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IL NUOVO CIBIENTO VoL. 6 D, N. 4 Ottobre 1985 

Phenomenological Model of Chaotic Mode Competition 
in Surface Waves. 

S. CILIBERT0 

Istituto .~azionale di Ottiea - J~argo E.  •ermi 6, 50125 .Firenze, Italia 

J . P .  GOLLUB 

Hayer/oral College - Hayer]oral, PA 19041 
Department o] Physics, University o] Pennsylvania - Philadelphia, PA 19104 

(rieevuto il 4 Giugno 1985) 

Summary.  - - W e  present a four-variable model (two coupled param- 
etrically forced oscillators) that describes many of the phenomena seen 
in an experiment on surface waves in which the competition between 
spatial patterns produces chaotic behaviour. The model reproduces 
the route to chaos, the dimension of the attractor, the Kolmogorov 
entropy and (approximately) the phase diagram. 

PACS. 47.25. - Turbulent flows, convection and heat transfer. 
PACS. 47.35. - Hydrodynamic waves. 

1. - In troduct ion .  

I n  a recent  paper  (1) we described an  exper iment  on forced surface waves 
in which chaotic behaviour  is clearly produced by  the  competi t ion between 

two spatial modes. We also suggested a phenomenologicul  model  t h a t  explains 

m a n y  of the  exper imental  results. I n  this repor t  we describe the  phenom- 
enological model  in greater  detail. The exper iment  itself is thoroughly  t rea ted  
in a separate publ icat ion (2). 

(x) S. CILIBERTO and J . P .  GOLL~B: Phys. Bey. T~ett., 52, 922 (1984). 
(2) S. CILIB]~RTO and J .P .  GOLLUB: J .  _Fluid Meek, 158, 381 (1985). 
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We recall  only  the  results  of the  exper iment  to allow a direct  compar ison 
with those of the  model.  The sys tem of in teres t  is a cyl indr ical  fluid layer  in 
a container  t ha t  is subjected to a small  ver t ica l  oscillation. I t  is well known (s) 
tha t ,  if the  driving ampl i tude  exceeds a cri t ical  value  Ao(lO), which is a funct ion  
of f requency,  the  free surface develops a p a t t e r n  of s tanding  waves. The  surface 
deformat ion  S(r, O, t) can t hen  be wr i t t en  as a snperposi t ion of no rma l  modes:  

(1) S(r, 0, t) ---- ~ a,,,~(t)Jdk~.~r) cos ~0, 
lp~'tt 

where J t  are Bessel funct ions  of order  ~ and  the  allowed wave numbers  kt,~ 
are  de termined  by  the  bounda ry  condi t ion t h a t  the  der iva t ive  J'z(kt,,~R)= O, 
where R is the  radius of the  cylinder.  The modes m a y  be labeled b y  the  indices 
(giving the  number  of angular  maxima)  and  m (related to  the  n u m b er  of nodal  
circles). The  mode ampl i tude  at.~(t) develops an ins tabi l i ty  when the  cor- 
responding e igenfrequency (given b y  the  dispersion law for capil lary g rav i ty  
waves) is approx imate ly  in resonance with half  the  driving f r equency  1o and  A 
exceeds A~(1o ). This paramet r ic  ins tabi l i ty  leads to s tanding waves in which 
the  mode ampl i tude  oscillates a t  Io/2. To t ake  in to  accoun t  the  possibi l i ty of 
a fu r the r  slow modulat ion of the  mode  ampli tudes,  which, in fact ,  occurs due 
to mode competi t ion,  we write each ampl i tude  in t e rms  of fas t  oscillations at  
1o/2 and slow envelopes Cz(t) and  Bz(t): 

(2) at(t) = Cz(t) cos (~]ot) + B~(t) sin (~t/ot) �9 

We omit  the  second subscript  because,  in pract ice ,  only  a single value  of m is 
significant for a given va lue  of 1. 

The behavior  of the  sys tem as a func t ion  of A and  ]o is shown in fig. 1. 
Below the parabolic s tabi l i ty  boundaries ,  the  surface is essential ly fiat. Above  
the  s tabi l i ty  boundaries ,  the  fluid surface oscillates a t  ha l f  the  driving f r equency  
in a single s table mode. The shaded areas are  regions of mode  compet i t ion,  
in which the  surface can  be descr ibed as a superposi t ion of the  (4, 3) and  (7, 2) 
modes with ampli tudes  having a slowly va ry ing  envelope in addi t ion  to the  
fas t  oscillation a t  ]o/2. 

Our exper imenta l  appara tus ,  descr ibed in (1,~), allows us to s tudy  a fixed 
l inear  combinat ion  of t h e  slow coefficients Or(t) and Bt(t), which we deno te  
by  a~(t). The dynamics  of the  slow oscillation was explored b y  va ry ing  A and ]o 
separa te ly  inside of the  in te rac t ion  region. In  fig. 2 t ime  series and  corre- 
sponding power spectra  are shown for th ree  different  driving ampli tudes  b u t  
fixed driving f r equency  of 16.05 Hz. 

(3) T . B .  BENJAMIN and F. URS~LT.: PRO0. R. 8or London, Set. A, 225, 505 (1954). 
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Fig. 1. - Phase diagram as a function of driving amplitude A and frequency J0. The 
crosses are experimentally determined points on the stabili ty boundaries. Stable 
pat terns occur in the regions labeled (4, 3) and (7, 2). Slow periodic and chaotic oscil- 
lations involving competition between these modes occur in the shaded regions. 
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Fig. 2. - The transEt[ou from periodic to chaotic oscillation. Time series and corre- 
sponding power spectra of the slow oscillation are shown for ]o = 16.05 Hz and three 
different driving amplitudes. Broad-band noise is associated with the appearance of 
a subharmonic j*[2 o~ the dominant  oscillation. 
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As the  dr iving ampl i tude  is increased, ~ chaotic  s ta te  wi th  ~ b road  power  
spec t rum is obtained.  We character ized the  chaotic  beh~viour  quan t i t a t ive ly  (2) 
b y  comput ing  f rom the exper imenta l  d~t~ ~he correlat ion dimension v of the  
a t t r ac to r  (4) and  u lower bo tmd K~ for the  K o i m o g o r o v  en t ropy  K (5). W h e n  
the  oscillation is periodic (A ~ 121 ~m), we find v = 1.0 + 0.04 and  K~ = 

(0 .0•  s -~. On the  o ther  hand ,  when  the  slow oscil lat ion is chaot ic  
(A ~- 190 ~m)~ v -~ 2.22-4-0.04 and  K~ ~ (0 .1~0.01)  s -~. These m e a s u r e m e n t s  
c lear ly d e m o n s t r a t e  t h a t  the  a t t r a c t o r  has  a low (and f ract ional)  dimension 
a n d  t h a t  the re  is a t  l eas t  one pos i t ive  L y a p u n o v  exponen t .  The  dimension 
m e a s u r e m e n t s  also show t h a t  a four -d imens iona l  phase  space is required  to 
r ep resen t  the  da ta .  

2 .  - F o r m u l a t i o n  o f  t h e  m o d e l .  

We h a v e  cons t ruc ted  a re la t ive ly  s imple  phenomenolog ica l  model  t h a t  
has  a reasonab le  h y d r o d y n a m i c  basis  and  accounts  for  m o s t  of our observations~ 
including the  basic  s t ruc tu re  of the  phase  d iagram.  We begin wi th  the  fac t  
t ha t ,  in a l inear ized inviscid app rox i m a t i on ,  each  mode  a m p l i t u d e  az(t) follows 
a Math ieu  equa t ion  (8): 

(3) az(t) ~- (eo~ - -  ~o~A cos COot ) a~(t) : O, 

where  oJ~ is the  e igenfrequency,  ~ is a ga in  coefficient and  ~o o ~-2~]o.  We 
t ake  the  p o i n t  of v iew t h a t  one can a p p r o x i m a t e l y  accoun t  for  the  effects of 
damp ing  (due to all sources, including bu lk  v iscos i ty  and  wall  effects) b y  
in t roducing  a f i rs t-order  t e r m  ~ .  F u r t h e r m o r e ,  i t  is necessary  to add  a non- 
l inear  t e r m  to l imi t  the  g rowth  of the  mode  to finite amp l i t ude  in the  s t eady  
s ta te .  The  lowest-order  nonl inear  t e r m  is cubic in the  m o d e  ampl i tude ,  thus  
we have  the  following equa t ion  for  the  t i m e  va r i a t i on  of a n y  mode :  

(r az ~- ~a~ ~- (co~ - -  ~p~A cos eOot)a ~ --~ ~za~. 

We find t h a t  this  equa t ion  is sufficient to fit the  ( app rox ima te ly  parabol ic)  
s tab i l i ty  curves  in fig. 1 and  to describe qu an t i t a t i ve ly  t he  va r i a t ion  of the  
s t eady - s t a t e  mode  ampl i tude  wi th  A above  threshold .  

Nex t  we consider  the  p h e n o m e n o n  of mode  compet i t ion .  We know t h a t  
only  two modes  a re  involved and  t h a t  t h e y  in te rac t .  Therefore ,  we consider 
a model  consis t ing of two coupled Mathieu  oscillators.  There  are var ious  ways  
to in t roduce  coupling phenomenologica l ly .  One m a y  al low the  coefficient of 

(4) P. G~ASS~ROv.~ and I. P~OCACClA: Physica (Utrecht) 1), 9, 189 (1983). 
(s) P. GRASSBERG:EIr ad/d I. PROCACCIA: ~hys. l~ev. A, 28, 2591 (1983). 
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the  driving t e r m  for one mode to depend on the  ampl i tude  of the  o ther  mode. 
Al ternat ively ,  one m a y  ~llow each damping  coefficient to depend on the  ~m- 
pl i tude of the  o ther  mode. Fin~lly,  one m~y in t roduce nonl inear  t e rms  con- 
ta ining bo th  mode ampli tudes.  We have t r ied  all th ree  ~pproaches,  b a t  we 
present  results  only for the first one, s imply because i t  provides  a b e t t e r  fit 
to the  exper iments .  Therefore ,  to describe the  in te rac t ion  of the  Z -~ 7 and  
I = 4 modes,  we set 

(5) V 4 = ~ , + f l 4 , a ~  and  V , = ~ , + f l , , a ~ ,  

where the  coupling coefficient fl,4 is negat ive ,  while/54, is positive. The origin 
of the  sign difference is the  observed phase difference be tween the  two modes 

o leads o by  abou t  90 ~ (see fig. 4 of ref.  (x)). dur ing the  oscillation. In  fact ,  a, a 4 
This implies t ha t  the  sevenfold mode  pumps  the  fourfold mode,  while the  
fourfold mode  damps the  sevenfold mode.  To solve the  sys tem of the  two coupled 
Mathieu equations,  we express the  mode  ~mpli tudes by  eq. (2). We subs t i tu te  
eqs. (2) and  (5) into (4), keeping only  te rms  oscillating at  ~]o and  neglect ing 
those at  3~]o. We ~lso neglect  J~z ~nd 0, because the  t ime  scales of the  fast  
oscillation and  mode compet i t ion  are  ve ry  different,  so t h a t  /~z<< 2~Oo0~ and  
0, << 2eOoJ~,. Final ly,  we obta in  the  following four-dimensional  sys tem for the 
slow variables  C4, B4, C, and  B,:  

(6) 

O, �89 c4 rA4 VoA + o , . . . .  ~4(C4 + B~) - -  fl~,B27]B4, 

I~ 4 = - -  �89 -r [ A 4 -4- yJ~ -r ~~ C~ -+- B**) + fl[, C~] C4 , 

O, �89 c, [A, ~o A +  o , ~ o , . . . .  f174B 4]B, , = L(c, + B,) 

B, = - �89 B, + [~, + , f  A + ~,(C~ + B~) + ~40~,]C,, 

where we have in t roduced  normal ized  coefficients ~s follows: 

(7) rio, --_ f14,A /2oo ' 

r = ar 

3. - Integration and properties of  the  model .  

In  this sys tem most  of the  coefficients cnn be measured.  The damping  
coefficients 7~ and gain coefficients ~o are  ad jus ted  to fit the  parabol ic  s tabi l i ty  
curves of fig. 1, and the  nonl inear  coefficients ~z are chosen to reproduce  the  
measured  sa tura t ion ampli tudes,  all in a region where only  a single mode  is 
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present .  We numerical ly  in tegra te  the  sys tem using the  four th-order  l~unge- 
K u t t a  me thod  and find t ha t  regenera t ive  oscillations (both periodic and 
chaotic) are, in fact ,  p roduced near  the  in tersec t ion  of the  s tabi l i ty  boundar ies  
for  the  two modes.  We adjust  t he  two mode-coupling coefficients to  obta in  
an  oscil latory domain  similar in size to t h a t  found  in the  exper iments  (fig. 1). 
The  space d iagram produced by  this set of model  equat ions  is shown in fig. 3. 
The  va lue  of the  pa ramete r s  used in the  model  ~re 

~* = 77 ~ 0 . 4 0  s - ~  , 

r ~ 0.10 s -1 

~p~ - ~  5 1 . 3  c m  - ~  s - 1  , ~fl~ - ~  5 2 . 6  c m  - a  s - ~  , ~ ----- 1 . 0 0  s - x  , 

o _ s - ~ ) A ,  p o = + ( 7 . 0  e r a - '  s - ~ ) A ,  ~ , ,  - - ( 9 . 0  c m - '  

o~ : 49.59 r ad / s ,  m~ --~ 50.92 rad / s .  

(The mode ampli tudes  are t aken  to be dimensionless with a scale set b y  the  
a rb i t r a r y  chioee of ~o.) 

200 �9 , , , �9 �9 , ~ ' ,  �9 

- ,oo \ / \ 

5O 

fo(HZ) 

Fig. 3. - Phase diagram obtained from the phenomenologieal model by numerical 
integration. This figure should be compared with fig. 1. 

The parabol ic  s tabi l i ty  curves fit the  exper imen ta l  da ta  to wi thin  about  
10 % for A <150 t~m. However ,  the  shapes of the  periodic and  chaot ic  regims 
are different  f rom those found exper imenta l ly .  

In  order  to compare  the  behav iour  nea r  the  onset  of chaos with t h a t  ob- 
served exper imenta l ly ,  we present  {fig. 4) t ime series of the  slow componen t  B 
and corresponding power spectra  f o r  t h ree  different  values of A~ b u t  fixed 
]0-~ 16.11 Hz.  This figure m a y  be compared  wi th  the  exper imen ta l  da t a  in 
fig. 2. The basic period of oscillation is different  b y  a fac to r  of two, an  unex- 
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pla ined d iscrepancy.  However~ in b o t h  cases we find the  following fea tures :  
a single subha rmonic  b i furca t ion  of the  slowly v a r y i n g  mode  ampl i tude  for 
comparab l e  A and  ]o; an  increase  in the  b a c k g r o u n d  noise level  a t  or nea r  this  
b i furca t ion;  a n d  a loss of all  sha rp  spec t ra l  s t ruc tu re  a t  higher  A wi thou t  
fu r the r  bi furcat ions .  Thus the  onset  of chaos seems to be  qui te  s imilar  in the  
da t a  and  in t he  model .  

6 

6 

O" 

f*  
b) 

. 

~) f*/2 I f* 

| 

6 
f 

z, 

2 

150 300 0 300 

t(s) f (10-3Hz) 
600 

Fig. 4. - Time series and Fourier spectra obtained from numerical integration of the 
model at throe driving amplitudes. This figure illustrates the transition from periodic 
to chaotic oscillation and should be compared to the experimental data of fig. 2. Both 
experiment and model show a single subharmonio bifurcation with associated broad- 
band noise onset. 

We also measu red  the  cor re la t ion  d imens ion  v for  the  chaot ic  s ta tes  of the  
model .  We find v = 2 .41~0 .04  for  A - ~  175 ~m, a n d  the  s ame  resu l t  a t  
A ~--- 155 vm.  Thus  the  s t range  a t t r a c t o r  p roduced  b y  the  mode l  has  a b o u t  
the  same dimension as t h a t  found  in the  exper imen t .  

The  L y a p u n o v  exponen ts  of the  mode l  equat ions  were also c o m p u t e d  wi th  
the  m e t h o d  proposed  in (6). The  K o l m o g o r o v  e n t r o p y  K ( the sum of pos i t ive  
I~yapunov exponents )  is 0.33 s -1 a t  A = 175 ~zm. The  r a t i o  K/] of the  Kol-  
mogorov  e n t r o p y  to the  f r equency  ] of the  slow oscil lation is a p p r o x i m a t e l y  1.1 
for  b o t h  the  mode l  and  the  e x p e r i m e n t .  

(s) G. BENETTIN, L. GALGANI and J .M.  STRELCYN: _~ecca~v~ea, 15, 9 (1980). 

21 - I1 N t w v o  (7 ime~fo  D .  
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4.  - Conc lus ion .  

We have presen ted  a simple phenomenological  model  for  chaot ic-mode 
compet i t ion  in an exper imenta l  s tudy  of paramet r ica l ly  forced surface waves. 

The model  describes m a n y  of the  exper imen ta l  results  fair ly well, including 
the  qual i ta t ive  s t ruc ture  of the  p a r a m e t e r  space (fig. 3), the  rou te  to  chaos 
(fig. 4), the  dimension of the  resul t ing s t range a t t r a c to r  and the  Kolmogorov  
en t ropy .  (However,  the  model  is no t  in complete  agreement  with the  data .  
The per iod of oscillation is off by  a fac to r  of two, for  example,  and  the  shapes 
of the  s tabi l i ty  boundar ies  are different.)  

One might  expec t  t h a t  a correc t  model  for this t y p e  of p rob lem would be 
derivable f rom a Hami l ton ian  when the  damping te rms  are e l imina ted  as in (7). 
The  model  described in this paper  does not  sa t i fy  this condi t ion because the  
coupling te rms  must  have opposite  signs to fit the  data .  As an  a l ternat ive ,  
we const ructed  a four-variable model  s ta r t ing  with the  Hami l ton ian  formula-  
t ion proposed in (~), and  adding damping.  However ,  we could no t  obta in  a 
good fit to the  exper imenta l  da ta  using this approach.  ( I t  is possible, however,  
t h a t  we were s imply unable  to find the  correct  pa ramete r s  empirically).  

In  the  fu ture ,  it  would be desirable to invest igate  the  relat ionship be tween 
low-dimensional  models and the  ac tua l  h y d r o d y n a m i c  equat ions,  ins tead  of 
using a phenomenological  approach  as we huve done. The phenomenologieal  
model  does, however,  provide a good summ ary  of the  exper imenta l  results.  

This work was suppor ted  by  Nat iona l  Science Founda t ion  Gran t  CME- 
8310933. S. C~L~ERTO acknowledges the  suppor t  of an  Angelo della Riccia 
fellowship during his t enure  at  Have r fo rd  College. J . P .  Gollub appreciates  
the  ussistunce of a Guggenheim Fellowship. We acknowledge helpful  discus- 
sions with J.  G~CKE~m~I_v~, T. LxJ~v,~s~r, J .  M~]~s, I .  P~ocAccrA a n d  
H. SWXNNEY, and technical  assis tance for the  calculations of the  L y a p u n o v  
exponents  of the  model  by  A. POLITI. 

(~) J. MILa~s: J..Etu~d Mevh, 146,285 (1984).. 

Q R I A S S U N T 0  

8i presenta un modello a quattro variabili (due oscfllatori accoppiati forzati parametri- 
eamente) ehe deserivo molti dei fenomeni visti in un esperimento sulle onde di super- 
ficie nel qualo la competizione fra lo configurazioni spaziali produce un comportamento 
eaotico. I1 modello riprodueo la via al eaos, la dimcnsione doll'attrattoro, l'entropia 
di Kolmogorov e (approssimativamonto) il diagramma di fase. 

Pe3mMe He nony~eao. 
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