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ABSTRACT

The applicability of power spectral density techniques, 
Fourier series analysis, and linear regression to the mathe
matical modeling of river water temperature is demonstrated. 
Consideration is also given to the problem of estimating 
thermal inputs to rivers from man-made sources such as 
electrical power plants. First, power spectral density 
techniques are used in the time-series analysis of water 
temperature records which were taken from the Missouri River. 
Two spectral ranges are then studied from the standpoint of 
their applicability to (1) mathematical model building and 
(2) detection and identification of cyclic thermal inputs. 
Next, a Fourier regression fit to the time-series data is 
used to show that normal random variates having zero mean are 
obtained when the regression curve is extracted from the data. 
A 60-day prediction of daily-average water temperature is 
then made using a model which is based upon a polynomial re
gression fit to the fluctuating amplitudes of significant 
Fourier components. A final predictive model, which is based 
on the above analysis methods,is proposed.
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I. INTRODUCTION

A need has been established [1] for the use of both 
deterministic and probabilistic techniques in the development 
of prediction models for river water temperatures. A corre
sponding need exists for similar techniques in the estimation 
of man-made thermal inputs to large rivers. These needs are 
based on the concern which has recently developed [2 ,3,4,5,6 ] 
as a result of projected large increases in nuclear and 
fossil-fuel production of electrical power in the United 
States. A commonly quoted statement is that ’’the demand for 
electric energy in the United States is doubling every 
decade." Obviously there are physical limitations on the 
number of electrical power plants which can be built. How
ever, this does not diminish the concern for the damaging 
effects to the ecological patterns which these power plants 
are likely to cause in our nation's large rivers.

The reason for this concern is that very large amounts 
of water are usually required for cooling purposes in both 
nuclear and fossil-fuel electrical power plants. Also, both 
operate at relatively low thermal efficiency. Typical effi
ciency ratings are 20 to 35 percent for nuclear reactors and 
40 to 50 percent for fossil-fuel power plants. Thus, the 
power generation process results in the discharge of large 
amounts of heated water back into the nation's rivers. As an 
example, the rise in water temperature which typically 
results from the operation of a 500-megawatt nuclear plant is 
8 to 10° at the plant site. Ecologists and biologists are



concerned that a continued increase in these thermal inputs 
from an ever increasing number of power plants might destroy 
beneficial aquatic life while at the same time attracting 
both undesirable flora and predatory aquatic fauna.

One of the criteria which is specified by water quality 
control boards for the thermal output of electrical power 
plants is that the water temperature shall not exceed a 
certain level above the natural water temperature. The 
question is immediately raised in regard to what constitutes 
the natural water temperature. To a large extent this ques
tion is ignored for lack of an answer. Obviously there is 
already some degree of thermal pollution present in our 
larger rivers as a result of both waste discharges and 
thermal discharges from presently existing electrical power 
plants.

In order to assess the temperature effects of future 
thermal inputs it is necessary to determine, insofar as 
possible, the present and the past thermal properties of the 
nation*s rivers. The objective of this project was developed 
as a result of a study of the requirements for establishing a 
basis on which these temperature effects can be ascertained. 
The problem is to:

(1) establish, by means of power spectral density 
techniques, whether any periodicities (other than 
the yearly seasonal cycle) of significant level 
exist,

(2) determine a means whereby future thermal input 
levels can be estimated, and
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(3) build a mathematical model which will predict 
future water temperatures.

A major contribution of this project is presented in 
Chapter III where power spectral density techniques are 
used to obtain the spectral characteristics of fluctuations 
in river water temperature. The fluctuations studied include 
those which occur at frequencies near the one cycle/year 
seasonal fluctuation as well as those at higher frequencies 
of up to 400 cycles/year.

In order to obtain the desired results at frequencies 
near the one cycle/year fluctuation, it was necessary to 
consider some means of extracting this large cyclic component. 
To do this, a least-squares Fourier series regression fit to 
the time-series data was used. Both the average component 
and the one cycle/year component were then subtracted from 
the raw data to yield a residual data set. This residual 
data set was then spectrally analyzed in order to obtain 
information about the existence of cyclic fluctuations other 
than the one cycle/year component.

In Chapter IV consideration is given to the possibility 
of utilizing communication theory methods in the detection of 
thermal inputs to large rivers. Study and analysis of this 
problem indicated that a mathematical model which would make 
possible the prediction of river water temperature would be 
more appropriate.

This conclusion was based on the fact that an obvious 
criterion which had already been taken into account by pollu
tion control boards was the setting of a maximum allowable



increase in water temperature. Thus, the prediction of 
above-normal water temperature, particularly over the summer 
months, would be an invaluable aid to such agencies as well 
as to electrical power companies. The final form for the 
mathematical model consists of four component parts. These 
are:

(1) the slowly varying yearly average water 
temperature,

(2) Fourier components which make up the very large 
yearly seasonal fluctuation of water temperature,

(3) short-term cyclic fluctuations, called wavelets, 
and

(4) a normal random process with zero mean.
One of the reasons for selecting this problem was its 

timeliness. It is evident by the concern presently being 
given to our environment that the nation’s technological 
achievements must now be tempered through the use of tech
niques such as those which are presented in this report.

This report is taken from a doctoral dissertation by the 
junior investigator, Dr. Leland Long. The work was done 
under the direction of Drs. Billy E. Gillett and James C. 
Maxwell, principal investigators. The generosity of person
nel of the Rolla, Missouri office of the U.S.G.S. Water Re
sources Division in supplying most of the data is greatly 
appreciated. The research described here was supported 
only partially by grant number 14-01-00G1-B-045 Mo, from the 
United States Office of Water Resources Research and partially 
by the University of Missouri-Rolla. The Gulf Oil Company



indirectly supported these studies through a Gulf Oil 
Fellowship to the junior investigator.
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II. REVIEW OF LITERATURE

The advent of the present ecological crisis in the 
United States has resulted in a myriad of scientific investi
gations into the potential dangers to all phases of marine 
plant and animal life as a result of thermal pollution.
Many papers have been written which are based on specific 
investigations into the potential dangers to marine plant and 
animal life through elevated water temperature. These papers 
establish the need for the implementation of controls on man
made thermal inputs to our rivers and lakes but, by their 
nature, they do not determine how the controls are to be 
effected.

The effective implementation of such controls on large 
rivers will have to be based upon a thorough knowledge of the 
thermal properties of these rivers. Previous investigations 
of these thermal properties can be placed in four rather 
broad categories. These are:

(1) Direct observation and compilation of existing 
tempe ratures.

(2) Physical Mode 1-building of thermal inputs.
(3) Analytical Model-building.
(4) Mode 1-building based on the water temperature 

fluctuation when considered strictly as a time- 
series .

The first category includes various types of water 
temperature data, but primarily it consists of average water
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temperature calculations which are tabulated on either a 
daily average or a monthly average basis. A typical example 
is the table of daily average water temperatures for the 
Missouri River at Boonville, Missouri, which was supplied by 
the U.S.G.S. for this study.

In the second category, much of the model-building has 
been based upon the use of laboratory models. For example, 
McAllister, Lawrence, and Bradfield [7] constructed a model 
of an Ohio River power plant site consisting of a power 
plant with cooling tower. Heated water was discharged from 
the cooling tower into an inlet channel which was formed by 
an island. The water was thus mixed to some extent before 
final mixing occurred in the main channel of the river. A 
very thorough analysis of the resulting temperature isotherms 
was presented in the paper. These results demonstrated that 
an upper layer of lighter warm water is formed at the source 
of thermal input. From that point gradual mixing continues 
at the interface of the warm upper layer and the underlying 
cold water until a fully mixed temperature is reached.

Some excellent model-building results were also obtained 
by Nobuyuki, Wiegel, and Tornberg [8]. They constructed a 
cold-water plume into which warmer water was injected by 
means of a warm-water jet. The results demonstrated that 
the concept of an analogy between the thermal input and a 
communication-system antenna is valid since the temperature 
isotherms had the appearance of typical antenna power 
patterns. The vertical pattern results substantiated the
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results presented by McAllister which showed the formation 
of the surface layer of warm water with slow mixing at the 
cold-water interface. These results were obtained under 
ideal conditions and hence do not account for mixing effects 
caused by stream turbulence.

As an example of the results obtained from the physical 
modeling of thermal inputs, Jaske [9] reproduces the equation

L 5280 ^1/2 K •—=--*Vw (G-We)
where

L = affected river length (miles),
W = average river width (feet),
V average stream velocity (ft/sec),

G*We = power plant rating (watts), and 
K = proportionality constant.

Typical results which were obtained using this equation 
showed that L is equal to 10 miles for slow moving streams 
where the plant input is taken as 10  ̂ watts.

A considerable amount of work in the area of analytical 
model building (category 3) of thermal inputs has been based 
on what is called the energy budget method. ‘ Essentially 
this method consists of taking an account (or budget) of all 
possible thermal sources, both input and output, and forming 
a resultant sum of the total quantity of heat. Applications 
of this method were made by Brown [10] for the prediction of 
water temperature in small streams. Also, Morse [11] used 
this method to build a mathematical model for stream tempera
ture predictions for larger rivers.
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Further analytical work has been done very recently by 
Chen [12] who utilized the boundary value solution approach 
to the partial differential equation representation of a 
river with external thermal input. The resultant equations 
describe mathematically the average temperature distribution 
in a natural stream at every instant and at all points of 
the stream after the injection of a thermal pollutant. His 
ultimate goal was an accurate evaluation of a longitudinal 
heat dispersion coefficient that depends on bulk flow param
eters and environmental factors.

The fourth broad category, that of time-series analysis 
of water temperature fluctuations, has been utilized recently 
to some extent by several authors. Since the bulk of the 
material which is presented in this dissertation falls into 
this category it is appropriate at this point to review some 
of the history of time-series analysis before discussing 
these more recent papers.

A presentation of time-series analysis is not complete 
without a discussion of the background of power spectral 
density techniques (see Appendix A). These techniques 
furnish one of the most powerful tools available to the time 
series analyst. The concept of a power spectrum has been 
utilized by the communications engineer for a number of 
years but its usefulness to other areas of application, such 
as weather data analysis , was not brought clearly into focus 
until the work of Blackman and Tukey [13] appeared in 1958. 
Other contributions to this subject were made by Tukey [14]
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and Jenkins [15] in individual papers. In 1967 Parzen [16] 
edited a collection of papers, several of which were by 
Parzen himself, on time-series analysis. These papers 
included some excellent discussions on the use of power 
spectral density techniques in stochastic model building.
An excellent text by Jenkins and Watts [17] was published in 
1968. It gives a very detailed and rigorous treatment of 
power spectral density methods.

A very recent text by Jenkins and Box [18] concerns 
itself with the problems of forecasting and control of 
economic time-series analysis. The predictive modeling 
process is based on a technique which is referred to as the 
autoregressive moving average (ARMA) method. The analyses 
include the case where periodicities are present but very 
little discussion is devoted to power spectral density tech
niques .

Thus, power spectral density techniques are well docu
mented and have seen wide application in various technical 
disciplines. In the area of hydrology, for example, 
Rodrequez-Iturbi [19] and Rodriquez-Iturbi and Nordin [20] 
have presented a detailed cross spectral analysis which 
shows the relative effect of rainfall, runoff, and dry bulb 
air temperature, respectively, on river water temperature. 
These results were informative but were only presented for 
the low-frequency range of one to six cycle/year. In this 
case monthly average water temperatures were used. Also, 
Roesner and Yevjevich [21] used power spectral density tech
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niques in the development of mathematical models for monthly 
precipitation and monthly water runoff. Again the frequency 
range of the calculations was limited to an upper frequency 
of six cycles/year because of the monthly sample interval.

The above papers are cited because they are direct 
examples of how power spectral density techniques can be 
used in the analysis of hydrological time-series data. How
ever, they are limited to the particular applications 
discussed and do not answer many of the questions about the 
spectral content of river water temperature fluctuations.
The reason for this is that the temperature spectral analyses 
which they have presented show only the effect of the very 
large yearly seasonal variation of water temperature. This 
effect, however, is immediately evident from a cursory exami
nation of any time-series of daily average river water 
temperature. Thus, a major contribution of this disserta
tion is the extension of the power spectral density analysis 
to include the spectral effects of fluctuations which occur 
both at frequencies near the one cycle/year fluctuation and 
at higher frequencies up to at least 400 cycles/year.

In order to obtain the desired results at frequencies 
near the one cycle/year fluctuation, it was necessary to 
consider some means of extracting this very large cyclic 
component. To do this, a least-squares Fourier series fit 
to the time-series data was used. The one cycle/year Fourier 
approximation was then extracted by subtraction to yield a 
residual data set. The spectral content of this residual
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data set was then analyzed to obtain useful information about 
low-frequency fluctuations in water temperature.

The theory of Fourier series has been well documented 
for many years. In general, however, it is applied to well 
defined periodic functions. The work of Chapman and Bartels 
[22] stands out as a classic treatise in the application of 
Fourier series techniques to the approximation of almost 
periodic (or nearly periodic) functions which occur in the 
area of geomagnetics.

For water temperature fluctuations, it was necessary to 
consider the fact that the data points exhibited a strong 
resemblance to a random process fluctuating about the nearly 
periodic yearly seasonal fluctuation. That is, it appeared 
to be of the form

X(t) = X + C * sin (2 7T t + + n(t) ( 2 )

where
X(t) = 

X = 
C =

n(t) = 
4>i =

river water temperature, 
average water temperature,
peak amplitude of yearly seasonal fluctuation in 

water temperature,
random fluctuations in water temperature, and 
initial phase angle.

Thus consideration had to be given to the Fourier series 
approximation in relation to the random process n(t). As is 
shown in Appendix A, the Fourier series represents a least 
squares fit to discrete data points which contain random
fluctuations.
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In a very recent paper Kothandaraman [23] used this 
extraction technique in analyzing water temperature variations 
in a large river. His main objective was to build a regres
sion model which would predict river water temperature by 
using a multiple regression model involving river water 
temperature and dry-bulb air temperature measurement. As a 
part of his model-building process he includes an analysis of 
the statistics of the water temperature residuals which are 
obtained when the first ten Fourier harmonics are extracted.
He does not, however, include any reference to power spectral 
density techniques and does not justify his arbitrary extrac
tion of the first ten harmonics. A part of this dissertation 
will be to demonstrate, with the aid of spectral analysis, 
that this extraction is valid with due caution being given to 
the fact that a portion of the spectrum which is extracted is 
actually random noise.

In addition to the power spectral density analysis, this 
dissertation gives consideration to the possibility of 
utilizing communication theory methods in the detection of 
thermal inputs to large rivers. Useful background informa
tion on communication theory was obtained from texts by Lee 
[24] and Hancock [25]. However, the most widely used texts 
on detection and estimation theory are those by Selin [26],
Van Trees [27] and Helstrom [28]. These latter three texts, 
especially Van Trees, were used in the detection analysis. 
Useful information was also obtained from texts by Bendat and 
Piersol [29], and Robinson [30].
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Further study of this problem indicated that, based on 
the above information, consideration should be given to the 
possibility of building a prediction model for river water 
temperature. This conclusion was based on the fact that an 
obvious criterion, which had already been taken into account 
by pollution control boards, was the setting of a maximum 
allowable increase in water temperature. Thus the prediction 
of above-normal water temperatures, particularly over the 
summer months, would be an invaluable aid to such agencies as 
well as to the power companies.

The following two chapters cover the principal results 
of the research which was outlined in the introduction and 
which has been formulated in more detail in this chapter. It 
was felt that the problem formulation should be presented as 
a part of the literature review since it was developed through 
a study of the background material which has been presented 
here.
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III. POWER SPECTRAL DENSITY ANALYSIS

A. Introduction

The results presented in this section constitute the 
first phase of a study to demonstrate the feasibility of 
using communication theory techniques to establish a method 
for estimating thermal pollution in large rivers. This 
phase involves the calculation of the power spectral density 
and subsequent spectral decomposition of water temperature 
fluctuations which are based upon real-time temperature 
records.

A portion of the temperature records used in this 
analysis were made available through the courtesy of the 
United States Geological Survey (U.S.G.S.) offices located 
in Rolla, Missouri. The U.S.G.S. records cover time periods 
of five years (1953 to 1958) and four years (1960 to 1964) .
They consist of continuous strip chart temperature (°F) 
recordings which were taken from the Missouri River at 
Boonville, Missouri, by the U.S.G.S. The U.S.G.S. also made 
available records of daily-average water temperatures which 
had been tabulated from the continuous records.

Power spectral density calculations were made from both 
the continuous and the daily average U.S.G.S. records. The 
spectral calculations from the daily average records are 
based on a sample interval of one day and hence a corresponding 
Nyquist frequency range (see Appendix A) of 0 to 182.5 
cycles/year.
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The continuous records were sampled visually using a 
sample rate of four samples per day. This sample rate 
corresponds to a Nyquist frequency range of 0 to 730 
cycles/year. Spectral plots are presented over this 
frequency range for the purpose of demonstrating the possi
bility of identifying thermal inputs on the basis of their 
cyclic properties.

One of the aims of this research was to obtain as much 
information as possible about the properties of the spectrum 
of temperatures of a large river. It was felt that the 
turbulence of the river might have a significant effect on 
water temperature because of the mixing of water at various 
temperature levels. The U.S.G.S. records were not accurate 
enough to allow a spectral analysis over the required 
frequency range. For this reason, additional temperature 
recordings were made in the Missouri River at Herrmann, 
Missouri, on June 10, 1971. The temperature readings which 
are used for the power spectral density calculations pre
sented here were taken at 10 second sample intervals which 
correspond to a Nyquist frequency range of 0 to 360 
cycles/hour.

The Herrmann temperatures, which were recorded in °C, 
were taken in the main channel of the river at eight-tenths 
of the channel depth. A frequency modulated quartz ther
mometer having a measurement resolution of .001° C at the 
10 second sample interval was used.
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B. Methods of Analysis 

1. Fourier Series
Given that the bounded and continuous time-domain func

tion, f(t), is periodic with period T, then f(t) can be 
written as:

oo
f(t) = A0 + 2 l [Ak- cos (-̂ rkt) + Bk»sin(2Y k-t) 3 (3)k~ 1

where

i TAn = i / f (t)-dt, (4)u 1 0

T
Ak = T / £(t)-cos(^t)-dt (5)

and
T

Bk = i / f(t)-sinC^1 )-dt (6)

are the Fourier coefficients. If the period T is equal to 
one unit of time then the fundamental frequency is one 
cycle/(unit of time), and

OO
f(t) = A0 + 2 l [Ak* cos (27rkt) + Bk* sin(2irkt) ] . (7)

k= 1

For digital computer analysis, the time-domain tempera
ture function X(t) is sampled over one period, T = 1 year, to
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obtain the time series X(ti), i = 1, 2, . . ., N, where N is 
the number of sample points. The sampled versions of the 
corresponding Fourier coefficients (see Appendix A) are then

Aos “ R l (8)1 = 1

= X,

1 NAks = n X(ti) •cos(2irkti) , (9)

and

1 NBks = N J  X(ti)-sin(2TTkti). (10) 2

2. Power Spectral Density
For the power spectral density calculations which are 

obtained in this analysis, X(t^) is first transformed to a 
zero-average time-series X (t-) where

W  = x(ti} ■ x- ai)

The raw estimate, P(f), of the true power spectral density 
for a given frequency, f, is taken as (see Appendix A)

P(f)
 ̂ M-l2 • At • { R + 2 J 

r=l
[Rr-cos(Ifi)] Rm - c o s ( H M ) } ( 12)

where
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At = time interval between samples, 
f = frequency,
f = l/2*At; Nyquist frequency, 
r = autocorrelation lag number,
M = maximum value of r,

and where R is the estimated autocorrelation function of r
XQ(ti). In this analysis, is taken as (see Appendix A)

N- r
R = W  r N -—  7 X. X. ; r = 0, 1, . . . , M- r i l + r (13)

where M is the maximum value of the lag number r.

C. Results and Discussion

1. Low-Frequency Spectrum
The low-frequency spectrum will be defined as the 

discrete power spectral density of daily average river 
temperature for a frequency range of 0 to 182.5 cycles/year. 
This corresponds to a Nyquist folding frequency of 182.5 
cycles/year for a one-day sample interval. Because the 
water temperature was averaged on a daily basis, the diurnal 
fluctuation and the high-frequency noise have been effectively 
filtered so that no high-frequency folding will occur. Also, 
the average temperature is extracted in order to avoid a very 
large spike at zero frequency.

Spectral calculations for the daily average data records 
showed that, for practical purposes, the power spectral 
content is concentrated in a frequency range which is much
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smaller than the defined low-frequency range. For this 
reason, the low-frequency spectral plots will include only 
those frequencies where significant peaks have been found.

2. Spectra for Long-Term Records
Although the base frequency of one cycle/year was chosen 

for purposes of analysis, it was felt that useful information 
regarding long-term trends could be obtained by using data 
record lengths of longer duration than one year. The power 
spectral density for the five year (1953-1858) record is 
shown in Figure 1.

An obvious problem is encountered with regard to inter
preting this power spectral density plot near one cycle/year. 
The extremely large spike corresponding to the yearly cyclic 
(or almost cyclic) variation in water temperature effectively 
masks the spectral contribution of neighboring frequencies.
In order to extract this spike, a least-squares Fourier 
analysis was performed on the 1953-1958 data record. This 
analysis yielded a one cycle/year component having a peak 
amplitude of 24.9° F. A residual data record was then 
obtained by subtracting the one cycle/year Fourier approxi
mation from the raw data.

A power spectral density analysis of this residual 
record produced the plot shown in Figure 2. This plot shows 
that some relatively strong cyclic fluctuations occur in the 
residual data at frequencies greater than one cycle/year. 
However, the most noticeable phenomenon is the occurrence of
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Figure 1. Power Spectral Density for 1953-58 Data Record with X Removed.
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Figure 2. Power Spectral Density for 1953-58 Data Record with X and Fundamental
Component Removed.



23

the high spectral strength in the frequency range between 
zero and one cycle/year. This is attributable to long-term 
fluctuations in the water temperature.

A comparison of the relative strength of these long-term 
fluctuations for different data segments can be made by the 
use of spectral plots similar to the one shown in Figure 2.
As an example, Figure 3 shows spectral plots of the residual 
records for both the 1953-56 data segment and for the 1960-63 
data segment. Note that only a three-year portion of the 
1953-58 data record was taken since a valid comparison could 
be made only on the basis of equal record lengths. It is 
evident from these spectral plots that the long-term fluctua
tion (trend) in the 1953-56 data segment is greater than that 
for the 1960-63 record.

3. Spectra for One-Year Records
Because the yearly seasonal fluctuation of water tempera

ture is predominant in the data record, a one year record 
length corresponding to the base frequency of one cycle/year 
was found to be the most convenient for purposes of analysis. 
At first, the data records were spectrally analyzed on a 
yearly basis. In each case, the fundamental (one cycle/year) 
component was removed prior to the spectral calculations.

The resulting power spectral density plots showed the 
existence of significant peaks at frequencies greater than 
one cycle/year. This was to be expected since the power 
spectral density for the long-term record had already
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F r e q u e n c y ,  c y c l e s / y e a r

Figure 3. Three-Year Power Spectral Density Records.
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confirmed this. However, there was no consistency in the 
occurrence of these peaks from one year to another. This 
fact is illustrated in Figures 4 and 5. The power spectral 
density plot for 1960 is shown in Figure 4 while that for 
1961 is shown in Figure 5. A significant peak occurs only 
at 2 cycles/year for the 1960 record while significant peaks 
occur at 2, 4, and 7 cycles/year for the 1961 record. Thus 
an attempt to build a predictive model would be completely 
inadequate if one year of data were used to predict tempera
tures for the following year.

In order to obtain a clearer understanding of the nature 
of the occurrence of these spectral peaks, a data shift 
having a time increment of 30 days was used instead of the 
one-year shift. This data shifting process involved

(1) calculation of power spectral density for data 
points 1 to 365 ,

(2) shifting the data record ahead by 30 days and 
calculating the power spectral density for data 
points 31 to 395,

(3) repeating step (2) until the entire data record 
was exhausted.

This 30-day increment was found to be sufficient to show the 
rise and subsequent decay of low-frequency spectral peaks.
The 1960-64 data record was used for this part of the 
ana 1ysi s.

For the first part of the 1960-64 data record the only 
significant spectral peak was at 2 cycles/year. Figure 6
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Figure 4. Power Spectral Density for 1960 Data Record with X and Fundamental
Component Removed.
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F r e q u e n c y , c y c l e s / y e a r

Figure 5. Power Spectral Density for 1961 Data Record with X and Fundamental
Component Removed.
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illustrates the spectral plots for this portion of the data 
record for three 30-day increments. The 2 cycle/year peak 
is seen to be in a state of decay.

Figure 7 shows a three-dimensional plot of power spec
tral density which is obtained by using a third axis on 
which to plot increment numbers. Three plots are shown, one 
for each of increments 7 through 11. These increment numbers 
were chosen so that the maximum value of the 4 cycles/year 
spectral peak occurs. The rise and decay effect demonstrated 
by this three-dimensional diagram was found to occur consis
tently in the spectral calculations.

These results suggest that a mathematical model of the 
river temperature would have to include this rise and decay 
effect. A particular frequency component, s^(t), having 
time-variable amplitude Ĉ .(t), is representable by the time- 
domain function

sk (t) = Ck (t).sin(2Trkt + <f>ok) (14)

where
t = time,
k = Fourier harmonic number, and 

<t>ok = the initial phase.

A final point needs to be made in regard to 
tion of the harmonic components by the method of 
squares fit to the one-year data records. This 
validity of the extraction process itself. If,

the extrac- 
least-

concerns the 
for example
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F r e q u e n c y ,  c y c l e s / y e a r

Figure 6. Power Spectral Density Near 2 cycles/year for 1960 with J and Fundamental
Component Removed.
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Figure 7. Incremented Power Spectral Density Plots for Portion of 1960-64 Data 
Record.
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the spectral content of the data record is extracted for a 
given frequency range, then it should follow that the 
resulting spectral content would be negligible for the same 
range of frequencies. That this is true is demonstrated by 
Figure 8 which shows the resulting power spectral density 
plot for a typical one-year data record. In this case the 
Fourier components through the tenth harmonic were extracted. 
Correspondingly, the spectral density calculations, as shown 
in the graph, were insignificant for this same frequency 
range. Similar results were obtained for several of the 
residual records which were obtained for other data periods 
of one year. In this case, also, it should be pointed out 
that the spectral content at frequencies lower than one 
cycle/year is negligible because the record length is equal 
to the assumed fundamental period of one year. As mentioned 
previously, long-term fluctuations were very much in evidence 
when data segments of five years and four years were taken.
In that case, however, no extraction at frequencies corres
ponding to those record lengths (1/5 cycle/year and 1/4 
cycle/year) were made.

4. High Frequency Spectrum
The high-frequency portion of the spectrum of water 

temperature is defined as the frequency range 0 to 730 
cycles/year. The 730 cycles/year Nyquist frequency corres
ponds to the four readings per day which were used to sample 
the continuous temperature recordings.
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Figure 8. Power Spectral Density for 1953 Data Record with X and First Ten Harmonics
Removed.
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A one-year record length for the year 1964 was chosen 
for a first analysis. The large one cycle/year spike, as 
expected, dominated that portion of the spectrum near one 
cycle/year. Therefore, it was ignored in the plot of the 
spectral data. Further, because the frequency range covered 
was so broad, only the frequency ranges where noticeable 
peaks occurred were plotted.

The resultant spectral plot for the 1964 record is 
shown in Figure 9. The strong peak at 365 cycles/year is 
evidence of the diurnal fluctuations in the water temperature 
which were visually detectable on the continuous temperature 
record from which the samples were obtained. The 16, 30, and 
52 cycle/year fluctuations, however, were not detectable by 
visual inspection of the continuous record.

Thus the power spectral density analysis definitely 
shows that cyclic fluctuations, which could not have been 
visually detected from the time-domain data alone, were 
present in 1964. The question arises, in particular, as to 
the cause of the 52 cycle/year fluctuation. A part of this 
study was to determine whether or not cyclic thermal pollut
ants could be detected by spectral analysis techniques. One 
preconceived notion was that a 52 cycle/year fluctuation 
might exist because of the weekly business cycle. In order 
to attempt to answer this question, the continuous record 
was sampled for the first year of record (1953).

The overall results of this analysis were similar to 
the 1964 results. Because most of the interest centered
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Figure 9. Power Spectral Density for 1964 (4 samples/day)-
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around the 52 cycle/year fluctuation, only that portion of 
the spectrum was plotted for the 1953 record. The power 
spectral density plots in the neighborhood of 52 cycles/year 
for both the 1953 and the 1964 records are shown in Figure 
10. A noticeable shift away from 52 cycles/year occurs for 
the 1953 record. In this case, the peak occurs in the 58 to 
60 cycle/year frequency range. Also, the spectral-density 
level for the 1953 record is greater for a wider band of 
frequencies.

In an effort to determine the effect on the spectrum of 
a known 52 cycle/year fluctuation, a periodic test signal 
with period equal to one week was added to the 1964 sample 
record. This test signal consisted of a daily temperature 
increase of 0.1° F which lasted for 5.25 days. The test 
signal temperature was then dropped to 0° F for the remaining 
1.75 days (corresponding to a weekend). The test signal was 
allowed to run for the duration of the 1964 data record. In 
Figure 11 the plot of the spectrum near 52 cycles/year (1964) 
is shown both with and without the test signal input.

No attempt has been made to place any significance on 
these 52 cycle/year fluctuations insofar as thermal pollution 
is concerned. In order to do this with any certainty, it 
would be necessary to have temperature records available for 
the time periods before the existence of power plants and 
cities on this river. The aim here is to demonstrate that 
power spectral density techniques are applicable in the 
detection of future changes in cyclic thermal properties of
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Figure 10. Power Spectral Density Plots for 1953 and 1964 (4 samples/day).



Figure 11. Power Spectral Density Plots for 1964 with and without Test Signal Input
(4 samples/day).
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our large rivers. Whether these changes are man-made or 
natural can only be decided after a thorough study of and 
comparison with the spectral properties of a man-produced 
thermal inputs to the particular river being studied.

5. Turbulence Noise
As a continuing part of this investigation, efforts 

were made to characterize, on a spectral basis, the high 
frequency noise of river water temperature which is caused 
primarily by turbulence. The continuous records did not 
have sufficient accuracy to warrant an attempt to use them 
for such purposes. Thus more data had to be collected.

Temperature measurements were made on the Missouri 
River at Herrmann, Missouri, on June 10, 1971. Sample 
records were taken at three different depths for each of 
three different stations across the river. The measurements 
were made from the highway bridge at Herrmann.

The time-series records, when plotted, exhibited pulse- 
type fluctuations which appeared to be closely related to 
the velocity of the water. Thus, some of the measurements 
which were taken away from the main channel showed only one 
or two pulses in a given time of record because of the low 
flow rate. The record taken in the main channel at 0.8 
depth showed the most promise for a spectral analysis since 
it exhibited more pulses in the given time of record.

The resulting plot of the power spectral calculations 
for the above record is shown in Figure 12. It can be seen
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Figure 12. Power Spectral Density for Herrmann Data.
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here that most of the high frequency noise is concentrated 
near 5 cycles/hour and near 15 cycles/hour. The 5 cyclc/hour 
fluctuations correspond to the 20 minute record length while 
the 15 cycle/hour fluctuations correspond to the turbulence. 
Of course this only holds for this particular data record. 
Longer records are needed to better establish the spectral 
characteristics of this high frequency noise and, in parti
cular, attempt to determine the relationship between spectral 
peaks and river flow rate.
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IV. ESTIMATION AND PREDICTION

A. Introduction

Initial investigation of the long term records of the 
time-series for daily average water temperatures can be 
deceiving. The first impression is that a simple extraction 
of the one cycle/year component, along with the average 
temperature, over the record interval would leave a 
stationary random process with determinant statistical 
parameters. For example, one could analyze the residual 
record and test to see if it had normal distribution with y 
and a which could be estimated from the sample record. If 
this were true, then the problem of estimating thermal input 
levels would be a relatively simple process.

As seen from the power spectral density analysis, how
ever, the problem is far from being simple. Even if the 
seasonal fluctuation actually did consist of a true sinusoid 
plus random noise, the problem would not be solved because 
of the long-term fluctuations which were discussed previously.

In considering these difficulties with regard to the 
estimation problem, it was decided that a better approach 
might be that of temperature prediction rather than estima
tion of thermal input levels. Thus, even though the estima
tion process is discussed and analyzed, emphasis is placed 
on the development of the prediction model.

It is shown that daily-average water temperature can be 
reliably predicted over at least a 60 day range. The
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prediction range chosen covers a segment of the summer of 
1962. This segment was chosen because the summer water 
temperatures are the most critical in regard to a maximum 
allowable water temperature which might be imposed by a water 
quality control board. Also, available time-series records 
show that the water temperature fluctuations arc much larger 
during the warmer months of the year. Thus, a model which 
gives good prediction results during the summer months 
presumably would be at least as good a predictor during the 
winter months.

B. Fourier Regression Analysis

Observation of the time series X(t.)> i = 1, 2, . . .,
N, which represents the daily average values of water tempera
ture, clearly shows the predominance of a large annual cyclic 
variation. Thus, a separation of the data into its cyclic 
components by means of Fourier series is essential to the 
regression analysis process.

By taking one year of data, X(ti), i = 1 , 2, . . ., 365,
and assuming a periodic extension of this particular record, 
we can write, for Fourier components one through n,

n
x CtiD = Aqs + 2 l [Aks*cos (2iTkti) + Bks.sin(27Tkti) ] (15)

k 1

where



43

, 365
Aos = 36S i|1 X(tî (16)

= X ,

365Aks 3^5 I X (ti)-cos (2irkti) , (17)i = 1

and

1 365
Bks = 1ST I X(ti).sin(2*kti). (18)

Note in these expressions that a base period of one year 
(T = 1) is again assumed so that the corresponding fundamental 
frequency is one cycle/year. Because the sampled version of 
the Fourier coefficients, Aqs, A^s and , are themselves 
obtained by a least squares fit of the data to the kth 
harmonic component, (see Appendix A), the least squares 
approximation to the data is given by the finite series of 
equation (15).

Thus, the desired regression equation is

n
F(ti) = Aos + 2 l [Aks*cos (27rkti) + Bkg •sin(2irkti) ] (19)k 1

so that

X(tA) = F(ti). (20)

For later use it will be more convenient to employ the alter
nate form for F(t^) given by
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n
p(ti) = A, + 2 k^l Ck*sin^27Tkti + ^ ( 2 1 )

where

( 2 2 )

and

(23)

The residual record defined by the difference

D(ti) = X(t.) - F(ti) (24)

is used in analyzing the closeness of fit of the regression 
equation. By the use of power spectral density techniques 
it has been shown that the spectral content of D(t^) is 
insignificant for frequencies less than or equal to the 
maximum regression harmonic n. Thus, as n -► °°, D(t^) -► 0, 
i = l , 2 ,  . . 365.

It is not practical, or even desirable, to allow the 
condition n -+■ °°. The best approach seems to be a selection 
of n which allows the residual record to appear statistically 
as a normal random variable with mean zero over the one-year 
data interval. With this as a goal, the first complete year 
of record from the 1960-64 data set was analyzed.

This analysis consisted of selecting a value for n, 
obtaining the Fourier approximation, F(t^), and then perform
ing a Kolmogorov-Smirnoff test on the residuals, D(t^).
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Intermediate steps included calculation of both the standard 
error of estimate given by

36 5 -------- j----
Op = l </ [D(t.) ] /365 (25)E i = l 1

as well as the probabilities necessary to allow a plot of the 
corresponding histogram. All residual sets for n = 1, 2,
. . . , 10 satisfied the Kolmogorov-Smirnoff test for normal
random processes with zero mean.

The graphical plot in Figure 13 illustrates the fit of 
the regression equation F(t^) for the value n = 1. For 
purposes of comparison, a plot of X(t^) is included in Figure 
13.

C. Estimation of Thermal Input

In order to demonstrate how this regression model 
applies to the estimation process we consider a typical 
situation which is encountered in the thermal input process 
as applied to large rivers. This is illustrated in Figure 14 
where X(t) represents the continuous version of the natural 
fluctuations in water temperature, while U(t) represents the 
thermal input. The combination of mixing and heat loss 
causes the net water temperature to decay so that it eventu
ally approaches the natural temperature of the river.

By analogy, the thermal system in Figure 14 is repre
sented by the communication system shown in Figure 15. The
detector input consists of an attenuated version, U (t), ofa
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Figure 13. Fourier Regression Points and Daily Average Temperature, X(t.), for First
Year of 1960-64 Record. 1
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Figure 14. Assumed Thermal Process for Input to a Large 
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Figure 15. Communication System Analog of Thermal Process 
for Input to a Large River Channel.
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U(t) along with X(t). This situation is illustrated by the 
block diagram in Figure 15. In this case, the detector must 
make the best estimate of U (t) based on a measurement ofa

signal plus noise represented by the sum U (t) + X(t). Thus,a
for purposes of analysis, X(t) is the noise background from 
which the signal, U (t), must be estimated.a

As an example, assume that U (t) is a fixed constant U . 
This would be representative of the thermal output of a power 
plant having a constant load demand. The input to the detec
tor under this assumption is UQ + X(t).

Since the daily average data record is conveniently 
available in tabular form, it is used in place of X(t). Thus 
for one year of record the detector must estimate U based 
upon an input of UQ + X(t^). Recalling from the regression 
analysis that X(t^) is representable in the form

X(ti) = F(ti) + D(ti), (26)

we write the input to the detector, S(t.), as

SCtj) = Uo + F(ti) + D(t.) (27)

■ Uo + Aos + 2 J 1Cks*sin(2lrkti + ♦k5 + D(ti)

The average value of S(t^) over one year of record is then

n
SUi) = u0 + Aos + 2 I Cks.Sin(2irkt + 4>k) + D(ti) (28)+
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n
2 l Cks *sin(27rkt + 4>k) + D(t.) k 1

From the regression analysis D(t^) = 0 for sufficiently long 
data records so that

Hence, if A is known, then o

The assumption that Aqs is known is an oversimplifica
tion since Aqs can change radically from one year to another. 
This fact is well demonstrated in Figure 16 which shows a 
plot of values of X = Aqs obtained by the moving average 
method using 30 day increments. The entire data record of 
daily average temperatures was used but only the 1960-64 
portion of the record is plotted. These moving averages were 
found to vary over a temperature range of 55.6 °F to 58.6 °F 
for the 1960-64 data set and 55.3° to 60.8° for the 1953-58 
set.

The difficulty here arises from the fact that a periodic 
extension of X(t^) was assumed in the original Fourier series 
expression for this time series. That is, the assumption 
X(t + m) = X(t) for m = ±1, ±2, ±3, . . ., is not true for

(30)

is a valid estimate of the thermal input U .o
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Figure 16. Moving Averages for Aqs = X for 1960-64 Record.
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the time series being studies. It should be noted, however, 
that for the constant thermal input, UQ , the Fourier compon
ents will always have zero average value for a one year data 
record. Hence the difficulty which arises in the estimation 
of U is that it is imbedded in the residual noise + D(t.)
which remains when the cyclic components are extracted.

Because D(t.) is a set of normal random numbers with 
mean zero, it follows that A qs + D(t^) for time periods 
greater than one year is equivalent to a set of normal random 
numbers with a very slowly fluctuating mean of Aqs. It can 
be shown (see Appendix A) that the best statistical estimate
of a constant signal in a normal random noise process with

1 Nzero mean is just the statistic X = c? J x.. Hence, if AN i os
were fixed, as in a truly periodic function, then Aqs could
be extracted along with the cyclic components so that the

~ 1 3 6 5best estimate of U would be simply U = Y [U + D(t.)l-o v J o 36 5 . ̂  L o iVJi=l
This would be identical to the value which would be obtained
by the use of UQ = S (t /) - Aqs .

It follows from the above discussion that in order to
make a decision regarding the estimate of the thermal input
UQ for a given year, some method of judgement regarding the
value of A qs must be determined. One could conceivably use
the average of the moving averages as an estimate of Aqs. A
more promising approach is to perform a polynomial regression
on the moving averages of Aqs and use an extrapolation curve
to predict what the value of Aqs should be for a predetermined
time span. This predicted value of A could then be r os
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subtracted from S (t ̂ ) to obtain an estimate of UQ . This 
approach will be discussed again in the next section.

D . Forecasting of Water Temperatures

A more interesting and perhaps much more useful approach 
to the thermal input problem involves the forecasting or 
prediction of water temperatures. The following analysis 
demonstrates that the daily average water temperatures of 
large rivers can be accurately forecast for a prediction 
range of at least 60 days. The approach used in the analysis 
was prompted by the fluctuations in the moving averages of 
the yearly average water temperature, Aqs, which were 
discussed in the preceding section.

The power spectral density calculations for one year 
data records of the time-series X(t^), which were discussed 
in Chapter II, are indicative of similar moving average 
variations in the Fourier component amplitudes, , k = 1, 2, 
. . ., n. Verification of these variations was obtained by
taking the moving average values using 30 day increments over 
a 360 day period for harmonic components one through ten.
The first two-year segment of the 1960-64 data set was used 
for these calculations.

The variations in the Fourier components suggest that a 
representation of X(t) having the form

X ( t ) = A q ( t ) + 2 l  C v ( t )  - s i n ( 2 7 r k t  + <J>V ) (31)
k= 1
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where
A (t) = slowly fluctuating yearly average of water temperature, and
Ck (t) = slowly fluctuating Fourier component amplitude,

might be appropriate. This representation allows the 
prediction of AQ (t), CR (t), k = 1, 2, . . ., n , based on a
polynomial regression approximation to the moving averages. 
The resulting temperature prediction equation then takes the 
form:

n
X (t.) = A + 2 JD v 1J Op ,_Lk= 1 'kp sin(27rkt. + <f>, ) (32)

Note that A and C. , k = l ,  2, . . . , n ,  are not written op kp
as time functions because they represent Fourier components 
which should, by prediction, remain fixed for a 365 day data 
period. This 365 day period represents, assuming data are 
available, data segments which would be used to obtain 
predicted moving average values for 10, 30, and 60 day 
shifts from the last regression data point. Thus the first 
355, 335, and 305 days, respectively, calculated from the 
expression for X^(t^) represent temperatures which are 
already known from measured values of X(t^). The predicted 
temperatures are then, respectively, the last 10, 30, and 60 
day segments of

For prediction of the Fourier components A , , C2 and
, a regression polynomial of the form y = a + bx + e was 

fitted to a 90-day data segment (nine 10-day moving average
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increments). The initial point used in the calculations was 
obtained by shifting 150 days ahead of the first data point 
of the 1960-64 data set. This was done to allow prediction 
across the summer months because the summer water tempera
tures are the most critical. The results of this regression 
analysis are summarized in Table I and illustrated graphically 
in Figures 17, 18, 19, and 20.

It should be noted here that, as mentioned in the 
previous section, AQp might be used to obtain an estimate of 
the constant thermal input UQ . This estimate would take the 
form

A

sT t-y (33)

An initial effort in the forecasting of temperatures by 
X (ti) was made using only predicted values of Aq and .
The corresponding prediction equation was of the form

pl (t-) = A + C, .sin(27rt. + d)-. ) i' op lp K i yl̂IP (34)

The values of A^ and C.. were obtained from the regressionop lp 6
formulas, as illustrated in Figures 17 and 18, for 10, 30, 
and 60 day prediction ranges. The phase angle, was
obtained by using the calculated phase angle, > corres
ponding to the last regression data point and letting

*1 *01  + 2tt AtP (35)

whe re
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TABLE I

SUMMARY OF REGRESSION DATA FOR REGRESSION RANGES
INDICATED IN FIGURES 17, 18, 19, AND 20.

Fourier
Component a, °F b ,  °F

Maximum Error
A _

y  -  y ,  ° F
Standard Error 
of Estimate, °F

A0 56.26 0.051 0.35 0.22

S 11.71 0.035 0.08 0.05

C2 0.48 0.0055 -0.13 0.08

C4 0.28 0.091 0.18 0.10
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gure 17. 90-day Regression Data Segment for A (Moving Average) with Prediction
Line and Extended Extrapolation Line?
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Figure 18. 90-day Regression Data Segment for C, (Moving Average) with PredictionLine and Extended Extrapolation Line.
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Prediction Line 

Extrapolation Line

x

____ i___ i_____i____ i____ i_____i____ i____ i____ i____ i____ i_____i---- 1____i_____i_________________________
I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

Increment Number

Figure 19. 90-day Regression Data Segment for C~ (Moving Average) with PredictionLine and Extended Extrapolation Line;
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In c r e m e n t  Number

Figure 20. 90-day Regression Data Segment for (Moving Average) with PredictionLine and Extended Extrapolation Line?
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At
10/365
30/365
60/365

10 day prediction range, 
30 day prediction range, 
60 day prediction range.

Similar predictions were made using (a) A , , and
C~ , and (b) , C, , C0 , and C. . The use of C. was2p v ; op’ lp’ 2p’ 4p 4p
prompted by the fact that the spectral content of the daily 
average data indicated a significant 4 cycle/year peak which 
was increasing in amplitude over the prediction range. This 
fact is verified by the increase in and the corresponding 
prediction of a further increase by the prediction line shown 
in Figure 20. The resultant prediction equations are:

(a) X ,(t.)p 2 l = X , (t.) pi V TlJ + C2 -sin (4irt^ + <f>2) >

(b) X ,(t.) p3 iJ = X 0 Ct. )p 2 ̂ i J + C4p •sin(8irti + <t>4) •

and
(36)

The results of the temperature forecast are presented
graphically in Figures 21, 22, and 23. Each figure shows a
plot of the predicted daily average water temperature along
with the actual temperature for a prediction range of 60 days
Similar results were obtained for the 10 day and 30 day
prediction range. The three figures represent, respectively,
temperature predictions using (a) A and C. , (b) A , C-, ,op lp’ v J op* lp*
and C2p 9 and Aop ’ Clp’ C2p * and C4p*

The values of , C.^, and for the 60-day
prediction interval are summarized in Table II on page 64.
This table also lists the corresponding values of Aq ,
and which were calculated from the 365 data points

C C w1 , c2,
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Figure 21. 60-day Water Temperature Predictions Using A
op

and Cip-



Figure 22. 60-day Water Temperature Predictions Using A , and C2p ’



10 20 30 40 50 60
Time,days

o p ’ Clp’ C2p’ and C4p'Figure 23. 60-day Water Temperature Predictions Using A
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TABLE II

SUMMARY OF CALCULATED TRUE AND PREDICTED 
VALUES OF FOURIER COMPONENTS

Component
True

Value, °F
Predicted 
Value, ° F

Magnitude of 
Error, °F

Ao 57.02 56.21 1.81

C1 12.24 12.26 -0.02

C2 0.56 0.68 -0.12

C4 1.65 1.19 0.46

TABLE III

STATISTICS FOR PREDICTION RESIDUALS AND TRUE 
RESIDUALS USING (1) AQp, Clp, C 2p, AND C4 p,

AND (2) A , Clt C2 , AND C4

Prediction True
Statistic Residuals, Residuals,

X(t.) - X (t.)1 p i X ( t i )  -  x c ( t i )

X 0.10 0.18

oE 3.24 2.80
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corresponding to the 60-day prediction interval plus the
preceding 305 data points Thus, these
true values of A , o C C , and which
A , C, , op lp Co , 2p and C. . 4p The errors in
which are also summari zed in Table II,

eo Ao - A ,OP

ei = ci - Ci »IP

e2 C2 - C0 , and 2p

e4 = C4 - CA • 4p

The statistics for the residuals D(t-) = X(t.) - X (t), 
which were obtained by use of predicted values of Aq , , C2 >
and C^y are summarized in Table III. For comparison, Table 
III also shows a statistical summary of the temperature 
residuals which were calculated by using the true values of 
A , C 1# C^, and C^. In this case the residual set is 
obtained from the equation

DCt^) = X(t±) - X(,(ti) (37)

where

X(.(ti) = X + C1*sin(2nti + <*>̂3 + C 2 -sin(4Tit. + <p2)

+ C4 -sin(8uti + <)>4) . (38)

Examination of the graphs and the table show that the
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prediction is very good for the 60-day range which was 
covered.

E. Analysis of Residuals

One aim of this research was the establishment of some 
useful conclusions regarding the residual records corres
ponding to the various regression analyses which were used. 
If, for example, one is to use the estimation process which 
was discussed in section C then it must be established that 
the residuals which remain after the extraction of the 
harmonic components are normal random variates with zero 
mean. It would also be of value to know what the expected 
minimum attainable set of residuals (in the least-squares 
sense) might be.

In order to obtain some feeling for what the expected 
minimum attainable set of residuals is, the Minimum Sum of 
Squares (MINSS) method was developed. This method was devel
oped on the basis of the existence of trends in the data 
record as discussed in the section on long-term power spec
tral density calculations. In addition to long-term trends, 
one might consider the existence of short-term trends as 
well. Such a trend was represented for purposes of analysis 
by the linear expression a - 2at, 0 t T, where T is taken 
as a one-year data segment. Using this trend representation, 
the MINSS method was formulated by the following algorithm:

(1) Form the detrended time-series
XdC1 i) = - U a  ' 2*Aa*ti)
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with i = 1 , 2 ,  . . ., 365,
Aa = increment in trend slope.

Extract Fourier components 1 through 10 to obtain
the detrended residual set, Dj(t^).

365 2
Form the sum J ^d^i' "
Continue steps 1, 2, and 3 with increments in the 
slope of the trend until the value

365 7
min l [Dd (t-)] 

i = l

is attained.
The MINSS method was used for all years of record. For

365 7 2the 1953 record year a value min J [D,(t.)] of 1540 (°F)
i = l a

was obtained. This corresponds to a deviation of 2.05° F.
Thus, in general, for extraction of 10 Fourier harmonics it
is to be expected that a lower bound on the deviation would
be in the neighborhood of 2° F.

In order to further typify these residuals corresponding 
365 2

to min £ [D,(t.)] a histogram was obtained for the
i= 1 a 1

residuals obtained from the 1953 year of record. These same 
residuals were tested using the Kolmogorov-Smirnov test and 
were found to meet the requirements for normal random 
variates with a = 2.05 and zero mean. The histogram and the 
corresponding cumulative distribution function are shown in 
Figure 24.

This same set of residuals was taken to be the normal 
random process with mean zero which was assumed in the

(3)

(4)

(2)
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P(X=X|)

Figure 24 (a). Histogram for MINSS Residuals-1953 Record.

P(XSX|)

*i

Figure 24 (b). Cumulative Distribution Function Fit for MINSS
Residuals-1953 Record.
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analysis of the estimation process. In this case the 
constant input U was taken as 1° F. The processinc

° i K
consisted of taking ± J [min[D,(t.)j + U ] = 0 for values^ i = 1 u i  o o
of K corresponding to 1/5-year, 2/5-year, 3/5-year, 4/5-year,
and one-year sample intervals. The values of 0 for theseo
sample intervals were 1.075° F, 1.003° F, 1.010° F, 0.973° F, 
and 1.002° F respectively. Thus it can be seen that the 
estimator is very accurate, when the MINSS residuals are 
used, even for sample records which are considerably less 
than one year in length.

If MINSS is not used in the predictor analysis, then a 
verification of the approximate normality of the residuals 
still needs to be made. This was done for the first year of 
the 1960-64 data set. The approach here was as follows:

(1) extract fundamental harmonic component
(2) apply Kolmogorov-Smirnov test to residuals

1 K(3) obtain y I D(t-) for K = 10, 20, . . ., 360
* i = l 1

(4) extract second harmonic component from the first 
set of residuals and repeat steps (2) and (3).

This process was repeated until the first 10 harmonic compon
ents were extracted. The results of the Kolmogorov-Smirnov 
test are shown in Figure 25 for the residuals with (a) the 
fundamental extracted and (b) with the first 10 harmonic 
components extracted.

1 KThe graphs of the residual average values, y £ D(t-),
K i = 1 1

for the extraction of harmonic components 1 and 2 are shown 
in Figure 26. It is seen from these graphs that the required
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X-
-5

Figure 2

_i__ x
-5

P(X<Xj)
1.0

.8

_I____ I_____ I_____I__________ I_____L.
-4 -3 -2 “I O I 2

Xi

J_____I_____L.
3 4 5

5 (a). Cumulative Distribution Function Fit for 1960 
Record with X and Fundamental Extracted.

Figure 25 (b). Cumulative Distribution Function Fit for 1960Record with X and First Ten Harmonics Removed.
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K

Figure 26. Residual Averages for 1960 Record.
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number of days for the average of the residuals to approach 
zero is reduced considerably when the second harmonic compon
ent is extracted.

It is informative to determine the number of daily 
samples needed for a given number of extracted harmonics to 
reduce the residual average to a value below a fixed bound. 
For example, a bound of 0.2° F was used with the result that 
290 samples were needed with only the fundamental removed. 
When both the first and second harmonics were removed, the 
number of samples needed was found to be only 80. A plot of 
the number of samples needed to reduce the residual averages 
to a value less than or equal to 0.2 versus the number of 
harmonics extracted is shown in Figure 27. It is seen from 
this plot that extraction of Fourier components beyond the 
second harmonic will have little effect in reducing the 
number of samples needed to bring the average value of the 
residuals close to zero. Thus it may be reasonable to 
expect, at least from the estimation point of view, that 
extraction of only the fundamental and the second harmonic 
components will give good results when a one-year data 
segment is used.

F . Suggested Form for Regression Model

As in any mode 1-building process one should neve 
completely satisfied with results which, in the model 
builders opinion, can be improved upon. Thus, based 
both the power spectral density analysis of Chapter I

r be

upon 
II and
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Figure 27.
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D(ti) < 0.2 for 1960 Record.
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the regression analyses presented in this chapter, the 
following final model for river water temperatures is 
proposed:

n
X(t) = AQ (t) + l Ck (t)-sin(27rkt + <|>k)

k=l

+ {C^.(t)«sin(27rft + 4>) :n < f <_ 10} + n(t) (39)

where the model components are
(1) Aq (t) : slowly varying component,

n
(2) 7 Cv (t) • sin (2irkt + <f>v) : periodic components

k=l K K
which are harmonically related to the one cycle/year 
component,

(3) { (t) • sinC27Tft + 4>):n < £ <_ 10}: frequency 
components which are not harmonically related to 
the one cycle/year component, and

(4) n(t): normal random noise.
Actually, components (1) and (2) together form the general 
shape of the temperature curve which, as previously mentioned, 
closely resembles a sinusoid plus a steady-state component. 
However, it was observed that, characteristically, the 
temperature recordings remained near 32° F for a time period 
of about three months during the winter. Thus, the time- 
domain representation of the water temperature is more 
accurately described by a steady-state component with a 
clipped sinusoid. This means that, at most, three (n = 3) 
Fourier terms would be needed in component part (2) to
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adequately describe the general shape of the temperature 
curve.

The spectral peaks which occurred at frequencies beyond 
three cycles/year are not, by the nature of their occurrence, 
harmonically related to the clipped sinusoid. They were 
picked up, as any spectral components would be, by both the 
power spectral density analysis and the Fourier regression 
analysis. However, the previously noted lack of persistency 
of these peaks show that they can be thought of as wavelets 
which appear at various seasons of the year (in particular 
in the spring) and then decay. Since these wavelets are 
temporary in nature, Fourier analysis would not give a true 
representation of their strength within the time-period for 
which they occur.

That this is true can be shown by consideration of a 
sinusoidal wavelet having a period of 1/5 year (5 cycles/year) 
The wavelet, however, is assumed to exist for only one 
complete cycle for each year of record. This is illustrated 
by the waveform shown in Figure 28 (a). The corresponding 
amplitude spectrum for this wavelet is shown in Figure 28 (b). 
Thus, the Fourier analysis would result in a 5 cycle/year 
sinusoidal component with amplitude 1/5° F rather than the 
peak amplitude of 1° F which the wavelet actually possesses. 
The remaining cyclic components which are represented in the 
amplitude spectral plot would, of course, sum with this 5 
cycle/year component to yield the waveform of Figure 28 (a). 
Thus, if one is willing to accept the less-accurate
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e ( t  ) = [ o s  t <  

± S . S
5
I

Figure 28 (a). 5-Cycle Wavelet Which Persists for 1/5
Period.

Cn

F r e q u e n c y ,  c y c l e s / t i m e  u n i t

Figure 28 (b). Amplitude Spectrum for (a).
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t e m p e r a t u r e  p r e d i c t i o n ,  t h e n ,  b a s e d  u p o n  t h e  r e s u l t s  

p r e s e n t e d  i n  t h i s  c h a p t e r ,  t h e  p r e d i c t i o n  e q u a t i o n

X ( t i } “ A o p  + C k p - s i n ( 2 ^ k t i  ♦  4,k ) ( 4 0 )

s h o u l d  c o n s i s t e n t l y  y i e l d  p r e d i c t e d  t e m p e r a t u r e s  w i t h i n  a  

s t a n d a r d  d e v i a t i o n  o f  a b o u t  3° F .

I f  t h e  w a v e l e t  e f f e c t s  r e p r e s e n t e d  b y  C ^ ( t )  • s i n ( 2 - n - f t  

+ 4>) a r e  d e em ed  c r i t i c a l ,  t h e n  t h e  p r e d i c t i o n  m e t h o d  f o r  

C f ( t )  s h o u l d  b e  b a s e d  o n  a c o m b i n a t i o n  o f  t h e  u s e  o f  p o w e r  

s p e c t r a l  d e n s i t y  m e t h o d s  a n d  w h a t  w i l l  b e  c a l l e d  s a m p l e -  

i n t e r v a l  s c a n n i n g .  T h i s  l a t t e r  t e c h n i q u e  w o u l d  c o n s i s t  o f  

s c a n n i n g  a c r o s s  t h e  o n e - y e a r  s a m p l e  i n t e r v a l  u s i n g  s u b 

d i v i d e d  s a m p l e  i n t e r v a l s  w h i c h  w o u l d  c o r r e s p o n d  t o  t h e  

p a r t i c u l a r  f r e q u e n c y  ( w a v e l e t )  b e i n g  s o u g h t .  F o r  e x a m p l e ,  

a  s c a n  a c r o s s  t h e  t i m e  i n t e r v a l  o f  0 < t  < 1 ( y e a r )  i n  

F i g u r e  28 ( a )  w o u l d  o n l y  y i e l d  n o n z e r o  v a l u e s  f o r  t h e  5 

c y c l e / y e a r  c y c l i c  c o m p o n e n t  w h e n  t h e  s c a n  i s  i n  t h e  i n t e r v a l  

0 <_ t  <_ 2 / 5 .

A s  m e n t i o n e d  i n  t h e  i n t r o d u c t o r y  r e m a r k s , t h e  p r e d i c 

t i o n  o f  t h e  w a t e r  t e m p e r a t u r e  s h o u l d  p r o v e  v a l u a b l e  t o  b o t h  

p o w e r  c o m p a n i e s  a n d  t o  w a t e r  q u a l i t y  c o n t r o l  g r o u p s .  I n  

d i s c u s s i n g  t h i s  p a r t i c u l a r  a s p e c t  o f  t h i s  p r o b l e m  w i t h  

D r .  D e r a i d  M o r g a n ,  E l e c t r i c a l  E n g i n e e r i n g  D e p a r t m e n t ,  

U n i v e r s i t y  o f  M i s s o u r i - R o l l a , i t  w a s  f o u n d  t h a t  m o s t  o f  t h e  

l a r g e  f o s s i l - f u e l  p l a n t s  w h i c h  a r e  p r e s e n t l y  b e i n g  p l a n n e d  

a r e  e x p e c t e d  t o  h a v e  a  c o n s t a n t  o u t p u t  p o w e r  l e v e l .  T h u s ,
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i t  i s  t o  b e  e x p e c t e d  t h a t  t h e  r e p r e s e n t a t i o n  o f  t h e  t h e r m a l  

i n p u t  t o  t h e  c o o l i n g  m e d i u m  b y  t h e  c o n s t a n t ,  U Q , i s  r e a s o n 

a b l e .

T h i s  m e a n s  t h a t  t h e  p r e d i c t i v e  e q u a t i o n  w o u l d  t a k e  t h i s  

i n p u t  i n t o  a c c o u n t  b y  a d d i t i o n .  T h u s  t h e  p r e d i c t i o n  e q u a t i o n  

f o r  r i v e r  t e m p e r a t u r e  b e c o m e s :

X ( t i ) = U o + A op  + C k p - s i n ( 2 T r k t i  + * k ) .  ( 4 1 )

T h i s  m o d e l  s h o u l d  p r o v i d e  a n  e f f e c t i v e  m e a n s  w h e r e b y  w a t e r  

q u a l i t y  c o n t r o l  s t a n d a r d s  c a n  b e  a s s u r e d .
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V .  C O N C L U S I O N S

The r e s u l t s  p r e s e n t e d  i n  t h i s  d i s s e r t a t i o n  d e m o n s t r a t e  

t h e  a p p l i c a b i l i t y  o f  p o w e r  s p e c t r a l  d e n s i t y  t e c h n i q u e s  a n d  

l i n e a r  r e g r e s s i o n  a n a l y s i s ,  e s p e c i a l l y  F o u r i e r  s e r i e s  

r e g r e s s i o n  a n a l y s i s ,  t o  t h e  m a t h e m a t i c a l  m o d e l i n g  o f  r i v e r  

w a t e r  t e m p e r a t u r e .

The e x i s t e n c e  o f  l o n g - t e r m  f l u c t u a t i o n s  w a s  v e r i f i e d  i n  

C h a p t e r  I I I  b y  p o w e r  s p e c t r a l  d e n s i t y  c a l c u l a t i o n s  f o r  5 - y e a r  

a n d  3 - y e a r  r e c o r d  l e n g t h s .  T h e s e  c a l c u l a t i o n s ,  w h i c h  a r e  

p l o t t e d  i n  F i g u r e s  2 a n d  3 ,  s h o w  t h a t  t o  a t t e m p t  a n  a c c u r a t e  

p r e d i c t i o n  o f  f u t u r e  v a l u e s  o f  r i v e r  w a t e r  t e m p e r a t u r e  o n  t h e  

b a s i s  o f  a n y  s i n g l e  s e g m e n t  o f  d a t a  w o u l d  b e  i m p o s s i b l e .

T h i s  i n c l u d e s  o n e - y e a r  s e g m e n t s  w h i c h  c o r r e s p o n d  t o  t h e  l a r g e  

y e a r l y  s e a s o n a l  f l u c t u a t i o n  o f  r i v e r  w a t e r  t e m p e r a t u r e .

The  p o w e r  s p e c t r a l  d e n s i t y  c a l c u l a t i o n s  f o r  b o t h  t h e  

l o n g - t e r m  r e c o r d s  a n d  t h e  o n e - y e a r  r e c o r d s  w e r e  m ad e  a f t e r  

r e m o v a l  o f  t h e  o n e  c y c l e / y e a r  t e m p e r a t u r e  c o m p o n e n t .  T h e  

p o w e r  s p e c t r a l  d e n s i t y  c a l c u l a t i o n s  f o r  t h e  o n e - y e a r  r e c o r d s  

r e v e a l e d  t h e  e x i s t e n c e  o f  f l u c t u a t i o n s  i n  t h e  a m p l i t u d e  o f  

s p e c t r a l  p e a k s  w h i c h  e x i s t e d  i n  t h e  f r e q u e n c y  r a n g e  o f  0 t o  

10 c y c l e s / y e a r .  Th e  f l u c t u a t i o n  i n  t h e  a m p l i t u d e  o f  t h e s e  

s p e c t r a l  p e a k s  w a s  f u r t h e r  d e m o n s t r a t e d  b y  F o u r i e r  s e r i e s  

c a l c u l a t i o n  o f  t h e  a m p l i t u d e  o f  t h e  v a r i o u s  c o m p o n e n t s  w h i c h  

w e r e  h a r m o n i c a l l y  r e l a t e d  t o  t h e  o n e  c y c l e / y e a r  f l u c t u a t i o n .  

T h e s e  r e s u l t s  l e d  t o  t h e  c o n c l u s i o n  t h a t  a  r e p r e s e n t a t i o n  o f  

t h e s e  f l u c t u a t i o n s  w o u l d  be  b e s t  r e p r e s e n t e d  b y  t h e  t i m e -
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d o m a i n  f u n c t i o n

C k ( t ) . . s i n ( 2 7 r k t  + 4,^)

w h e r e  C k ( t )  i s  t h e  t i m e - v a r y i n g  f l u c t u a t i o n  i n  t h e  a m p l i t u d e  

o f  t h e  k t h  h a r m o n i c  c o m p o n e n t  a n d  <j>k  i s  t h e  i n i t i a l  p h a s e .

C o n s i d e r a t i o n  h a s  a l s o  b e e n  g i v e n  t o  t h e  a p p l i c a t i o n  o f  

c o m m u n i c a t i o n  t h e o r y  t e c h n i q u e s  t o  t h e  e s t i m a t i o n  o f  m a n - m a d e  

t h e r m a l  i n p u t s  t o  r i v e r s .  The  t e c h n i q u e s  a r e  s h o w n  t o  be  

a p p l i c a b l e  i n  C h a p t e r  I V ,  b u t  a  m o r e  u s e f u l  r e s u l t  i s  t h a t  

o f  a  m a t h e m a t i c a l  m o d e l  w h i c h  a l l o w s  f u t u r e  v a l u e s  o f  w a t e r  

t e m p e r a t u r e  t o  b e  p r e d i c t e d .

T h e  p r e v i o u s l y  d i s c u s s e d  a m p l i t u d e  f l u c t u a t i o n s ,  C k ( t ) ,  

l e d  t o  a n  a p p r o x i m a t i n g  e q u a t i o n  t o  r i v e r  w a t e r  t e m p e r a t u r e  

h a v i n g  t h e  f o r m

n
X ( t ) = A 0  ( t )  + l  C k  ( t )  * s i n  ( 2 i r k t  + <J>k )

k  —■ 1

w h e r e  A Q ( t )  i s  t h e  r e p r e s e n t a t i o n  o f  t h e  s l o w l y  v a r y i n g  

y e a r l y - a v e r a g e  o f  w a t e r  t e m p e r a t u r e .  T h i s  m o d e l  a l l o w s  

p r e d i c t i o n  o f  f u t u r e  v a l u e s  o f  r i v e r  w a t e r  t e m p e r a t u r e  b a s e d  

on  p r e d i c t e d  v a l u e s  o f  A q a n d  C k , k  = 1 ,  2 ,  . . . ,  n .

A  t e s t  o f  t h e  p r e d i c t i v e  c a p a b i l i t y  o f  t h e  m o d e l  w a s  

made u s i n g  p r e d i c t e d  v a l u e s  o f  A  , C . , C 0 , a n d  C . . T h e s e  

p r e d i c t e d  v a l u e s  a r e ,  s y m b o l i c a l l y ,  A Q p , C l p , C 2 p , a n d  C 4 p * 

T h e  p r e d i c t i o n  e q u a t i o n  u s e d  f o r  t h e  t i m e - s e r i e s  o f  d a i l y  

a v e r a g e  w a t e r  t e m p e r a t u r e  w a s  t h e n
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V V  = A op  + ^ k p  * s i n  ( 2 i r k t  -  4>k ) .

k?*3

The  r e a s o n  f o r  u s i n g  o n l y  a n d  , i n  a d d i t i o n  t o  A q ^ a n d

C l p *  w as  t *ie  ^ a c t  t h a t  t h e y  w e r e  t h e  o n l y  s i g n i f i c a n t  p o w e r  

s p e c t r a l  d e n s i t y  c o m p o n e n t s ,  o t h e r  t h a n  t h e  o n e  c y c l e / y e a r  

c o m p o n e n t ,  w h i c h  w e r e  d e t e c t e d  f o r  t h e  p a r t i c u l a r  d a t a  

s e g m e n t  u s e d  i n  t h e  a n a l y s i s .  The  r e s u l t s  f o r  a 6 0 - d a y  

p r e d i c t i o n  o f  A q , C ^ ,  » a n d  , a s  s u m m a r i z e d  i n  T a b l e  I I ,

sh ow  t h a t  t h e  p r e d i c t i o n  e r r o r s  a r e

4

o • OO 0 F f o r V

1
- 0 . 0 2 ° F f o r

c i >

2 - 0 . 1 2 ° F f o r
C 2 ’

4 O ■P* O' 0 F f o r
C 4 '

F u r t h e r  c o n s i d e r a t i o n  o f  a l l  p h a s e s  o f  t h e  s t u d y  l e d  t o  

t h e  c o n c l u s i o n  t h a t  t h e  m a t h e m a t i c a l  m o d e l  s h o u l d  b e  d i v i d e d  

i n t o  f o u r  c o m p o n e n t  p a r t s  a s  e x p r e s s e d  b y  t h e  e q u a t i o n

n
X(t) = AQ (t) + l  Ck (t) *sin(2Trkt + <J>k)k 1

+ { C ^  ( t ) - s i n  ( 2 ? r f t  + <f>):n < f  <_ 1 0 }  + n ( t )

T h e s e  c o m p o n e n t s  a r e :

( 1 )  A Q ( t ) : s l o w l y  v a r y i n g  c o m p o n e n t ,

n
( 2 )  l  C, ( t )  • s i n  (2Trkt + <f>,) : p e r i o d i c  c o m p o n e n t s  w h i c h

k= 1 K
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a r e  h a r m o n i c a l l y  r e l a t e d  t o  t h e  o n e  c y c l e / y e a r  

c o m p o n e n t ,

( 3 )  { C f ( t )  * s i n ( 2 T r f t  + <f>):n < f  <_ 1 0 } :  f r e q u e n c y  

c o m p o n e n t s  w h i c h  a r e  n o t  h a r m o n i c a l l y  r e l a t e d  t o  

t h e  o n e  c y c l e / y e a r  f l u c t u a t i o n ,

( 4 )  n ( t ) :  n o r m a l  r a n d o m  n o i s e .

T h i s  m o d e l  a l l o w s  t h e  c a p a b i l i t y  o f  ( 1 )  r o u g h  p r e d i c t i o n  

b a s e d  on  t h e  m o d e l  c o m p o n e n t s  o n e  a n d  tw o  a n d  ( 2 )  f i n e r  

p r e d i c t i o n  b a s e d  on  m o d e l  c o m p o n e n t s  o n e ,  t w o ,  a n d  t h r e e .

T h e  a d d i t i o n  o f  m o d e l  c o m p o n e n t  t h r e e  g i v e s  t h e  c a p a b i l i t y  

o f  p r e d i c t i n g  t h e  s h o r t - t e r m  s e a s o n a l  f l u c t u a t i o n s  w h i c h  may  

l a s t  f o r  t i m e  p e r i o d s  o f  l e s s  t h a n  o n e  f u l l  y e a r .  T h e  

a s s u m p t i o n  t h a t  c o m p o n e n t  f o u r  i s  a n o r m a l  r a n d o m  v a r i a b l e  

w i t h  z e r o  m ean  i s  a  v a l i d  h y p o t h e s i s  o n  t h e  b a s i s  o f  t h e  

K o l m o g o r o v - S m i r n o v  t e s t s  a p p l i e d  t o  t h e  r e s i d u a l  d a t a .

I t  i s  f e l t  t h a t  m o d e l  c o m p o n e n t  t h r e e  o f  t h e  w a t e r  

t e m p e r a t u r e  m o d e l  w o u l d  f u r n i s h  a  f r u i t f u l  r e s e a r c h  s u b j e c t  

f o r  f u t u r e  s t u d y .  I t  w a s  o b s e r v e d  t h a t ,  i n  a d d i t i o n  t o  t h e  

f l u c t u a t i o n s  i n  t h e  a m p l i t u d e  c o m p o n e n t s ,  C ^ C t )  a n d  C ^ C t ) ,  

t h e  f r e q u e n c y  c h a n g e d  f o r  som e  o f  t h e  p o w e r  s p e c t r a l  d e n s i t y  

p e a k s .  T h u s  a t h r e e - d i m e n s i o n a l  p l o t  s i m i l a r  t o  t h a t  s h o w n  

i n  F i g u r e  7 ,  o n l y  w i t h  i n c r e m e n t s  l e s s  t h a n  30 d a y s ,  w o u l d  

f u r n i s h  u s e f u l  i n f o r m a t i o n  a b o u t  t h e s e  f r e q u e n c y  v a r i a t i o n s .  

I t  m i g h t  b e  w e l l  t o  c o n s i d e r  t h e  i n c l u s i o n  o f  t h e s e  f r e q u e n c y  

c h a n g e s  i n  t h e  m o d e l i n g  p r o c e s s .

A n o t h e r  p o s s i b l e  a r e a  f o r  f u r t h e r  i n v e s t i g a t i o n  i s  t h a t  

o f  a p p l y i n g  p o w e r  s p e c t r a l  d e n s i t y  t e c h n i q u e s  t o  t h e
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s t a t i s t i c a l  a n a l y s i s  o f  n o n - s t a t i o n a r y  r a n d o m  p r o c e s s e s .

T h i s  w o u l d ,  i n  e f f e c t ,  i n v o l v e  t h e  e x t r a c t i o n  o f  p o l y n o m i a l  

f i t s  t o  s a m p l e s  w h i c h  a p p e a r  t o  b e  n o r m a l  r a n d o m  v a r i a t e s  b u t  

w h i c h  a c t u a l l y  c o n t a i n  l o n g - t e r m  t r e n d s .  T h e  p r e s e n c e  o f  

l o n g - t e r m  t r e n d s  i n  t h e  d a t a  w i l l ,  w hen  s p e c t r a l l y  a n a l y z e d ,  

a p p e a r  s o m e w h a t  l i k e  t h e  s p e c t r a l  p l o t  s h o w n  i n  F i g u r e  2 .

One c o u l d  t h e n  f i t  t h e  d a t a  t o  v a r i o u s  p o l y n o m i a l s ,  e x t r a c t  

t h e  p o l y n o m i a l s ,  a n d  t h e n  a s s u m e  t h a t  t h e  b e s t  f i t  t o  t h e  

t r e n d  i s  t h a t  p o l y n o m i a l  w h i c h  y i e l d s  t h e  s m a l l e s t  l o w -  

f r e q u e n c y  s p e c t r a l  o u t p u t .

F u r t h e r  w o r k  a l s o  n e e d s  t o  b e  d o n e  t o w a r d  i m p l e m e n t i n g  

t h e  p r o p o s e d  p r e d i c t i o n  m o d e l s .  T h i s  w o u l d  i n v o l v e  t h e  

c o l l e c t i o n  o f  m o r e  d a t a ,  t h e  r e g r e s s i o n  f i t s  t o  t h e  d a t a ,  

a n d  a  c o r r e s p o n d i n g  p r e d i c t i o n  o f  f u t u r e  w a t e r  t e m p e r a t u r e s  

b a s e d  on  t h e  p r o p o s e d  m o d e l .  A  c h e c k  o f  t h e  a c c u r a c y  o f  t h e  

m o d e l  c o u l d  t h e n  be  made  b y  t h e  c l o s e n e s s  o f  t h e  p r e d i c t e d  

t e m p e r a t u r e s  t o  t h e  t r u e  t e m p e r a t u r e .
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A P P E N D I X  A

M A T H E M A T IC A L  F U N D A M E N T A L S

A .  A p p r o x i m a t i o n  o f  R e a l  F u n c t i o n s

The p r i m a r y  g o a l  o f  t h i s  r e s e a r c h  h a s  b e e n  t h e  d e v e l o p 

m e n t  o f  a  m a t h e m a t i c a l  m o d e l  w h i c h  c a n  b e  c o n s i d e r e d  t o  b e  

t h e  b e s t  a p p r o x i m a t i o n  o f  t h e  o b s e r v e d  f l u c t u a t i o n s  i n  r i v e r  

w a t e r  t e m p e r a t u r e .  T h e  t r u e  t e m p e r a t u r e  f u n c t i o n ,  X ( t ) , 

w h i c h  r e p r e s e n t s  t h e s e  t e m p e r a t u r e  f l u c t u a t i o n s  i s ,  b y  i t s  

v e r y  n a t u r e ,  a  b o u n d e d  a n d  c o n t i n u o u s  r e a l  f u n c t i o n .  H e n c e ,  

t h e  p r o b l e m  o f  b u i l d i n g  a  s u i t a b l e  m o d e l  f o r  X ( t )  i n v o l v e s  

f i n d i n g  a n  a p p r o x i m a t i n g  f u n c t i o n ,  H ( ¥ , t ) , w h e r e  ¥ r e p r e s e n t s  

a  f i x e d  s e t  o f  p a r a m e t e r s .  T h e  t w o  m a j o r  c r i t e r i a  i n  t h i s  

m o d e l - b u i l d i n g  p r o c e s s  a r e  ( 1 )  t h e  t y p e  o f  a p p r o x i m a t i n g  

f u n c t i o n  u s e d  a n d  ( 2 )  t h e  g o o d n e s s  o f  f i t  t o  t h e  f u n c t i o n  

X ( t ) . I n  t h e  d i s c u s s i o n  w h i c h  f o l l o w s  t h e  m o r e  g e n e r a l  

f u n c t i o n a l  n o t a t i o n  f ( t )  w i l l  b e  u s e d  a s  t h e  f u n c t i o n  t o  b e  

a p p r o x i m a t e d .

One w i d e l y  u s e d  m e a s u r e  o f  t h e  g o o d n e s s  o f  f i t  o f  t h e  

a p p r o x i m a t i n g  f u n c t i o n  i s  t h a t  o f  a  d i s t a n c e  f u n c t i o n  

p [ f ( t ) , H ( y , t ) ] w h i c h  i s  u s e d  t o  d e t e r m i n e  t h e  d i s t a n c e  o f  

H ( ¥ , t )  f r o m  f ( t ) .  T h e  f u n c t i o n  p w h i c h  i s  c o n s i d e r e d  i n  

t h i s  s t u d y  i s  a n o r m  e l e m e n t  d e f i n e d  o n  a  f u n c t i o n  s p a c e ,  V ,  

a n d  h e n c e  h a s  t h e  f o l l o w i n g  p r o p e r t i e s :

1.  I Ip|  | > 0 ,  I | p | | = 0 i f f  p = 0

2.  | |cp | | = |c | * | | p ||» f o r  a l l  c  e R e a l s ,  a n d
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3 - I IP  + y I I  1  I IP  I I + I | Y I I  , f o r  a l l  ( p , y ) e V .

Th e  b e s t  a p p r o x i m a t i o n  o f  a r e a l - v a l u e d  c o n t i n u o u s  

f u n c t i o n  f ( t )  i s  d e f i n e d  t o  b e  a  s o l u t i o n  t o  t h e  f o l l o w i n g  

p r o b l e m :

G i v e n  t h a t  f ( t )  i s  a r e a l - v a l u e d  c o n t i n u o u s  f u n c t i o n ,  

l e t  H ( ¥ , t )  b e  a r e a l - v a l u e d  a p p r o x i m a t i n g  f u n c t i o n  w h i c h  

d e p e n d s  c o n t i n u o u s l y  o n  t  a n d  on  t h e  p a r a m e t e r  s e t  V . G i v e n  

t h e  d i s t a n c e  f u n c t i o n  p ,  f i n d  t h e  p a r a m e t e r  s e t  s u c h  t h a t

p[f(t),H(¥*,t)] < p[f(t),H(¥,t)]

f o r  a l l  y .

F o r  t h e  p u r p o s e  o f  t h i s  a n a l y s i s ,  f ( t )  i s  c o n s i d e r e d  t o

b e  a m em ber  o f  t h e  c l a s s  o f  n o r m s  c a l l e d  L  - n o r m s .  T h e  L -
P  P

n o r m  o f  t h e  f u n c t i o n  f ( t ) ,  a s  d e f i n e d  on  t h e  r e a l  i n t e r v a l  

[ 0 , 1 ] ,  i s  d e f i n e d  b y  t h e  r e l a t i o n

L = [ /  | f ( t ) | P d t ] 1 / p , p > 0 .  ( A - 1)
p 0

T h e  b e s t  a p p r o x i m a t i o n  t o  f ( t )  i s  f o u n d  b y  m i n i m i z a t i o n  o f  

t h e  Lp  d i s t a n c e  f u n c t i o n

I f  | f ( t )  - H ( ¥ , t ) | P d t ] 1 / p .
0

I n  o r d e r  t o  b e  u s e f u l ,  t h e  g e n e r a l  f o r m  o f  t h e  a p p r o x i 

m a t i n g  f u n c t i o n  H ( ¥ , t )  m u s t  be  r e p l a c e d  b y  a s p e c i f i c  f u n c t i o n  

t y p e  w h i c h ,  i n  t h i s  a n a l y s i s ,  i s  a l i n e a r  a p p r o x i m a t i n g  f u n c 

t i o n .  The l i n e a r  a p p r o x i m a t i n g  f u n c t i o n  i s  g i v e n  b y
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n
= I  a ,  o , ( t )  ( A - 2 )L i=l 1 1

w h e r e  a ^ ,  i  = 1,  2,  . . . , n ,  a r e  r e a l  c o n s t a n t s  a n d  a ^ ( t ) ,  

i = l , 2 ,  . . . , n ,  a r e  r e a l - v a l u e d  f u n c t i o n s  o f  t h e  r e a l  

v a r i a b l e  t .  T h e  o u ( t )  f u n c t i o n s  a r e  a s s u m e d  t o  b e  l i n e a r l y  

i n d e p e n d e n t .

The  m o s t  w i d e l y  u s e d  n o r m  f o r  l i n e a r  a p p r o x i m a t i n g  

f u n c t i o n s  i s  t h e  I ^ - n o r m  w h i c h  r e s u l t s  i n  t h e  l e a s t - s q u a r e s  

a p p r o x i m a t i o n  o f  f ( t )  g i v e n  b y

L 2 ( f  - H l ) = [ / *  [ £ ( t )  - H L ( 4 < , t ) ] 2d t ] 1 / 2 . ( A - 3 )

T h i s  no rm  h a s  t h e  a d v a n t a g e  t h a t ,  w i t h  t h e  u s e  o f  t h e  l i n e a r  

a p p r o x i m a t i n g  f u n c t i o n ,  i t  i s  p o s s i b l e  t o  o b t a i n  e x p l i c i t  

e x p r e s s i o n s  f o r  t h e  e l e m e n t s  o f  t h e  s e t  ¥ w h i c h  c o n s t i t u t e  

t h e  c o e f f i c i e n t s  o f  H ^ .  A l s o ,  i t  c a n  be  s h o w n  t h a t  u n i q u e  

b e s t - a p p r o x i m a t i o n s  t o  f ( t )  e x i s t .

W i t h  t h e  u s e  o f  t h e  l i n e a r  a p p r o x i m a t i n g  f u n c t i o n  

H ^ ( y , t )  a n d  t h e  L ^ - n o r m ,  t h e  c r i t e r i o n  u s e d  t o  m e a s u r e  t h e  

g o o d n e s s  o f  f i t  t o  f ( t )  i s  t h e  m i n i m i z a t i o n  o f  L ^ C f  ■  H ^ ) . 

T h a t  i s ,  o b t a i n  t h e  s e t  o f  c o e f f i c i e n t s ,  ¥ ,  w h i c h  m i n i m i z e s  

t h e  d i s t a n c e  b e t w e e n  f ( t )  a n d  H ^ ( f , t )  i n  t h e  l e a s t - s q u a r e s  

s e n s e .  T h e  m i n i m i z a t i o n  p r o c e s s  i s  s i m p l i f i e d  b y  m i n i m i z i n g  

[ L ^ C f  - H ^ ) ]  ̂ r a t h e r  t h a n  ( f  ~ H ^ ) .

T h u s ,  t h e  m i n i m i z a t i o n  p r o c e s s  i n v o l v e s  t a k i n g  t h e

p a r t i a l  d e r i v a t i v e
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1
g | 7 [ H L ( ' l ' , t ) ] } d t .- 2  /  { [ f ( t )  - H L ( y , t ) ] *

0

S e t t i n g  t h i s  p a r t i a l  d e r i v a t i v e  e q u a l  t o  z e r o  w i l l  t h e n  y i e l d  

t h e  d e s i r e d  p a r a m e t e r  s e t  .

A  w i d e l y  u s e d  a p p l i c a t i o n  o f  t h i s  t e c h n i q u e  i s  t h a t  o f  

l e a s t - s q u a r e s  p o l y n o m i a l  r e g r e s s i o n  a n a l y s i s .  I t  i s  a l s o  

u s e d  i n  t h e  d e v e l o p m e n t  o f  F o u r i e r  s e r i e s  a p p r o x i m a t i o n s  t o  

r e a l  p e r i o d i c  f u n c t i o n s .

B . F o u r i e r  S e r i e s

S i n c e  r i v e r  w a t e r  t e m p e r a t u r e  e x h i b i t s  a  p r e d o m i n a n t  

y e a r l y  s e a s o n a l  f u n c t i o n  w h i c h  i s  a l m o s t  p e r i o d i c ,  i t  i s  

w o r t h w h i l e  t o  c o n s i d e r  t h e  s t u d y  o f  a p p r o x i m a t i o n s  t o  p e r i o d i c  

f u n c t i o n s .  The  a c c e p t e d  a p p r o a c h  f o r  t h i s  t y p e  o f  a p p r o x i m a 

t i o n  i s  t h r o u g h  t h e  u s e  o f  F o u r i e r  s e r i e s .  I t  i s  u s e f u l  t o  

f i r s t  s t a t e  t h e  f o l l o w i n g  d e f i n i t i o n s .

D e f i n i t i o n  7 . A  r e a l - v a l u e d  t i m e - d o m a i n  f u n c t i o n  g ( t )  

i s  s a i d  t o  be  p e r i o d i c  w i t h  p e r i o d  T i f  f o r  a l l  t  >_ 0 ,

D e f i n i t i o n  8 . A  f u n c t i o n  G ( t )  i s  s a i d  t o  b e  a  r e a l  

h a r m o n i c  w i t h  r a d i a n  f r e q u e n c y  w a n d  a m p l i t u d e  A ,  w h e r e  u> 

a n d  A  a r e  p o s i t i v e  c o n s t a n t s ,  i f  i t  i s  e i t h e r  o f  t h e  f o r m

g ( t )  « g ( t  ♦  k T ) , k  « 0 ,  ± 1 ,  ± 2 ,

G ( t )  = A - c o s  (cot)



91

o r

G ( t )  = A *  s i n  ( w t )  .

The  p e r i o d  o f  t h e  h a r m o n i c  H ( t )  i s  d e f i n e d  t o  b e

T = —  .0)

A  p e r i o d i c  f u n c t i o n ,  g ( t ) ,  w i t h  p e r i o d  T  c a n  b e  a r b i t r a r 

i l y  c l o s e l y  a p p r o x i m a t e d  b y  t h e  l i n e a r  a p p r o x i m a t i n g  p o l y n o 

m i a l

G f t )  = l[A t - c o s ( ^ t )  + B. . s i n C - ^ t ) ]  . C A - 4 )
n k = 0 k  1 k  i

T 2
The  o b j e c t i v e  i s  t o  m i n i m i z e  /  [ g ( t )  - G ( t ) ] d t  w i t h  r e s p e c t

0
t o  t h e  p a r a m e t e r  s e t  A q , A ^ , . . . ,  A n , B q , B ^ ,  . . . ,  B n «

T h i s  i s  d o n e  b y  s e t t i n g  t h e  p a r t i a l  d e r i v a t i v e s

T
V J -  /  [ g ( t )  - G f t ) ] 2 d t ,  k  -  0 ,  1 ,  2 ,  . . . .  n
dAk 0

a n d

T
j | -  /  [ g ( t )  - G n ( t ) ] 2d t ,  k  = 0 ,  1 ,  2 ,  . . . ,  n

e q u a l  t o  z e r o .  E v a l u a t i o n  o f  t h e  r e s u l t i n g  e q u a l i t i e s  y i e l d s  

t h e  F o u r i e r  c o m p o n e n t  r e p r e s e n t a t i o n s

T
A k  = |  I  g C t ) * c o s ( “ Y“  t ) » d t ,  k  = 0 ,  1 ,  2 ,  . . . .  n  ( A - S )

a n d
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~ 7 , 1 o — r,
B k  = f  I o g ( t ) * s i n ( ~ A  t ) - d t ,  k -  0 ,  1 ,  2,  . . n .  ( A - 6 )

I t  h a s  b e c o m e  c u s t o m a r y  t o  i g n o r e  t h e  " h a t "  n o t a t i o n  i n  r e p r e 

s e n t i n g  a n d  B ^ .

I t  c a n  b e  s h o w n  t h a t ,  a s  n

oo

g C t )  ♦  A q  + l  [ A k - c o s ( ^  t )  + B k - s i n ( ^  t ) ]  
k— 1

w h i c h  i s  u s u a l l y  w r i t t e n  a s

oo

g ( t )  = A o + l[A k - c o s ( ^  t )  + B k - s i n ( i ^  t )  ] . ( A - 7 )

T h e  r i g h t  s i d e  o f  e q u a t i o n  ( A - 7 )  i s  c a l l e d  t h e  F o u r i e r  s e r i e s  

e x p a n s i o n  o f  t h e  p e r i o d i c  f u n c t i o n  g ( t ) .  Th e  c o e f f i c i e n t s  

A q , A i , . . A  , , . . . ,  B n  a r e  c a l l e d  t h e  F o u r i e r

c o e f f i c i e n t s  o f  g ( t ) .  N o t e  t h a t  B q i s  e q u a l  t o  z e r o .

C . P o w e r  S p e c t r a l  D e n s i t y

C l o s e l y  r e l a t e d  t o  t h e  c o n c e p t  o f  t h e  F o u r i e r  s e r i e s  

r e p r e s e n t a t i o n  o f  a  p e r i o d i c  f u n c t i o n  i s  t h e  p o w e r  s p e c t r a l  

d e n s i t y  r e p r e s e n t a t i o n  o f  a  f u n c t i o n  f  ( t ) . H o w e v e r ,  t h e  

p o w e r  s p e c t r a l  d e n s i t y  a n a l y s i s  o f  f ( t )  d o e s  n o t  r e q u i r e  t h e  

a s s u m p t i o n  o f  p e r i o d i c i t y .  I t  c o n s t i t u t e s  a m e a n s  w h e r e b y  

h i d d e n  p e r i o d i c i t i e s  ( o r  n e a r  p e r i o d i c i t i e s )  w i t h i n  f ( t )  may  

b e  s e a r c h e d  f o r  i n  a  s y s t e m a t i c  w a y .  T h u s ,  t h e  h a r m o n i c  

r e l a t i o n  2TTk/T, k = 0 ,  1 ,  2 ,  . . . ,  w h i c h  i s  a s s u m e d  i n  t h e

F o u r i e r  s e r i e s  i s  n o t  n e c e s s a r y .
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To b e g i n  w i t h ,  we d e f i n e  t h e  a u t o c o r r e l a t i o n  f u n c t i o n  o f  

a s t a t i o n a r y  r a n d o m  p r o c e s s  h ( t )  b y

T /  2
R ( t ) = T  /  h ( t )  h ( t  + t ) d t , ( A - 8 )

- T / 2

w h e r e  t r e p r e s e n t s  t h e  l a g  o f  t h e  f u n c t i o n .  I t  c a n  b e  s h o w n  

t h a t  R ( t ) i s  t h e  i n t e g r a l  t r a n s f o r m  o f  t h e  p o w e r  s p e c t r a m  o f  

h ( t ) . T h a t  i s ,

00
R ( t ) = /  P ( f ) e l 2 l r f T  d f  ( A - 9 )

- OO

w h e r e  P ( f )  r e p r e s e n t s  t h e  p o w e r  s p e c t r a l  d e n s i t y  o f  h ( t ) .

N o t e  h e r e  t h a t  P ( f )  i s  a c o n t i n u o u s  f u n c t i o n  o f  f r e q u e n c y ,  f .  

The p o w e r  s p e c t r a l  d e n s i t y  i s  g i v e n  b y  t h e  e q u a t i o n

p ( £ )  = i |  J T/2h ( t ) e ' i 2 l , f t  d t  I 2 . ( A - 1 0 )
1 - T / 2

A n o t h e r  i m p o r t a n t  r e l a t i o n  i n v o l v i n g  R ( t ) a n d  P ( f )  i s

P ( f )  = /  R(T)e'l2irfT d t .  ( A - 1 1 )- OO

T h u s ,  R ( t ) a n d  P ( f )  a r e  s e e n  t o  b e  i n t e g r a l  t r a n s f o r m  p a i r s .

I n  a  p r a c t i c a l  s i t u a t i o n ,  s u c h  a s  m e a s u r i n g  r i v e r  w a t e r  

t e m p e r a t u r e s ,  X ( t ) ,  i t  i s  i m p o s s i b l e  t o  o b t a i n  T 00. O n l y

p i e c e s  o r  s a m p l e s  o f  X ( t )  a r e  o b t a i n a b l e  f o r  f i n i t e  s a m p l e  

p e r i o d s .  T h u s ,  a t  m o s t ,  o n l y  e s t i m a t e s  o f  t h e  a u t o c o r r e l a t i o n  

f u n c t i o n  a n d  t h e  p o w e r  s p e c t r a l  d e n s i t y  a r e  a v a i l a b l e .

F o r  c o n t i n u o u s  r e c o r d s  o f  f i n i t e  l e n g t h  i t  i s  n e c e s s a r y
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t o  u s e  t h e  a p p a r e n t  a u t o c o r r e l a t i o n  f u n c t i o n  g i v e n  b y

i  C T -  | x  | 3 / 2
Ra (T) = T - T tT / h(t: - i)h(t + f)dt (A-12)|T| -(T-|t |)/2 2 2

w h e r e

H e r e  t i s  t h e  l a g ,  T i s  t h e  r e c o r d  t i m e ,  a n d  t i s  t h e
m

m ax im um l a g  .

The  a p p a r e n t a u t o c o r r e l a t i o n  f u n c t i o n i s  n e x t  m o d i f i e d

b y  t h e l a g  w in d o w f u n c t i o n ,  Wi  ( t ) ,  h a v i n g t h e  f o l l o w i n g

p r o p e r t i e s  :

1. Wi ( 0 )  = 1 >

2 . W . ( t ) = 0l  v J f o r  | x 1 > t  , a n d  
1 1  m

3. h ^ C - x )  = Wi  ( t ) .

T h e  m o d i f i e d  a u t o c o r r e l a t i o n  f u n c t i o n  i s  t h u s

RM (t) = W i(T)-Ra (T). (A-13)

R e c a l l i n g  t h a t  t h e  p o w e r  s p e c t r a l  d e n s i t y  a n d  a u t o c o r r e l a t i o n  

f u n c t i o n s  a r e  F o u r i e r  t r a n s f o r m  p a i r s ,  we o b t a i n  t h e  m o d i f i e d  

p o w e r  s p e c t r a l  d e n s i t y

oo

p M C f )  = I  W . ( x ) . R  ( T ) e ' i 2 7 r f T dT (A  - 1 4 )
- OO

= Qi(f)*Pa(f)

w h e r e  Q ^ ( f )  i s  t h e  t r a n s f o r m  o f  W ^ ( t ) a n d  * i s  c o n v o l u t i o n .
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The f u n c t i o n  P ( f )  c a n n o t  be  o b t a i n e d  s i n c e  C (t ) i s  n o ta a

s p e c i f i e d  f o r  |t | > x m - H o w e v e r ,  t h e  a v e r a g e  o f  P ^ ( f )  i s

g i v e n  by

a v e  [ P M ( f ) ]  = Q . ( f ) * P ( f ) .  ( A - 1 5 )

A t  a g i v e n  f r e q u e n c y  f ^ ,  t h e  a v e r a g e  o f  P ^ ( f )  i s  g i v e n  b y

OO
a v e  [ P ^ f ^ ]  = /  Q ^ C f ,  - £ )  P ( f ) d f .  ( A - 1 6 )- OO

T h u s  t h e  t r u e  p o w e r  s p e c t r a l  d e n s i t y  P ( f ) i s  s m o o t h e d  a n d  

f i l t e r e d  o v e r  f r e q u e n c i e s  n e a r  f ^  b y  t h e  f u n c t i o n  ( f  ̂ - f ) .

I n  o r d e r  t o  sh o w  t h e  e f f e c t  o f  t h e  l a g  w i n d o w ,  c o n s i d e r

f i r s t

W (x) = o v J
1, I T I < T 

0 ,  i x | > T.

T h i s  i s ,  i n  e f f e c t ,  n o  m o d i f i c a t i o n  o f  R ( t ) a t  a l l  s i n c e
a

W0 (T)-Ra (T) = Ra (T)

Now Q ( f )  i s  g i v e n  b y

T / 2  j*
Q0 Cf) - / e-l2*fT

° - T / 2
dx

_ rp s  i n  ( n T f )
" 1 f t t— >

w h i c h  i s  o f  t h e  f a m i l i a r  s i n ( x ) / x  f o r m .  T h u s  t h e  r e s u l t a n t  

v a l u e  Q Q ( f ^  '  f )  i s  a r a t h e r  p o o r  f i l t e r  s i n c e  i t  h a s  l a r g e
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s i d e - l o b e s  w h i c h  a l l o w  s i g n i f i c a n t  e n e r g y  t o  p a s s  a t  f r e q u e n 

c i e s  t h a t  a r e  c o n s i d e r a b l y  d i f f e r e n t  f r o m  f 1 .

T h i s  g i v e s  a n  i n d i c a t i o n  o f  t h e  t y p e  o f  f u n c t i o n  w h i c h  

i s  n e e d e d  f o r  W ^ ( x ) .  I t  i s  o b v i o u s l y  d e s i r a b l e  t o  c o n c e n t r a t e  

t h e  m a i n  l o b e  o f  ( f ^  - f )  n e a r  f ^  w h i l e  k e e p i n g  t h e  s i d e -  

l o b e s  a s  l o w  a s  p o s s i b l e .  S e v e r a l  s u c h  f u n c t i o n s  h a v e  b e e n  

d e v e l o p e d  i n c l u d i n g  t h e  s o - c a l l e d  h a n n i n g  w i n d o w  w h i c h  i s  

u s e d  i n  t h e  p o w e r  s p e c t r a l  a n a l y s i s  p r e s e n t e d  h e r e .  T h e  

h a n n i n g  w i n d o w  i s  g i v e n  a s

y [ l  + c o s ( 2 i ) ] ,  IX  I < Tm m
( A - 1 7 )

° ’ M  > Tm

F o r  t h e  h a n n i n g  w i n d o w  t h e  m ax im u m  s i d e - l o b e  l e v e l  i s  a b o u t  

2 p e r c e n t  o f  t h e  v a l u e  a t  f ^  a s  c o m p a r e d  t o  a b o u t  20 p e r c e n t  

f o r  t h e  r e c t a n g u l a r  w i n d o w  h a v i n g  s i n ( x ) / x  s p e c t r a l  s h a p e .

S i n c e  t h e  p r o d u c t ,  W, ( t ) C ( t ) ,  i s  t h e  t d o m a i n  i s  

e q u i v a l e n t  t o  t h e  c o n v o l u t i o n ,  Q ^ ( f ) * P ( f ) ,  i n  t h e  f r e q u e n c y  

d o m a i n ,  i t  i s  s e e n  t h a t  t h e  w e i g h t i n g  f a c t o r  W ^ ( t ) a c t s  a s  a 

f i x e d - b a n d w i d t h  f i l t e r  w i t h  v a r i a b l e  c e n t e r  f r e q u e n c y ,  f-^. 

T h u s ,  D ^ C x )  h a s  t h e  e f f e c t  o f  s m o o t h i n g  t h e  s p e c t r u m  b y  

v i r t u e  o f  i t s  r e d u c e d  s i d e - l o b e  l e v e l .

S i n c e  t h i s  a n a l y s i s  u s e d  a  d i g i t a l  c o m p u t e r  f o r  n u m e r i c a l  

c a l c u l a t i o n s ,  i t  w a s  n e c e s s a r y  t o  c o n s i d e r  t h e  e f f e c t  o n  t h e  

r e s u l t s  c a u s e d  b y  s a m p l i n g  o f  w a t e r  t e m p e r a t u r e s  a t  e q u a l l y  

s p a c e d  i n t e r v a l s .  T h a t  i s ,  t h e  t i m e - s e r i e s  X ( t ^ )  w a s  a n a l y z e d  

r a t h e r  t h a n  t h e  c o n t i n u o u s  f u n c t i o n  X ( t ) .  The  b a s i c  p o w e r

Wh (x) =
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s p e c t r a l  d e n s i t y  t e c h n i q u e s  a r e  t h e  sam e e x c e p t  t h a t  now t h e  

p h e n o m e n o n  o f  a l i a s i n g  m u s t  be  t a k e n  i n t o  c o n s i d e r a t i o n .  The  

a l i a s i n g  p r o c e s s  i s  b e s t  u n d e r s t o o d  b y  a c o n s i d e r a t i o n  o f  t h e  

s a m p l i n g  t h e o r e m  w h i c h  i s  

T h e o r e m  

G i v e n  t h a t ,

(1 )  h ( t )  i s  a  r e a l - v a l u e d  t i m e  f u n c t i o n ,  a n d

(2 )  h ( t )  c o n t a i n s  n o  f r e q u e n c y  c o m p o n e n t s  g r e a t e r  t h a n  

f b c y c l e s / ( u n i t  o f  t i m e ) .

T h e n  h ( t )  c a n  b e  c o m p l e t e l y  d e t e r m i n e d  b y  s p e c i f y i n g  i t s  

o r d i n a t e s  ( s a m p l i n g )  a t  a  s e r i e s  o f  p o i n t s  s p a c e d  e v e r y  

1 /2  f b u n i t s  o f  t i m e .

An  a l t e r n a t e  w a y  o f  s t a t i n g  t h i s  i m p o r t a n t  t h e o r e m  i s  

t h a t  a l l  t h e  i n f o r m a t i o n  c o n t a i n e d  i n  t h e  f r e q u e n c y  b a n d -  

l i m i t e d  t i m e - d o m a i n  f u n c t i o n ,  h ( t ) ,  c a n  be  r e p r o d u c e d  f r o m  

t h e  s a m p l e d  v e r s i o n  o f  h ( t ) ,  h g ( t ) ,  i f  t h e  s a m p l e  p o i n t s  a r e  

s p a c e d  e v e r y  1 / 2  f fe u n i t s  o f  t i m e .  The  f r e q u e n c y  f fe i s  

r e f e r r e d  t o  a s  t h e  N y q u i s t  f r e q u e n c y .

Now, a s s u m i n g  t h a t  t h e  f r e q u e n c y  s p e c t r u m  o f  h ( t ) ,  F ( t ) ,  

a p p e a r s  a s  sh o w n  i n  F i g u r e  29 ( a ) ,  t h e n  t h e  c o r r e s p o n d i n g

s p e c t r u m  o f  h g ( t ) , F s ( f ) ,  i s  a s  s h o w n  i n  F i g u r e  29 (b  ) . The  

p e r i o d i c  r e p e t i t i o n  o f  F ( f )  i s  t h e  f o r m  F g ( f )  i s  r e f e r r e d  t o  

a s  a l i a s i n g .  I f  t h e  s a m p l e  r a t e  i s  l e s s  t h a n  1 / 2  f  b , t h e n  

o v e r l a p p i n g  ( f o l d i n g )  o f  F s ( f )  w i l l  o c c u r .  T h i s  r e s u l t s  i n  

m i s l e a d i n g  i n f o r m a t i o n  a b o u t  F ( f )  a t  f r e q u e n c i e s  n e a r  f b .

N o t e  t h a t  t h e  a m p l i t u d e  s p e c t r u m  h a s  b e e n  u s e d  i n  t h e  

s a m p l i n g  t h e o r e m  r a t h e r  t h a n  t h e  p o w e r  s p e c t r a l  d e n s i t y .



F(f)

F r e q u e n c y

F i g u r e  29 ( a ) . F o u r i e r  T r a n s f o r m  o f  F r e q u e n c y  B a n d - L i m i t e d
T i m e - D o m a i n  F u n c t i o n ,  f ( t ) .

Fs ( f )

F i g u r e  29 ( b ) . F o u r i e r  T r a n s f o r m  o f  S a m p l e d  V e r s i o n  o f  ( a ) .
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H o w e v e r ,  t h e  a l i a s i n g  p h e n o m e n o n  i s  s i m i l a r  s i n c e  we a r e  now  

m u l t i p l y i n g  t h e  s a m p l e d  v e r s i o n  o f  t h e  a u t o c o r r e l a t i o n  f u n c 

t i o n  b y  W ^ ( t ) a n d  i n t e g r a t i n g  t o  o b t a i n  t h e  s a m p l e d  v e r s i o n  

o f  t h e  p o w e r  s p e c t r a l  d e n s i t y .  T h u s  t h e  N y q u i s t  f r e q u e n c y  

f o r  t h e  p o w e r  s p e c t r a l  d e n s i t y  i s  g i v e n  b y  f ^  *  1 / ( 2 •A t ) .

B u t  A t = A t  i n  p r a c t i c a l  a n a l y s e s  s o  t h a t  t h e  f ^  i s  t h e  s a m e  

f o r  b o t h  t h e  a m p l i t u d e  s p e c t r u m  a n d  f o r  t h e  p o w e r  s p e c t r a l  

d e n s i t y  c a l c u l a t i o n s .  T h u s  t h e  s a m p l e  i n t e r v a l  m u s t  b e  s m a l l  

e n o u g h  t o  i n s u r e  t h a t  n o  f o l d i n g  o f  f r e q u e n c i e s  h a v i n g  

s i g n i f i c a n t  p o w e r  l e v e l s  w i l l  o c c u r  s i n c e  t h e  r e s u l t i n g  p o w e r  

s p e c t r a l  d e n s i t y  c a l c u l a t i o n s  w i l l  b e  d i s t o r t e d  b y  t h e  f o l d e d  

p o w e r .

W i t h  t h e s e  c o n s i d e r a t i o n s  a c c o u n t e d  f o r  we d e f i n e  t h e  

s a m p l e d  v e r s i o n  o f  t h e  a p p a r e n t  a u t o c o r r e l a t i o n  f u n c t i o n  o f  

w a t e r  t e m p e r a t u r e  s a m p l e s  a s

= FFr X  V W W ;  r = 2 * M ,  ( A - 1 8 )

w h e r e  M i s  t h e  m ax imum v a l u e  o f  t h e  l a g  n u m b e r  r .  I n  t h e  

e x p r e s s i o n  f o r  , t h e  f u n c t i o n  X Q ( t ^ )  r e p r e s e n t s  t h e  z e r o -  

a v e r a g e  t i m e - s e r i e s  w h i c h  i s  o b t a i n e d  b y

X o ( t i ) = X ( t i ) " X *

T h e  s a m p l e d  v e r s i o n  o f  t h e  p o w e r  s p e c t r a l  d e n s i t y  e s t i m a t e  i s  

t h e n  t a k e n  a s

( A - 1 9 )
M - l

P ( f )  = 2 • At  {R ( 0 )  + 2 l [R ( r )  - c o s  ] + R  (M )  - c o s  } .
a  r = 1 a  t M a f M
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T h i s  e x p r e s s i o n  f o r  P ( f )  r e p r e s e n t s  t h e  c o n v o l u t i o n  o f  t h e  

F o u r i e r  t r a n s f o r m  o f  t h e  s a m p l e d  a u t o c o r r e l a t i o n  f u n c t i o n ,  

C a ( r ) ,  w i t h  t h e  F o u r i e r  t r a n s f o r m  o f  t h e  s a m p l e d  v e r s i o n  o f  

t h e  w e i g h t i n g  f u n c t i o n ,  W^C t ) .

D . E s t i m a t i o n

T h e  g e n e r a l  t h e o r y  o f  s i g n a l  e s t i m a t i o n  i s  b e s t  

c o n s i d e r e d  b y  o b s e r v i n g  t h e  m o d e l  d i a g r a m  s h o w n  i n  F i g u r e  

30 .  H e r e  t h e  s o u r c e  i n p u t  i s  a  s i g n a l ,  a ( t ) ,  w h i c h  i s  

c o r r u p t e d  b y  a d d i t i v e  n o i s e  r i ( t ) .  I n  m o s t  a n a l y s e s  t h e  

n o i s e  i s  c o n s i d e r e d  t o  be  a  s t a t i o n a r y  n o r m a l  r a n d o m  p r o c e s s  

w i t h  z e r o  m ean .

I f  i t  i s  a s s u m e d  t h a t  t h e  i n p u t  i s  a n o n - r a n d o m  

c o n s t a n t ,  A ,  t h e n  t h e  t o t a l  i n p u t  t o  t h e  s a m p l e s  i s  A  + n ( t ) . 

T h u s ,  A  + n ( t )  h a s  a n  e q u i v a l e n t  p r o b a b i l i t y  d i s t r i b u t i o n  

w h i c h  i s  n o r m a l  w i t h  m ean  e q u a l  t o  A .  The  s a m p l e  o u t p u t  i s  

now a s e t  o f  r a n d o m  s a m p l e s  s ^ ,  s 2 , . . . ,  s ^ ,  f r o m  a d i s t r i 

b u t i o n  h a v i n g  p r o b a b i l i t y  d e n s i t y  f u n c t i o n

- - ^ ( s - A ) 2

f ( s , A )  = e 2° ( A -  20 )
/2tto

The  j o i n t  p . d . f .  o f  s 1 , s 2 , . . . ,  i s  t h e n  t h e  l i k e 

l i h o o d  f u n c t i o n

L ( A ,  s  ̂ > s 2 * * * * ’ S N^ — f  Cs i >A ) ^ ( s 2 »A) . . . f ( s ^ ,A )

l  ( s t - A  ) 2 
a  i =  1 1= ( - i — ) n e 20 /2it o ( A - 2 1 )



W )
Normal Random Process With Zero Mean

Figure 30. Conununication System for Sampling and Estimating Source Output, a
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T a k i n g  t h e  d e r i v a t i v e  o f  £ n { L ( A ,  s ^ ,  S 2 , . . . , s ^ )  } w i t h

r e s p e c t  t o  A  g i v e s

g^{to[L(A, S x , SN)]> 2a
N

l
i =  1

( s ,  - A )  ( - 2 )

N
I  Cs i “ A ) ] .  ( A - 2 2 )

a  i  = 1

S e t t i n g  t h i s  d e r i v a t i v e  e q u a l  t o  z e r o  g i v e s  t h e  m ax im u m  l i k e 

l i h o o d  s t a t i s t i c

A
1 Ny s .
N i=i 1

( A - 23)

f o r  t h e  u n k n o w n  s i g n a l  w i t h  c o n s t a n t  v a l u e  A .  I t  c a n  b e  

s h o w n  t h a t  A  i s  t h e  u n i q u e  b e s t  s t a t i s t i c  f o r  A .

I n  t h e  e s t i m a t i o n  p r o c e s s  i n v o l v i n g  t h e r m a l  i n p u t s  t o  

l a r g e  r i v e r s  i t  i s  n e c e s s a r y  t o  e s t i m a t e  a  c o n s t a n t  i n p u t  i n  

b a c k g r o u n d  n o i s e  ( n a t u r a l  t e m p e r a t u r e  f l u c t u a t i o n )  w h i c h  i s  

f a r  f r o m  s t a t i o n a r y .  H o w e v e r ,  t h e  b a c k g r o u n d  n o i s e  c o n s i s t s  

o f  a t  l e a s t  o n e  l a r g e  c o m p o n e n t ,  t h e  y e a r l y  s e a s o n a l  f l u c t u a 

t i o n ,  w h i c h  i s  n e a r l y  p e r i o d i c .  H e n c e  i t  w i l l  b e  u s e f u l  t o  

c o n s i d e r  t h e  F o u r i e r  s e r i e s  p r o c e s s  b y  w h i c h  t h e s e  f l u c t u a 

t i o n s  a r e  e x t r a c t e d  i n  v i e w  o f  t h e  p r e v i o u s  d i s c u s s i o n  o f  

e s t i m a t i o n .

I f  t h e  n o i s e  i s  c o n s i d e r e d  t o  c o n s i s t  o f  a  p e r i o d i c  

c o m p o n e n t  h a v i n g  z e r o  a v e r a g e  v a l u e  a l o n g  w i t h  a n  a d d i t i v e  

n o r m a l  r a n d o m  c o m p o n e n t  w i t h  z e r o  m e a n ,  t h e n

n ( t )  = p ( t )  + r ( t ) (A-24)
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where p(t) is the periodic component and r(t) is the random 
component. The Fourier components are then

and

Akn = J tp(t) + r(t)]*cos(^- t)-dt (A-25)

where

= Ak + eik

T
A, = / p(t) -cos -dt, andk o 1

T
elk = / r(t) » c o s ( ^ )  *dt;

T
Bkn = / [P (t) + rCt)]-sin(^A)-dt (A-26)

where

= Bk + e2k

B, / p (t) *sin • dt, and
0
T
0e2k = / r(t) *sin(^j£) *dt .

Thus, an error, which is dependent on the degree of 
correlation between the harmonics and the noise, exists in 
the calculated values of the Fourier components. However, 
the Fourier series still constitutes a minimum mean-square
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approximation to the data points which represent the noise 
function samples, n(t^). This means that, with the extrac
tion of a sufficient number of Fourier components, the noise, 
insofar as signal estimation is concerned, can be replaced by

Thus the signal samples could be preceded by a Fourier 
component extractor as shown in Figure 31. The assumption 
must be made that the sample interval is an integral multiple 
of the period, T, of p(t). With this extraction, the signal 
processing would then continue with the estimation being made 
by the maximum likelihood estimation

W  = n(tt)

(A - 2 7)

N
A I [A + ne (ti)] .1

N (A-28)
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•>7{t) = p(t)+r(t)

( I ) p(t) Periodic

(2) r(t) Normal Random Process With Zero Mean

Figure 31. System for Sampling and Estimating a(t) When Corrupted by p(t) + r(t).
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APPENDIX B

VERIFICATION OF POWER SPECTRAL DENSITY PROGRAM

Because the power spectral density was used to such a 
large extent in this dissertation, it is appropriate to 
justify the correctness of the computer programming technique 
which was used. The equation

M- i
P{f) = 2 • At{R (0) + 2 l [R (r) - c o s m ]  + R (M) • cos ( ^ )  }

r=l M M

was programmed using FORTRAN IV. As a test, several known 
input time functions were used to generate data having cyclic 
components. All results verified the correctness of the 
programming as well as the use of the equation.

Typical of the results which were obtained is the power 
spectral density plot shown in Figure 32. Here the input 
signal was

s^(t) = 10 cos (2TT*20t) + 5 sin (2iT-40t) .

Data was generated by sampling this signal 365 times at equal 
intervals for a total time period T equal to one (year). It 
should be noted in particular that the side-lobe level is 
insignificant in this case.
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