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IL NUOVO CIMENTO Vor. 6D, N. 4 Ottobre 1985

Phenomenological Model of Chaotic Mode Competition
in Surface Waves.

S. CILIBERTO
Istituto Nazionale di Ottica - Largo K. Fermi 6, 50125 Firence, Iialia

J. P. GoLLUB

Haverford College - Haverford, PA 19041
Department of Physics, University of Pennsylvania - Philadelphia, PA 19104

(ricevuto il 4 Giugno 1985)

Summary. — We present a four-variable model (two coupled param-
etrically forced oscillators) that describes many of the phenomena seen
in an experiment on surface waves in which the competition between
spatial patterns produces chaotic behaviour. The model reproduces
the route to chaos, the dimension of the attractor, the Kolmogorov
entropy and (approximately) the phase diagram.

PACS. 47.25. — Turbulent flows, convection and heat transfer.
PACS. 47.35. — Hydrodynamic waves.

1. — Introduction.

In a recent paper (') we described an experiment on forced surface waves
in which chaotic behaviour is clearly produced by the competition between
two spatial modes. We also suggested a phenomenological model that explains
many of the experimental results. In this report we describe the phenom-
enological model in greater detail. The experiment itself is thoroughly treated
in a gseparate publication (2).

(*) 8. CuserTO and J.P. Gorrus: Phys. Rev. Lelt., 52, 922 (1984).
(®) 8. CmuBErTO and J.P. Goirus: J. Fluid Mech, 158, 381 (1985).
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310 §. CILIBERTO and J. P. GOLLUB

We recall only the results of the experiment to allow a direct comparison
with those of the model. The system of interest is a eylindrical fluid layer in
a container that is subjected to a small vertical oscillation. It is well known (3)
that, if the driving amplitude exceeds a critical value 4 (f,), whichis a function
of frequency, the free surface develops a pattern of standing waves. The surface
deformation S(#, 0, ) ean then be written as a superposition of normal modes:

(1) S(T, 0, t) —_ z a,,m(t)J;(k;,mT) CcO8 le ’

lym

where J; are Bessel functions of order I and the allowed wave numbers k; .,
are determined by the boundary condition that the derivative J :(k:’mR) =0,
where R ig the radius of the cylinder. The modes may be labeled by the indices I
(giving the number of angular maxima) and m (related to the number of nodal
circles). The mode amplitude a,.(¢) develops an instability when the cor-
responding eigenfrequency (given by the dispersion law for capillary gravity
waves) is approximately in resonance with half the driving frequency f, and 4
exceeds A (f,). This parametric instability leads to standing waves in which
the mode amplitude oscillates at f,/2. To take into account the possibility of
a further slow modulation of the mode amplitudes, which, in fact, occurs due
to mode competition, we write each amplitude in terms of fast oscillations at
fo/2 and slow envelopes C.(¢) and By(%):

(2) ai(t) = Ci(?) cos (sifyt) + Bi(t) sin (fo?) .

We omit the second subseript because, in practice, only a single value of m is
significant for a given value of 1.

The behavior of the system as a function of A and f, is shown in fig. 1.
Below the parabolic stability boundaries, the surface is essentially flat. Above
the stability boundaries, the flnid surface oscillates at half the driving frequency
in a single stable mode, The shaded areas are regions of mode competition,
in which the surface can be deseribed as a superposition of the (4, 3) and (7, 2)
modes with amplitudes having a slowly varying envelope in addition to the
fast oscillation at f,/2.

Our experimental apparatus, described in (»2), allows us to study a fixed
linear combination of the slow coefficients C,(f) and B,(?), which we denote
by a?(¢). The dynamics of the slow oscillation was explored by varying 4 and f,
separately inside of the interaction region. In fig. 2 time series and corre-
sponding power spectra are shown for three different driving amplitudes but
fixed driving frequency of 16.05 Hz.

(3) T.B. Bexsamin and F. UrRSELL: Proc. B. Soc. London, Ser. A, 225, 505 (1954).
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Fig. 1. — Phase diagram as a function of driving amplitude A and frequency f,. The
crosses are experimentally determined points on the stability boundaries. Stable
patterns occur in the regions labeled (4, 3) and (7, 2). Slow periodic and chaotic oscil-
lations involving competition between these modes oceur in the shaded regions.
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Fig. 2. — The transition from periodic to chaotic oscillation. Time series and corre-
sponding power spectra of the slow oscillation are shown for f, = 16.05 Hz and three
different driving amplitudes. Broad-band noise is associated with the appearance of
a subharmonic f*/2 of the dominant oscillation.
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As the driving amplitude is increased, a chaotic state with a broad power
spectrum is obtained. We characterized the chaotic behaviour quantitatively (*)
by eomputing from the experimental data the correlation dimension » of the
attractor (*) and a lower bound K, for the Kolmogorov entropy K (°). When
the oscillation is periodic (4 = 121 pm), we find » = 1.0 4 0.04 and K, =
= (0.040.01) s~*. On the other hand, when the slow oscillation is chaotic
(4 =190 pm), v =2.2240.04 and K, = (0.140.01) s7*. These measurements
clearly demonstrate that the attractor has a low (and fractional) dimension
and that there is at least one positive Lyapunov exponent. The dimension
measurements also show that a four-dimensional phase gpace is required to
represent the data.

2. — Formulation of the model.

We have constructed a relatively simple phenomenological model that
has a reagsonable hydrodynamic basis and accounts for most of our observations,
including the basic structure of the phase diagram. We begin with the fact
that, in a linearized inviscid approximation, each mode amplitude a,(¢) follows
a Mathieu equation (3);

(3) dir(1) + (0} — .4 cos wot) a,(t) =0,

where w, is the eigenfrequency, v, is a gain coefficient and w, = 2#f,. We
take the point of view that one can approximately account for the effects of
damping (due to all sources, including bulk viscosity and wall effects) by
introducing a first-order term y,d,. Furthermore, it is necessary to add a non-
linear term to limit the growth of the mode to finite amplitude in the steady
state. The lowest-order nonlinear term is cubic in the mode amplitude, thus
we have the following equation for the time variation of any mode:

(4) i, + 9,8, + (0] — v, A cos w,t)a, = [,a}

We find that this equation is sufficient to fit the (approximately parabolic)
stability curves in fig. 1 and to describe quantitatively the variation of the
steady-state mode amplitude with 4 above threshold.

Next we consider the phenomenon of mode competition. We know that
only two modes are involved and that they interact. Therefore, we consider
a model consisting of two coupled Mathien oscillators. There are various ways
to introduce coupling phenomenologically. One may allow the coefficient of

() P. GrassBERGER and 1. Procaccia: Physica {(Utrecht) D, 9, 189 (1983).
() P. GraASSBERGER and I. Procaccia: Phys. RBev. A, 28, 2591 (1983).



PHENOMENOLOGICAL MODEL OF CHAOTIC MODE COMPETITION IN SURFACE WAVES 313

the driving term for one mode to depend on the amplitude of the other mode.
Alternatively, one may allow each damping coefficient to depend on the am-
plitude of the other mode. Finally, one may intreduece nonlinear terms con-
taining both mode amplitudes. We have tried all three approaches, but we
present results only for the first one, simply because it provides a better fit
to the experiments. Therefore, to describe the interaction of the I =7 and
I = 4 modes, we set

(8) Y, =%, + ﬂua: and v, =9, + ﬁua:’

where the coupling coefficient S, is negative, while f,, is positive. The origin
of the sign difference is the observed phase difference between the two modes
during the oscillation. In fact, af leads a by about 90° (see fig. 4 of ref. (¥)).
This implies that the sevenfold mode pumps the fourfold mode, while the
fourfold mode damps the sevenfold mode. To solve the system of the two coupled
Mathieu equations, we express the mode amplitudes by eq. (2). We substitute
egs. (2) and (8) into (4), keeping only terms oscillating at nf, and neglecting
those at 3zf,. We also neglect B, and {, because the time scales of the fast
oscillation and mode competition are very different, so that B,< 20,0, and
0, < 2w,B;. Finally, we obtain the following four-dimensional system for the
slow variables C,, B,, C, and B;:

C, =— 49,0, — 4, — vi4 + LU0 + B) — 63, B1B,
B, = —1y,B, +[4, + ¢4 + £3(02 + B + 62,0210, ,
0, =—1y,0, — {4, — y3A - {)(C: + B}) — £, BB, ,
B, =—1y,B, +[4, + p24 + [,(C: 4 BY) + £2,C20,,

where we have introduced normalized coefficients as follows:

4, = (w§~—4wf)/4wo, 7 = §;/wg

(7 Bir = BuA[20,, Bre = B4 [20,,
{) =38(,/4m,.

3. — Integration and properties of the model.

In this system most of the coefficients can be measured. The damping
coefficients 9, and gain coefficients y¢ are adjusted to fit the parabolic stability
curves of fig. 1, and the nonlinear coefficients {; are chosen to reproduce the
measared saturation amplitudes, all in a region where only a single mode is
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present. We numerically integrate the system using the fourth-order Runge-
Kutta method and find that regenerative oscillations (both periodic and
chaotic) are, in fact, produced near the intergection of the stability boundaries
for the two modes. We adjust the two mode-coupling coefficients to obtain
an oscillatory domain similar in size to that found in the experiments (fig. 1).
The space diagram produced by this set of model equations is shown in fig. 3.
The value of the parameters used in the model are

Ya=y, =040, 9?=5l3em s, i=52.6cem2s?, [J=1.00571,
0=01051, f =4 (1.0cm1s )4, f) =—(9.0cms )4,

w, = 49.89rad/s, w,=>50.92rad/s.

(The mode amplitudes are taken to be dimensionless with a scale set by the
arbitrary chioce of (J.)

200 ———————r

175 chaotic

75
50
25 H i L | I N | 1 1 1 1 I I L
15.6  15.7 15.8 15.9 16.0 16.1 16.2 16.3
f,(Hz)

Fig. 3. ~ Phase diagram obtained from the phenomenological model by numerical
integration. This figure should be compared with fig. 1.

The parabolic stability curves fit the experimental data to within about
10 9% for A <150 pm. However, the shapes of the periodic and chaotic regims
are different from those found experimentally.

In order to compare the behaviour near the onset of chaos with that ob-
served experimentally, we present (fig. 4) time series of the slow component B
and corresponding power spectra for three different values of 4, but fixed
fo = 16.11 Hz. This figure may be compared with the experimental data in
fig. 2. The basic period of oscillation is different by a factor of two, an unex-
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plained discrepancy. However, in both cases we find the following features:
a single subharmonie bifurcation of the slowly varying mode amplitnde for
comparable A and f,; an increase in the background noise level at or near this
bifurcation; and a loss of all sharp spectral structure at higher 4 without
further bifurcations. Thus the onset of chaos seems to be quite similar in the
data and in the model,

6 *
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Fig. 4. — Time series and Fourier spectra obtained from numerical integration of the
model at three driving amplitudes. This figure illustrates the transition from periodic
to chaotic oscillation and should be compared to the experimental data of fig. 2. Both
experiment and model show a single subharmonic bifurcation with associated broad-
band noise onset.

We also measured the correlation dimension » for the chaotic states of the
model. We find » =2.414-0.04 for A = 175 pm, and the same result at
A =155 pm. Thus the strange attractor produced by the model has about
the same dimension as that found in the experiment. ;

The Lyapunov exponents of the model equations were also computed with
the method proposed in (¢). The Kolmogorov entropy K (the sum of positive
Lyapunov exponents) is 0.33 s~ at 4 = 175 um. The ratio K/f of the Kol-
mogorov entropy to the frequency f of the slow oscillation is approximately 1.1
for both the model and the experiment.

(®) G. BENETTIN, L. GaALGANI and J. M. STRELCYN: Meccanica, 15, 9 (1980).

21 — Il Nuovo Cimenio D,
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4, — Conclusion.

We have presented a simple phenomenological model for chaotic-mode
competition in an experimental stundy of parametrically forced surface waves.

The model describes many of the experimental results fairly well, including
the qualitative structure of the parameter space (fig. 3), the route to chaos
(fig. 4), the dimension of the resulting strange attractor and the Kolmogorov
entropy. (However, the model is not in complete agreement with the data.
The period of oscillation is off by a factor of two, for example, and the shapes
of the stability boundaries are different.)

One might expect that a correct model for this type of problem would be
derivable from a Hamiltonian when the damping terms are eliminated as in (7).
The model described in this paper does not satify this condition because the
coupling terms must have opposite signs to fit the data. As an alternative,
we constructed a four-variable model starting with the Hamiltonian formula-
tion proposed in (*), and adding damping. However, we could not obtain a
good fit to the experimental data using this approach. (It is possible, however,
that we were simply unable to find the correct parameters empirically).

In the future, it would be desirable to investigate the relationship between
low-dimensional models and the actual hydrodynamic equations, instead of
uging a phenomenological approach as we have done. The phenomenological
model does, however, provide a good summary of the experimental results.
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() J. Mires: J. Fluid Mech, 146, 285 (1984)..

® RIASSUNTO

8i presenta un modello a quattro variabili (due oscillatori accoppiati forzati parametri-
camente) che descrive molti dei fenomeni visti in un esperimento sulle onde di super-
ficie nel quale la competizione fra le configurazioni spaziali produce un comportamento
caotico. Il modello riproduce la via al caos, la dimensione dell’attrattore, 1’entropia
di Kolmogorov e (approssimativamente) il diagramma di fase.

PesroMe He HOIYYEHO.
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