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Stability boundaries and phase-space measurement for spatially extended 
dynamical systems 

F. Simonelli andJ. P. Gollub 

Havet:lord College, Haverford, Pennsylvania 19041 

(Received 5 August 1987; accepted for publication 9 October 1987) 

Automated methods of studying the stability boundaries and phase-space dynamics of a spatially 
extended dynamical system are presented. The stability boundaries are determined accurately as a 
function of external parameters in an automated search. The amplitudes of the individual spatial 
modes are measured in real time in order to determine the structure of the at tractors in phase 
space. Some control over initial conditions allows the basins of attraction and the transients 
leading to the attractors to be studied as well. The methods are applied specifically to interacting 
waves on a fluid surface, but should also be useful to other extended dynamical systems. 

INTRODUCTION 

Nonlinear dynamical systems are often studied by plotting 
trajectories traced out by the system in phase space. Even 
spatially extended dynamical systems, which in principle 
would seem to require a very high-dimensional phase space, 
can often be adequately described with only a few vari­
ables. 1-4 In some cases these variables can be indentified with 
the normal modes of a related linear system, so that the am­
plitudes of those modes are the natural coordinates for a 
phase-space description.4-7 The dynamical behavior of the 
system is then studied by exploring the properties of the at­
tractors, the limit sets toward which trajectories converge in 
the course of time. These attractors may be fixed points, 
limit cycles, tori, or strange (chaotic) attractors. 8

-
10 

Most of the experimental studies of extended dynamical 
systems have not attempted to carry out this program direct­
ly, because of the difficulty of actually measuring aU of the 
significant dynamical variables. Instead, experimentalists 
have often attempted to characterize the dynamics by means 
of measurements of a single variable. 11-]6 However, it is clear 
that this method, in which one attempts to construct a com­
plete phase space trajectory from time-delayed versions of 
the measured variable,17.18 is limited in its ability to provide 
complete information on the dynamical evolution of spatial 
structures. 

Several experimenters have attempted to measure a 
larger number of dynamical variables.4.19-22 Here we demon­
strate a method that allows an ess~ntially complete recon­
struction ofthe phase-space dynamics and determination of 
stability boundary for spatially extended dynamical systems 
under favorable conditions. The method has the following 
advantages: (a) The coordinat~s of the phase space are the 
amplitudes of the linear normal modes of the system. (b) 
The structure of the parameter space which defines the do­
mains of various types of dynamical behavior (fixed points, 
periodic states, etc.) can' be determined in an automated 
fashion. (c) The method allows study of the transients and 
basins of attraction in addition to the a'ltractors themselves. 
Although the methods have been developed to allow studies 
of parametrically excited waves on a fluid surface,4.o,7 and we 

describe them in this context, they would, in part, be applica­
ble to other types of spatially extended nonlinear systems. 

I. EXPERIMENTAL SETUP 

The basic design of an experiment for studying parame­
trically excited surface waves is shown in Fig. 1. The ft.uid 
container is a rectangular Plexiglas cell of typical horizontal 
dimensions between 5 and 10 cm. It is mechanically coupled 
to a large loudspeaker driven by an audio amplifier to pro­
vide a controllable vertical oscillation. The relevant external 
parameters of the system are the amplitude /::;. and the angu­
lar frequency (j) of the vertical oscillation. These need to be 
known with good accuracy and to be varied in an automated 
way. This goal is realized using a frequency synthesizer (HP 
model 3325A) that is computer controlled via a GPIB inter­
face. In this way A and (j) can be arbitrarily varied, and in 
addition, the phase <p can be suddenly changed, a feature that 
is very important for transient studies. The amplitUde of the 
actual oscillation of the cell depends not only on the driving 
voltage, but also on other parameters such as the weight of 
the cell. Therefore, a separate system for measuring the am­
plitude of oscillation of the cell is required. The system we 
used is based on the deflection of a laser beam by a mirror 
attached to the cell. The translation of the laser beam is de-

Lock-ina 

FIG. 1. Block diagram of the experiment. The computer sets the amplitUde, 
frequency, and phase on a synthesizer via a GPIB interface. The resulting 
signal is applied to a shaker via an audio amplifier. Probes (photodiodes) 
detect the loeallight intensity on the screen due to refraction of the trans­
mitted beam by the curved interface. The outputs of the probes are sent to 
Jock-ins that detect the individual mode amplitUdes. 
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tected by means of a position-sensitive photodetector. The 
amplitude of the oscillation of the phototedector's output 
gives, after calibration, the amplitude of the vertical motion 
of the cell. The accuracy of this method is about one part in 
103

• 

The desired dynamical information is contained in the 
surface deformation field of the waves. Various methods can 
be used to measure this field at isolated points, each one 
suitable for particular applications. The techniques de­
scribed in the subsequent sections can be applied no matter 
what probe is selected. We use an optical system that has the 
main advantage of avoiding perturbations to the system 
(and the disadvantage of not being completely linear). A 
collimated white light beam (of horizontal dimensions com­
parable to the cell) enters the cell from the bottom and is 
refracted by the deformed free surface of the fluid. The fluid­
air interface acts as an array of lenses that focus or defocus 
the beam, forming an image on a screen at the top of the 
cell.23 If the wave height is small and the screen is close to the 
surface, the optical intensity on the screen is proportional to 
the Laplacian of the surface deformation. 23 In this approxi­
mation, the optical intensity field is easily related to the sur­
face deformation field. Deviations from this approximation 
are discussed later in this paper. 

For a rectangular geometry, the contribution to the sur­
face displacement of each individual excited mode has the 
form4-1 

Zmn (x,y, t) = [A (t)cos(UJt /2) 

+ B(t)sin(rvt /2) ]Fmn (x,y), ( 1) 

where Fm,. (x,y) = cos(kmx)cos(kny) gives the spatial 
structure of the linear modes of oscillation of the system, and 
w/2 is the angular frequency of the waves. (The wave oscilla­
tion occurs at half the driving frequency when .:l exceeds a 
frequency-dependent threshold.47

) In this expression, the 
wave number of the mode is given by 

k = (k;" + k ~) 1/2 = [(mrIL x )2 + (m1TIL
y 

)2] 1/2, 

(2) 

and m,n are integers used to label the modes. The functions 
A (t) and B(t) are mode amplitudes that, in the weakly non­
linear regime (not too far above threshold), vary on a time 
scale much longer than l/w. 

The intensity distribution of light formed on the screen 
has the form 

I(x,y,1) = (const)Zmn (x,y,t)k 2. (3) 

Therefore, the sensitivity of the measurement technique 
depends on the wave number, so that for comparable ampli­
tudes, the modes with short wavelength are enhanced in the 
image; this can be taken into account after the modes are 
resolved. However, the wavelengths ofthe modes that inter­
act are usually very close so that no correction is necessary in 
practice. 

II. MEASUREMENT OF INDIVIDUAL MODE 
AMPLITUDES 

The dynamical state of the system is specified by the 
slowly varying coefficients A (t) and B(t) of each of the spa-
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tial modes. Therefore, a measurement technique is desired 
that gives those coefficients in real time with minimal han­
dling of information. For this reason, we avoid the brute 
force method of digitizing and Fourier transforming the en­
tire optical image. 

If a single mode is excited, the spatial distribution is 
known. By placing a single photodiode in a suitable position 
(for example at a point where the oscillation is maximum) 
and connecting the photodiode output to a two~phase lock­
in amplifier, A (t) and B(t) are obtained in real time and 
with a considerable noise reduction. When N modes are 
present, it is sufficient to use a number of photodiodes equal 
to N. The amplitudes of the modes can be easily resolved 
because both the positions of the photodiodes and the spatial 
dependence of the excited modes are known. The calculation 
only requires the inversion of a 2N X 2N matrix at each time 
step. The method is practical if N is relatively small, and in 
that case, the calculation is very simple and can be per­
formed with any microcomputer system. Noise in the mea­
surement process itself turns out to be insignificant, given 
proper attention to stability of the light source. The typical 
signal-to-noise ratio is about 103

• 

There are, however, several limitations to the accuracy 
of this mode decomposition process. The primary ones are 
(a) neglected modes and (b) optical nonlinearity. 

(a) Neglected modes: There is always some component 
of oscillation of the surface at the same frequency (u of the 
driving signal (in addition to the dominant motion at angu­
lar frequency (uI2). These are generated primarily by 
boundary effects. The amplitUdes of these higher frequency 
modes are small in comparison to the modes of interest, but 
they are enhanced in the optical intensity by the k 2 factor 
[see Eq. (3) J. The lock~ins filter out most ofthat signal, but 
some remains, and appears as noise on the measured ampli­
tudes. (Of course, in some cases, these higher modes can also 
influence the subharmonic modes through hydrodynamic 
nonlinear interactions.) As a result, the minimum surface 
wave amplitude that can be distinguished from the back­
ground noise is typically 0.1 % of the wavelength. 

(b) Optical nonlinearity: Nonlinearity in the optical 
imaging system gives an additional and potentially serious 
limitation on the accuracy of measurement. If the wave 
height is not small in comparison to the wavelength, or if the 
screen is too far from the surface, then the optical intensity 
field is nonlinear in the mode amplitUdes. In addition, it is 
nonlocal (the intensity at a point on the scene depends on the 
surface deformation over an extended area23

). In the worst 
case encountered, the wave amplitude was 20% of the wave­
length, and numerical computations show that the measured 
amplitUde in that case is in error by about 25%. 

If desired, this effect can be eliminated by a calibration 
based on numerical computation or on the use of a different 
probe. However, some nonlinearity is tolerable, since very 
often one seeks primarily to resolve qualitative features such 
as the presence or absence of certain modes, the nature of the 
time dependence, or the dimension of the attractors and 
their symmetry properties. We typically do not bother to 
make the correction. 

(c) Cross talk: There is also a small amount of spurious 
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cross talk between the mode amplitudes, but this is found 
empirically to be only about 2% in typical cases. 

In conclusion, the optical probes are satisfactory, but 
others can be substituted if a more linear response is desired 
and the resulting perturbations can be tolerated. The subse­
quent discussion would not be affected by the transducer 
used to obtain the mode amplitudes. 

III. MEASUREMENT OF STABiliTY BOUNDARIES IN 
PARAMETER SPACE 

A. Time-independent threshold 

The first step in investigating the system is the scanning 
of frequency and amplitude in order to find the stability 
boundary of the flat surface. The process of finding the 
threshold of an instability can be quite time consuming, since 
the time scale of the evolution diverges at the critical point. If 
the nature of the instability is known, a theoretical model 
can, in principle, be used to obtain the threshold by fitting 
the results of measurements performed at some distance 
from the threshold. In a general case, however, accurate 
theoretical models are not available, in part because second­
ary instabilities can give complicated behavior close to the 
threshold. 

We used a general approach that does not presume any 
theoretical model. The method turns out to be very useful for 
surface waves where the nature of the instabili ty depends on 
the frequency of excitation. In what follows we give first a 
qualitative description of the automated process and subse­
quently address some more detailed aspects. 

At each frequency the driving amplitude D. is increased 
from zero in large steps. For every step, after a conveniently 
selected waiting time Tw , the outputs of the lock-ins are re­
corded, and the averages and derivatives of the signals are 
computed and compared to threshold values. When the sys­
tem is found to be above threshold, the value of fl. recorded is 
the first approximation of the threshold D. +. Then D. is de­
creased with a reduced average rate R (step size Ii divided by 
T w')' In this way the value of D. at which the surface be­
comes flat again is detected (first approximation of A_.) At 
that point R is further reduced and D. is increased again in 
order to find D.+ with higher precision. The entire process is 
repeated until the maximum accuracy allowed by the system 
is attained. 

Some points are worth noting in this procedure: 
(a) The derivative of the signal is used together with the 

signal itself to detect the instability. This is done because in 
some cases the instability can be detected earlier using the 
derivative. When decreasing Il, the derivative is measured 
with the purpose of adjusting the waiting time accordingly" 
As a consequence the efficiency is improved. 

(b) A method of successive approximation is more effi­
cient than a single search using small steps because one 
avoids spending long times at values of D. far from 11_ and 
fl.-;-. The particular choice of Rand of the factor p by which 
R is divided at each reversal of direction is the result of a 
trade off between various sources of inefficiency: excessive 
number of reversals of direction if p is too low; excessive 
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TABLE I. Successive approximations to A_ and A+ during the process of 
threshold search. The convergence to the tina! values is clearly evident. 
Ht:rc D is the amplitude of steps, Do is the smallest step used, and T !Ii;, is the 
waiting time in the first stage of the search. No hysteresis is found at this 
particular frequency. 

Step size Waiting time Approximation to 
8180 TwITw" 6.+ 6, (/-lm) 

32 174.1 
16 149.1 
8 166.5 
4 154.0 
2 161.8 

I 159.5 
10 160.3 
10 159.8 

overshoot when R is too high; and the possible presence of 
hysteresis. 

We did not attempt an analytical optimization, and the 
method we use is based on experience. The threshold search 
has two stages. In the first stage, T w is held constant while 8 
is divided by two at each reversal. The time T w is selected in 
such a way to allow an almost complete relaxation of the 
wave amplitude (more than 50% of the final value) when 
6. =.6. + 8 for the biggest 8 (some trials are required to 
find th; appropriate time for the system under study). This 
is a good compromise that achieves a reasonable increase of 
accuracy at each reversal while controlling the waste oftime 
due to overshoots and to hysteresis (11 + ¥ D. _ ). In the sec­
ond stage, the search for D. .... and 11_ continue separately and 
T w is increased by a factor of 10 or more in order to allow a 
more complete relaxation at the smallest 8. 

A typical time for obtaining the two thresholds at one 
frequency for our system is 104 s. The accuracy is typically 
0.3%, and the reproducibility is of the same order. An exam­
ple of the successive approximations to Ll_ and <1+ found 
during the search process at a particular frequency is shown 
in Table 1. 

The entire search is automatically repeated for several 
frequencies in the desired range" The graph in Fig. 2 is an 
example of .6. .. ' and A + as a function of the driving frequen-

~ 200'~, ·-"------------l E ' 

! '~L. . 
i '''j -~ -o<'~ 
f :::~:-~---+---

13.9 14 14.1 14.2 14.3 

Driving Frequency (Hz) 

FIG" 2. Stability boundary (for increasing and decreasing driving ampli­
tude) for a pair of degenerate modes ( mode m = 3, n = 2, and mode 
m = 2, n = 3) in a square cell of size 6.2 cm. The circles are the decreasing 
thrl-'Shold values A • while the triangles are the increasing values 6. + . The 
abscissa is the driving frequency w/21T. 
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cy (u/21T. These curves constitute stability boundaries of the 
system. 

B. Threshold of time dependence 

The same program structure described above is used 
when investigating the boundaries of the regions of time de­
pendence, in which the asymptotic mode amplitudes depend 
on time. In this case, instead of using the average and deriva­
tive of the signals to characterize the status of the system, we 
use the average and standard deviation. The boundaries of 
the time-dependent regions can be obtained with the method 
of successive approximation that we described in Sec. III A 
for the time-independent threshold search. The boundaries 
in parameter space of various types of dynamical behavior 
(such as stable superpositions of several modes) can also be 
found in the same way. All the information is then combined 
to draw a detailed diagram of the parameter space. 

IV. RECONSTRUCTION OF THE PHASE SPACE 

Experiments on dynamical systems generally empha­
size the study of asymptotic behavior/-4,I!-16,J9-22 but it is 
also of interest to know about unstable solutions, basins of 
attraction (the basin of attraction of an attractor is the set of 
initial conditions that lead asymptotically to the attractor 
itself), and the transient behavior.24

-
26 

The method we describe for experimental investigation 
of the phase space has been used in numerical studies,24--26 
but its application to physical systems requires a mechanism 
for controlling the initial conditions. The initial condition is 
specified by the amplitudes A and B, in Eq. (1), for all of the 
interacting modes. Those amplitudes cannot be controlled 
directly but can be varied indirectly by means of changes in 
the driving parameters ~ and (;). 

If the system is being analyzed at the point (~o, (;)0 ), it is 
first prepared at another pointe Aj , (Ul ). A good variety of 
initial conditions is usually obtained by selecting the various 
points (.6. 1 , (;)1) along several circles (in parameter space) 

10 

............ 5 
to 
N 
'--'" 

(J) 
0 

-0 
0 
2: 

~5 

-10 
-10 -5 0 5 10 

Mode (3.2) 
FIG. 3, Transients in a bidimensional projection of the four-dimensional 
phase space for the modes m = 3,n = 2 and m = 2,n = 3. Here w121T = 14 
Hz and t:. = 200 p.m, Two stable fixed points (superpositions of the two 
modes) are easily seen (circles). Two saddles, a particular type of unstable 
fixed point, are located on the separatrix of the basins of attraction of the 
two stable fixed points and are indicated by crosses. 
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".--..., 

I") 

N 
~ 

(I) 
0 

-0 
0 

::2: 
-8 

-8 0 8 16 

Mode (3,2) 

FIG. 4. Bidimensional projection of a complicated transient that leads to a 
fixed point (circle), This complexity would be missed in a study of the 
asymptotic behavior. 

with center (.:l(), (uo) and various radii. Sudden changes in 
the phase t/; of the driving signal are also used when it is 
important to change the ratio of A and B [see Eq. (1)]. 

In Fig. 3 we illustrate this systematic variation in initial 
conditions by displaying 32 resulting transient trajectories in 
a bidimensional projection from the four-dimensional phase 
space. The projection is obtained by measuring each of the 
two-mode amplitUdes at given phases with respect to the 
driving signal. (The phases are measured in the steady 
state.) Two fixed points corresponding to mixed modes (sta­
ble superpositions) are easily seen. Two saddle points (un­
stable fixed points) can also be detected on the separatrix of 
the basins of attraction of the two stable fixed points. In this 
case the basins of attraction can be easily approximated even 
with a !imitated number of transients, but sometimes a larger 
number is required. The saddle points would be overlooked 
by a study limited to the asymptotic behavior. 

Another example of the utility of studying transient be­
havior is shown in Fig. 4, where we show a complicated 
transient that leads to a fixed point. Even though the asymp­
totic solutions are similar in this case and in that of Fig. 3, the 
transients show that the phase-space structure is very differ­
ent in the two experiments. 

20 

r-... 10 
n 

~ 

N 
""-./ 

Q) 
0 

u 
a 
~ -10 

-20 
-20 -10 a 10 20 

Mode (3,2) 
FIG. 5. Various at tractors can be present for the same values of the external 
parameters. In this case a fixed point (circle) and a limit cycle are reached 
for slightly different initial conditions. 
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nI2~ ______________________ ~ 

1 0 \'-------------t <lJ 
fI) 

o 
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-n/2~--+_--+_ __ +_--+_--~--~ 
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v 
-g 6 

='= a. 4 
E 
« 2 
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Time (sec) 

FIG. 6. Phase and amplitude of one of the modes m = 3,n ~~ 2, as a function 
of time. Referring to Eq. (1), the phase is defined as arctan(B /A) and the 
amplitude as (.If + 0 2

)1/2. It is easily seen that the phase relaxes much 
more quickly than the amplitude does. 

In some cases, various distinct types of attractors can 
coexist for the same values of I:l and ill. In Fig. 5 we show a 
bidimensional projection of the four-dimensional phase 
space where a fixed point coexists with a limit cycle. The two 
different types of attractors are reached for different initial 
conditions close to the origin. In this case, a small initial . 
difference gives a completely different asymptotic behavior. 

It is also useful to look at the transient behavior in the 
time domain. in order to distinguish the time constants asso­
ciated with different variables. We present an example in 
Fig. 6, where it may be seen that the phase of a mode ampli­
tude (with respect to the driving signal) relaxes much more 
quickly to its final value than does the amplitude itself. 

v. DISCUSSION 

The methods presented in this paper for studying stabil­
ity boundaries and phase-space dynamics for extended dy­
namical systems are based on the possibility of resolving spa­
tial mode amplitudes in real time using local probes. The 
various regions in parameter space and types of phase-space 
dynamics can then be associated with particular spatial 
structures and their time evolution. These methods can be 
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applied to other spatially extended systems, provided that 
the number of spatial modes involved is relatively small 
(perhaps up to 10), and each mode is coherent over the size 
of the system. If this is not true, as might occur in systems 
that are much larger than the basic spatial wavelength, then 
a decomposition into global mode amplitUdes might not be 
useful. 27 

The sample results shown here are illustrative and their 
use to study the structure of the phase space for interacting 
surface waves will be presented elsewhere. 
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