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Pattern formation in nonequilibrium physics

J. P. Gollub

Haverford College, Haverford, Pennsylvania 19041
and Department of Physics, University of Pennsylvania,
Philadelphia, Pennsylvania 19104

J. S. Langer

Department of Physics, University of California, Santa Barbara, California 93106

Remarkable and varied pattern-forming phenomena occur in fluids and in phase transformations. The
authors describe and compare some of these phenomena, offer reflections on their similarities and
differences, and consider possibilities for the future development of this field.

[S0034-6861(99)04702-9]

I. INTRODUCTION

The complex patterns that appear everywhere in na-
ture have been cause for wonder and fascination
throughout human history. People have long been
puzzled, for example, about how intricate snowflakes
can form, literally, out of thin air; and our minds boggle
at the elegance of even the simplest living systems. As
physicists, we have learned much about natural pattern
formation in recent years; we have discovered how rich
this subject can be, and how very much remains to be
understood. Our growing understanding of the physics
of pattern formation has led us to speculate—so far with
only limited success—about a more general science of
complexity, and to pose deep questions about our ability
to predict and control natural phenomena.

Although pattern formation—i.e., morphogenesis—
has always been a central theme in natural philosophy, it
has reemerged in mainstream nonequilibrium physics
only in the last quarter of the 20th Century. This has
happened, in part, as an outgrowth of physicists’ and
materials scientists’ interest in phase transitions. Many
of the most familiar examples of pattern formation oc-
cur in situations in which a system is changing from one
phase to another—from a liquid to a geometrically pat-
terned solid, for example, or from a uniform mixture of
chemical constituents to a phase-separated pattern of
precipitates. As scientists have learned more about the
equilibrium aspects of phase transitions, many have be-
come interested in the non-equilibrium processes that
accompany them. This line of investigation has led di-
rectly to questions of pattern formation.

Another direction from which physicists have ap-
proached the study of pattern formation has been the
theory of nonlinear dynamical systems. Mechanical sys-
tems that can be described by ordinary differential equa-
tions often undergo changes from simple to complex be-
havior in response to changes in their control
parameters. For example, the periodically forced and
damped pendulum shows chaotic motion for certain in-
tervals of the forcing amplitude, as well as periodic win-
dows within the chaotic domains—a temporal ‘‘pattern’’
with considerable complexity. This is a simple case, how-
ever, with only a few degrees of freedom. More relevant

for the present purposes are spatially extended dynami-
cal systems with many degrees of freedom, for which
partial differential equations are needed. Corresponding
physical systems include fluids subjected to heating or
rotation, which exhibit sequences of increasingly com-
plex spatiotemporal patterns as the driving forces
change. These are all purely deterministic pattern-
forming systems. Understanding how they behave has
been a crucial step toward understanding deterministic
chaos—one of the most intriguing and profound scien-
tific concepts to emerge in this century.

At the center of our modern understanding of pattern
formation is the concept of instability. It is interesting to
note that the mathematical description of instabilities is
strikingly similar to the phenomenological theory of
phase transitions first given by Landau (Landau and Lif-
shitz, 1969). We now know that complex spatial or tem-
poral patterns emerge when relatively simple systems
are driven into unstable states, that is, into states that
will deform by large amounts in response to infinitesi-
mally small perturbations. For example, solar heating of
the earth’s surface can drive Rayleigh-Bénard-like con-
vective instabilities in the lower layer of the atmosphere,
and the resulting flow patterns produce fairly regular
arrays of clouds. At stronger driving forces, the convec-
tion patterns become unstable and turbulence increases.
Another familiar example is the roughness of fracture
surfaces produced by rapidly moving cracks in brittle
solids. When we look in detail, we see that a straight
crack, driven to high enough speeds, becomes unstable
in such a way that it bends, sends out sidebranching
cracks, and produces damage in the neighboring mate-
rial. In this case, the physics of the instability that leads
to these irregular patterns is not yet known.

After an instability has produced a growing distur-
bance in a spatially uniform system, the crucial next step
in the pattern-forming process must be some intrinsi-
cally nonlinear mechanism by which the system moves
toward a new state. That state may resemble the un-
stable deformation of the original state—the convective
rolls in the atmosphere have roughly the same spacing as
the wavelength of the initial instability. However, in
many other cases, such as the growth of snowflakes, the
new patterns look nothing like the linearly unstable de-
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formations from which they started. The system evolves
in entirely new directions as determined by nonlinear
dynamics. We now understand that it is here, in the non-
linear phase of the process, that the greatest scientific
challenges arise.

The inherent difficulty of the pattern-selection prob-
lem is a direct consequence of the underlying (linear or
nonlinear) instabilities of the systems in which these
phenomena occur. A system that is linearly unstable is
one for which some response function diverges. This
means that pattern-forming behavior is likely to be ex-
tremely sensitive to small perturbations or small changes
in system parameters. For example, many patterns that
we see in nature, such as snowflake-like dendrites in so-
lidifying alloys, are generated by selective amplification
of atomic-scale thermal noise. The shapes and speeds of
growing dendrites are also exquisitely sensitive to tiny
crystalline anisotropies of surface energies.

Some important questions, therefore, are: Which per-
turbations and parameters are the sensitively controlling
ones? What are the mechanisms by which those small
effects govern the dynamics of pattern formation? What
are the interrelations between physics at different length
scales in pattern-forming systems? When and how do
atomic-scale mechanisms control macroscopic phenom-
ena? At present, we have no general strategy for an-
swering these questions. The best we have been able to
do is to treat each case separately and—because of the
remarkable complexity that has emerged in many of
these problems—with great care.

In the next several sections of this article we discuss
the connection between pattern formation and nonlin-
ear dynamics, and then describe just a few specific ex-
amples that illustrate the roles of instability and sensitiv-
ity in nonequilibrium pattern formation. Our examples
are drawn from fluid dynamics, granular materials, and
crystal growth, which are topics that we happen to know
well. We conclude with some brief remarks, mostly in
the form of questions, about universality, predictability,
and long-term prospects for this field of research.

II. PATTERN FORMATION AND DYNAMICAL SYSTEMS

Our understanding of pattern formation has been dra-
matically affected by developments in mathematics. De-
terministic pattern-forming systems are generally de-
scribed by nonlinear partial differential equations, for
example, the Navier-Stokes equations for fluids, or
reaction-diffusion equations for chemical systems. It is
characteristic of such nonlinear equations that they can
have multiple steady solutions for a single set of control
parameters such as external driving forces or boundary
conditions. These solutions might be homogeneous, or
patterned, or even more complex. As the control param-
eters change, the solutions appear and disappear and
change their stabilities. In mathematical models of spa-
tially extended systems, different steady solutions can
coexist in contact with each other, separated by lines of
defects or moving fronts.

The best way to visualize the solutions of such equa-
tions is to think of them as points in a multidimensional
mathematical space spanned by the dynamical variables,
that is, a ‘‘phase space.’’ The rules that determine how
these points move in the phase space constitute what we
call a ‘‘dynamical system.’’ One of the most important
developments in this field has been the recognition that
dynamical systems with infinitely many degrees of free-
dom can often be described by a finite number of rel-
evant variables, that is, in finite-dimensional phase
spaces. For example, the flow field for Rayleigh-Bénard
convection not too far from threshold can be described
accurately by just a few time-dependent Fourier ampli-
tudes. If we think of the partial differential equations as
being equivalent to finite sets of coupled ordinary differ-
ential equations, then we can bring powerful mathemati-
cal concepts to bear on the analysis of their solutions.

As we shall emphasize in the next several sections of
this article, dynamical-systems theory provides at best a
qualitative framework on which to build physical models
of pattern formation. Nevertheless, it has produced valu-
able insights and, in some cases, has even led to predic-
tion of novel effects. It will be useful, therefore, to sum-
marize some of these general concepts before looking in
more detail at specific examples. An introductory discus-
sion of the role of dynamical systems theory in fluid me-
chanics has been given by Aref and Gollub (1996).

In dynamical-systems theory, the stable steady solu-
tions of the equations of motion are known as ‘‘stable
fixed points’’ or ‘‘attractors,’’ and the set of points in the
phase space from which trajectories flow to a given fixed
point is its ‘‘basin of attraction.’’ As the control param-
eters are varied, the system typically passes through ‘‘bi-
furcations’’ in which a fixed point loses its stability and,
at the same time, one or more new stable attractors ap-
pear. An especially simple example is the ‘‘pitchfork’’
bifurcation at which a stable fixed point representing a
steady fluid flow, for example, gives rise to two
symmetry-related fixed points describing cellular flows
with opposite polarity. Many other types of bifurcation
have been identified in simple models and also have
been seen in experiments.

The theory of bifurcations in dynamical systems helps
us understand why it is sometimes reasonable to de-
scribe a system with infinitely many degrees of freedom
using only a finite (or even relatively small) number of
dynamical variables. An important mathematical result
known as the ‘‘center manifold theorem’’ (Guckenhe-
imer and Holmes, 1983) indicates that, when a bifurca-
tion occurs, the associated unstable trajectories typically
move away from the originally stable fixed point only
within a low-dimensional subspace of the full phase
space. The subspace is ‘‘attracting’’ in the sense that tra-
jectories starting elsewhere converge to it, so that the
degrees of freedom outside the attracting subspace are
effectively irrelevant. It is for this reason that we may
need only a low-dimensional space of dynamical vari-
ables to describe some pattern-formation problems near
their thresholds of instability—a remarkable physical re-
sult.
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Time-varying states, such as oscillatory or turbulent
flows, are more complex than simple fixed points. Here,
some insight also has been gained from considering dy-
namical systems. Oscillatory behavior is generally de-
scribed as a flow on a limit cycle (or closed loop) in
phase space, and chaotic states may be represented by
more complex sets called ‘‘strange attractors.’’ The most
characteristic feature of the latter may be understood in
terms of the Lyapunov exponents that give the local ex-
ponential divergence or convergence rates between two
nearby trajectories, in the different directions along and
transverse to those trajectories. If at least one of these
exponents, when averaged over time, is positive, then
nearby orbits will separate from each other exponen-
tially in time. Provided that the entire attracting set is
bounded, the only possibility is for the set to be fractal.

In the early 1970s, strange attractors were thought by
some to be useful models for turbulent fluids. In fact, the
phase-space paradigm can give only a caricature of the
real physics because of the large number of relevant de-
grees of freedom involved in most turbulent flows.
While much less than 6N (the number of degrees of
freedom for a system of N molecules), that number still
grows in proportion to R3/4, where R is the Reynolds
number. We do not yet know whether weakly turbulent
states (‘‘spatiotemporal chaos’’) that sometimes occur
near the onset of instability may be viewed usefully us-
ing the concepts of dynamical systems.

III. PATTERNS AND SPATIOTEMPORAL CHAOS
IN FLUIDS: NONLINEAR WAVES

Pattern formation has been investigated in an im-
mense variety of hydrodynamic systems. Examples in-
clude convection in pure fluids and mixtures; rotating
fluids, sometimes in combination with thermal transport;
nonlinear surface waves at interfaces; liquid crystals
driven either thermally or by electromagnetic fields;
chemically reacting fluids; and falling droplets. Some
similar phenomena occur in nonlinear optics. Many of
these cases have been reviewed by Cross and Hohen-
berg (1993); there also have been a host of more recent
developments. Since it is not possible in a brief space to
discuss this wide range of phenomena, we focus here on
an example that poses interesting questions about the
nature of pattern formation: waves on the surfaces of
fluids. We shall also make briefer remarks about other
fluid systems that have revealed strikingly novel phe-
nomena.

The surface of a fluid is an extended dynamical system
for which the natural variables are the amplitudes and
phases of the wavelike deformations. These waves were
at one time regarded as being essentially linear at small
amplitudes. However, even weak nonlinear effects cause
interactions between waves with different wave vectors
and can be important in determining wave patterns.
When the wave amplitudes are large, the nonlinear ef-
fects lead to chaotic dynamics in which many degrees of
freedom are active.

A convenient way of exciting nonlinear waves in a
manner that does not directly break any spatial symme-
try is to subject the fluid container to a small-amplitude
vertical excitation. This leads to standing waves at half
the driving frequency, via an instability and an associ-
ated bifurcation first demonstrated by Faraday (1831),
68 years before the American Physical Society was
founded. The characteristic periodicity of the resulting
patterns is approximately the same as the wavelength of
the most rapidly growing linear instability determined
by the dispersion relation for capillary-gravity waves,
but the wave patterns themselves are far more complex
and interesting.

All of the regular patterns that can tile the plane have
been found in this system, including hexagons, squares,
and stripes (Kudrolli and Gollub, 1996). In addition,
various types of defects that are analogous to crystalline
defects occur: grain boundaries, dislocations, and the
like. Which patterns are stable depends on parameters:
the fluid viscosity, the driving frequency, and the accel-
eration. Significant domains of coexistence between dif-
ferent patterns are also known, where patterns with dif-
ferent symmetry are simultaneously stable.

These phenomena have resisted quantitative explana-
tion for a number of reasons: the difficulty of dealing
with boundary conditions at the moving surface of the
fluid; the nonlinearity of the hydrodynamic equations;
and the complex effects of viscosity. However, a suitable
mathematical description, consistent with the general
framework of dynamical-systems theory, is now avail-
able (Chen and Viñals, 1997), and it leads to a satisfac-
tory explanation of these pattern-forming phenomena.
The basic idea is to regard the surface as a superposition
of interacting waves propagating in different directions.
Coupled evolution equations can be written for the vari-
ous wave amplitudes. The coupling coefficients depend
on the angles between the wave vectors, and these cou-
pling functions depend in turn on the imposed param-
eters (such as wave frequency). The entire problem is
variational, but only near the threshold of wave forma-
tion. That is, the preferred pattern near the onset of
instability is the one that minimizes a certain functional
of the wave amplitudes, in much the same way that the
preferred state of a crystal is the one that minimizes its
free energy. Away from threshold, on the other hand, no
such variational principle exists, and the variety of be-
haviors is correspondingly richer.

These results raise the question of whether other
types of regular patterns can be formed that are not
spatially periodic but do have rotational symmetry, i.e.,
quasicrystalline patterns. In fact they do occur (Chris-
tiansen et al., 1992; Edwards and Fauve, 1994), just as
they do in ordinary crystals. The way in which these
different patterns become stable or unstable as the pa-
rameters are varied has now been worked out in some
detail and appears to be in accord with experiment
(Binks and van de Water, 1997). An example of a qua-
sicrystalline pattern is shown in Fig. 1.

When the wave amplitudes are raised sufficiently,
transitions to spatially and temporally disordered states
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occur (Kudrolli and Gollub, 1996 and references
therein). In the language of dynamical systems, some of
these new states might be called ‘‘strange attractors,’’
although they are certainly not low-dimensional objects.
They are much less well understood than the standing-
wave states, and the ways in which they form appears to
depend on the ordered states from which they emerge.
For example, the hexagonal lattice appears to melt con-
tinuously, while the striped phase breaks down inhomo-
geneously in regions where the stripes are most strongly
curved. The resulting states of spatiotemporal chaos are
not completely disordered; there can be regions of local
order. Furthermore, if the fluid is not too viscous, so that
the correlation length of the pattern is relatively long,
then the symmetry imposed by the boundaries can be
recovered by averaging over a large number of individu-
ally fluctuating patterns (Gluckman et al., 1995). A case
of strongly turbulent capillary waves has also been stud-
ied experimentally (Wright et al., 1997).

Certain other fluid systems have chaotic states that
occur closer to the linear threshold of the primary pat-
tern. In these cases, quantitative comparison with theory
is sometimes possible. An example is the behavior of

Rayleigh-Bénard convection in the presence of rotation
about a vertical axis (Hu et al., 1997). This problem is
relevant to atmospheric dynamics. Though the basic pat-
tern consists of rolls, as shown in Fig. 2, they are un-
stable. Patches of rolls at different angles invade each
other as time proceeds, and the pattern remains time
dependent indefinitely. This phenomenon has been dis-
cussed theoretically (Tu and Cross, 1992) using a two-
dimensional nonlinear partial differential equation
known as the complex Ginzburg-Landau equation. Simi-
lar models have been used successfully for treating a
variety of nonchaotic pattern-forming phenomena. In
this case, the model is able to reproduce the qualitative
behavior of the experiments, but does not successfully
describe the divergence of the correlation length of the
patchy chaotic fluctuations as the transition is ap-
proached. Thus the goal of understanding spatiotempo-
ral chaos has remained elusive.

There is one area where the macroscopic treatment of
pattern-forming instabilities connects directly to micro-
scopic physics: the effects of thermal noise. Macroscopic
patterns often emerge from the amplification of noise by
instabilities. Therefore, fluctuations induced by thermal

FIG. 1. (Color) A quasicrystalline wave pattern with 12-fold rotational symmetry. This standing-wave pattern was produced by
forcing a layer of silicone oil simultaneously at two frequencies, using a method invented by Edwards and Fauve. The brightest
regions are locally horizontal, whereas darker colors indicate inclined regions. From work done at Haverford for an undergraduate
thesis by B. Pier.
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noise (as distinguished from chaotic fluctuations pro-
duced by nonlinearity) should be observable near the
threshold of instability. This remarkable effect has been
demonstrated quantitatively in several fluid systems, for
example, ordinary Rayleigh-Bénard convection (Wu
et al., 1995). As we shall see in Sec. V, very similar am-
plification of thermal noise occurs in dendritic crystal
growth.

IV. PATTERNS IN GRANULAR MATERIALS

Patterns quite similar to the interfacial waves de-
scribed in the previous section occur when the fluid is
replaced by a layer of granular matter such as sand or, in
well-controlled recent experiments, uniform metallic or
glassy spheres (Melo et al., 1995). Depending on the fre-
quency and amplitude of the oscillation of the container,
the upper surface of the grains can arrange itself into
arrays of stripes or hexagons, as shown in Fig. 3. Lines
dividing regions differing in their phase of oscillation,
and disordered patterns, are also evident.

In addition, granular materials can exhibit localized
solitary excitations known as ‘‘oscillons’’ (Umbanhowar
et al., 1996). These can in turn organize themselves into
clusters, as shown in Fig. 3(d). This striking discovery
has given rise to a number of competing theories and
has been immensely provocative. It is interesting to note
that localized excitations are also found in fluids. For
example, they have been detected in instabilities in-
duced by electric fields applied across a layer of nematic
liquid crystal (Dennin et al., 1996). All of these localized
states are intrinsically nonlinear phenomena, whether
they occur in granular materials or in ordinary fluids,
and do not resemble any known linear instability of the
uniform system.

Granular materials have been studied empirically for
centuries in civil engineering and geology. Nevertheless,
we still have no fundamental physical understanding of
their nonequilibrium properties. In fact, to a modern
physicist, granular materials look like a novel state of
matter. For a review of this field, see Jaeger et al. (1996),
and references therein.

There are several clear distinctions between granular
materials and other, superficially comparable, many-

body systems such as fluids. Because they have huge
numbers of degrees of freedom, they can only be under-
stood in statistical terms. However, individual grains of
sand are enormously more massive than atoms or even
macromolecules; thus thermal kinetic energy is irrel-
evant to them. On the other hand, each individual grain
has an effectively infinite number of internal degrees of
freedom; thus the grains are generally inelastic in their
interactions with each other or with boundaries. They
also may have irregular shapes; arrays of such grains
may achieve mechanical equilibrium in a variety of con-
figurations and packings. It seems possible, therefore,
that concepts like ‘‘temperature’’ and ‘‘entropy’’ might
be useful for understanding the behavior of these mate-
rials (for example, see Campbell, 1990).

In the oscillating-granular-layer experiments, some of
the simpler transitions can be explained in terms of tem-
poral symmetry breaking resulting from the the low-
dimensional dynamics of the particles as they bounce off
the oscillating container surface. The onset of temporal
period doubling in the particle dynamics coincides with
the spatial transition from stripes to hexagons. Both the
particle trajectories and the spatial patterns are then dif-
ferent on successive cycles of the driver. The analogous
hexagonal state for Faraday waves in fluids can be in-
duced either by temporal symmetry breaking of the ex-
ternal forcing, or by the frequency and viscosity depen-
dence of the coupling between different traveling-wave
components. Both of these mechanisms are quite differ-
ent microscopically from the single-particle dynamics
that generates the hexagons in granular materials.

On the other hand, there are substantial similarities
between the granular and fluid behaviors. The granular
material expands or dilates as a result of excitation.
Roughly speaking, dilation of the granular layer reduces
the geometrical constraints that limit flow. This corre-
ponds to lower viscosity of the conventional fluid. Dila-

FIG. 2. Spatiotemporal chaos in rotating Rayleigh-Bénard
convection shown at two different times. Patches of rolls at
different angles invade each other as time proceeds. Courtesy
of G. Ahlers.

FIG. 3. Standing-wave patterns in a vibrating layer of granular
material. (a) Stripes; (b) hexagons and defects; (c) disordered
waves; (d) clusters of localized ‘‘oscillons.’’ Courtesy of P. Um-
banhowar and H. Swinney.
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tion accounts in physical terms for the fact that the
striped phase that occurs at high fluid viscosity may be
found at low acceleration of the granular material.

The differences, however, seem to be emerging
dramatically as new experiments and numerical simula-
tions probe more deeply into granular phenomena.
For example, stresses in nearly static granular materials
are highly inhomogeneous, forming localized stress
chains that are quite unlike anything seen in ordinary
liquids and solids. Even in situations involving flow, the
behavior of granular materials often seems to be gov-
erned by their tendency to ‘‘jam,’’ that is, to get them-
selves into local configurations from which they are tem-
porarily unable to escape. This happens during a part of
each cycle in the oscillating-layer experiments. (The
concept of ‘‘jammed’’ systems was the topic of a Fall
1997 program at the Institute for Theoretical Physics in
Santa Barbara. For more information, consult the
ITP web site: http://www.itp.ucsb.edu/online/jamming2/
schedule.html.)

V. GROWTH AT INTERFACES: DENDRITIC
SOLIDIFICATION

We turn finally to the topic of dendritic pattern for-
mation. It is here that some of the deepest questions in
this field—the mathematical subtlety of the selection
problem and the sensitivity to small perturbations—
have emerged most clearly in recent research.

Dendritic solidification, that is, the ‘‘snowflake prob-
lem,’’ is one of the most thoroughly investigated topics
in the general area of nonequilibrium pattern formation.
It is only in the last few years, however, that we finally
have learned how these elegant dendritic crystals are
formed in the atmosphere, and why they occur with such
diversity that no two of them ever seem to be exactly
alike. Nevertheless, our present understanding is still far
from good enough for many practical purposes, for ex-
ample, for predicting the microstructures of multicom-
ponent cast alloys.

Much of the research on dendritic crystal growth has
been driven, not only by our natural curiosity about such
phenomena, but also by the need to understand and
control metallurgical microstructures. (For example, see
Kurz and Fisher, 1989) The interior of a grain of a
freshly solidified alloy, when viewed under a micro-
scope, often looks like an interlocking network of highly
developed snowflakes. Each grain is formed by a den-
dritic, i.e., treelike, process in which a crystal of the pri-
mary composition grows out rapidly in a cascade of
branches and sidebranches, leaving solute-rich melt to
solidify more slowly in the interstices. The speed at
which the dendrites grow and the regularity and spacing
of their sidebranches determine the observed micro-
structure which, in turn, governs many of the properties
of the solidified material such as its mechanical strength
and its response to heating and deformation.

The starting point for investigations of metallurgical
microstructures or snowflakes is the study of single, iso-
lated, freely growing dendrites. Remarkable progress

has been made on understanding this phenomenon re-
cently. The free-dendrite problem is most easily defined
by reference to the xenon dendrite shown in Fig. 4.
Here, we are looking at a pure single crystal growing
into its liquid phase. The speed at which the tip is ad-
vancing, the radius of curvature of the tip, and the way
in which the sidebranches emerge behind the tip, all are
determined uniquely by the degree of undercooling, i.e.,
by the degree to which the liquid is colder than its freez-
ing temperature. The question is: How?

In the most common situations, dendritic growth is
controlled by diffusion—either the diffusion of latent
heat away from the growing solidification front or the
diffusion of chemical constituents toward and away from
that front. These diffusion effects very often lead to
shape instabilities; small bumps grow out into fingers be-
cause, like lightning rods, they concentrate the diffusive
fluxes ahead of them and therefore grow out more rap-
idly than a flat surface. This instability, generally known
as the ‘‘Mullins-Sekerka instability,’’ is the trigger for
pattern formation in solidification.

Today’s prevailing theory of free dendrites is gener-
ally known as the ‘‘solvability theory’’ because it relates
the determination of dendritic behavior to the question
of whether or not there exists a sensible solution for a
certain diffusion-related equation that contains a singu-
lar perturbation. The term ‘‘singular’’ means that the
perturbation, in this case the surface tension at the so-
lidification front, completely changes the mathematical
nature of the problem whenever it appears, no matter
how infinitesimally weak it might be. In the language of
dynamical systems, the perturbation controls whether or
not there exists a stable fixed point. Similar situations
occur in fluid dynamics, for example, in the ‘‘viscous fin-
gering’’ problem, where a mechanism similar to the
Mullin-Sekerka instability destabilizes a moving inter-
face between fluids of different viscosities, and a solv-
ability mechanism determines the resulting fingerlike
pattern. (See Langer, 1987, for a pedagogical introduc-
tion to solvability theory, and Langer, 1989, for an over-

FIG. 4. Dendritic xenon crystal growing in a supercooled melt.
Courtesy of J. Bilgram.
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view including the viscous fingering problem.)
The solvability theory has been worked out in detail

for many relevant situations such as the xenon dendrite
shown in Fig. 4. (See Bisang and Bilgram, 1996, for an
account of the xenon experiments, and also for refer-
ences to recent theoretical work by Brener and col-
leagues.) The theory predicts how pattern selection is
determined, not just by the surface tension (itself a very
small correction in the diffusion equations), but by the
crystalline anisotropy of the surface tension—an even
weaker perturbation in this case. It further predicts that
the sidebranches are produced by secondary instabilities
near the tip that are triggered by thermal noise and am-
plified in special ways as they grow out along the sides of
the primary dendrite. The latter prediction is especially
remarkable because it relates macroscopic features—
sidebranches with spacings of order tens of microns—to
molecular fluctuations whose characteristic sizes are of
order nanometers.

Each of those predictions has been tested in the xenon
experiment, quantitatively and with no adjustable fitting
parameters. They have also been checked in less detail
in experiments using other metallurgical analog materi-
als. In addition, the theory has been checked in numeri-
cal studies that have probed its nontrivial mathematical
aspects (Karma and Rappel, 1996). As a result, although
we know that there must be other cases (competing
thermal and chemical effects, for example, or cases
where the anisotropy is large enough that it induces
faceting), we now have reason for confidence that we
understand at least some of the basic principles cor-
rectly.

VI. REFLECTIONS AND CONCLUSIONS

We have illustrated pattern-forming phenomena
through a few selected examples, each of which has
given rise to a large literature. Many others could be
cited. As we have seen, the inherent sensitivity of
pattern-forming mechanisms to small perturbations
means that research in this field must take into account
physical phenomena across extraordinarily wide ranges
of length and time scales. Moreover, studies of pattern
formation increasingly are being extended to materials
that are more complex than isotropic classical fluids and
homogeneous solids. The case of granular matter de-
scribed here is one example of this trend. An important
example for the future is pattern formation in biological
systems, where the interplay between physical effects
and genetic coding leads to striking diversity.

The expanding complexity and importance of this
field brings urgency to a set of deep questions about
theories of pattern formation and, more generally, about
the foundations of nonequilibrium statistical physics.
What does sensitivity to noise and delicate perturbations
imply about the apparent similarities between different
systems? Are there, for example, deep connections be-
tween dendritic sidebranching and fracture, or are the
apparent similarities superficial and unimportant? What
about the apparent similarities between the patterns

seen in fluids and granular materials? In short, are there
useful ‘‘universality classes’’ for which detailed underly-
ing mechanisms are less important than, for example,
more general symmetries or conservation laws? Might
we discover some practical guidelines to tell us how to
construct predictive models of pattern-forming systems,
or shall we have to start from the beginning in consider-
ing each problem?

These are not purely philosophical questions. Essen-
tially all processes for manufacturing industrial materials
are nonequilibrium phenomena. Most involve, at one
stage or another, some version of pattern formation.
The degree to which we can develop quantitative, pre-
dictive models of these phenomena will determine the
degree to which we can control them and perhaps de-
velop entirely new technologies. Will we be able, for
example, to write computer programs to predict and
control the microstructures that form during the casting
of high-performance alloys? Can we hope to predict,
long in advance, mechanical failure of complex struc-
tural materials? Will we ever be able to predict earth-
quakes? Or, conversely, might we discover that the com-
plexity of many systems imposes intrinsic limits to our
ability to predict their behavior? That too would be an
interesting and very important outcome of research in
this field.
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