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Mixing rates and symmetry breaking in two-dimensional chaotic flow
Greg A. Voth,a) T. C. Saint, Greg Dobler, and J. P. Gollubb)

Department of Physics, Haverford College, Haverford, Pennsylvania 19041

~Received 11 February 2003; accepted 4 June 2003; published 31 July 2003!

We experimentally determine the mixing rate for a magnetically forced two-dimensional
time-periodic flow exhibiting chaotic mixing. The mixing rate, defined as the rate of decay of the
root-mean square concentration inhomogeneity, grows with Reynolds number, but does not increase
at the onset of nonperiodic~weakly turbulent! flow. The mixing rate increases linearly with a second
non-dimensional parameter, the typical path length of a fluid element in one forcing period. The
breaking of time-reversal symmetry and spatial reflection symmetry substantially increases the
mixing rates. A theory by Antonsenet al. that predicts mixing rates in terms of the measured
Lyapunov exponents of the flow is tested and found to predict mixing rates that are too large by
approximately a factor of 10; the discrepancy is traced to the fact that large scale transport rather
than stretching of fluid elements is the dominant rate limiting step when the system is sufficiently
large compared to the velocity correlation length. An effective diffusion model gives a good account
of the measured mixing rates. Finally, the formation of persistent recurrent patterns~also called
strange eigenmodes! is shown to arise from a combination of stretching and effective diffusion.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1596915#

I. INTRODUCTION

A central goal of the study of fluid mixing is to under-
stand and predict the rate at which an initially inhomoge-
neous fluid is homogenized. Extensive studies of mixing
have yielded many insights into the geometric structures that
govern the mixing process, particularly in two-dimensional
~2-D! flows.1–3 This picture has benefited greatly from the
application of the theory of dynamical systems to mixing,
starting with Aref,4 but these insights have not been easily
extended to understanding mixing rates.

A variety of conceptual frameworks have been devel-
oped for understanding and predicting mixing rates.
Melnikov-type methods work well for understanding mixing
rates when the flow is nearly integrable,5 but many flows of
interest are not in this limit.1 Approaches based on the
stretching produced by the flow include ‘‘mixing
efficiency’’1 and calculations based on the finite time
Lyapunov exponents.6,7 Recently, it has been recognized that
persistent spatial patterns, also called strange eigenmodes,8,9

must be considered in the prediction of mixing rates.10,11

Consideration of symmetries of the flow can provide impor-
tant insights into the rate of fluid mixing. Certain symmetries
in the flow field guarantee that the flow is integrable, which
in turn implies very slow mixing.12–14

In this paper, we present experimental measurements of
mixing rates in a two-dimensional flow that produces chaotic
mixing. In this well-characterized magnetically forced
flow,15,16 it is possible to measure simultaneously the dye
concentration fields, velocity fields, and stretching fields.17

Using these measurements, we explore the essential elements
that must be incorporated in a theory to explain the mixing
rates.

The primary results of this paper include the following:
~1! Several symmetries of the flow are identified and their
importance as impediments to mixing are evaluated.~2! Two
effects that might be expected to affect mixing rates, the
transition to non-periodic flow, and geometric resonances in
transport, do not have a measurable affect.~3! Mixing rates
are more accurately predicted by an effective diffusion
model than by a model based on finite time Lyapunov expo-
nents. This leads to the conclusion that attempts to predict
mixing rates in large systems must include transport as well
as stretching rates.~4! Understanding transport mechanisms
in this flow allows deeper insight into the processes that
create periodic persistent patterns.16

II. EXPERIMENT

We study mixing in an electromagnetically driven fluid
layer as shown in Fig. 1. A sinusoidal electric current travels
horizontally through a fluid layer that is placed above an
array of permanent magnets. The resulting Lorentz forces
drive a vortex array flow in the fluid. The magnets are con-
figured either randomly or on a regular grid as shown in Fig.
1. In order to have a 2-D layer with negligible shear across it,
a less dense non-conducting fluid layer 1 mm thick floats on
the conducting layer. The fluids are mixtures of glycerin and
water; the lower layer contains NaCl~3 M concentration! to
make it conductive. The two layers remain distinct for the
duration of an experiment, roughly 20 min, even though they
are miscible.

For most of the experiments reported in this paper, half
of the upper layer is initially marked with sodium fluorescein
dye ~concentration 7.531025 M) and the other half is un-
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dyed. The diffusivity of fluorescein is D55
310210m2 s21. A small quantity of Photoflo is used to de-
crease the effects of surface tension. The driving current is
controlled by placing the cell in the feedback loop of an
operational amplifier circuit, which ensures that the current
follows a specified waveform, even though the effective re-
sistance varies with time as a result of ion accumulation near
the electrodes. We use ac forcing with frequencies in the
range 20–200 mHz. The use of ac forcing ensures that any
net fluid motion over a full period is a consequence of non-
reversibility of the flow. During one periodT of the flow,
diffusion spreads dye over a lengthL5A2DT, which sets
the smallest length scales of the dye pattern in the range of
0.2–0.07 mm.

The fluid is illuminated in the near UV, and images of
the dye patterns are acquired with a Sensicam cooled CCD
camera from the Cooke Corp. This system provides 12 bit
monochrome images at 128031024 resolution, with readout
rate up to 8 frames/s to computer memory. A glass plate
covering the cell is necessary to eliminate ambient air cur-
rents, so that the fluid’s velocity field is not measurably in-
fluenced by environmental variations.

The stream function of the flow when driven by the ran-
dom magnet array is shown in Fig. 2, at an instant when the
rms velocity is near its maximum. The stream function is
calculated from separate experiments in which velocity fields
are measured by video particle tracking. For these experi-
ments, the flow is seeded with fluorescent polystyrene
spheres of diameter 120mm, which float at the interface
between the two fluid layers. Video imaging and particle
tracking software allow the extraction of individual particle
trajectories. Because the flow is periodic, we can average
velocity measurements at the same phase and obtain very
high spatial resolution. Details about the particle tracking
measurements are available in an earlier paper.17

There has been significant discussion in the literature of
the degree to which this flow models an ideal 2-D system.
There is good evidence that the velocity field is two dimen-
sional when the forcing time scale is long compared with the
vertical momentum transport time. We estimate the vertical

momentum transport time to be less than 1 s based on the
results in Ref. 15, and our forcing period is always longer
than 5 s, so we are confident that the velocity field is nearly
2-D.

A separate question however is the degree to which the
flow is a solution to the 2-D Navier–Stokes equation. It
clearly cannot be, unless a term in addition to the body forc-
ing term is included to account for the viscous stresses in the
vertical direction. Since the vertical profile is approximately
of Poiseuille form,15 a term proportional to the velocity may
be sufficient. This effect would have to be considered if the
experiments presented here were compared to 2-D Navier–
Stokes simulations. We do not undertake such a comparison
here.

There are two important non-dimensional parameters for
this flow. The Reynolds number Re5UL/n is based on the
mean magnet spacingL52 cm, rms velocityU, and kine-
matic viscosityn. The second parameter is the path length
p5U/L f traveled by a typical fluid element in one forcing
period 1/f , normalized byL. The Strouhal number St5p21

could be used instead, but we preferp because of its simple
physical interpretation.

Both Re andp are experimentally controlled by adjust-
ing the forcing current, its frequency, and the fluid viscosity.
We wish to compare mixing rates while one of the nondi-
mensional parameters is held constant, so we require the
ability to choose particular Re andp. Since the relationship
between the experimental control parameters and the rms
velocity cannot easily be calculated analytically, we have
instead measured the empirical relationship using particle
tracking.

A convenient parametrization of the measured rms ve-
locities is provided by modeling the flow as a sinusoidally
driven damped mass:

ẍ52v0ẋ1F0 sin~vt !, ~1!

FIG. 1. Diagram of the two-dimensional, magnetically forced, time-periodic
flow.

FIG. 2. Instantaneous stream function of the flow driven by the random
magnet configuration at Re5100 andp55. The flow is instantaneously a
random vortex array whose form is distorted with time, but that repeats
periodically.
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wherex is the position of the mass,v0 andF0 are indepen-
dent of time, andv52p f is the driving frequency. This
model accurately reproduces the reduced response and phase
delay that grow asv is increased. We expect that the depen-
dence on the driving current can be taken into account by
allowing for a linear variation ofF0 with the current, so we
write F05GI . Solutions for the velocity are of the form

ẋ5
GI

A11~v/v0!2
sin~vt1d!. ~2!

We identify ẋ with the rms velocity in the flow. By measur-
ing the rms velocity over a range of currents and frequencies,
we determine the constantsG andv0 for each solution with
different viscosity that is used. Equation~2! then provides a
parametrization that predicts the velocity and hence the Rey-
nolds number and path length for any current and frequency.
We find that this approach allows us to obtain any desired
combination of dimensionless parameters Re andp, with ac-
curacy of better than 10%, by adjusting the forcing current,
its frequency, and the fluid viscosity.

III. RESULTS

A. Measurement of mixing rates

Full characterization of the process of homogenization
of an impurity in a flowing fluid requires recording the space
and time dependence of the impurity concentration field.
However, for many purposes it is advantageous to have a
single number to characterize the mixing rate. To this end,
we first identify the spatial standard deviation of the instan-
taneous impurity concentration field as a measure of the de-
gree of mixing that has occurred. Figure 3 shows this quan-
tity as a function of time during a typical mixing run. Also
shown is a fit of the function

^C2&1/25C0 exp~2Rt!1C1 ~3!

to the concentration decay curve, whereC0 , R, andC1 are fit
parameters. Throughout this paper we refer to the quantityR
determined by this fitting procedure as the measured mixing
rate.

This functional form is a convenient parametrization, not
a rigorous model. Clearly, the inclusion of the constantC1

reflects non-ideal factors since the concentration standard de-
viation would be expected to decay to zero in the long time
limit. Experimentally we find that there are measurable con-
centration fluctuations even when premixed fluid is used for
the upper layer. This is caused by weak three-dimensional
flows which decrease the thickness of the upper layer in
some regions, for example in the centers of vortices. In ad-
dition, we find that the value ofR has a measurable depen-
dence on the time interval used in the fit, typically decreasing
as the time interval is moved to largert. We interpret this as
resulting from the slow process of transport of fluid initially
trapped near the no slip boundaries. The measurement errors
we report forR are dominated by this variation between fits
to different parts of the decay curve.

Figure 4 shows the time dependence of the concentration
variance for a series of runs at different Reynolds number but
constantp55. A fit to each of these provides the measured
mixing rates which are plotted in Fig. 5. Qualitatively, the
mixing rate data appear very much as expected.R increases
monotonically upon increase of the Reynolds number. A plot
of the mixing rate at differentp but constant Re is shown in
Fig. 6. Here the two different curves are for the two different
magnet configurations, both at Re580. Again, qualitatively,
the data are not surprising. The mixing rate increases with
path length. However, careful consideration of the mixing
rate data reveals several significant insights which are de-
scribed in the following sections.

B. Effects of symmetry breaking on mixing rates

A striking feature in the mixing rates is that the flow
undergoes a transition to temporally nonperiodic flow, but
there is no signature of this transition in the mixing rates.
This transition occurs via a kind of period-doubling bifurca-

FIG. 3. Standard deviation of the dye intensity as a function of time forp
55, Re5100. The solid line shows a fit of Eq.~3! to the time range from 6
to 35 periods.

FIG. 4. Standard deviation of dye intensity as a function of time forp
55. ~h! Re525; ~n! Re555; ~s! Re5100; ~1! Re5170. The decay rate
of the variance grows with Re and saturates beyond Re'100.

2562 Phys. Fluids, Vol. 15, No. 9, September 2003 Voth et al.
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tion. This can be observed in Fig. 7, which shows images
taken once per period of three flows atp55 but with differ-
ent Re. For Re585, the flow is periodic and the images show
a persistent pattern. Careful observation of the images from
Re5115 shows that the pattern repeats every other period:
the flow has period-doubled. For Re5170, the flow no longer
shows any time periodicity. We have also observed period-
four behavior atp55, Re5125, which is not shown. The
onset of turbulence is identified with the development of
space–time disorder,18 of which an important element is the
appearance of temporal non-periodicity. Since turbulence is
often identified with effective mixing, it is interesting to
check whether the onset of temporal non-periodicity leads to
faster mixing. Surprisingly, we find that in the experiments
reported here, the onset of non-periodicity does not lead to a
change in either the mixing rate, or in the rate of growth of
the mixing rate with Re. Therefore, non-periodicity alone is
not the primary feature that enables turbulent flows to mix
effectively. Rather than the breaking of time periodicity, it is

the breaking of time reversal and spatial symmetries that turn
out to be the dominant symmetry-related features affecting
mixing.

Another way to show the transition to non-periodic flow
is to plot the deviation from periodicity of the velocity field,
which is shown in Fig. 8~a!. The difference in the velocity at
two times separated by one period should be zero when the
flow is periodic. By calculating the standard deviation of this
quantity, averaged over space and time, we obtain a measure
of the breaking of time periodicity. Particle tracking is used
for these measurements, although the data sets are relatively
small in order to allow many Reynolds numbers to be stud-
ied. The results show a clear loss of time-periodicity above
Re5150. There is significant scatter, partly due to the fact
that these experiments combine many different path lengths.
No signature of period-doubling is visible in these data,
probably because the deviations in the period-doubled veloc-
ity fields are quite small.

While the flow losestime periodicityat a definite Rey-
nolds number, the presence of chaotic mixing implies that it
must have a breaking oftime reversal symmetryeven at very
small Reynolds numbers. Otherwise, each particle would re-
turn exactly to its starting point once per period, and there
could be no chaotic mixing. Figure 8~b! shows a measure of
the breaking of time-reversal symmetry. The sum of the local
velocities at equal time intervals before and after the zero
crossing of the velocity should be zero if there were time
reversal symmetry. The standard deviation of this quantity,
again averaged over space and phase, is plotted in Fig. 8~b!.
~One detail is that the zero of velocity does not occur at
exactly the same instant at all spatial locations, so we use as

FIG. 5. Measured mixing rates~R! as a function of Reynolds number.~h!
p58; ~n! p55; ~s! p52. The mixing rate grows with Re and with path
lengthp. The two closed symbols are the predictions of the decay rates from
an effective diffusion process.~m! p55 and Re5100; ~d! p52 and Re
5100.

FIG. 6. Measured mixing rate~R! as a function of path length at Re580.
~h! Random magnet configuration;~n! regular magnet configuration. The
mixing rate grows with path length and is reduced for the regular configu-
ration by barriers to transport.

FIG. 7. Images of the dye field showing the transition to non-periodic flow.
Each column shows a different Reynolds number. Each row shows an image
taken one period after the row above it. At Re585, the flow is periodic and
the pattern repeats once per period. At Re5115, the dye field repeats only
once every other period, i.e., it has period doubled. At Re5170 the dye field
is non-periodic, or weakly turbulent.

2563Phys. Fluids, Vol. 15, No. 9, September 2003 Mixing rates and symmetry breaking in 2-D chaotic flow
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our reference instant the time of minimum velocity magni-
tude, averaged across the entire flow.! The degree of time
reversal symmetry breaking grows smoothly with Re starting
at very small Re.

Symmetry considerations also explain the fact that the
regular magnet configuration is found to mix more slowly
than the random array~Fig. 6!. This can be attributed to the
barriers to mixing created by the spatial symmetry of the
regular array. This flow has many lines across which the flow
has approximate reflection symmetry. If this symmetry were
perfect, the fluid velocity perpendicular to these lines would
be required to be zero, and hence these lines act as barriers to
transport. Small deviations from perfect symmetry~e.g., due
to variations in magnet placement or strength! allow some
fluid to be transported across these lines; however, the barri-
ers still significantly reduce the mixing rate.

Numerical19 and experimental20 studies of wavy Taylor–
Couette flow have found that axial transport rates, and hence
mixing rates, first increase and then decrease with increasing
Reynolds number. Mezic5 provides a theoretical explanation
of this phenomenon, implying that the decrease may be a
universal feature of chaotic flows. This explanation relies on
the fact that with increasing Reynolds number, the flow ap-
proaches an inviscid~Euler! flow. Except for special cases

like the ABC flow, inviscid flows are integrable; and so the
mixing rate at high Reynolds number should go to zero. Our
data~Fig. 5! do not show this predicted decrease with Rey-
nolds number, although the slope does decrease. It remains
possible that a decreasing mixing rate with increasing Rey-
nolds number would exist if the transition to non-time-
periodic flow did not occur first.

A further prominent feature in the mixing rate data is the
smooth linear relation in Fig. 6 between the homogenization
rate andp. Computations by Solomonet al.21 of a spatially
periodic flow similar to that produced by the regular magnet
array have found geometric resonances which enhance par-
ticle transport at certain path lengths. If geometrical reso-
nances made a significant contribution to mixing in our flow,
we would expect maxima in the mixing rates at specific val-
ues ofp. There is no sign of such resonances in our data,
although it is possible that their effects are smaller than the
measurement errors. An important difference between our
flow and the one studied by Solomonet al.21 is that the bar-
riers of reflection symmetry in their flow are broken by co-
herent oscillations of the vortex centers. In our flow, these
barriers are broken by irregularities in the magnet configura-
tion. Since transport across the lines of mirror symmetry is
determined here by small deviations from perfect symmetry,
mixing across the barriers between different pairs of cells
can be very different. As a result global resonances in par-
ticle transport may be suppressed.

C. Predicting mixing rates

Our ability to measure both the decay of the dye concen-
tration field and the statistics of the stretching field in the
same flow allows us to compare the measured mixing rates
with theoretical predictions based on the finite time
Lyapunov exponents of the flow. Antonsenet al.6 predict that
the long time decay of the scalar concentration variance will
obey

^c~ t !2&}E
0

`

h1/2dh P~h,t !exp~2ht!, ~4!

where P(h,t) is the probability density of the finite time
Lyapunov exponents~h! over time interval t. While this
theory has been criticized for failing to adequately capture
global mixing mechanisms,10 it remains one of the only
available explicit predictions of mixing rates.

When Eq.~4! is used with the measured probability den-
sity for finite time Lyapunov exponents,17 the decay of con-
centration is found to be approximately exponential in time.
However, we find that the predicted decay rate is nearly a
factor of 10 larger than the measured mixing rate. There is
significant uncertainty in this calculation because the predic-
tion depends sensitively on the form ofP(h,t) nearh50,
and experimentally the region nearh50 shows dependence
on how we treat the boundaries. However, known effects
cannot account for the factor of 10 discrepancy.

Comparison of the flow used in Ref. 6 with the present
experiment reveals a major difference. They use a sine flow
with periodic boundary conditions, whereas our flow has a
spatial extent much larger than the velocity correlation

FIG. 8. ~a! Degree of non-periodicity in the velocity field. The standard
deviation of the difference between the velocity fields at two times separated
by one period is shown as a function of Reynolds number.~h! The velocity
component along the current direction,~n! the perpendicular velocity com-
ponent.~b! Degree of non-time-reversibility of the velocity field, defined as
the standard deviation of the difference between the velocity fields at equal
intervals before and after the instant of smallest velocity. Symbols are the
same as in~a!. Note that the flow loses its time reversal symmetry long
before it becomes non-periodic.

2564 Phys. Fluids, Vol. 15, No. 9, September 2003 Voth et al.
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length. This difference in scale suggests that transport of im-
purity across the experimental flow may limit the measured
mixing rate, whereas the theory assumes that the mixing rate
is locally controlled by the stretching process.

To quantify the importance of transport across the flow,
consider a model of mixing based on an effective diffusivity.
The long time transport of fluid elements is primarily
diffusive,21,22 so the mean square displacement of particles
can be used to define an effective diffusivity

^~Dx!2&52Geff t. ~5!

The dye concentration decay rate in this model is then found
by solving the diffusion equation in a closed box given the
initial dye distribution. The problem is one dimensional, and
is easily solved with a Fourier decomposition. The long time
decay is dominated by the mode with the longest wave-
length. Its decay rate is

R5Geff ~p/L !2, ~6!

where L is the length of the flow in the direction of the
concentration gradient.

Experimental measurements of the mean square dis-
placement of particles are shown in Fig. 9. The time span
over which the motion is diffusive is limited because the
velocity correlation length~roughly, the magnet spacing! is
only about one-tenth of the system size. However, it is still
possible to determine an effective diffusivity that best fits the
data.

Expected scalar decay rates that are determined from
these effective diffusivities and Eq.~6! are plotted with
closed symbols in Fig. 5. The agreement with the measured
mixing rates is quite good for both data points. Further sup-
port of this effective diffusion picture is provided by Fig. 10,
which shows the horizontal profile of the dye concentration
field. When normalized to remove the contrast decay, the
profile is found to approach the sinusoidal form of the slow-
est decaying mode in a diffusive process.

D. Persistent patterns

The recognition that transport through an effective diffu-
sion process dominates the experimental mixing rate allows
a new perspective on the development of persistent patterns
in spatially extended chaotic flows. Consider two limiting
systems. In the first, the length scale of the dye concentration
field is large compared to the velocity correlation length. Our
experimental system tends toward this limit, and here the
rate limiting step in mixing is transport of fluid between
independent regions of the flow. In the second limiting sys-
tem, the spatial scale of the dye concentration field is much
smaller than the velocity correlation length. In this case, the
mixing rate is determined by the rate of stretching and fold-
ing of fluid elements, and the mixing rate may possibly be
calculated using the approach of Antonsenet al.6 However,
Sukhatme and Pierrehumbert11 have recently analyzed the
importance of the relative length scales of the scalar and
velocity field and concluded that even in this limit, the cal-
culation based only on Lyapunov exponents may be incom-
plete for describing the long time scalar decay.

The processes that control the mixing rate in these two
limiting cases are fundamentally distinct, but they have a
remarkable feature in common. They both produce persistent
patterns, i.e., the concentration field can be written as a func-
tion of space multiplied by an exponentially decaying func-
tion of time. In the diffusive case the spatial function is sim-
ply a sinusoid. In the stretching dominated case, the spatial
function has been called a ‘‘strange eigenmode;’’8 its gradi-
ents are aligned with regions of large stretching which mark
the unstable manifold of the flow.3,23

The experimental flow that we study lies between these
two limiting cases. The persistent pattern that develops can
thus be conceptually decomposed into small scale and large
scale structures. The small scale structures contain the sharp-
est dye gradients, which are aligned by the stretching field.
Since the stretching field is time-periodic, images taken once
per period show that these small scale structures approach a

FIG. 9. Mean square displacement of particles for Re5100, p55 ~l! and
Re5100, p52 ~d!. The solid lines show the linear~diffusive! scaling that
best matches time range between 1 and 5 periods. These fits, along with Eq.
~5!, yield Geff53.1 cm2/period and 0.67 cm2/period, respectively.

FIG. 10. Horizontal profile of the dye concentration at three different times.
Images of the dye concentration, similar to those in Fig. 8, are vertically
averaged; then the mean is substracted and the profile is normalized by its
standard deviation. The normalized profile approaches the sinusoidal form
of the slowest decaying diffusive mode. (t50, dotted line;t56 periods,
solid line; t536 periods, bold line. Random magnet configuration,p53,
Re580.!
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persistent pattern, defined by the lines that have experienced
large stretching, which correspond to the unstable manifolds
in the flow.17 The large scale structure of the dye concentra-
tion field, on the other hand, is governed by transport, and is
approximately a problem of effective~or eddy! diffusion.
This large scale structure approaches its persistent pattern
over a time that is somewhat longer than that required for the
small scale pattern to develop. As a result, and because sharp
gradients dominate visual perception, the pattern appears to
approach a stationary pattern rather quickly. However, the
averaged horizontal profile approaches a persistent pattern at
a slower rate determined by transport across the system. The
variance of the dye distribution can only decay as fast as
transport allows the large scale structures to be removed, so
this longer characteristic time dominates the mixing rate. In
the experiment, these two processes do not have a large
enough separation of scales to be fully distinguished; how-
ever, considering the limiting cases confirms that both of
these fundamentally different processes are working together
to produce the persistent patterns.

IV. CONCLUSIONS

In this paper, we have reported careful measurements of
the rate at which an inhomogeneous scalar field becomes
homogeneous in a two-dimensional flow exhibiting chaotic
mixing. Specific space and time symmetries of the flow have
been identified that provide a framework for understanding
the mixing rates, especially the progressive breaking of time-
reversal symmetry. We have discussed the results in terms of
available theory, and have demonstrated the need to incorpo-
rate both stretching and transport in future theoretical models
of homogenization. A simple ‘‘effective diffusion’’ model
captures the mixing rates well in our flow, while stretching
based models work well in smaller flows. A comprehensive
approach is still needed to unite these two limiting cases.
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