 
parameters of the micro-alternators determined by the IEEE 
standards and that of the conventional controllers are given in 
Appendix.   
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Fig. 1 Multimachine power system model with the conventional 
controller/DHP neurocontroller (switching with S4 and S5) on generator G1 
and a conventional controller on generator G2. A power system stabilizer is 
added to G1 by closing switch S3. The infinite bus is the third generator in the 
power system. 
 

For the practical implementation studies the system in figure 
1 is setup using two micro-alternators (G1 & G2) equipped 
with the excitation-AVR, power system stabilizer (PSS) and 
turbine governor systems. 

III.  DUAL HEURISTIC PROGRAMMING’ BASED NEURO-
CONTROLLER 

Adaptive Critic Designs (ACDs) are neural network designs 
capable of optimization over time under conditions of noise 
and uncertainty. A family of ACDs was proposed by Werbos 
[6] as a new optimization technique combining concepts of 
reinforcement learning and approximate dynamic 
programming.  For a given series of control actions, that must 
be taken in sequence, and not knowing the quality of these 

actions until the end of the sequence, it is impossible to design 
an optimal controller using traditional supervised learning. 

Dynamic programming prescribes a search which tracks 
backward from the final step, rejecting all suboptimal paths 
from any given point to the finish, but retains all other 
possible trajectories in memory until the starting point is 
reached.  However, many paths which may be unimportant are 
nevertheless also retained until the search is complete.  The 
result is that the procedure is too computationally demanding 
for most real problems.  In supervised learning, an ANN 
training algorithm utilizes a desired output and, comparing it 
to the actual output, generates an error term to allow learning.  
For a feedforward type ANN the backpropagation (BP) 
algorithm is typically used to get the necessary derivatives of 
the error term with respect to the training parameters and/or 
the inputs of the network.  However, BP can be linked to 
reinforcement learning via a network called the Critic 
network, which has certain desirable attributes. 

Critic based methods remove the learning process one step 
from the control network (traditionally called the “Action 
network” or “actor” in ACD literature), so the desired 
trajectory or control action information is not necessary.  The 
critic network learns to approximate the cost-to-go or strategic 
utility function, and uses the output of an action network as 
one of its inputs directly or indirectly.  When the critic 
network learns, BP of error signals is possible along its input 
pathway from the action network.  To the BP algorithm, this 
input pathway looks like just another synaptic connection that 
needs weight adjustment.  Thus, no desired signal is needed.  
All that is required is a desired cost function J given in eq. (1), 
where γ is a discount factor for finite horizon problems (0 < γ 
< 1), and U(.) is the utility function or local cost. 

 

( ) ( )
0

kJ t U t k
k

γ
∞

= +∑
=

              (1) 

 
The Critic and the Action networks can be connected 

together directly (Action-dependent designs) or through an 
identification model of a plant (Model-dependent designs) [4] 
– [5].  There are three classes of implementations of ACDs 
called Heuristic Dynamic Programming (HDP), Dual 
Heuristic Programming (DHP), and Globalized Dual Heuristic 
Dynamic Programming (GDHP), listed in order of increasing 
complexity and power [6].  Detailed explanations on DHP 
critic and action networks are given in [5, 7, 8]. This paper 
presents the DHP model dependent neurocontroller design, 
and compares its performance against the results obtained 
using conventional PID controllers.   
 
A.  Critic Neural Network 

The DHP critic network is trained forward in time, which is 
of great importance for real-time operation.  DHP has a critic 
network which estimates the derivatives of J with respect to a 
vector of observables of the plant, ∆Y.  The critic network 
learns minimization of the following error measure over time: 

 
( ) ( )TE E t E t

t
=∑               (2) 
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where     [ ( )] [ ( 1)] ( )( )
( ) ( ) ( )

J Y t J Y t U tE t
Y t Y t Y t

γ∂ ∆ ∂ ∆ + ∂
= − −

∂∆ ∂∆ ∂∆
     (3) 

 
where ∂(.)/∂∆Y(t) is a vector containing partial derivatives of 
the scalar (.) with respect to the components of the vector ∆Y.  
The DHP critic network’s training is more complicated than in 
HDP [5] since there is a need to take into account all relevant 
pathways of BP as shown in figure 2, where the paths of 
derivatives and adaptation of the critic are depicted by dashed 
lines. 

In the DHP scheme, application of the chain rule for 
derivatives yields: 

[ ( 1)] ( 1) ( 1) ( )( 1) ( 1)
( ) ( ) ( ) ( )1 1 1

n m nJ Y t Y t Y t A ti i kt ti iY t Y t A t Y ti i k ii k i
λ λ∂ ∆ + ∂ + ∂∆ + ∂

= + + +∑ ∑ ∑
∂∆ ∂∆ ∂ ∂∆= = =

                         (4) 
where λi(t+1) = ∂J[∆Y (t+1)]/∂∆Yi(t+1), and n, m are the 
numbers of outputs of the model and the action neural 
networks, respectively.  By exploiting eq. (4), each of n 
components of the vector E(t) from eq. (3) is determined by 
eq. (5). 
 

[ ( )] [ ( 1)] ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )1

mJ Y t J Y t U t U t A tkE t
Y t Y t Y t A t Y ti i i k ik
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∂∆ ∂∆ ∂∆ ∂ ∂∆=
      (5) 
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Fig. 2 DHP critic network adaptation. This diagram shows the implementation 
of (5). The same critic network is shown for two consecutive times, t and t +1. 
Discount factor γ = 0.5. BP paths are shown by dashed lines. The output of the 
critic network λ(t+1) is backpropagated through the Model from its outputs to 
its inputs, yielding the first term of (4) and ( 1) / ( )J t A t∂ + ∂ . The latter is 
backpropagated through the Action from its output to its input forming the 
second term of (4). BP of the vector ( ) / ( )U t A t∂ ∂  through the Action 
results in a vector with components computed as the last term of (5). The 
summer produces the error vector E(t) for critic training. More details given in 
[7]. 
 
B.  Action Neural Network 

The action network is adapted in figure 3 by propagating 
λ(t+1) back through the model to the action.  The goal of such 
adaptation is expressed by eq. (6) and weights’ update 
expression when applying BP [8] is given by eq. (7), where η2 

is a positive learning rate and WA is the weights of the action 
neural network in the DHP scheme.  The general derivation of 
the equations in this section are explained in [7, 8] in detail. 
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Fig. 3 DHP action network adaptation. BP paths shown with dashed lines. The 
output of the critic λ(t+1) at time (t+1) is backpropagated through the Model 
from its outputs to its inputs, and the resulting vector is multiplied by γ and 
added to ( ) / ( )U t A t∂ ∂ . Then an incremental adaptation of the action 
network is carried in accordance with (7).  More details given in [7]. 

IV.  SIMULATION AND PRACTICAL IMPLEMENTATION OF THE 

DHP BASED NEUROCONTROLLER RESULTS 
The training procedure for the critic and action networks is 

similar to adaptive critic designs reported earlier [7].  It 
consists of two training cycles: the critic’s and the action’s. 
The critic’s adaptation is done initially with a pretrained 
action network, to ensure that the whole system, consisting of 
the ACD and the power system, remains stable.  The action 
network is pretrained on a linearized model of the generator.  
The action is trained further while keeping the critic network 
parameters fixed.  This process of training the critic and the 
action one after the other is repeated until an acceptable 
performance is achieved.  The flowcharts for the Critic and 
Action network, and the overall training are shown in figures 
4, 5 and 6 respectively.  The ANN model parameters are 
assumed to have converged globally during its offline training 
[4] and, it is not adapted concurrently with the critic and 
action networks.  The ANN model is trained with 
pseudorandom binary signals (PRBS) [4]. The utility function 
U(t) is chosen to reflect the cost at given time based on current 
and past control signals applied to the plant. The design of the 
U(t) is explained in detail in [7]. Once the critic network’s and 
action network’s weights have converged, the action network 
(neurocontroller) is connected to the generator G1 (figure 1) 
with the switches S4 and S5 in positions b.  
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Fig. 4  Flowchart for the DHP Critic neural network training. 
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Fig. 5.  Flowchart for the DHP Action neural network training. 
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Fig. 6  Overall training steps for the DHP Critic and Action neural networks. 
 

At different operating conditions and disturbances, the 
transient performances of the action network is compared, 
with that of conventional controllers.  At the first operating 
condition (real power P = 0.2 pu, reactive power Q = -0.02 
pu) a 3% step increase occurs in the desired terminal voltage 
of G1.  The conventional controllers are fine tuned at this 
operating condition to give their best performances [9].  
Figure 7 shows that the DHP neurocontroller (case C) 
provides superior damping unlike with the AVR and governor 
combination (case A), and even with power system stabilizer 
added to G1 (case B).   
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Fig. 7 Simulated speed deviation of generator G1 for a 3% step change in its 
terminal voltage reference.  
 
At the second operating condition (P = 0.5 pu, Q = 0.15 pu), a 
100 ms short circuit occurs close to bus 7 (figure 1).  Figure 8 
shows that the DHP neurocontroller is robust to changes in 
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operating conditions and has better damping on the speed 
deviation of G1 compared to the conventional controllers.   
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Fig. 8 Simulated speed deviation of generator G1 for a 100 ms three phase 
temporary short circuit at bus 7. 
 

Figures 9, 10, 11 and 12 show hardware implementation 
results for an operating condition (P = 0.3 pu & Q = 0 pu) 
where the conventional controllers (cases A & B) are not fine 
tuned.  Figures 9 and 10 show the load angle and terminal 
voltage respectively responses for a 125 ms 3-phase short 
circuit at bus 7 (figure 1). 
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Fig. 9 Measured load angle response of G1 for a temporary 125 ms three 
phase short at bus 7 at an operating condition where the cases A & B do not 
excel. 
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Fig. 10 Measured terminal voltage response of G1 for a temporary 125 ms 
three phase short at bus 7 at an operating condition where the cases A & B do 
not excel. 
 

Figures 11 and 12 show the load angle and terminal voltage 
respectively responses when the transmission line impedance 
between buses 1 and 4 (figure 1) is doubled. All these results 
show that at operating conditions different from the one at 
which the AVRs, governors and power system stabilizer were 
tuned, and for large disturbances, their performance has 
degraded.  The DHP neurocontroller, on the other hand, has 
given excellent performance under all the conditions tested 
both in simulation and real time implementations. 
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Fig. 11 Measured load angle response of G1 when the transmission line 
impedance between buses 1 & 4 is doubled at an operating condition where 
the cases A & B do not excel. 
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Fig. 12 Measured terminal voltage response of G1 when the transmission line 
impedance between buses 1 & 4 is doubled at an operating condition where 
the cases A & B do not excel. 

V.  CONCLUSIONS 
A new method, based on derivative adaptive critics for 

the design of neurocontrollers for generators in a multi-
machine power system, has been presented.  All control 
variables are based on local measurements, thus, the 
control is decentralized.  The results show that such 
neurocontrollers ensure a superior transient response 
throughout the system, for different disturbances and 
operating conditions, compared to the conventional 
controllers, the AVRs, governors and power system 
stabilizers.  The success of such neurocontrollers are as a 
result of using deviation signals, having a nonlinear model 
of the system and using the powerful DHP critic neural 
network to learn from. The use of such intelligent 
nonlinear controllers will allow power plants on the 
electric power grid to operate closer to their stability limits 
thus producing more electric power per invested Dollar of 
capital equipment. 
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VII.  APPENDIX  
TABLE I 

  GENERATOR G1 & G2 PARAMETERS. 
 

Td0’ = 4.50 s Xd’ = 0.205 pu Rs = 0.006 pu 
Td0” = 33 ms Xd” = 0.164 pu H = 5.68 s 
Tq0” = 0.25 s Xq = 1.98 pu No. of Poles = 4 
Xd = 2.09 pu Xq” = 0.213 pu  
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Fig. 13. Block diagram of the AVR and exciter combination of G1 & G2. 
 

TABLE II 
 AVR AND EXCITER TIME CONSTANTS OF G1 & G2. 

 
Tv1 0.616 s Tv5 0.0235 s 
Tv2 2.266 s Te 0.47 s 
Tv3 0.189 s Kav 0.003 
Tv4 0.039 s   
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Fig. 14. Block diagram of the micro-turbine and governor combination of G1 
& G2. 
 

TABLE III   
MICRO-TURBINE AND GOVERNOR TIME CONSTANTS OF G1 & G2. 

 
Phase advance compensation, Tg1 0.264 s 
Phase advance compensation, Tg2 0.0264 s 
Servo time constant, Tg3 0.15 s 
Entrained steam delay, Tg4 0.594 s 
Steam reheat time constant, Tg5 2.662 s 
pu shaft output ahead of reheater, F 0.322 
Governor gain, Kg 0.05 
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Fig. 15. Block diagram of the power system stabilizer on generator G1. 
 

TABLE IV   
PSS TIME CONSTANTS AND GAIN 

 
TW 3 s T3 0.045 s 
T1 0.2 s T4 0.045 s 
T2 0.2 s KSTAB 33.93 
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