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Proceeding of the 2004 American Control Conference 
Boston, Massachusetts June 3 0 .  July 2,2004 

ThA14.6 

Discrete-Time Neural Network Output Feedback Control 
of Nonlinear Systems in Non-Strict Feedback Form 1 

P. He and S .  Jagannathan 

Abstract-An adaptive neural network (NN) -based output 
feedback controller is proposed to deliver a desired tracking 
performance for a class of discrete-time nonlinear systems, 
which is represented in non-strict feedback form, The NN 
backstepping approach is utilized to design the adaptive 
output feedback controller consisting oE 1) a NN observer to 
estimate the system states with the input-output data, and 2) 
two NNs to generate the virtual and actual control inputs, 
respectively. The non-causal problem in the discrete-time 
backstepping design is avoided by using the universal NN 
approximator. The persistence excitation (PE) condition is 
relaxed both in the NN observer and NN controller design. 
The uniformly ultimate boundedness (UUB) of the closed-loop 
tracking error, the state estimation errors and the NN weight 
estimates is shown. 

I. INTRODUCTION 
HE adaptive neural network (NN) backstepping control T approach is a potential solution to control a larger class 

of nonlinear systems since the NNs are nonlinear in the 
tunable parameters. By using NNs in each stage of the 
backstepping procedure to estimate certain nonlinear 
functions, a more suitable control law can be designed 
without using the LIP assumption and the need for a 
regression matrix of the standard backstepping approach 
P I .  

Adaptive NN backstepping state feedback control of 
nonlinear discrete-time systems in strict feedback form has 
been addressed in the literature [2], where the nonlinear 
system is expressed as x , ( k + l ) =  A(Z8(k))+g,(i,(k))xj+,(k), 

and . " ( k + i ) = f , ( ~ " ( k ) ) + g , ( ~ " ( k ) ) U ( k )  where .,@)ER 
is the state, u ( k ) ~  R is the control input, 

~ , (  k ) = [ x , ( k ) , . . . , x , ( k ) p ~ R '  and i = l ,  ..., ( n - I ) .  For 
the strict-feedback systems [I] ,  the nonlinearities 
. ((Z3(k)) and g,(Z,(k)) depend only upon 

states X, (k),. . . ,x, (k) , i.e., %,(k). In state feedback 
control design, the control input depends on the available 
states. If the states are not available for measurement or if 
they are too expensive to measure, an observer is used to 
estimate the states, and then the estimated values will be 
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substituted for the unavailable states in the output feedback 
controller design. 

Several output feedback control schemes by using the 
backstepping design [3-41 in discrete time are developed 
for the strict feedback nonlinear systems. However, for the 
non-strict feedback nonlinear systems, the previous 
methods will result in a non-causal control problem (the 
current control depends on the future system states). 
Therefore, an adaptive NN output feedback controller is 
proposed to deliver a desired tracking performance for a 
class of discrete-time nonlinear systems in non-strict 
feedback form. Several practical systems, for instance the 
spark ignition engine dynamics operating either with high 
EGR levels or under lean operation [ 5 ] ,  can be represented 
in non-strict feedback form. The non-causal problem is 
overcome by employing the NN approximator. 

The proposed adaptive NN output feedback controller 
design employs the backstepping approach and it includes 
three NNs: I )  a NN observer to estimate certain system 
states with the input-output data, and 2) two NNs to 
generate the virtual and real control input, respectively. The 
main contributions of this paper can be summarized as 
follows: 1) the adaptive NN output feedback control 
scheme is extended to the non-strict feedback nonlinear 
systems. The non-causal problem is confronted by 
employing the universal NN approximator; 2) the 
requirement of the PE condition for the boundedness of NN 
weight estimates is relaxed for both the NN observer and 
controller design by using novel NN weight updating rules 
and selecting the overall Lyapunov function consisting of 
system tracking error, system state estimation errors and 
NN weight estimation errors; 3) a well-defined controller is 
presented by overcoming the problem of g, ( .~#(k) )  
becoming zero since a single NS is used to approximate 
both the nonlinear functionsi(%,(k)) and g,(i,(k)); 4) 

the assumption that the sign of g, (Fa (k)) is known apriori 
is relaxed. The uniformly ultimate boundedness (UUB) of 
the closed-loop tracking error, the state estimation errors 
and the NN weight estimates is shown. 

11. NONLNEAR SYSTEM DESCRIPTION "N OBSERVER DESEN 

A.  The Nonlinear System Description 
The discrete-time nonlinear system in non-strict feedback 

form is expressed as: 
x , ( k + l ) = f ; ( x 1 ( 4 ,  xz(k))+g,(x,(kX ~z(kl)*z(k)+d;(k), (1) 

0-7803-8335-4/04/$17,00 02004 AACC 2439 



xz(k +l)=f,(x,(k), xz(k))+gz(~l(k), xZ(4)u(k)+d;(k), (2) 
y ( k ) =  x , (k ) ,  (3) 

where x,(k) E R and x , ( k ) ~  R are the states, u(k) E R 
is the control input, y ( k )  E R is the system output, state 

x 2 ( k )  isnot measurable, d;(k)E R and d ; ( k ) ~  R are 
bounded unknown disturbances, whose bounds are given 

by ld;(k] < d;, and < d;. . 
Equations (1) and (2) represent a discrete-time nonlinear 

system in non-strict feedback form, since unknown 
functionsf; (.) and g, (.)depend upon both states xI (k )  
and x , ( k ) ,  unlike the case of strict feedback systems, 
where f, (.) and g, (.) depend upon only the state x,  (k )  . 

The control objective is to drive the system state x, (k)  to 

track the desired trajectoryx,,(k). Since x2(k)  is 
considered unavailable, it is estimated by the NN observer. 
Subsequently, the estimated state is used to design the 
adaptive NN output feedback controller. 

Throughout this paper, all quantities with '"' represent 
estimated quantities. In addition, quantities with "I" 
represent the estimation errors. Subscripts "0" and "c" refer 
to the observer and the controller quantities, respectively. 

B. Observer Structure 
Considering the system ( 1 )  and (2), for simplicity, let us 

g, (x, (k), x , (k)) ,  Vi = 1,2,  where f; ( k )  and g, (k) are 
considered smooth functions, which are unknown. The 
system under consideration can be written as 

(4) 

( 5 )  

x ( k + l ) = f ( k ) + d ' ( k ) ,  (6) 

denote h ( k )  forf,(x&), x,(k) ) ,  g,(k)  for 

+ 1) = f; (4 + g,(k)r,(k)+ d;(k)> 
x,(k + 1) = f, (k)+ g,(k)u(k) + 4(4. 

Writing system (4) and (5) into the vector form as 

where 

The termf(k - I) can be viewed as an unknown smooth 
function vector, and it can be estimated by a NN [6]. 

f ( k - 1 )  =w~p(v~z,(k-l))+&,(Z,(k-l))  

= w ~ ~ ( z ~ ( k - l ) ) + & ~ ( z ~ ( k - l ) ) ,  (8) 

ands,(z,(k - 1)) E R is the functional approximation 
error. It is demonstrated in [6] that, if the hidden layer 
weight, v, , is chosen initially at random and held constant 
and the number of hidden layer nodes is sufficiently large, 
the approximation error ~ , ( z , ( k  - 1))can be made 

arbitrarily small over the compact set S c R since the 
activation function forms a basis. 

The proposed NN observer for (6) is defined as 
i ( k )  = $(k - l)$z(v:qk - I)) = $(k - l)$z(i,(k - l)), (9) 

where i ( k )  = [ i , (k ) , i , (k ) r  E R2 is the estimated value 

of X ( k ) ,  and ~ ~ ( k - l ) = [ ~ , ( k - l ) , i 2 ( k - l ) , u ( k - l ) ~  ER' 
is the input to the NN observer, the 
matrix Go(k - 1) E Rnox2 is the actually output layer 

weight, the &,(k - 1)) represents q(vTio(k - 1)). Here, 
it is assumed that the initial value of ~ ( 0 )  is bounded. In 
the next section, via Lyapunov analysis, it is shown that all 
the values of U@) are boundedVk E R , 

C. Observer Error Dynamics 
Define the state estimation errors as 

The estimation errors can be expressed in a vector form 
F,(k) = .?!(k) - x , (k )  i = 1,2. (10) 

F ( k ) = i ( k ) - x ( k ) ,  (11) 
as 

wherex"(k) E RZ. Combining (6) ,  (S), (9) and (ll), we 
obtain the estimation error dynamics as 
x " ( k ) = f ( k ) - ~ ( k ) = G ~ ( k - I ) p ( i , ( k - l ) )  

- W,Tq(z,(k - 1)) - &,(z,(k - 1))- d'(k - 1) 

= { , ( k - l ) + d , ( k  - I ) ,  (12) 

(13) 

where 
G0(k - 1) = G0(k - 1)- W O ,  

~~(k-l)=~T(k-l)~(~~(k-l)) 

= ( G ~ ( k - l ) - W ~ ~ ~ ( ~ ~ ( k - l ) ) ,  (14) 

d e  (k-l))=~(~;,Ck-S)-~z~(k-l))) (1 5) 

d,(k-l) = ~ ~ ~ ( k - l ) ) - S ( k - l ) - & ~ ( ~ ~ ( k - l ) ) .  ( I  6) 

Ill. ADAPTIVE NN OLTPur FEEDBACK CONTROLLER DESIGN 

and 

where the input to the NN is taken as 
z,(k-l) = [ ~ ( k - l ~ ~ ( ~ - l ) , ~ k - l ) p  ER' , the matrix 

wo E R"sxZ and v, E R3""' represent the target output and 
hidden layer weights, the hidden layer activation function 
&,(k -1)) represents q(v,'z,(k -I)), nodenotes the 
number of the nodes in the hidden layer, 

A. Adaptive NN Output Feedback Controller Design 

Assumprim I :  The desired trajectory Xld ( k )  is a smooth 

function, and hence it is bounded over the compact set S . 
Assumption 2: The unknown smooth functions, g ,  (k )  , 
V i =  I,  2 are bounded away from zero within certain 
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compact set S as g,, > 1g,(k] > g,, > 0 and 

g,, > Ig,(k)l> gZm > 0, respectively. 
Next the adaptive NN output feedback control design is 

discussed. 

Step I :  Virtual controller design. 

trajectory as 

where xld ( k )  is the desired trajectory. Combining with 
(4), (17) can be rewritten as 
el(k + 1) = x,(k + I)- xld(k + 1) 

Define the tracking error between actual and desired 

(17) e1 (4 = XI (k) - Xld (k), 

=A@)+ gl(k)x2 (k)- xld (k + 1)+ d;(k) .  (18) 

By viewing x2(k )  as a virtual control input, a desired 
feedback control signal can be designed as 

The term ~ * ~ ( k ) c a n  be approximated by the first action 
"as 

where the input is the state ~ ( k ) ,  Wl E R"' and 

v, E R2""l denote the constant ideal output and hidden 
layer weights, n, is the hidden layer nodes number, the 

hidden layer activation function +(v;x(k)) is simplified as 

((~(k)),  and&](x(k)) is the approximation error. 
Sincex,(k) is unavailable, the estimated state E(k) is 

selected as the NN input. Consequently, the virtual control 
input is taken as 

where G, (k )  E R"' is the actual weight matrix for the fmt 
action NN . Define the weight estimation error by 

Define the error between x, (k )  and f,, &)as 

Equation (18) can he expressed using (23) forx, ( k )  as 
e, (k + I )  = J ;  (k) + g ,  (kxe,  (k) + iZd (k)) - xld (k + I )  + d;(k), (24) 
or equivalently 

(25) 
where 

41(k) = iT(~)fNf(W> (26) 

Wf(k)#(?(k)) = w:(k)(d(f(k)) - #(x(k))), (27) 

x2,f(k)= wT,(v:.(k))+E,(.(k))= w:,(x(k))+ EI(X(k)), (20) 

f * d ( k )  = q(kk(v;i(k))= q ( k k ( i ( k ) ) ,  (21) 

it,(k)=4(k)-w1(k), (22) 

X 2 ( k ) - E 2 d ( k ) .  (23) 

e& + I )=  "(k) + Cl@) + d,(k)) 3 

and 

Step 2: Design of the control input U@). 

e2(k + 1) = x2(k + 1)- i,,(k + 1) 

wherefZd(k+1) is the future value of f 2 d ( k ) .  Here, 
i,,,(k+l) is not available in the cwent time step. 
However, from (19) and (21), it can be clear thati,,(k + 1) 

is a smooth nonlinear function of the statex&), virtual 

control inputf2,(k) and the system errors e,@) and 

e ,@) .  Consequently, i z d ( k + l )  is assumed to be 
approximated by using a NN. 

Select the desired control input by using the second NN 
in the controller design as 

Rewriting the error e2 ( k )  from (23) as 

= f,(k)+ g,(k)u(k)-f,,(k + I)+ a), (29) 

= w:o(viz(k))+ ~,(z(k)) = wio(z(k))+ ~ ~ ( z ( k ) ) .  (30) 

where W, E R"' and vI E R'""' denote the constant ideal 
output and hidden layer weights, n2 is the hidden layer 
nodes number, the hidden layer activation function 
u(v;z(k)) is simplified as g(z(k)), q(z(k)) is the 
approximation error, II E R  is the design constant, 

z ( k ) c R S  is the NN input, which is given by (31). 

Considering the fact statex.,(k) cannot be measured, 

~ ( k )  is substituted with i(k)~ RS , where 

[~,(kXx2(~),f,,(~),~,el(kXe,(k)~ E R' (31) 
and 

i (k)  = [f](k),f, ( k ) > f 2 d ( k ) > l ] i ]  (k)>;Z(k)r E RS > (32) 
where 

and 

The actual control input is now selected as 

where $,(k) E R"' is the actual output layer weights. 

i&)= f1(k)-X1,(k), (33) 

;,(IC)= i 2 ( k ) - f , , ( k ) .  (34) 

u(k) = l q (k )cr ( i (k ) ) ,  (35) 

e,@ + 1) = g,(k)(4e, ( k )  + 4, ( k )  + 4 ( k ) )  , (36) 

% ( k )  = G, ( k )  - w, (k), 
5 2  ( k )  = G; ( k ) d ( k ) )  3 

Substituting (30) and (35) into (29) yields 

where 
(37) 

(38) 
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Equations (25) and (36) represent the closed-loop error 
dynamics. It is required to show that the estimation error 
( IZ) ,  the system errors (25) and (36) and the NN weight 
matrices Go (k ) ,  GI (k)  and G2 (k)  are bounded. 

B. Weight Updates for Guaranteed Performance 

Assumption 3 (Bounded Ideal Weights): Let WO, w, and 

w,be the unknown output layer target weights for the 
observer and two action NNs and assume that they are 
bounded above so that 

I Iwoll< worn, llwlll w l m  3 and IIw211' Wzm, (41) 
where w,, E R', w,, E R' and w,, E R' represent the 
bounds on the unknown target weights where the Frobenius 
norm [7] is used. 
Fact I :  The activation functions.are bounded above by 
known positive values so that 

IlP(.)ll <P, , Ilr(.)ll 54, and llfl(,]l 50, , (42) 
where pm E R' , bm E R' and mm E R' are the upper bounds. 
Assumption 4 (Bounded NN Approximation Error): The 
NN approximation errors E ~ ( Z ~ ( ~ - I ) ) ,  q(x(k)) 
andE2(z(k)) are bounded over the compact set S c R 
by E,,, , E,, and E ~ , ,  respectively [6] .  

Fact 2: The termsdo(k-1)ER2, d , ( k ) ~ R  and 

d2 ( k )  E R are bounded over the compact set S by 

(43) (Id& - 111 c: 4, = 

Idl(k] 5 dl, = + E l m  + wl,+m, (44) 

+ 4 + E,, 2 

where d i  E Rt is the upper bound for db(k - 1), 

g l m  
and 

Id,(k] 5 dZm = d;, + E,, + wIm4,,, , (45) 
gl m 

Theorem I :  Consider the system given in ( I )  and ( 2 )  and 
let the Assumptions 1 through 4 hold. Let the unknown 

disturbances be bounded by \\di(kI[<d;, and 

Ildl(k)(l< d i m ,  respectively. Let the observer NN weight 

tuning be given by 
k(k +I) = - (k))(%(k)pl(;,(k))+[,e, (k + I ) W  ,(46) 

where1 = [I, lr , with the virtual control NN weight 
tuning be provided by 
+, (k + 1) = % ( k )  - ~ ] b ( ~ ( k ) ) ( ~ ~ ( k ) ~ ( ~ ( k ) )  +[ ,e ,@)) ,  (47) 

and the control input weight be tuned by 
G,(k+I)  =G,(k)-a,u(i(k))(G~((k)u(i(k))+[,e,(k)), (48) 

wherea, E R ,  a, E R,a, E R, and II E R are design 
parameters. Let the NN observer, virtual and actual control 
inputs be defined as (9), (21) and (39 ,  respectively. The 
estimation error (12), the tracking errors (25) and (36) and 
the NN weightsGo(k), GI@) and G2(k)  are UUB with 
the bounds specifically given by (A.12) through (A.17) 
provided the design parameters are selected as: 

(1) 0 < ~oll&)ll' < 1, (49) 

Proof: See Appendix. m 
Remark I :  A well-defmed controller is developed in this 
paper by avoiding the problem of gj(k), V i  = 1,2 
becoming zero. 
Remark 2: It is impoltant to note that in this theorem there 
is no PE condition for the NN observer and NN controller 
as well as the linearity in the parameters assumption, in 
contrast with standard work in the discrete-time adaptive 
control. 
Remark 3: Generally, a nonlinear separation principle is 
not valid and hence it is relaxed in this paper for the 
controller design. 

IV. SIMULATION 
To verify the performance of the adaptive NN output 

feedback controller, consider the following nonlinear 
system, given in non-strict feedback form, as 

x, (k + 1)= -- +Xl(k)+2X,(k), (53) 
6 4 - m )  

Y(k)=x , (k ) ,  ( 5 5 )  
where xi&) E R, i = 1,2 are the states, ~ ( k )  E R is the 
control input, &)ER is the system output, the state 

x , ( k )  is known via the output y(k) ,  the state x,(k)  is 

immeasurable. Note that f ,  (k) = -- I + X l ( k )  64 MO) 
is a nonlinear function of both states X, ( k )  and X, (k) .  
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The objective is to drive the state x, (k)  to track the 
reference signal, which was selected as 

xld(k)=2s in(wkT+<) ,  where w = O . l , C = -  with 

a sampling interval of T = 50msec. The total simulation 
time is taken as 250 seconds. 1, is taken as -0.05. 

The number of hidden layer neurons in the observer 
NN,Glq(k),  controller NNI $:ir((k) and NN2 

$:&) each was taken as 15. For weight updating, the 

learning rate is selected as a, = 0.01, a1 = 0.1 and 

= 0.1. The inputs to observer NN, G:p(k), control 

NNs, $;ir((k) and are selected as ?o(k) ,  i ( k )  
, and ?(k) (32),  respectively. The initial inputs to the 
hidden layer weights for the three NNs are selected at 
random over an intemal of [0, I ]  and all the activation 
functions used are hyperbolic tangent sigmoid functions. 
The initial output layer weights for all the three NN are 
chosen to be zero. 

Two cases are considered: first, the adaptive output 
feedback NN controller is considered to the system, and 
then a proportional controller is applied. Fig. 1 illustrates 
the performance of the adaptive NN output feedback 
controller. From the figure, it is obvious that the system 
tracking performance is superior even when the state is not 
measured. The NN control input is presented in Fig. 2 
where it clearly shows that the input is bounded. On the 
other hand, Figs 3 and 4 present the performance of the 
conventional proportional controller and the control input. 
The gain of the controller is also taken as -0.05. From Fig. 
3, it is clear that the tracking performance has deteriorated 
in comparison with Fig. 1 .  

7r 

2 

*d..Urw~w~.t&.rio~nlr** 

j , , , , , I  
.11 

~ I e  
I YI Im $50 m m 

Tm.C..."a 

Fig. 1. Performance of the adaptive Nh' output controller. 

unn,n~arr**o.nn.r 
OM !;;m* 4 m  

401 

m.i.r-4 

Fig. 2. Adaptive Nh' controller input. 

Fig. 3. Performance of a conventional controller without NNs 
"..lbw .l?O*.O1.l 

2 0 .  

0, 

0 1  !r 0 1  I 0 Im " m . l r a 9  $0 m 

Fig. 4. Control input. 

V. CONCLUSION 

An adaptive neural network (NN) -based output feedback 
controller is proposed to deliver a desired tracking 
performance for a class of discrete-time nonlinear systems, 
which is expressed in non-strict feedback form. The 
adaptive NN output feedback controller consists of three 
NNs: 1) a NN observer to estimate the system states with 
the input-output data, and 2) two NNs to generate the 
virtual and real control inputs, respectively. The uniformly 
ultimate boundedness (UUB) of the closed-loop tracking 
enor, the state estimation errors and the NN weight 
estimates is shown. Results show that the performance of 
the proposed controller schemes is highly satisfactory while 
meeting the closed loop stability. The conh.oller scheme 
does not require an offline learning phase and the NN 
weights can be initialized randomly or to zeros. 

2443 



APPENDIX -0 - ~ ~ ~ ~ ~ ( ~ ) ~ ~ ‘ ) ( ~ ~ ( ~ ) - ( ~ f ~ ( ~ ) + ~ ~ e , ( k ) ) ) ‘ ,  (A.9) 

@, ~ - ( ~ ~ + d ~ + d ~ , ) + 2 ( w ~ y 2 , + w 1 , ~ ~ + w , u ~ ) ,  1 

This implies that AJ(k)< 0 as long as (49) through (52) 

Proofof Theorem I :  Define the Lyapunov function where 
J ( k )  = --x -T (k - I)?(k - 1) + + e : ( k )  1 + - e i ( k )  1 

+ - , ~ ( ~ ~ ( k - ~ ) ~ ~ ( k - ~ ) ) + - ~ ~ ( ~ ) ~ , ( ~ ) + ~ ~ ~ ( k ) ~ ~ ( k ) , ( * , l )  1 I 

(A. 10) 
4 6g,, 6gZ 2 

hold along with the following condition a, a, a2 

where l2 E R’ is a design parameter. The first difference 
of Lyapunov function is given by O < I , < - - .  1 (A.11) 

and l\.“(k - 111 > 20, , (A.12) 
w(k)= U&)+ hl , (k )+  A/&)+ A/,@)+ A/&)+ ~ / , ( k ) .  (A.2) 3g:, 

The fvst term, AJ, (k ) ,  is obtained using (12) as 
or (A.13) 

1 I.,(k)l > 1 1 
hJ,(k) 5 7lltO(k -1)Il’ + TI/d,(k - 1)Ir +-IIX“(k 4 - l)/r, (A.3) 

Now taking the second term in the first difference (A.l) 
and substituting (25) into (A,l), we get 

h12(k)  5 l e l ( k )  +- {:(k) +- d:(k) - I,e:(k), (A.4) 

or DM , (A.14) 
k 1 1 
2 2 2 6n?, - .... 

Taking the thud term in (A.l) and substituting the (36) or into it and simplifying, we get 

or IT, > fiDM, (A.16) 

or Irz(k)l > (A.17) 

According to the standard Lyapunov extension theorem 
[7], this demonstrates that Z(k - I), e, ( k )  , e, (k) and the 
weight estimation errors are UUB. The boundedness of 

and llG2(k)il are bounded, and this further implies that the 

weight estimates k, (k), k, (k) and i2 (k) are bounded. 
Therefore all the closed-loop signals in the observer- 
controller system are bounded. 

5,Oc-1), 51(k) and 5 A k )  implies that IlG“(k)(l, )[G,(k]I 
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