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PHYSICAL REVIEW A VOLUME 35, NUMBER 1

Wave-vector field of convective flow patterns

JANUARY 1, 1987

M. S. Heutmaker and J. P. Gollub
Department of Physics, Hauerford Coliege, Hauerford, Pennsyluania 19041-1392

and Department of Physics, Uniuersity of Pennsyiuania, Philadelphia, Pennsyluania 19104 6396-

(Received 31 July 1986)

Textured convective flow patterns in a large cylindrical layer are studied using digital image pro-
cessing methods to measure the wave-vector field q(r), a slowly varying two-dimensional field that
may be used to characterize complex patterns quantitatively. We describe in some detail the
development of this method and its application to the analysis of both steady and time-dependent
patterns. The variation of the convective textures with e=(R —R, )/R„where R, is the critical
Rayleigh number, is studied using quantities derived from the wave-vector field, such as its diver-
gence and its orientation at the boundary of the container. We also find a useful criterion for the
stability of convective patterns: Time-dependent patterns usually have a distribution of wave num-
bers that lies partially outside the predicted stable band for an infinite layer. Measurements of the
Swift-Hohenberg Lyapunov functional show that this quantity varies by up to 25% for different
stable patterns at the same value of e.

I. INTRODUCTION

In many nonlinear systems the onset of an instability
leads to the formation of a spatial pattern. Rayleigh-
Benard convection is one such system that has been exten-
sively studied both experimentally and theoretically. At
the critical Rayleigh number R„the homogeneous state
becomes unstable to a spatially periodic flow (convection
rolls) at the critical wave number q, . When R &R„con-
vection rolls are stable in a band of wave numbers that
grows with increasing distance above onset.

Experiments have shown that under most conditions, a
pattern of uniform rolls is not the preferred state of the
system, when the container is of sufficiently large lateral
extent. (For examples, see Refs. I—4.) Instead, the pat-
terns are textured; they contain bent rolls and defects, and
the rolls form with their axes roughly perpendicular to the
sidewalls. Each pattern contains a range of roll orienta-
tions and spacings, and thus a single wave number q is not
sufficient to specify the flow structure. On the other
hand, a two-dimensional wave-vector field q(r) that is a
slowly varying function of position can be useful in quan-
titatively describing the patterns.

One purpose of this paper is to describe the application
of digital image analysis to the experimental measurement
of the wave-vector field. Flow visualization by the defor-
mation of a parallel light beam allows the entire pattern to
be studied simultaneously, and the addition of a digital
imaging system makes it possible to analyze this data
quantitatively. We show here how q(r) may be ob-
tained from optical intensity data.

We use q(r), in conjunction with the predictions of sta-
bility theory, ' to characterize stable and time-dependent
regimes of pattern evolution. %'e have observed persistent
nonperiodic time dependence near the onset of convection
(see also Ref. 9) as well as far above onset. Interestingly,
the measured wave-number distribution lies below the
predicted stable wave-number range close to onset, and

aboue it far- from onset. The presence of wave numbers
outside the stable range seems to be a precursor of per-
sistent time dependence.

The testing of theoretical models of pattern evolu-
tion' ' is another area where q(r) is useful. For exam-
ple, the Swift-Hohenberg model has been studied' ' as a
possible approximate description of transient pattern evo-
lution. It has been formulated' in terms of q(r), and is
therefore accessible using the experimental methods
described in this paper. The model has the appealing
property that pattern evolution is governed by the minimi-
zation of a Lyapunov functional F, analogous to the
minimization of the free energy in equilibrium systems.

By analyzing transient pattern evolution sequences, we
follow the time evolution of F and compare it with the
predictions of the model. The evolution of F is found to
be generally consistent with a monotonic decline when
e=(R —R, /R, ) is of order unity. The model clearly fails
when e is larger than about 3.0 and may also fail very
close to onset. The contribution of defects to F is difficu-
lt to measure; this leads to an uncertainty that interferes
with conclusive tests.

Even though the model itself is highly simplified and at
best approximate, the model and the experimental
methods used to test it allow a quantitative characteriza-
tion of convective textures as a function of e. We find
that there is a well-defined statistical trend for the e
dependence of the spatially averaged roll bending
((V.n) ) and the roll obliqueness (n.s), where e is the
dimensionless distance above onset, n is the local normal
to the rolls, s is the local normal orientation at the outer
boundary of the fluid container, and the bracket indicates
an ensemble average over many patterns. These trends are
in accord with expectations based on the Swift-Hohenberg
model, but are violated by individual patterns.

In Sec. II of this paper we describe the experimental
methods, including the digital image analysis techniques
we developed to measure the wave-vector field q(r). The
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experimental results are presented in Sec. III; discussion
and conclusions are given in Sec. IV. The presentation of
results on transient evolution in this work complements
Ref. 5, and some other results have been summarized in a
preliminary report. '

II. EXPERIMENTAL METHODS

A. Convection cell and fluid

The experiments were performed in a cylindrical cell of
moderately large aspect ratio. The cell radius is L =41.7
mm and the depth is d =2.97 mm; the aspect ratio is
I' =L /d = 14.0. The dimensions of the cell are a
compromise between several factors. A large aspect ratio
is desired, but the radius of the cell cannot exceed that of
the sapphire window that serves as the upper plate.
Furthermore, the depth should-not be so small that a large
temperature difference across the layer is required. (This
would violate the Boussinesq approximation that the fluid
properties except for buoyancy are independent of posi-
tion. ) Additionally, the time required for a single run can
be inconveniently Iong in a very large cell, since the time-
scale for pattern evolution seems to grow at least as L

The working fluid is water at about 70'C, where the
Prandtl number I' =v/A=2. 5. The critical temperature
difference for convection is ET, =0.72'C. The natural
hydrodynamic time scales are the vertical and horizontal
thermal diffusion times, r, =d /I~ and rA L /a, respec-——
tively, where a. is the thermal diffusivity. In this cell these
times are ~„=55s and ~~ ——3.0 h. The Boussinesq ap-
proximation applies fairly well to this experiment; at
R =5R, the variation of v (the kinematic viscosity, the
fluid property that changes most rapidly with tempera-
ture) across the layer depth is about 5%.

The cell is designed to provide precise temperature con-
trol as well as optical access from above; the design is
shown in Fig. 1. The lower fluid boundary is a massive
copper disk, polished to a mirror finish and electroplated
with nickel and rhodium to resist corrosion. The upper
boundary is a single-crystal sapphire disk, used because of
its high thermal conductivity. (The conductivity of sap-
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FIG. 1. Schematic diagram of the convection cell. The con-
vecting fluid is confined between the sapphire upper plate and
the copper lower plate by a plexiglas spacer.

phire is about two orders of magnitude greater than that
of water, and about one order of magnitude less than that
of copper. ) The fluid is enclosed in a Plexiglas spacer
sealed between the plates by 0-rings and silicon grease.
Thin coatings of silicon grease provide a thermal link be-
tween the spacer and the upper and lower plates, in order
to reduce any azimuthal nonuniformity in the thermal
boundary conditions. The small copper blocks thermally
anchor the stainless-steel fill tubes to the upper plate. We
found that this is necessary to prevent distortion of the
convection pattern from flows induced by cool fluid in the
tubes (without the blocks, these tubes are approximately at
room temperature). The uppermost glass cover encloses a
volume of air above the cell, to reduce heat loss and
suppress the convection of room air above the apparatus.

The system contains three temperature control loops.
The temperature of the lower plate is controlled by an ac
feedback loop that drives a resistive film heater. The
upper plate is cooled by a flow of water pumped over its
upper surface from an external temperature-controlled
reservoir. A commercial ac feedback controller maintains
the reservoir at a fixed temperature. The lower plate is
shielded from room temperature by a cylindrical case that
is maintained at the mean working temperature by a com-
mercial dc controller.

Satisfactory uniformity and long term stability in the
Rayleigh number are achieved with this system. The sta-
bility of R over long times is about +0.004R„and short-
term fluctuations are smaller than this. The homogeneity
of R is influenced by variations of the layer depth as well
as those of the applied temperature difference. The thick-
ness of the Plexiglas spacer is uniform to within about
0.5%, and this leads to variations of about 1.5% in R.
This is significantly larger than the nonuniformity due to
measured horizontal temperature variations.

The dimensionless distance from onset, E
=(R —R, )/R„ is obviously more sensitive than R to
variations in temperature and layer depth. Close to onset
(at @=0.1), the stability of E was typically +2%. In this
worst case, the horizontal inhomogeneity in E (due mostly
to layer depth variations) could have been as large as
15%. These variations may be significant, and we cannot
rule out the possibility that some features of the flow near
onset might be different in a cell that has better uniformi-
ty of the layer depth.

B. Flow visualization and digital imaging

The convective flow is visualized using the shadow-
graph technique with a laser light source, as shown in Fig.
2. The parallel expanded beam of an argon ion laser
enters the cell from above, reflects from the polished
lower plate, and then reflects from a beam splitter to a
translucent screen. The laser provides a well-collimated
beam. However, it was necessary to place a rotating
translucent screen at the focus of the beam expander to
eliminate troublesome speckle in the image, by reducing
the coherence of the light.

As the beam passes through the convecting fluid, it is
locally focused or defocused by the temperature-
dependent variations in the index of refraction
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FIG. 2. Diagram of the flow visuahzation apparatus and im-
age digitization equipment. Images are stored on videotape be-
fore being digitized and processed.

(dn/dT= —0.0002 K ' for water at 70'C). Horizontal
nonuniformity in the second spatial derivatives of the in-
dex cause nonuniform distortion of the parallel beam, and
this produces contrast on a screen some distance from the
cell. Cold (downflowing) areas of the fluid cause the
beam to converge, and warm (upflowing) areas cause the
beam to diverge; hence the fluid acts as a horizontal array
of lenses. The contrast in the image increases with e; for
@=0.2 with the screen about 1.5 m from the cell, the con-
trast is about 10%%uo. A Newvicon camera is used to record
the image on the screen on videotape for later digital pro-
cessing.

The primary drawback of the shadowgraph technique is
the difficulty of extracting hydrodynamic data, such as

' the (vertically averaged) temperature field, from the inten-
sity distribution' ' in the image. When the screen is po-
sitioned for a sharply focused image, the data is no longer
spatially invertible, since a single point on the screen re-
ceives light rays that have passed through different hor-
izontal locations in the fluid. However, the shadowgraph
images provide useful information about the spatial struc-
ture and time dependence of the pattern.

Images are digitized, stored and processed using a Digi-
tal Equipment Corporation LSI-11/23 computer with two
supplementary graphics boards (manufactured by Data-
cube, Inc.) installed on the bus. These boards allow a
video signal to be digitized with 8-bit (binary digit) accu-
racy and permit an image to be stored as an array of
240 X 320 bytes (1 byte:—8 bits). Software to drive and ac-
cess the graphics device was written in our laboratory.

In order to analyze the shadowgraph images quantita-
tively, it is necessary to eliminate spatial distortions due to
the digital imaging system. We found that the image of
the cell was slightly stretched (less than 5%) in one direc-
tion, primarily due to spatial nonlinearity of the camera.
This aberration was corrected digitially before further
processing.

Frame averaging is a useful method to reduce spurious
intensity variations in the digitized image. ' Noise in the
image from mis-synchronization (due to slight tape speed
variations, for example) can be bothersome during subse-
quent processing. When the flow is changing slowly, an

FIG. 3. Processing the shadowgraph by image division and
smoothing. (a) Image (at @=0.1) formed by averaging 64 video
frames; the contrast is weak and the illumination nonuniform.
(b) Point-by-point division by a reference image with no convec-
tion improves uniformity and allows contrast to be enhanced.
(c) Nearest pixel smoothing reduces small scale noise.

average of many frames is still an effectively instantane-
ous image. We find that summing 64 frames (this re-
quires about 1~„)reduces the noise in the image to an ac-
ceptable level. Figure 3(a) shows a typical image after
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averaging 64 frames, at @=0.10. The relatively low con-
trast is apparent.

Image division is then used to increase contrast in the
image and to reduce the effects of nonuniform illumina-
tion and optical imperfections. ' (This operation also in-
creases any residual noise in the image. ) Let I (j,k) be the
intensity in a frame-averaged image of a convection pat-
tern and let Ib(j, k) be the intensity in an averaged back-
ground image of the cell where convection is absent. Here
j and k are the indices of a given picture element (pixel) in
the byte array that contains the image. Then the intensity
in the quotient image is

I'(j,k)=IO+G log2[I(j, k)/Ib(j, k)],
where Io is a center intensity and the gain 6 is chosen to
yield the desired contrast. Figure 3(b) shows the image of
Fig. 3(a) after division; this image is suitable for quantita-
tive analysis, although some enhancement of residual
noise on small length scales is visible.

If necessary, small-scale residual noise in the image can
be reduced with a spatial low-pass filter. The simplest
way to implement this operation ' is to average the inten-
sity of each pixel with that of nearest-neighbor pixels.
Since the minimum roll width in the image is about 7 pix-
els, a single application of this filter does not significantly
degrade the spatial structure information in the image.
Figure 3(c) shows the image of Fig. 3(b) after a single
smoothing operation.

We have measured the accuracy of the contours found
by this method. Typical rms angular deviations are
+m/60 (larger in highly curved rolls). The position of di-
gitized contours is reproducible and accurate to within
about one pixel.

2. Defects

Textured convection patterns contain a variety of de-
fects: dislocations, disclinations and grain boundaries.
The insertion of an extra roll pair into an otherwise uni-
form pattern forms a dislocation. Points where the orien-
tation is singular' are called disclinations; e.g., at the
center of a patch of circular rolls. Grain boundaries'
form where roll patches of differing orientation are joined
ln a line.

The local wave vector is undefined at the defects, so it
is necessary to locate the defects before q(r) can be mea-
sured. A small region around each disclination and grain
boundary is excluded from the wave-vector measurement.
Figure 4 shows the digitized roll boundaries and marked
defects for two patterns. Figure 4(a) is the pattern of Fig.
3, and Fig. 4(b) shows a different pattern that contains a
variety of defects.

C. Measurement of the wave-vector field
from shadowgraph images

Several operations are necessary to extract q(r) from
shadowgraph data. The position and local orientation of
roll boundaries in the image are found first. The defects
in the pattern are located and marked. Then the local roll
orientation and spacing are measured on a regularly
spaced grid of points to find q(r). The spacing of the
grid (5 pixels) is chosen to ensure that there is at least one
grid point per roll width; in this case a 45)&45 array of
points covers the cell area. These various steps are now
described in detail.

Digitization of roll boundaries

The position and orientation of roll boundaries in the
pattern are found by following contours of maximuni and
|minimum intensity in the image. %'e use an interactive
graphics program to digitize the roll boundaries semiau-
tomatically. ' In operation, the user moves a cursor
over the image stored in graphics memory to specify a
starting point and ending point along a roll boundary.
The program automatically follows the path of maximum
brightness between the two points, and stores the location
and orientation of points along the path iri a buffer. Both
dark (warm) as well as bright (cold) roll boundaries can be
analyzed by inverting the intensities in the image. This
digitized contour is smoothed, and the orientation calcu-
lated at each point, using a moving linear regression.
After repeating this process for each roll boundary we
have a digital representation of the pattern; this is stored
for use in further analysis.

FIG. 4. Digitized roll boundaries for two patterns; (a} corre-
sponds to the shadowgraph of Fig. 3; it contains three sidewall
disclinations and a grain boundary. (b) Pattern from a different
run containing four sidewall disclinations, three bulk disclina-
tions, two dislocations, and a grain boundary.
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FIG. 5. Orientation field n(r) measured for the patterns of
Fig. 4. The orientation perpendicular to the local roll axis is
shorvn by the line segments.

3. Measurement of roll orientation and spacing

We evaluate q(r) as the product of two fields, the orien-
tation n(r) and the wave number q (r); these are measured
in separate steps. Here n=q/~ q ~

is a unit vector per-
pendicular to the roll axis.

Orientation field. The orientation is measured at each
grid point by interpolation from nearby roll boundaries.
The digitized roll boundaries and defects are displayed in
graphics memory. At each grid point where n(r) is de-
fined, the graphics memory is searched to locate the roll
boundaries nearest the grid point. The orientations at
these two boundaries are averaged (weighted by their dis-
tance from the grid point) to find n at the grid point.
(This procedure is modified near defects and the sidewall,
where the grid point does not always'lie between two roll
boundaries. ) Tests show that the accuracy of n(r) is
comparable to that of the orientation of the digitized
boundaries. Figure 5 shows a subset of the field n(r)
measured from the digitized patterns of Fig. 4. The de-
fects are also shown.

Waue number field-. The local wave number q is de-
rived from the measurement of- the roll spacing l, using
the relationship q =n/i (note that one. roll width is half a
wavelength). This method is most useful when the phase
(and hence the wave number) of the structure varies slow-
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FIG. 6. Wave-number measurement by parabolic fits to in-
tensity extrema nearest a grid point. The solid lines are fits to
the peak and valley data (circles).

ly in space so that the measurement of only two points per
half-cycle (i.e., the roll width) is sufficient to specify the
wave number. In order to convert the units of q from
(pixels) ' to the physically meaningful (layer depth) ', we
multiply all length measurements by the scale factor
X=l /R, where I =14.0 is the aspect ratio, and R is the
radius (in pixels) of the image of the cell.

The spatial resolution of the digital imaging system is
an important consideration in the measurement of the lo-
cal roll width. Since the critical roll width corresponds to
a length of about 7 pixels in the image, the precision of a
single width measurement made by locating the digitized
boundaries will be about 10%%uo (although it improves if the
roll width is larger). For some purposes this is insuffi-
cient, and below we discuss two techniques to increase the
precision of the roll width measurement. In many cases

- these two methods yield similar results.
One method of noise reduction uses the digitized roll

boundaries and the previously measured n(r). Instead of
making a single measurement of the distance between the
digitized ro11 boundaries at each grid point, we also mea-
sure the spacing at several adjacent pixels near the grid
point, and these values are averaged to find 1 at the grid
point. (The additional measurement locations are posi-
tioned to avoid overlap with measurements at the adjacent
grid points. ) We find an improvement of about a factor
of 2 in the precision of 1 after averaging in this way.

A second method uses n(r) and the processed
("background-removed") shadowgraph image to find the
roll spacing. Instead of searching around each grid point
to locate digitized boundaries, we make a one-dimensional
scan of the image intensity, centered on the grid point and
parallel to n. Once this intensity profile has been read,
the locations of the roll boundaries nearest the grid point
are found by fitting parabolas to the nearest minimum
and maximum in the profile. Since the intensity profiles
are sensitive to noise in the shadowgraph image, several
steps are taken to increase the reproducibility of these pro-
files. First the image is smoothed, using one application
of the spatial filtering operation .described in Sec. IIB
above. Additionally, for each point in the profile (the
profile is read along a line parallel to n) the intensity is
averaged over a short segment perpendicular to n (parallel
to the roll axis).

Figure 6 shows a typical intensity profile (points) de-

30
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rived in this way from the pattern of Fig. 3(c), along with
the quadratic fits (solid lines) to the peak and valley
nearest the grid point. In uniform areas of patterns, this
method typically yields rms wave-number deviations of
about +0.03q, .

In Fig. 7 we show the measured wave-number field
q(r) for the two patterns of Fig. 4. The intensity of the
gray scale at each grid point (represented as a solid block)
is coded in proportion to the wave number. The locations
of defects are indicated by the vertically striped areas.

D. Quantities derived from the wave-vector field

In addition to q(r), several other quantities are useful in
the analysis of patterns. Here we discuss the measure-
ment of some of these quantities; a more detailed discus-
sion is presented in Ref. 22.

The wavenumber distribution P(q) for a pattern can be
computed easily, in histogram form, from the wave-
number field q(r). This measurement of P(q) may differ
from the distribution that could be calculated from a
two-dimensional Fourier analysis of the pattern. Howev-
er, in a pattern containing only about 10 cycles (roll pairs),
the resolution of the real-space measurement is better than
that of a Fourier transform.

The "roll bending field" (V n) is a quantitative mea-
sure of the structure of the pattern. In a pattern of con-
centric rolls, (V.n) =1/r, where r is the radial coordi-
nate. The interpretation of (V.n) as (radius of curva-
ture) can be applied to other patterns as well. We com-
pute the bending from n(r) by numerical differentiation,
using two-point centered differences. The bending can-
not be computed close to defects and the sidewall, where
n(r) is not defined. In actual data, the bending is quite
sensitive to errors in the measured n(r), but we estimate
the precision of the spatially averaged bending ((V.n) )
to be about +5%. (Here ( ) denotes an average over a
single pattern. ) Similar remarks apply to the squared
wave-vector divergence (V q) /qo, where qo is a reference
wave number.

Another quantity that reflects the structure of the pat-
tern is the roll-sidewall obliqueness n s, where s is a unit
vector perpendicular to the sidewall. This quantity is
evaluated at the perimeter of the cell, and vanishes where
the rolls are perpendicular to the sidewall. We take
n s=cosP, where P is the positive acute angle between n
and s. For better precision, the obliqueness is computed
at every pixel on the perimeter, instead of using just the
values of n(r) at grid points near the sidewall. Also, a
small arclength is excluded near defects on the sidewall.
In actual data we estimate the accuracy of the spatial
average (n s) to be about +3%.

Most of the contributions' to the Lyapunov functional
in the Swift-Hohenberg model can be computed easily
from the wave-number field, or as integrals of quantities
described above. The bulk contribution Ii~ consists of
two terms: Fsq, which is proportional to the integral over
the cell area of (q —qo), where qc is a reference
wavenumber; and I'd;„aquantity proportional to the in-
tegral of (V.q) /qc over the cell area. The sidewall con-
tribution Fq is proportional to the integral of n s around
the perimeter of the cell. Further discussion of the calcu-
lation of the contributions to F may be found in Refs. 5
and 22.

III. EXPERIMENTAL RESULTS

We present the results of this study in two subsections.
We begin with a qualitative overview of the observed re-
gimes of both stable pattern formation (including tran-
sient evolution) and persistent time dependence, and then
proceed to the quantitative analysis of patterns in the
various regimes.

FIG. 7. Measured wave-number field q(r) for the patterns of
Fig. 4. The intensity of the grey scale is coded in proportion to
the wave number; the field cannot be measured near the defects
(vertically striped regions).

A. Overview: Three regimes of pattern evolution

We have found three regimes of pattern evolution for
e&5. When @&0.2 or e~ 3.5, nonperiodic time depen-
dence appears to persist indefinitely. The time scales of
the motion are much slower in the small e regime. On the
other hand, for 0.2&@&3.5, stable nonunique textured
patterns form after long transients. The boundaries be-
tween these regimes probably depend on the Prandtl num-
ber, and may also depend on initial conditions.
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FIG. 8. Sequences of images at @=0.10 (10% above onset) showing persistent time dependence near the onset of convection.
Times are given in units of the horizontal thermal diffusion time ~q. Grain boundary motions persist throughout observations span-

ning 45~q.

1. Time dependence close to onset

Sufficiently close to onset, convective flows apparently
do not stabilize. For @&0.2 (approximately), slow non-
periodic motion (on a time scale of a few rq) persists for

at least 50rh. This motion involves the restructuring of
defects, and was originally pointed out by Ahlers, Stein-
berg, and Cannell.

An example of persistent time dependence close to on-
set is shown in Fig. 8, where we present a sequence of im-
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ages at @=0.10. The time elapsed since e was set to 0.10
is shown in units of ~~. A highly disordered initial pat-
tern [Fig. 8(a)] was created by raising e rapidly through
zero to a large value (@=5) and then setting @=0.10.

Within about le~ [see Fig. 8(b)], the flow contains only a
few defects and a large region of slightly bent rolls.

Instead of stabilizing, these defects evolve erratically:
grain boundaries occasionally propagate around the per-
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imeter of the pattern (b)—(d) and (f)—(h). The motion of
these defects is not restricted to the perimeter of the con-
tainer. In Figs. 8(i)—8(k), a grain boundary grows out
from the sidewall and eventually spans nearly the diarne-
ter of the cell. The motion of these defects shows no sign
of abating during the entire time of observation (45'~ ).

Although elements of this process are repetitive, the
evolution is apparently nonperiodic. The phenomenon is
not always as pronounced as in Fig. 8. For example,
another run at the same e shows weaker but still signifi-
cant time dependence.

2. Stable patterns and transient evolution

For 0.2 & e ~ 3.5 textured patterns become stable even-
tually, regardless of the initial conditions. Some of these
are displayed in Fig. 9. They form after long transients;
the elapsed time is also given for each image. We classify
a pattern as stable when shifts (measured by image
division) of not more than a small fraction of a roll width
occur over time intervals of order 10'~. (Close to onset,
the transients tend to last longer than at higher e, and
some of the patterns at e & 0.5 in Fig. 9 may still be evolv-
ing very slowly. )

Several features are present in all of these flows: the
rolls are bent and tend to be roughly perpendicular to the
sidewall; a small number of defects are present on the
sidewall and in the bulk of the pattern. The patterns are
not unique at a given value of e; this is shown for three
values of e in Figs. 9(a) and 9(b) and 9(e)—9(h).

When R, is exceeded slowly, we have observed stable
patterns consisting of concentric or elliptical rolls, over a
range of e similar to that for textured patterns. Patterns
of this type have been thoroughly characterized and we
will not discuss them further.

An example of transient evolution to a stable pattern is
shown in Fig. 10, at @=1.56. In this example, a large
number of defects persist in the pattern until almost 7~t,
[Fig. 10(fl], and then the few remaining defects evolve
slowly until the pattern stabilizes at about 49rh. During
the slow phase, a wave-number adjustment occurs [this
can be seen by counting the number of rolls in the images
of Figs. 10(g) and 10(h)], and a new defect pair grows out
of the sidewall (i) and (j).

3. Time dependence far from onset

For e sufficiently large (e& 3.5), persistent nonperiodic
time dependence occurs through repetitive pinching of the
rolls. The time scale of this phenomenon is much faster
than that of the persistent motion of grain boundaries at
small e.

An example of this process is shown in Fig. 11, at
e=3.84; here the elapsed time (from an arbitrary initial
point) is given in units of the vertical thermal diffusion
time ~„=55 s. Figure 11(a) shows a typical time-
dependent pattern, consisting largely of curved ro11s be-
tween two sidewall disclinations (SD). As three new rolls
[Fig. 11(b)—11(d), arrows] are added at the SD, the rolls
are compressed in the center of the pattern and eventually
pinch off [(e) and (f)]. This leads to the formation of a
pair of dislocations (g) that quickly climb to the sidewall

[(h) and (i)]. Soon new rolls (only two this time) grow
from the SD again [(j) and (k)], and the process repeats
[(»].

Although these phenomena are repetitive, the events
occur nonperiodically and with various spatial structures.
The roll pinching is not always near the center of the pat-
tern, and it sometimes occurs in several places simultane-
ously. Patterns may contain more defects than in this ex-
ample, and then the flow changes are difficult to charac-
terize.

B. Quantitative analysis

The form ofstable patterns

Although a single wave number is not sufficient to
specify the structure of a textured pattern, the spatially
averaged wave number (q) {here ( ) denotes the average
over a single pattern) tends to decrease with increasing e.
Figure 12 shows e versus ( q)/ q, for stable textured pat-
terns, along with the thresholds of several secondary in-
stabilities. The instability boundaries are computed for
an infinite array of straight rolls at P=2.5. (Here EC
denotes Eckhaus, ZZ denotes zig-zag, CR denotes cross
roll, and SV denotes skewed varicose. ) The variations of
(q) at fixed e are an indication of the nonuniqueness of
these patterns. Although these variations are significant,
they are much smaller than the range of q predicted to be
stable. It also appears that the limiting value of (q) as
e~0+ is about 0.95q„instead of q„the value that would
be expected for straight rolls.

The spatially averaged roll bending ((V.n) ) and roll
obliqueness (n.s) also tend to vary with e. Generally we
find that the rolls bend more, and are more nearly perpen-
dicular to the sidewall, as e is increased. (This trend can
be seen qualitatively in some of the patterns of Fig 9.).
However, the patterns do not always vary in this way, as
wi11 be shown below.

Figure 13(a) shows (n s) as a function of e for a num-
ber of stable patterns (most of these evolved from compli-
cated patterns). As e increases from 0.2 to 1.6, the mean
obliqueness decreases by about 30%. In textured patterns
(n.s) is always much smaller than the value of 0.64 ex-
pected for straight rolls in a circular container. Qn the
other hand, it is never smaller than about 0.15 because the
rolls do not bend sharply enough near defects to be per-
pendicular to the sidewall everywhere. The mean roll
bending ((V.n) ) is plotted versus e in Fig. 13(b); it in-
creases by about 80%%uo as e increases from 0.2 to 1.6. The
largest measured values of ((V.n) ) are comparable to
that expected in a concentric pattern, about 0.03.

Although the bending and obliqueness vary oppositely
to each other, this variation is not always monotonic with
e. Figure 14 shows these quantities as a function of e for
a sequence of patterns formed sequentially at successively
higher values of e. In this example, the pattern first be-
comes straighter (and the obliqueness increases) as e is in-
creased from 0.2; the trends at low e are opposite to those
of Fig. 13.

2. Wave number field and the -onset of'time dependence

We find that it is useful to characterize patterns by the
wave-number distribution P(q), and to compare P(q)
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FIG. 10. Transient evolution sequence at @=1.56. Large wave-number variations are visible as defects evolve.

with the predictions of stability theory. For many stable
patterns, i.e., over much of the interval 0.2 & e & 3.5, P (q)
hes entirely within the wave-number band expected from
stability theory. However, for e sufficiently small or suf-
ficiently large, P(q) exceeds the stable band and this con-

dition seems to be a useful predictor of the onset of per-
sistent time dependence.

This is demonstrated in Fig. 15, which shows P(q) for
a pattern from each of the three regimes, along with the
location of the stable wave-number band. The distribu-
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the stable band, which is bounded by the cross-roll (CR)
and skewed varicose (SV) instabilities at this e. Finally,
far from onset [for example, e=3.64, Fig. 15(c)] the pat-
tern is again time dependent, and in this case much of
P (q) lies above the stable band, exceeding the SV instabili-
ty threshold.

Data from many stable and time-dependent patterns are
summarized in two ways in Figs. 16 and 17. Figure 16
shows the width o of P(q) for stable and time-dependent
patterns, as well as the width 6 of the computed stable
band, as a function of e. The width of P(q) (measured as
the width of the central 80% of the distribution) does not
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FIG. 12. Spatially averaged wave number (q) measured in
stable textured patterns, for various e. The thresholds of secon-
dary instabilities at I' =2.5 are shown by the solid lines.

FIG. 14. Obliqueness and bending for one sequence of pat-
terns formed by stepwise increments of e. The behavior of this
sequence at low e violates the statistical trend seen in Fig. 13.

vary dramatically with e, but tends to increase as e in-
creases. On the other hand, 6~0 rapidly as @~0+, and
after reaching a maximum at @=0.9, b, decreases slowly
with increasing e. The observed stable regime corre-
sponds roughly to 6 being substantially larger'than o-.

Figure 17 gives a more explicit comparison between
P(q) and the stable band, as a function of e. Figure 17(a)
shows the fraction f of P(q) that lies below the lower
boundary of the stable range. Only for @&0.4 (approxi-
mately) does part of P(q) lie below the stable range; the
largest value of f were measured in time-dependent pat-
terns at @=0.10. The rise in this graph at low e seems to
be an indication of the onset of time dependence. Similar-
ly, Fig. 17(b) shows the fraction f+ versus e. For e & 3f+

0.30
{a)

0.25 "
A

0.20
V

0.15"

stable (b)
e =1.61

is large; the increase in f+ seems to signal the loss of sta-
bility that occurs for e & 3.5.

By examining the wave-number field q(r) we can see
which areas of the pattern contain the unstable wave
numbers. Figure 18(a) shows q(r) for a time-dependent
pattern close to onset (E=O. 10). Areas marked by vertical
striping show where the local wavenumber lies below the
zig-zag instability threshold (qzz ——0.91q, at @=0.10 and
P =2.5). Roughly speaking, the roll spacing tends to be
larger near defects and the sidewall, but the unstable wave

ZZ stobie KN
(o)

e =0.10"

CC

0.10
0.035

0.025 "

(b) -stobie
QR S~

(c)
g =3.64

0.015

0,005
0 2

~ =(R-R, )rR,
FIG. 13. Ro11-sidewall obliqueness (a) and the roll bending

tb), as a function of e for many stable patterns. The statistical
trend toward Jess obliqueness and greater bending is clear.

0.4 0.6 0.8 1.0 1.2.

FIG. 15. Wave-number distribution P (q) in patterns at
several values of e. The stable wave-number range is also
shown. I'(q) lies within the stable band at moderate e, but par-
tially outside it at low and high e.
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band, as a function of e. The regions where o. is comparable to
6 correspond qualitatively to time-dependent regimes.

and the three largest contributions to it, on a logarithmic
time scale. The defect contribution IiD is estimated '

from the number of disclinations in the pattern. Howev-
er, one must assume a radius r, over which the roll ampli-
tude is suppressed. We use an intermediate value r, equal
to 1.6 times the e-dependent correlation length g. Howev-
er, we show a large shaded uncertainty in the total F; this
arises from the fact that r, could probably be as small as
g or as large as 2g.

During the early phase of evolution (up to about 7rs, in
this case), the evolution of F is consistent with a mono-
tonic decline, mainly because I'D is large and decreasing
(and has a large uncertainty). However, the slow wave-

I', a I e = O. '0
numbers are not clearly localized.

In time-dependent patterns far from onset, compression
of the rolls leads to turbulent evolution. Figure 18(b)
shows q(r) for a pattern at @=4.17, just prior to the for-.
mation of a pair of dislocations. Here the vertical striping
indicates that q &qsv (qsv ——0.8lq, at a=4. 17 and P
=2.5), and the entire central area of the pattern contains
unstable wave numbers when the rolls are compressed.
(The elimination of a roll pair significantly reduces the
area where q ~ qsv. )

3. Transient pattern evolution and the Lyapunov functional

We describe the behavior of the Lyapunov functional
only briefly, since we have little to add to our previous re-
port. Figure 19 shows an example of the evolution of F

0.6

Tl tVIF DEPENDENT

02-

O.O !-
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'ls

X
X

QQ !5c
2

e = (R-Rc)/Rc
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FIG. 17. Fractions f and f+ of P(q) below and above the
stable band, as a function of t . The rise in each of these graphs
is a precursor of persistent time dependence.

FIG. 18. Graphical display (vertically striped) of regions
where the wave number is locally outside the stable band. These
patterns are time dependent.
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FIG. 19. Swift-Hohenberg Lyapunov functional as a function
of time {logarithmically) at e= 1.56. The separate contributions
due to the bulk (F&), surface (Fs}, and defects (FD) are also
shown. The origin of the uncertainty is explained in the text.
Slow wavenumber adjustments at the end of this run lead to
fluctuations in F.

number adjustment that occurs after most of the defects
are eliminated [see Figs. 10(g) and 10(h)] leads to a short-
term increase in F, due mostly to an increase in the value
of the (q —qo) term in E~. As an new defect pair forms
on the sidewall [Figs. 10(i) and 10(I)], E decreases again.
In some other runs, F is observed to be monotonic. To
summarize, we find that in the range e& 3.0, F is either
monotonic, or predominantly monotonic with small rever-
sals. Farther from onset, nonrelaxational behavior be-
comes quite pronounced. Very close to onset, the time
dependence of Ebecomes too small to measure.

The nonuniqueness of stable textured patterns is often
reflected by different values of E. Figure 20 shows E as a
function of e in stable patterns. The variations in E at a
given e (up to 25%%uo) arise mainly from differences in Es~,
which is the largest contribution in patterns containing
few defects. The overall linear trend of E with e results
from the fact that E@~e f (q —qo) d r, and the integral
does not vary greatly with e.

The wave-vector field q(r) provides a quantitative mea-
sure of the structure of stable and time-dependent tex-
tured convection patterns. This field can be measured
with a precision of a few percent using digital image
analysis. In this section we discuss the results of this
study in comparison with theory and other experiments.

A. Form of stable patterns

The variations of the spatially averaged wave number
( q ) with e are similar to previous results for textured pat-
terns in a large rectangular cell. Several theoretical ap-
proaches' ' ' have been applied to wave-number selec-
tion, especially in simple patterns, but these have not
yielded a prediction of the properties of the mean
wavenumber in textured patterns.

In many stable patterns the mean roll bending ((V n) )
increases, and the mean roll-sidewall obliqueness (n s)
decreases, as e is increased. This trend has already been
noted qualitatively. " It is also expected from the Swift-
Hohenberg model, because the term in the I yapunov
functional that is proportional to ((V n) ) scales with e,
whereas that proportional to (n s) scales with e ~ . This
means that boundary alignment will play a larger role
than curvature in minimizing F at large e. However, we
have observed a sequence of patterns that clearly exhibits
the opposite opposite behavior for @~0.5 (Fig. 14). This
behavior is still compatible with the model since other
terms in F, especially that due to wave-number deviations,
are often larger, so that the competition is generally not
limited to the terms under discussion here.

The form of textured patterns may well depend on ini-
tial conditions or thermal history, in addition to the dis-
tance above onset. Finally, we remark that the distinct
patterns that occur at a given E are often found to have
considerably different values of the Swift-Hohenberg
Lyapunov functional.

B. Wave-number field and the onset of time dependence

1. Flows near onset

80'

40'

20"

0

FIG. 20. Measured values of the Swift-Hohenberg Lyapunov
functional as a function of e-for many stable patterns. The
nonuniqueness of the patterns is sometimes reflected in F.

When e & 0.2 (approximately) the flow apparently never
stabilizes. Instead, the slow and erratic propagation of
grain boundaries through the pattern persists indefinitely.
This unexpected phenomenon has been observed only re-
cently, because of its extremely slow time scale and be-
cause of difficulties in flow visualization close to onset.

One possibility we must address is that the time depen-
dence close to onset may result from environmental fluc-
tuations or experimental imperfections, such as inhomo-
geneities in the temperature control. Using the Swift-
Hohenberg model as a guide, we note that the local mini-
ma defining stable states become extremely shallow near
onset, so extrinsic effects can become significant. We are
unstable to exclude these possibilities. However, in view
of quite similar observations by Ahlers, Steinberg, and
Cannell (extending to about 200rI, ), it seems more likely
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that the slow time dependence arises from intrinsic
dynamics of the "ideal" system.

The existence of persistent time dependence close to on-
set is in apparent contradiction with well-established sta-
bility calculations ' that predict straight rolls to be stable
in a band of wave numbers that varies quadratically with
e. (Of course, these results are for an infinite layer. ) The
fact that the unstable patterns contain wave numbers out-
side the stable band may allow this behavior to be under-
stood eventually. -%'e infer from our observations that the
stability calculations provide a useful guide to the stability
of textured patterns in a finite system. However, this pic-
ture is not completely consistent with all of the observa-
tions: it is not clear how the onset of the zig-zag instabili-
ty would lead to time dependence in the form of slow de-
fect motions.

These observations raise a new question: Why is the
wave-number distribution wider than the stable band in
textured patterns close to onset? Perhaps model equations
can be used to study the stability of flows in finite
geometry in order to better understand this issue. It is
possible that experiments at other values of the Prandtl
number might help to clarify the influence of various
secondary instabilities on flows near onset.

An alternate explanation for the onset of time depen-
dence has been proposed recently by Cross, Tesauro, and
Greenside, who show in numerical simulations that
competition between selection processes favoring different
wave numbers can lead to oscillatory time dependence
near onset. (They find, for example, that grain boundaries
favor a different wave number than one-dimensional pro-
cesses. ) It is not clear how to test this hypothesis using
our data.

Square cell. It is natural to ask whether the circular
symmetry of the boundary is related to the persistent time
dependence near onset. That is, would the same
phenomenon occur in a rectangular geometry'? We have
tried to answer this question by conducting similar experi-
ments in a square cell constructed to have the same aspect
ratio as the circular one. (In this case, we use half the
length of an edge in place of the radius in computing the
aspect ratio. ) Our longest run (at @=0.07) was still time-
dependent after 50~h but had clearly stabilized by 100rt, .

There is considerable variability from one run to the next.
The only statement that we can confidently make is that
stable states do exist near onset in a square cell. Whether
they are generally realized (or "found") is still uncertain.

2. Flows far from onset

Now we comment on the qualitatively distinct time
dependence that occurs for @~3.5 via the repetitive nu-
cleation of dislocation pairs. This type of destabilization
has been observed in several previous experiments ' and
has been associated with the skewed varicose instability.
Though this destabilization seems to be associated with a
large value of f+ (the fraction of the wave-number distri-
bution P(q) that exceeds the stable band), some patterns
with large values of f+ are stable. This phenomenon sug-
gests that P (q) does not tell the entire story.

C. Transient pattern evolution

From an empirical point of view, it seems that pattern
evolution can be characterized in terms of defect motions
and their influence on the wave-vector field. The spon-
taneous nucleation of dislocations during transients far
above onset is a dramatic example of the role of defects;
the wave-number adjustment accompanying the slow evo-
lution of defects at moderate e is another. The interac-
tions between defects and the wave-number field can lead
to nonmonotonic evolution of the Swift-Hohenberg
Lyapunov functional I .

Although a truly adequate model will probably be non-
relaxational, this simple model correctly describes some
qualitative features of convective pattern formation, and
has provided a useful guide to the development of quanti-
tative methods that can be applied in experiments.
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