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Probability distributions and thermal transport in a turbulent grid flow 
B. R. Lane, 0. N. Mesquita,a) S. R. Meyers, and J. P. Gollubb) 
Department of Physics, Hauerford College, Haverford, Pennsylvania 19041, and Department of Physics, 
University of Pkznsylvania, Philadelphia, Pennsylvania I9104 

(Received 25 February 1993; accepted 15 April 1993) 

Recent theoretical proposals concerning non-Gaussian statistics of passive scalars in random 
velocity fields are tested experimentally, by measuring the probability distributions of fluctuating 
temperature in an oscillating grid flow across which a steady temperature gradient is maintained. 
Pronounced exponential tails occur at sufficiently high Reynolds number R, and predominantly 
Gaussian statistics at low R. When the extended tails are present for the passive scalar, the 
corresponding velocity power spectrum shows reasonable scaling, and the velocity distribution 
is not far from Gaussian. The present paper provides a more complete characterization of the 
flow field than an earlier brief report [Phys. Rev. Lett. 67, 3507 ( 1991)], and also contains a 
description of additional features, such as the skewness of the distributions. Finally, the effective 
or eddy diffusivity of both heat and a molecular impurity are measured and compared. 

I. INTRODUCTION AND BACKGROUND 

Turbulent flows can enhance the mixing of passive sca- 
lars such as heat and impurities by many orders of magni- 
tude, a process that is often described by the phenomeno- 
logical concept of eddy” dt@uion. The dependence of this 
process on the statistical properties of the flow is a difficult 
problem mathematically, because the large scales relevant 
to bulk transport are affected by a wide range of smaller 
scales.’ Yet the phenomenon itself is widespread in turbu- 
lent flows, and is particularly important in geophysical 
flows. 

In attempting to characterize turbulent mixing, it is 
natural to focus on the statistics of the fluctuations of 
scalar quantities, and especially on their probability distri- 
bution functions (pdf’s) .‘13 The present experimental in- 
vestigation was designed primarily to explore the statistics 
of passive temperature fluctuations in the presence of an 
imposed steady mean gradient, especially the deviations 
from Gaussian behavior. Secondarily, we study the effec- 
tive or eddy diffusivity as a function of Reynolds number, 
for both heat and a molecular impurity. 

The observation of exponential pdfs of the local tem- 
perature in turbulent Rayleigh-BCnard convectionti at- 
tracted attention to the statistics of passive scalar fluctua- 
tions in turbulence. It has long been recognized’-” that the 
statistics of local velocity and temperature derivatives can 
be non-Gaussian, a phenomenon that is related to small- 
scale intermittency. On the other hand, the statistics of the 
passive scalar fields themselves were thought to be Gauss- 
ian before the experiments on thermal turbulence. 

Subsequently, Pumir et al. ‘I proposed a simplified 
model of random advection for situations in which a steady 
mean gradient is maintained across the flow. Their one- 
dimensional phenomenological model yielded exponential 

‘)Permanent address: Department0 de Fisica, Universidade Federal de 
Minas Gerais, 30.161 Belo Horizonte/MG, Brazil. 

b)T~ whom correspondence should be addressed. Electronic address: 
jgollub Cb haverfordxdu. 

tails, which arise basically from instances in which fluid at 
a given location comes from distant locations where the 
local mean value is systematically larger or smaller. The 
significance of these distributions, which are broader than 
Gaussians, is the implication that fluid can be transported 
over long distances without mixing. 

Several numerical investigations have also provided 
support for the existence of non-Gaussian fluctuations in 
passive scalar fields. Kerstein12 found exponential tails in a 
linear eddy model in the presence of a mean gradient. In 
this stochastic one-dimensional simulation, the mixing is 
approximated by a sequence of independent instantaneous 
rearrangement events followed by deterministic diffusion. 
This model has been extended to two dimensions by 
Holtzer and Pumir,‘? and these authors also showed that 
the model of Ref. 11 can be derived heuristically using 
Kerstein’s approach. 

Simulations in which there is no mean gradient have 
been conducted by several groups. MCtais and Lesieur used 
large eddy spectral methodsI and noted transient expo- 
nential tails. Eswaran and Pope’* performed a direct sim- 
ulation of the time evolution of the pdf starting with delta 
functions, and found Gaussian behavior. Finally, Ching 
and Tu16 studied passive advection by a random incom- 
pressible Gaussian velocity field on a two-dimensional 
square lattice. They found that the steady-state pdf could 
take various forms (Gaussian, exponential, or stretched- 
exponential) depending on the parameter C = p/& 
where { and Q- are the correlation length and time, and D 
is a renormalized or eddy diffusivity at the scale c. This 
parameter is generally of order 1 for turbulent flows. The 
results of this simulation were similar with or without a 
mean gradient. 

Sinai and Yakhot” showed that the pdf for a random 
velocity field can be expressed in terms of the conditional 
expectation value of the normalized scalar dissipation rate 
(the normalized mean square spatial gradient of the scalar 
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field). Recently, Pope and Ching’* pointed out that the pdf 
for any stationary process can be obtained exactly from 
conditional expectations of time derivatives of the same 
signal. A special case of this interesting result was pointed 
out by Ching.” 

Our experiments differ from studies of temperature sta- 
tistics in turbulent thermal convection, where the temper- 
ature is not passive. The experimental geometry involves a 
steady horizontal temperature gradient placed across a tur- 
bulent flow generated by a vertically oscillating grid. Pre- 
liminary results of this investigation were published 
earlier.20 A complementary study in a wind tunnel was 
undertaken simultaneously by Jayesh and Warhaft,21 and a 
full report of that work has appeared.22 Interesting related 
measurements of pdfs for thermally strattjied turbulence 
have been reported by Thoroddsen and Van Atta.23 There 
have been several earlier studies of mixing phenomena that 
include passive scalar pdfs (e.g., Ref. 24)+These have 
elucidated the dependence of the distributions on Reynolds 
number and Schmidt number in several different geome- 
tries. These earlier measurements did not focus specifically 
on the low probability events far from the mean. 

After discussing the various experimental methods em- 
ployed in this investigation, we describe the measurements 
of enhanced transport in Sec. III, including both thermal 
and mass transport in the same geometry. Section IV is 
devoted to a report on the statistics of temperature fluctu- 
ations, along with a more thorough characterization of the 
velocity field than is contained in the preliminary report.20 
Our work is compared with that of Ref. 22 and discussed 
in the light of theoretical studies in Sec. V. 

II. EXPERIMENTAL METHODS 

A. Apparatus 

The mixing apparatus consists of a rectangular Plexi- 
glas box divided into three baths, as shown in Fig. 1 (a). 
The center bath contains the working fluid, and its interior 
horizontal dimensions are L= 12.5 cm (in the direction of 
the gradient) by 25 cm (perpendicular to the gradient). 
The depth of the fluid is variable, but is generally chosen to 
be 7.5 cm. The temperature gradient across the working 
fluid is maintained by two temperature-controlled baths 
which are separated from the center bath by copper plates 
0.3 cm thick. The control baths are stirred vigorously. One 
of them is controlled by fluid from a refrigerating circula- 
tor, and the other is resistively heated. The temperature 
difference is about 3 K, with a stability of f 0.01 K over 
long periods. A mean working temperature near room tem- 
perature is selected to minimize heat leaks to and from the 
room. The entire apparatus is thermally insulated with 
closed cell Styrofoam about 1 in. thick, and there is no air 
space above the fluid. 

The working fluid is mixed by an oscillating grid made 
by drilling a hexagonal array of holes (diameter d=0.48 
cm; nearest neighbor spacing 0.8 cm) through a Plexiglas 
sheet 0.3 cm thick. The pattern of holes is shown in Fig. 
1 (b). The open fraction f of the grid is 0.326; larger values 
result in less effective mixing. The grid oscillates through 

(4 
insulation heating 

l-12.5 cm ------+I foil 

@I 

FIG. 1. (a) Sketch of the apparatus (side view), showing the oscillating 
grid, temperature control baths, and exterior insulation. (b) Hexagonal 
array of holes in the oscillating grid. 

the middle 40% of the fluid depth, with periods T in the 
range 0.5-10 sec. We also made supplementary measure- 
ments using a different grid with holes four times as large 
for comparison. 

Both water and water-glycerol mixtures are employed 
as the working fluid. The experiments are described in 
terms of a Reynolds number R based on the diameter d of 
the holes in the grid and the maximum velocity of the fluid 
through the holes, which depends on f. It may be ex- 
pressed in terms of the period T as follows: 

R = 2?rAd/vTf, (1) 
where v is the kinematic viscosity and A is the amplitude of 
oscillation. The definition of R used in our preliminary 
report, Ref. 20, was higher by a factor of 2. The rms hor- 
izontaZ velocity is smaller than the maximum vertical ve- 
locity by a factor of about 0.06 at R = 3000. 

B. Temperature measurements 

Temperature measurements are made using two ther- 
mistor probes of diameter 0.05 cm which have a frequency 
response (in a moving fluid) of about 50 Hz. Their e&ctive 
resolution is estimated to be approximately 1 mm parallel 
to the local flow, which is small enough to resolve the 
scales of interest. The probes protrude from glass capillar- 
ies, which are in turn mounted in small Plexiglas blocks 
that slide in grooves milled in the bottom of the cell. The 
probes are located about 1.3 cm above the bottom of the 
cell. They can be translated independently across the cell in 
the direction of the temperature gradient. In this way, mea- 
surements of temperature differences and correlation func- 
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tions can be obtained. The effect of varying the distance 
from the probes to the grid is explored by varying the 
vertical mean position of the grid. A third probe is 
mounted above the grid for measurements of the vertical 
temperature gradient. 

The probes are individually calibrated, and their resis- 
tances are fitted accurately to a quadratic function over the 
relevant temperature range. The resistances are sampled, 
typically at 10 Hz, by a Keithley 199 digital multimeter. 
Local heating of the probes by the measuring current is 
negligible, and the measurement precision is estimated to 
be 5 x low4 K. 

In order to study the enhancement of heat transport by 
the flow, one can measure the ratio of the total flux F 
through the cell to the local temperature gradient p in the 
bulk of the fluid. This method assumes that a steady state 
has been achieved. It also presumes that the transport is 
diffusive, and that the effective diffusion coefficient D* can 
be assumed uniform in the bulk of the fluid and time in- 
dependent. In fact, it depends somewhat on the vertical 
coordinate (distance from the oscillating grid), and also 
must have an oscillatory component at the externally im- 
posed frequency. So, the result is effectively averaged with 
respect to the vertical coordinate and time. We find D* 
from the expression 

D* = F/ppc, (2) 

where p and c are the density and heat capacity of the 
fluid. The total flux through the fluid is determined from 
the power supplied to the resistive heater in the warm bath. 
Heat leaks to the environment are sufficiently small that 
corrections are not required. 

C. Concentration measurements 

In order to compare the thermal transport measure- 
ments to the transport of a diffusing impurity, we have also 
studied the spreading of fluorescein dye introduced by local 
injection. A laser light sheet passes through the Plexiglas 
cell parallel to the oscillating grid at the same vertical po- 
sition as the original thermistor probes (approximately 5 
mm below the lowest point of the grid). A dye solution is 
introduced locally in the place of the light sheet. The local 
dye concentration, which is linear in the scattered light 
intensity, can then be monitored as a function of time by 
digital image processing methods. The concentration field 
in the plane of observation is statistically isotropic. There- 
fore we focus attention on the azimuthally averaged field 
c(r,t>, where the origin is taken to be the location of the 
centroid at a given time. Two methods are used to analyze 
this data in order to test whether an effective diffusion 
model is adequate and to obtain the effective diffusion con- 
stant D&. 

The first method focuses on the spatial distribution of 
the dye at a given time. Since the vertical spreading of the 
dye is very fast, we start with the hypothesis that the dye 
patterns in a horizontal plane can be described statistically 
by the two-dimensional diffusion equation 
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dC 
at= D&V2c, 

where D$& is a function of the Reynolds number. The 
(azimuthally averaged) concentration field of a spreading 
spot should then vary with radius and time as 

: (4) 

Then a plot of In [tc(r,t)] vs ( -?/4t) will have a linear 
region with slope l/D& . We find it necessary to average a 
number of images in order to obtain reasonable linearity 
and adequate statistics. An alternative t ime-dependent 
analysis can also be used to obtain D&. If the time- 
dependent concentration field is adequately described by 
(3)) the second moment of the radial distribution c( r,t) for 
a spreading spot is given by 

i 
(3) =2 D&t. i (5) 

D. Local velocity measurements 

Standard methods of laser Doppler velocimetry are 
used for local velocity measurements. The velocity compo- 
nent parallel to the temperature gradient is determined 
using a forward-scatter dual beam configuration, with res- 
olution of 0.1 mm transverse (and approximately 1’ mm 
parallel) to the beams. We dope the fluid with 0.4 ,um 
polystyrene latex spheres, and utilize a Dantec 55N21 
phase-locked-loop tracker for signal processing. These 
measurements are less precise than the-thermal 
ments, typically f 1%. 

measure- 

Ill. RESULTS: TRANSPORT ENHANCEMENT 

A. Temperature profiles and mean gradients 

Over the full range of R explored in this investigation, 
most of the temperature drop occurs in the boundary lay- 
ers near the copper plates separating the working lfluid 
from the adjoining control baths. The interior temperature 
then varies linearly and gradually from one side to the 
other, as shown in Fig. 2(a). However, the mean temper- 
ature gradient in the interior varies nonlinearly with !R, as 
shown in Fig. 2 (b) . The steep decline near R = lo3 implies 
a substantial increase in bulk thermal transport over a rel- 
atively narrow interval in R. The details of this transition 
presumably depend on the geometry of the grid. 

B. Nusselt number and effective diffusion coefficient 
from global measurements 

The measured nondimensional total heat transport N 
is shown in Fig. 3 (a). This quantity is simply the total heat 
flux through the cell, normalized by the conductive t+x in 
the absence of fluid motion. The variation of the total flux 
with R ‘is basically determined by the rate at which the 
boundary layers at the hot and cold vertical boundaries are 
thinned by the increasingly vigorous stirring. We find that 
N can be approximated by a power law over much of the 
range explored: 
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24 I- 
-50 

Distance h-cd? center (mm) 
50 

(a) 

FIG. 2 (a) Mean temperature profile F(x) parallel to the temperature 
gradient at R=250 (circles) and at R= 1850 (squares). The correspond- 
ing standard deviations of the temperature tluctuations are 0.7 K and 0.5 
K, respectively, and the total temperature difference across the cell is 3 K. 
(b) Interior temperature gradient as a function of R. 

~=0.32R”.a*o.05. (6) 
The boundary-layer thickness at R= 1850 is about 1.4 mm. 

We display the effective bulk thermal diffusion coeffi- 
cient D* as a function of R in Fig. 3 (b) . For comparison, 
note that the moZecular thermal diiusion coellicient is 
D= 1.46 X 10M3 cm2/sec. Even for R of the order of a few 
hundred, the transport is dramatically 700, and then much 
more rapidly. At R = 2500, the enhancement factor D*/ D 
is about 103. 

Typical values of D*. are roughly consistent with Vd, 
where V is the root-mean-square velocity of the fluid, and 
d is the hole diameter. Above the transition region, D* 
continues to increase gradually, perhaps linearly, but the 
accuracy and range of R are not sufficient to define a pre- 
cise relationship. 

C. Local dye transport measurements 

It is of interest to compare the effective thermal diffu- 
sivity D* with the ‘effective impuri@ diffusivity Dzye ob- 
tamed by following the time dependence of the second mo- 
ment of a spreading dye patch, as described in Sec. II C. 
We tind that the second moment varies approximately lin- 
early with time once the fluctuations are reduced by suit- 
able azimuthal and ensemble averaging. Therefore, it is not 
unreasonable to define an effective impurity diffusivity; its 
dependence on R is presented in Fig. 4. Two features are 
immediately evident. First, the dye transport does not 
show the well-defined transition region seen near R z 1000 

0’ 
1 

* 
Q 

10-l 

@I 

1 o* 1 o3 1 o4 
R 

FIG. 3. (a) Nusselt number N (nondimensional heat transport) as a 
function of Reynolds number R. (b) Effective thermaZ diffusivity P 
defined by Eq. (2) as a function of Reynolds number. 

in the bulk thermal transport. However, the substantial 
statistical fluctuations for local transport measurements 
lead to considerable scatter in the data. Second, the effeo 
tive diffusivity of the dye is at least a factor of 10 less than 
the effective thermal diffusivity even at large R. For com- 
parison, note that the ratio of the molecular diffusion co- 
efficients for dye and heat is 3.4 X 10w3. These observa- 
tions suggest that the efictive diffusivity depends on the 

--&. IO“ 

s 
s 

%  
*‘D 
Q lo-* 

1 

FIG. 4. Effective impurity diffusivity D& as a function of Reynolds 
number. The dye appears to be transported less effectively than is thermal 
energy. 
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FIG. 5. Spatial correlation function of the local temperature field in the 
turbulent regime, showing roughly exponential decay at R=1850. The 
correlation length of 8 mm is comparable to the spacing between holes in 
the grid. 

molecular diffusivity over the range of Reynolds numbers 
of our experiments, even when the fluid is turbulent. 

IV. RESULTS: TEMPERATURE PROBABILITY 
DISTRIBUTIONS 

A. Spatial correlation function of the temperature 
field 

In order to characterize the degree of disorder in the 
thermal field, we compute the spatial correlation function 
C+-(r) of the temperature field as a function of the separa- 
tion of two probes: 

c 
T 

(r) = WWWO) > 
WY ’ 

(7) 

where ST(r) is the local deviation of the temperature from 
its long term mean value. This function is displayed in Fig. 
5 for R= 1850. It is well approximated as an exponential 
with a correlation length CT’8 mm, a value that is ap- 
proximately equal to the hole spacing in the grid. The 
correlation function was not investigated for much lower 
values of R, where its structure may be more complex. 

B. Characterization of the velocity field 

It is important to know whether the velocity field itself 
is non-Gaussian, in order to be able to interpret the statis- 
tics of the thermal field. For this reason, we investigated 
the probability distribution functions for the component of 
horizontal velocity parallel to the temperature gradient. 
(However, it is believed to be essentially isotropic in the 
horizontal plane.) We Cnd that, for suflcient~ high R 
(above R =: lOOO), the velocity pdf s are nearb Gaussian. An 
example is shown in Fig. 6 (a) for R =2450. The horizontal 
axis is expressed in units of the standard deviation, and the 
distributions are shown on a semilog scale, where a Gauss- 
ian function would be parabolic. We believe that the weak 
deviations from the parabolic fit on the low side could be 
an instrumental artifact due to imperfect locking in the 
laser Doppler tracking electronics. For low R (below 500 

1 o-5 
-6 -4 -2 0 2 4 6 

10-S 3 
loo 1 1 o* 

(b) Frec&& (Hz) 

FIG. 6. (a) Probability distribution of the local velocity at R=2450; the 
solid line is a Gaussian fit to the data. The weak deviations from the fit on 
the low side could be an instrumental artifact. For much lower R, the 
velocity pdf is clearly non-Gaussian (see text). (b) Velocity power spec- 
trum, showing a reasonably well-developed inertial range with slope close 
to - 5/3 (solid line). 

roughly) P(Su) was clearly non-Gaussian, a reflection of 
the oscillatory nature of the forcing, which gives pulsing 
jets at a given location. 

To confirm that the turbulence is well-developed, we 
also determine the local velocity spectrum, as shown in 
Fig. 6 (b) . The spectrum shows a reasonable inertial range 
with slope close to ( -5/3). (The background spectrum is 
essentially white, and does not influence the measurements 
appreciably at frequencies below about 50 Hz.) Thus, mea- 
surements of the velocity field and its distribution confirm 
that toward the upper end of the accessible range of R, the 
velocity field is in fact turbulent, though it is also aniso- 
tropic. 

C. Measured temperature distributions 

The central goal of this investigation was to determine 
the behavior of the distribution function P(ST) for tem- 
perature fluctuations 6T measured from the local mean. 
Our most important observation is that roughly exponen- 
tial tails develop in the distributions as R is increased. This 
change is visible in the local temperature time series shown 
in Fig. 7 for R = 300 and 1850. The temperature is ex- 
pressed in units of the standard deviation. The proportion 
of large excursions is clearly enhanced in the second case. 
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FIG. 7. Temperature time series 5 mm from the grid for (a) R=300; (b) 
R= 1850. The temperature is expressed in units of the standard deviation. 
Frequent large excursions from the mean are seen in case (b). 

The corresponding distributions are shown in Fig. 8. 
The distribution for R = 300 is quite adequately described 
by the Gaussian fit. On the other hand, at R= 1850 the 
tails are very nearly exponential. The change is quite dra- 
matic: the observed fluctuations at 6T/o=4 are more 
probable than those predicted by a Gaussian distribution 
(with the same variance as that of the data) by a factor of 
13. The inverse decay constant y-l of the exponential is 
easily seen to be roughly consistent with the value figV 
predicted in Ref. 11, where fl is the local temperature gra- 
dient and & is the velocity correlation length. We were 
unable to make two-point velocity measurements, but we 
estimate & to be approximately equal to the grid hole di- 
ameter d. The expected inverse decay constant is then 
about 0.026 K, in good agreement with the value 0.029 K 
found experimentally. 

The development of the exponential character of the 
distributions may be summarized by plotting the flatness or 
kurtosis (ratio of the fourth moment to the square of the 
second moment) as a function of R, as shown in Fig. 9. 
This quantity would be 3 for a Gaussian distribution and 6 
for a purely exponential distribution. The observed values 
are consistent with 3 at low R, and rise steadily to the 
range 5-6 for R = 2000. 

D. Qualifications and limitations 

These results must be qualified somewhat: First, clean 
exponential tails are found only for measurements fairly 
near the grid and away from the lateral boundaries. (Mea- 
surements were typically made about 5 m m  below the low- 

-6 -4 -2 0 2 4 6 
(b) ST/O 

FIG. 8. Temperature probability distributions P(W) corresponding to 
Fig. 7. (a) R=300, (b) R= 1850. The temperature pdfs have pro- 
nounced exponential tails at high R. 

est extension of the grid.) Farther away (about 15 mm), 
where the mixing is weaker and the flow is less anisotropic, 
P(6T) is more complex, as shown in Fig. 10(a). The dis- 
tributions also become asymmetric (not shown) near the 
lateral boundaries of the cell, with a long tail on one side of 
the distribution. 

More surprisingly, the distributions are often some- 
what asymmetric even far from the lateral walls, and the 
degree of asymmetry seems to be unpredictable. An exam- 
ple is shown in Fig. 10(b), which was taken under the 
same conditions as the more symmetric case presented in 

6 

R 

FIG. 9. Flatness or (normalized fourth moment) of the temperature 
distributions as a function of Reynolds number, based on a few runs at 
each R. It varies from close to 3 (the Gaussian case) to values above 5 as 
R is increased. 
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FIG. 10. (a) Temperature distribution farther from the grid (15 mm 
below its lowest point), where the mixing is weaker, and the distribution 
more complex. (b) Example of a weakly asymmetric temperature distri- 
bution, for the same conditions as for Fig. 8(b). The asymmetry is vari- 
able and may be a result of very small temperature drifts. 

Fig. 8 (b) . A large number of runs were taken (more than 
60)) and the mean skewness of the distributions (normal- 
ized third moment) is shown for several values of R in Fig. 
11, along with error bars indicating the standard deviation 
of the skewness as an estimate of its variability. It is ap- 
parent that the mean skewness increases with R, though 
some individual runs are nearly symmetric. 

The relatively large fluctuations in skewness from run 
to run may be due to small temperature drifts. Though the 
precision of the temperature control (0.01 K) is rather 
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FIG. 12. Temperature difference probability distribution at R=370 
showing non-Gaussian character even at low R. 

good for a system transporting heat, the fluctuations are 
not quite insignificant. For comparison, we note that the 
mean temperature difference corresponding to 40 in the 
temperature pdfs is typically about 0.12 K. Since slow 
temperature drifts might be expected to distort the temper- 
ature distributions, we tried high-pass filtering the data to 
reduce the effect. However, asymmetry often remained, so 
in the end we decided it is preferable to use the raw data. 
Another possible explanation for the skewness is weak 
large-scale flows, which might arise as a result of increasing 
instability as R is increased. 

Finally, we note that the degree of rounding at the 
center of distributions is also somewhat variable, again pos- 
sibly due to unavoidable temperature drifts. This effect 
may account for the rather large scatter in the flatness plot, 
Fig. 9. 

E. Extensions 

The distributions do not depend significantly on the 
Prandtl number U/K, where u is the kinematic viscosity and 
K the thermal diffusivity. This was confirmed for R < 500 
by using glycerol-water mixtures. Unfortunately, higher 
Reynolds numbers were not accessible. 

Some experiments were also undertaken for grids with 
holes (and spacings) scaled up by a factor of 4. The grid 
may be characterized by the ratio of the hole diameter d to 
the distance L across the cell parallel to the gradient. 
When d/L is increased to 0.15 in this way, we find that 
P(ST) is approximately Gaussian for R up to 8000, even 
though the flow seems to be quite turbulent. The exponen- 
tial tails do not appear in this case. 

Finally, we investigated the probability distributions of 
temperature d&Grences ( T1 - T2) between two probes as 
an approximation to the temperature gradient. If the spac- 
ing is less than the thermal correlation length lT, then 
p[S( T, - T2)] tends to have extended tails even for rather 
low R. An example of this behavior is shown in Fig. 12, for 
probes spaced 6 m m  apart at R = 370. This behavior is not 
surprising in view of previous work on the non-Gaussian 
behavior of gradients. If the spacing between the two 

FIG. 11. Mean skewness of the temperature distributions for several 
values of R, based on a large number of runs, with the standard deviations 
shown by vertical bars (see text). 

2261 Phys. Fluids A, Vol. 5, No. 9, September 1993 Lane ef al. 2261 

Downloaded 05 Apr 2013 to 165.82.168.47. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



probes is increased, then their fluctuations are nearly un- 
correlated, and the distribution predictably approaches a 
Gaussian. 

V. DISCUSSION AND CONCLUSION 

As we reported in Ref. 20, clear evidence is found for 
exponential tails in the probability distributions P(ST) of 
the temperature fluctuations for strong mixing, and Gauss- 
ian behavior for weaker mixing (Fig. 8). In some cases, the 
exponential tails extend nearly to the center of the distri- 
bution, as indicated by values of the flatness well over 5. 
This behavior was not anticipated theoretically. 

The exponential distributions probably cannot be as- 
cribed to non-Gaussian velocity fluctuations. At the upper 
end of our range of Reynolds numbers, the velocity distri- 
butions are not far from Gaussian, and the velocity spectra 
are typical of strong turbulence. However, the anisotropy 
of the flow, caused by the vertical jets, could be a factor in 
accounting for the thermal statistics. 

We have also noted that the distributions P(ST) are 
often asymmetric, but that the fluctuations in the skewness 
are large from run to run. While we tend to view the asym- 
metry as evidence either of very small temperature drifts or 
of weak large-scale flows, it could be related to the mech- 
anism proposed by Thoroddsen and Van Atta,” who noted 
skewness in the distributions of gradients P( aT/az), where 
z is parallel to the mean temperature gradient in their ex- 
periment. 

The skewness could affect the flatness measurements to 
a limited extent. A skewness of 0.6 (the mean value over 
many runs at R=2000) would change the flatness of a 
perfect exponential distribution from 6 to about 7. While 
this effect is quantitatively significant, it is not so large as to 
be the primary factor in the clear trend toward larger flat- 
ness as R is increased. In constructing Fig. 9, distributions 
with skewness larger than 0.5 were excluded to minimize 
this effect. 

Jayesh and Warhaft21*22 found similar behavior (expo- 
nential tails at sufficiently high Reynolds number) for tem- 
perature fluctuations in the turbulence behind a grid in a 
wind tunnel, with an applied cross-stream temperature gra- 
dient. They determined both the velocity statistics and the 
passive scalar statistics, and noted that exponential tails 
occur when the local Reynolds number based on the Kol- 
mogorov scale exceeds 70. For our experiment, the corre- 
sponding grid Reynolds number would be about 100 [based 
on the rms horizontal velocity rather than the maximum 
vertical velocity as in Eq. (l)]. Therefore, the two experi- 
ments seem compatible, and the exponential tails found for 
the scalar distributions when there is a mean gradient 
probably have the same origin. 

We did not examine probability distributions in the 
absence of a mean gradient; Jayesh and Warhaft found 
Gaussian behavior in that case. They also found that the 
scalar dissipation rate, proportional to the mean square 
spatial derivative of the temperature fluctuations, is high 
for the large fluctuations that are responsible for the expo- 
nential tails. It would be interesting to examine the rela- 
tionship between the pdf and the conditional expectations 

of time derivatives of the signal, as pointed out by Pope 
and C!hing.t8 Unfortunately, our sampling rate was not 
sufficient to allow this comparison; it would be worthwhile 
to obtain new data for this purpose. 

Our measurements Fig. 3(b)] of the eddy diffusivity 
D* for heat, a bulk property, revealed a well-defined tran- 
sition region near R= 1000 where the jets through the 
holes in the grid become strongly turbulent. On the other 
hand, the nondimensional total heat flux, the Nusselt num- 
ber N of Fig. 3 (a), does not show such a transition because 
it is determined essentially by the boundary layers at the 
ends of the cell. Jayesh and Warhaft noted that the onset of 
exponential tails seems to coincide with the value iV= 3 1 in 
several different flows. However, we think that this could 
be an accident in the case of our work, since N is not a bulk 
property. 

It is interesting to speculate as to why the effective 
diffusivity of dye (Fig. 4) is generally lower than that for 
heat. One might imagine that the higher thermal dfiusivity 
produces a larger effective transport because heat is more 
easily transported across separatrices in the flow field. On 
the other hand, the methods used for these two types of 
transport measurements are suficiently different that fur- 
ther work would be required before such a conclusion 
could be prudently drawn. We note that molecular diffu- 
sivity appears to play a role in mixing even at Reynolds 
numbers considerably higher than those in the present 
experiments.24 

We conclude by noting that a clear understanding is 
still lacking of the precise circumstances under which 
strong deviations from Gaussian statistics for the scalar 
distribution should be expected. In a future publication, we 
will report analogous measurements for steady gradients of 
passive molecular contaminants, to extend the work on 
thermal fluctuations contained in this paper. 

Note added in proof: Shraiman and Siggiaz5 recently 
computed the pdf using path integral methods. A single 
scale random velocity field was found sufficient to generate 
exponential tails as a result of fluctuations in the strain 
enhanced mixing. Kimura and Kraichnan*‘j explored sev- 
eral mechanisms for generating non-Gaussian tluctuations, 
including one that depends on preferential diffusion in fluid 
regions that have been highly strained. 
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