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ABSTRACT 

Heterogeneous catalysts are widely used because of their many advantages. In this 

dissertation, the application of atomic/molecular layer deposition (ALD/MLD) in 

heterogeneous catalyst synthesis and modification was examined. 

A novel nanostructured size-selective catalyst was synthesized by depositing ultra-

thin porous shells on the surface of catalysts. The ultra-thin porous shells were formed by 

oxidation of aluminum alkoxide films deposited by MLD. The catalytic activity of the size-

selective catalyst was improved by introducing gaps between the porous shell and catalytic 

metal nanoparticles. The introduction of gaps greatly reduced the catalyst activity loss, 

which resulted from the contact areas between the active sites and porous shells.  

Ni nanoparticles supported by silica gel particles were prepared by ALD, and the 

catalyst showed both high activity and selectivity in catalyzing chemoselective transfer 

reduction of different nitroarenes to produce corresponding aromatic amines. 

A highly stable and active Ni/γ-Al2O3 catalyst was synthesized by depositing Ni 

nanoparticles on porous γ-Al2O3 particles by ALD. The catalyst showed exceptionally high 

catalytic activity and excellent stability for dry reforming of methane (DRM) reaction. A 

4-channel α-Al2O3 hollow fiber was also studied as a support for Ni nanoparticles. The 

Ni/α-Al2O3 hollow fiber catalyst showed excellent performance in catalyzing the DRM 

reaction. The performance of the catalyst was further improved by alumina ALD 

overcoating on Ni nanoparticle surface to increase Ni-support interaction.   
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1. INTRODUCTION 

1.1. ATOMIC LAYER DEPOSITION 

Atomic layer deposition (ALD) is a gas-phase thin film deposition technique with 

a subnanometer thickness control. ALD was called atomic layer epitaxy (ALE) before the 

year of 2000.1-3 Suntola et al.4 and Aleskovskii et al.5 are considered the ALD developers, 

and the ALD technique was patented by Suntola et al. in 1977.4  

1.1.1. Fundamentals of Atomic Layer Deposition. Different from other 

deposition techniques [e.g., chemical vapor deposition (CVD) and physical vapor 

deposition (PVD)], ALD relies on sequential binary, self-limiting gas-solid surface 

reactions, and the gas phase precursors were introduced into the deposition reactor 

alternately. The exposure steps of different precursors were separated by a purging step to 

prevent the gas-phase reaction between the precursors. In each precursor exposure step, 

gas precursor molecules could react with the substrate surface sites until the surface is 

saturated with new functional groups. Since there is only a limited number of active sites 

on the substrate and the precursor cannot react with the newly formed surface species, only 

a monolayer of surface species could form through the reaction of precursor and the 

substrate surface sites. Therefore, the reaction process is self-limiting, which is the reason 

why the deposited film thickness could be controlled in a molecular level by ALD. Even 

though ALD was first applied to deposit thin films on flat surfaces, it has been successfully 

employed to uniformly deposit conformal films on high aspect ratio structures. 
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The desired film thickness could be achieved by repeating ALD coating cycles. 

Typically, one ALD coating cycle consists of four steps: (1) exposing the substrates to the 

first precursor, (2) vacuuming the reactor to purge out the first precursor, (3) exposing the 

substrates to the second precursor, and (4) vacuuming the reactor. These four steps referred 

to one “ALD cycle”. Figure 1.1 schematically shows the Al2O3 ALD process. The two 

precursors for Al2O3 ALD are trimethylaluminum (TMA) and water. TMA can react with 

water to form Al2O3, described by the following reaction:6  

2Al(CH3)3 + 3H2O → Al2O3 + 6CH4                                        (1) 

In Al2O3 ALD, this reaction is divided into two half-reactions, listed as follows:7 

-OH* + Al(CH3)3 → -OAl(CH3)2* + CH4                                     (2) 

-OAlCH3* + H2O → -OAlOH* + CH4                                       (3) 

where the asterisks (*) indicates the surface species. Typically, the substrate surface is 

covered by some functional groups, such as hydroxyl (-OH) groups. In the first half-

reaction, the substrate surface is exposed to TMA molecules and they are adsorbed on the 

substrate surface and react with the surface -OH groups. The O-H bond will be replaced by 

an O-Al bond, CH4 will be produced as a by-product, and -CH3 surface groups will form. 

The reaction process will continue until all the surface -OH groups reacted with TMA 

precursors, and the substrate surface will be saturated with -CH3 groups. Since only limited 

number of -OH groups on the substrate surface, the gas-solid surface reaction is self-

limiting. The following purging process removes any by-product and unreacted precursors. 

In the second half-reaction, the substrate surface is exposed to the second precursor, water 
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vapor, which can react with the -CH3 surface groups. In this half-reaction, all -CH3 surface 

groups are removed, the -OH surface groups are regenerated, and CH4 is produced as by-

product. The second half-reaction is also self-limiting. The followed evacuation process 

can remove all unreacted precursors and any by-products. One conformal layer of Al2O3 

film with a thickness of ~0.1 nm can be deposited after one cycle of alumina ALD applied.  

 

 

 

Figure 1.1. Schematic representation of one cycle of Al2O3 ALD using TMA and water as 

precursors. 
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After one cycle of Al2O3 ALD, the surface -OH groups can be regenerated, which 

can be employed for more cycles of ALD. ALD has been employed in a wide range of 

research fields and industrial applications, such as batteries,8, 9 fuel cells,10, 11 

semiconductors,12, 13 and catalysis.14-16 

1.1.2. Thin Film Coating by ALD. ALD film components are determined by both 

precursors. Different metal-containing films can be deposited by employing different 

precursors. Organometallic and halide metallic compounds are widely employed as the 

ALD first precursors. The metal oxide ALD films can be deposited using water as the 

second precursor. For example, TMA and water are employed as precursors for alumina 

ALD, and titanium tetrachloride and water can be used as precursors for titania ALD.17, 18 

Phosphine can be employed to deposit metal phosphide films as the second precursor. For 

example, gallium phosphide film can be deposited using trimethylgallium and phosphine 

as precursors. Hydrogen sulfide and ammonia were employed as the second precursor to 

deposit metal sulfide and metal nitride films, respectively.19, 20 

Different metal thin films can also be deposited using different precursors. There 

are three main mechanisms employed for metal ALD. These mechanisms are based on 

fluorosilane elimination, combustion, and hydrogen reduction. Metal tungsten film was 

successfully deposited based on the fluorosilane elimination mechanism using tungsten 

hexafluoride and disilane as precursors.21 Some metal films (e.g., ruthenium22 and 

platinum23) can be deposited based on a combustion mechanism using organometallic 

compound and oxygen as precursors. Organometallic precursors and hydrogen were 
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successfully employed to deposit iron, cobalt, nickel, and copper metal films according to 

the hydrogen reduction chemistry.24 

1.1.3. Metal Nanoparticles by ALD. The layer-by-layer deposition fashion of 

ALD could yield uniform and smooth films, such as alumina. However, the deposition may 

not be uniform due to the lack of active surface sites on the starting substrate or aggregation 

of the deposited materials. These mechanisms have been used to deposit noble metal 

nanoparticles on oxide surfaces using ALD.25-28 Small and highly dispersed noble metal 

nanoparticles (e.g., Pd,29, 30 Ru,30 and Pt31, 32) were successfully synthesized by ALD as 

catalysts with considerably high activity. Some other transition metal nanoparticles (e.g., 

Ni33 and Co34) were also successfully synthesized by ALD and employed as catalysts for 

different reactions.  

 

1.2. MOLECULAR LAYER DEPOSITION 

Similar to ALD, molecular layer deposition (MLD) is a layer-by-layer, self-limiting 

gas phase thin film coating technique. The precursors of MLD contain some organic 

components, which can be part of the deposited films. Therefore, MLD was employed to 

deposit organic or hybrid organic-inorganic films, and the film thickness can be precisely 

controlled in nanometers.35-37 The organic polymer MLD films deposition process was first 

developed by researchers in Japan.37, 38  

1.2.1. Dense Film Coating by MLD. Different polymer (e.g., polyamide,39 

polyurea,40 polyurethane,41 polyimide42, 43, and polyazomethine44) films were successfully 
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deposited by MLD. Acyl chlorides and amines were employed as precursors for different 

polyamide MLD.35, 45 For example, Nylon 66 film was deposited using adipoyl chloride 

and 6-hexanediamine as precursors by MLD.35 Ethylenediamine and 1,4-phenylene 

diisocyanate were employed as precursors for ployurea MLD.40 Lee et al.41 demonstrated 

the MLD deposition of polyurethane using 1,4-phenylene diisocyanat and 2-butyne-1,4-

diol. Polyimides MLD using pyromellitic dianhydride and different diamines42, 43 and 

polyazomethine MLD using terephthalaldehyde and p-phenylenediamine as precursors 

were also developed.44 

Additionally, the hybrid organic-inorganic MLD has been successfully 

demonstrated using an inorganic precursor and an organic precursor.46 Aluminum alkoxide 

(alucone) MLD was first realized using TMA and ethylene glycol as precursors.36 A lot of 

other metal alkoxide films were also realized by MLD, such aszinc alkoxide (zincone) 

MLD using diethyl zinc and ethylene glycol as precursors.47, 48  

1.2.2. Ultra-Thin Porous Films Synthesis by Oxidation of Hybrid Films 

Deposited by MLD. Hybrid organic-inorganic alucone MLD films were successfully 

employed to form microporous-mesoporous films by removing the organic component 

inside the hybrid films.49, 50 The organic components in the MLD film can be removed ether 

by mild water etching or high-temperature calcination in air.49 Liang et al.49 demonstrated 

that 50 cycles of alucone MLD could result in an 8 nm thick porous film, and the film 

thickness could be precisely controlled down to subnanometer by applying different MLD 

cycles. The pore size in the porous film can be tuned by choosing different MLD precursors 
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and varying oxidation conditions. The porous alumina shell synthesized by MLD was 

successfully employed to improve the stability of metal nanoparticles supported on 

different substrates.51, 52  

 

1.3. SIZE-SELECTIVE REACTIONS 

Size-selective catalysis, also called shape-selective catalysis, is different from 

traditional selective catalysis, which is mainly due to the interaction between the active 

sites and reactant molecules or intermediate species. The size-selective catalysis results 

from the molecular-sieving effect during the reaction where the reactants, products, or the 

intermediate species are distinguished from their molecular size or shape. The size 

selectivity can be classified into three different types: reactant size selectivity, product size 

selectivity, and transition-state size selectivity. Reactant size selectivity is based on the 

mass transfer limitation of the reactant molecules that limits larger molecules from passing 

through the pores of the catalyst to reach the active sites. Product size selectivity refers to 

product molecules mass transfer limitation, where products with larger molecule size can 

be formed on the active sites, but they are too large to diffuse out of the pores as a product. 

The transition-state size selectivity is related to the spatial limitation of transition state 

species that causes the large intermediate species, which cannot fit in the pores, to not form. 

The size-selective catalysis was exploited in different areas, such as isomerization,53 

hydroxylation,54 alkylation,55 and hydrogenation56. 
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Zeolite 13X was first employed as a size-selective catalyst in 1960,57 and more 

types of molecular sieves (e.g., ferrierite,58 ZSM-5,59 and mordenite55) were employed as 

size-selective catalysts afterward. In recent years, non-zeolitic size-selective catalysts were 

extensively investigated.60  

Metal nanoparticle catalyst is one important branch of heterogeneous catalysts, and 

has been employed in hydrogenation, oxidation, combustion, and other areas because of its 

many advantages, including the ease of separating the catalyst by filtration after a reaction 

and its reusability.61-63 However, compared to some other catalysts (e.g., enzyme and 

organometallic catalysts), it is generally difficult for metal nanoparticles catalysts to 

selectively convert certain molecules in reactant mixtures to desired products.64 Many 

methods, such as modifying the catalyst surface,65, 66 tuning reaction conditions,67 and 

designing enzyme mimics68 were successfully employed to improve the catalyst selectivity. 

Another important strategy to improve the catalyst selectivity is to synthesize size-selective 

or shape-selective catalysts.  

One important strategy for designing size-selective catalysts is developing “core-

shell” nanostructured catalysts with porous shells encapsulating metal nanoparticles. The 

porous shell only allows smaller molecules to diffuse through it to realize the size-

selectivity. Many methods were applied to synthesize porous shells, and these porous shells 

were employed to encapsulate different metal nanoparticles catalysts to improve the 

thermal stability and sintering resistance of the catalysts.69-71 Mesoporous titania,72 

mesoporous silica,73, 74 zeolites,75-77 and metal-organic frameworks (MOFs)78 have well-
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defined porous structures and have been employed to encapsulate metal nanoparticle 

catalysts. Among them, mesoporous materials are not appropriate for size-selective 

catalysis of fine chemicals, since the pore sizes are too large. Zeolites and MOFs have 

inherent micropore systems of molecular dimensions, which allows for size-selective 

catalysis. For example, Nishiyama et al.75 synthesized 40 μm thick silicalite-1 zeolite 

coatings on spherical Pt/TiO2 particles that were 0.5 mm in diameter for size-selective 

hydrogenation of 1-hexene over dibranched 3,3-dimethylbut-1-ene. Lu et al.78 embedded 

Pt nanoparticles in a zeolitic imidazolate framework (ZIF-8) MOFs with a thickness about 

200 nm and demonstrated that the porous shell greatly increased the catalyst selectivity of 

hydrogenation of n-hexene over cis-cyclooctene. However, the catalyst activity decreased 

a lot after being encapsulated in the porous shell. This decrease is due to the combined 

effect of the mass diffusion limitation caused by the relative thick porous shell and 

blockage of active sites due to the contact areas between the porous shell and the catalytic 

sites. Li et al.79, 80 successfully embedded metal nanoparticles into single crystal hollow 

shells as yolk-shell structured size-selective catalysts with a shell thickness down to 20 nm. 

However, in all the above mentioned examples, the methods used to synthesize porous 

coatings were based on liquid-phase methods. It is difficult to apply liquid methods to 

fabricate porous shell on porous substrates. Therefore, current research activities of size-

selective catalysts are mainly focused on encapsulating unsupported or dense substrate-

supported metal nanoparticle catalysts. However, the metal nanoparticles are normally 

dispersed on high surface area supports so that the resulting metal nanoparticles have a 
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large fraction of their atoms on the surface. It is highly desirable to develop a size-selective 

catalyst with high surface area catalyst substrate, ultra-thin and well-defined porous shell, 

and few contact areas between the active sites and porous shell. As mentioned earlier, ultra-

thin porous shell with well-defined porous structure was successfully deposited on porous 

substrate by oxidation of hybrid MLD films.51 MLD is an ideal ultra-thin film deposition 

technique for porous substrates due to its advantages, such as its self-limiting nature and 

gas-phase-based deposition procedure.  

 

1.4. CHEMOSELECTIVE TRANSFER HYDROGENATION OF NITROARENES 

Aromatic amines are useful intermediates in the preparation of dyes, 

pharmaceuticals, and agricultural chemicals, which can be obtained by the hydrogenation 

of aromatic nitro compounds. Different metal catalysts and reducing agents were available 

for this purpose. However, the selective reduction of a nitro group in the presence of other 

reducible functional groups in a molecule is a challenging task. In addition, reduction of 

aromatic nitro compounds often stops at an intermediate stage, yielding hydroxylamines, 

hydrazines, azoarenes, or azoxyarenes as by-products.81-83 Different metal nanoparticles 

(e.g., Au,84 Ag,85 Fe,86 Fe-Ni,87 Ni-B,88 Ru,89 and Pd90) were employed for the reduction of 

nitro groups. Among these catalysts, gold catalysts showed the highest activity and 

selectivity. However, gold is very expensive and is relatively rare in the earth's crust. Ni is 

also a good catalyst for the reduction of nitroarenes and showed high selectivity toward 

aromatic amines. However, the conventional liquid-phase-based methods prepared Ni 
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catalysts showed much lower activity as compared to gold catalysts. It is desirable to 

develop an efficient, cost-effective, and chemoselective catalyst for hydrogenation of 

nitroarenes. Recently, small Ni nanoparticle catalysts were successfully synthesized by the 

ALD technique and showed excellent performance in propylene hydrogenolysis reactions. 

It was demonstrated that smaller metal nanoparticles showed higher activity for 

hydrogenation of nitroarenes.91 Therefore, it is expected that nickel nanoparticles deposited 

by ALD would have excellent properties for the reduction of nitro groups. 

 

1.5. DRY REFORMING OF METHANE 

Methane, as a major component of natural gas, is released as a waste product or 

simply burnt off from the petroleum extraction process. However, the emission of methane 

or carbon dioxide (one combustion product of methane) is harmful to the environment, 

since both carbon dioxide and methane are greenhouse gases. Therefore, the utilization of 

methane becomes important. Methane reforming reactions are important applications of 

methane and widely studied to produce hydrogen and syngas (mixture of carbon monoxide 

and hydrogen). Two typical methane reforming reactions are methane steam reforming 

(MSR, CH4 + H2O → 3H2 + CO) and methane reforming with carbon dioxide (CH4 +CO2 

→ 2H2 + 2CO), which is also called dry reforming of methane (DRM). In MSR reaction, 

with the reaction process, additional hydrogen can be produced by a water gas shift reaction 

(CO + H2O ⇌ CO2 + H2). Therefore, the H2/CO ratio in the MSR product is typically higher 

than 3. Due to the high H2/CO ratio, MSR was widely employed to produce hydrogen. 
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However, in Fischer−Tropsch synthesis (FTS), an important application of syngas, lower 

H2/CO is more beneficial.92, 93 Typically, in the product of DRM reaction, the H2/CO ratio 

is lower than 1 due to the accompanied reverse water-gas shift reaction (CO2 + H2 ⇌ CO 

+ H2O). In addition, the main greenhouse gas, carbon dioxide, can be converted into syngas 

in the DRM reaction. Therefore, the DRM reaction has become more and more important 

and has received more attention. Different transition metals (e.g., Rh,94, 95 Pt,96, 97 Ir,98 Pd,99 

Ru,100, 101 and Ni102, 103) were employed as catalysts for the DRM reaction. Among them, 

noble metal catalysts showed better resistance to coking, as compared to Ni-based 

catalysts.104, 105 However, due to the limited availability and high cost of noble metals, it is 

considered desirable to develop Ni-based catalysts. Many methods were employed to 

synthesize supported Ni nanoparticle catalysts. The Ni nanoparticles synthesized by 

conventional methods were typically large. Gould et al.52 deposited highly dispersed Ni 

nanoparticles (~3 nm) on γ-Al2O3 nanoparticles by ALD and the catalyst showed high 

activity in catalyzing the DRM reaction. 

The main disadvantage of using Ni catalysts for methane reforming reactions is 

deactivation, which is caused by both coking and sintering of Ni nanoparticles to form 

larger particles with lower catalytic activity.106 Coking could be decreased by running the 

reaction at high temperatures and using small Ni particles because their step edges are small 

enough to limit carbon nucleation and growth.107, 108 Therefore, the inhibition of the 

sintering of Ni nanoparticles is very important for improving the catalyst activity and 

stability. The small Ni nanoparticles synthesized by ALD should be beneficial for the 
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catalyst performance. In addition, porous materials should be better catalyst support as 

compared to nonporous materials since the porous structures could limit the Ni 

nanoparticles sintering.  

Another possible solution to retard the sintering and coking is to improve the Ni-

support interaction of the catalyst.109, 110 Many methods were employed to enhance the Ni-

support interaction to improve the catalyst performance in the DRM reaction. For example, 

Pan et al.111 employed plasma treatment on the catalyst during preparation of Ni/SiO2 

catalyst, and the Ni-support interaction was strengthened. Smaller-sized Ni nanoparticles 

and higher Ni dispersion were achieved, and the catalyst performance in the DRM reaction 

also improved due to the plasma treatment. Different promoters were also employed to 

improve the Ni-support interaction. For example, Rezaei et al.112 employed La2O3 to 

modify the Ni/ZrO2 catalyst using the impregnation method. The Ni-support interaction 

and Ni dispersion were increased due to the La2O3 promoter. The promoted catalyst showed 

higher activity and stability in the DRM reaction than the Ni/ZrO2 catalyst. Roh et al.113 

employed CaO to promote the Ni/Al2O3 catalyst using the impregnation method, and the 

promoted catalyst showed improved catalytic activity and stability in the DRM reaction. 

The better performance of the promoted catalyst is due to the strengthened Ni-support 

interaction, improved Ni dispersion, and higher coking resistance caused by the strong 

basicity due to the addition of CaO. 

The DRM reaction is an endothermic reaction and is always carried out at elevated 

temperatures. Alumina was widely used to fabricate the catalyst support. However, alumina 
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has various phases, and most of them suffer phase change at elevated temperature. For 

example, gamma-alumina, a widely used catalyst support, suffers phase changes at 

temperatures ranging from 770 °C to 1030 °C, which is always accompanied with a 

decrease of surface area.114, 115 Therefore, alumina in those unstable phases are not suitable 

for fabricating the industrial catalyst support, especially for DRM reaction. Alpha-alumina, 

the most stable phase of alumina, was widely used as the catalyst support for industrial 

catalysts and would not suffer phase change at elevated temperatures.116 Al-Megeren et 

al.116 compared several industrial reforming catalysts and found that a catalyst with 10 

holes showed the highest geometric surface area to volume ratio of 2.013×103 m2/m3. 

Ceramic hollow fibers attracted a lot of attention due to their high geometric surface area 

to volume ratio. Recently, a new type of α-Al2O3 ceramic hollow fiber with a four-channel 

configuration was developed.117 The fibers showed higher mechanical strength as 

compared to conventional one-channel hollow fibers. In addition, the four-channel hollow 

fiber should have higher geometric surface area to volume ratio as compared to 

conventional one-channel hollow fiber with the same outer diameter considering the inner 

surfaces of the four channels. In this dissertation, both porous gamma-alumina particles 

and four-channel α-Al2O3 hollow fibers were studied as Ni nanoparticles support for DRM. 

 

1.6. DISSERTATION SUMMARY 

Section 1 includes five papers. In Paper Ⅰ, the synthesis of a novel nanostructured 

size-selective catalyst with an ultra-thin porous shell and porous substrates was introduced. 
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The ultra-thin porous alumina shell was obtained from the thermal decomposition of an 

alucone film deposited by MLD. The size selectivity of the catalyst was realized by the 

size-discrimination effect of the porous alumina shell, which was verified by examining 

the liquid-phase hydrogenation of n-hexene versus cis-cyclooctene. 

In Paper Ⅱ, an improved size-selective catalyst based on the catalyst reported in 

Paper Ⅰ with gaps between the metal nanoparticles and the shells was synthesized. The gaps 

greatly reduced the catalyst activity loss caused by the contact areas between the catalytic 

sites and the shells. The gaps were introduced by depositing a sacrificial layer of self-

assembled monolayers (SAMs) before the deposition of porous shells on the catalyst 

surface. Evaluations of the activity and selectivity of the catalysts were made by catalytic 

hydrogenation of n-hexene versus cis-cyclooctene. 

In Paper Ⅲ, a highly active and selective porous silica-gel-particle-supported nickel 

nanoparticle catalyst was synthesized by ALD for chemoselective transfer hydrogenation 

of nitroarenes. The synthesized catalyst showed very high activity and selectivity in 

catalyzing hydrogenation of different nitroarenes to corresponding aromatic amines. The 

catalyst can be isolated by a magnet and rinsed thoroughly for reuse. The catalyst showed 

excellent reusability.  

In Paper Ⅳ, a highly stable and active nickel nanoparticle catalyst supported on 

porous gamma-alumina particles was synthesized by ALD for DRM reaction. The catalyst 

can be activated during the DRM reaction, and the activated catalyst showed exceptionally 

high catalytic activity and excellent stability in DRM reaction for over 300 h at 
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temperatures that ranged from 700 °C to 850 °C. The excellent stability of the catalyst 

resulted from the formation of NiAl2O4 spinel, which could greatly increase the interaction 

between the Ni nanoparticles and the substrate. The high catalytic activity was due to the 

high dispersion of Ni nanoparticles deposited by ALD and the reduction of NiAl2O4 spinel 

to metallic Ni during the DRM reaction at 850 °C. 

In Paper Ⅴ, a nickel nanoparticle catalyst supported on a novel structured alpha-

alumina hollow fiber with a four-channel configuration was prepared for DRM reactions. 

The catalyst showed exceptionally high catalytic activity in the DRM reaction. Different 

cycles (2, 5, and 10) of Al2O3 ALD films were applied on the hollow-fiber-supported Ni 

catalysts to improve the interaction of Ni nanoparticles and the support. Both the catalyst 

activity and stability were improved with the deposition of Al2O3 ALD films. Among the 

overcoated catalysts, the catalyst with 5 cycles of Al2O3 ALD showed the best performance. 

In Section 2, the findings of this dissertation are summarized and future work 

directions are discussed. 
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ABSTRACT 

A novel nanostructured catalyst with an ultra-thin porous shell obtained from the 

thermal decomposition of an aluminium alkoxide film deposited by molecular layer 

deposition for size-selective reactions was developed. The molecular sieving capability of 

the porous metal oxide films was verified by examining the liquid-phase hydrogenation of 

n-hexene versus cis-cyclooctene. 
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Heterogeneous catalysts are widely used (e.g., producing fertilizers, making 

gasoline from petroleum, and controlling automotive exhaust pollution via the catalytic 

muffler). However, heterogeneous catalysts cannot selectively convert specific molecules 

in the reactants mixture to catalyze only desired reactions.1 Size-selective catalysts with a 

metal core and porous oxide shell have a promising structure that can increase the reaction 

selectivity through reactant molecular discrimination.1-2 

Current research activities in this area are mainly focused on encapsulating 

unsupported catalysts or nanoparticles supported on dense catalyst supports.2-3 Nishiyama 

et al.2a applied an aqueous solution of fumed silica, ethanol, and tetrapropylammonium 

hydroxide (TPAOH) to synthesize silicalite-1 coatings on spherical Pt/TiO2 particles with 

a diameter of 0.5 mm under hydrothermal conditions. The thickness of the silicalite-1 layer 

was about 40 μm. Yang et al.2b developed a size-selective catalyst with a core-shell 

structure, where a Pd-containing silica core was surrounded by a silica shell in the presence 

of a cationic surfactant. This catalyst showed good activity and selectivity in the benzyl 

alcohol aerobic oxidation. Lu et al.3 encapsulated unsupported surfactant-capped Pt 

nanoparticles by a zeolitic imidazolate framework (ZIF-8) with an average pore size of 

about 1.2 nm and a film thickness of about 200 nm. The ZIF-8 porous coating greatly 

increased the selectivity towards hydrogenation of n-hexene over cis-cyclooctene. 

However, compared to the naked catalyst, there was a 60% conversion loss for n-hexene 

hydrogenation mainly due to the mass diffusion barrier from the relatively thick ZIF-8 

coating. 
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Normally, heterogeneous catalysts consist of small metal particles dispersed on a 

high surface area porous oxide support. The support maximizes the number of metal atoms 

at a surface, since metal atoms in the bulk are not involved in catalytic reactions. Traditional 

methods like hydrothermal synthesis4 and sol-gel processes5 can prepare inorganic coatings 

with few defects, such as zeolite membranes and mesoporous films. However, it is difficult 

for these methods to deposit ultra-thin porous films inside the porous structure of the 

catalyst supports and control the thickness of the films with nanometer precision. 

It is highly desirable to develop a new strategy to prepare an ultra-thin porous film 

with controllable pore size and a limited mass diffusion barrier. Lu et al.6 showed that ultra-

thin porous alumina films could be formed from dense atomic layer deposited (ALD) 

alumina films by thermal treatment at 700 ºC. The pore size was about 2 nm. The formation 

of the porous structure was a result of the heat treatment process and there was no control 

over pore size. Canlas et al.7 prepared shape-selective sieving layers on an oxide catalyst 

surface by grafting the catalyst particles with bulky single-molecule sacrificial templates 

with submonolayer coverage, then partially overcoating the catalyst with alumina through 

ALD. The number of the nanocavities was controlled by the number of template molecules 

grafted on the catalyst surface. The size of the nanocavities was controlled by the size of 

the template molecule and the thickness of ALD films. Although they achieved good 

conversion and selectivity for photooxidation of certain alcohols, their technique requires 

rigid molecules with certain surface orientations as sacrificial templates and many steps 

are needed to prepare the shape-selective sieving layers. 
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Recently, one novel method was developed by Liang et al. to prepare ultra-thin 

porous aluminium oxide films formed from the calcination of aluminium alkoxide 

(alucone) films, which were deposited by molecular layer deposition (MLD) using 

trimethylaluminium (TMA) and ethylene glycol (EG) as precursors.8 The average pore size 

of porous alumina was about 0.6 nm (more than 95%).8 MLD is a layer-by-layer gas phase 

thin film coating technique, which has been utilized to deposit pure polymer films or hybrid 

polymer films with nanometer-sized control of film thickness and well controlled film 

composition.9 The self-limiting nature of MLD makes it ideal for coating porous substrates 

where line-of-sight gas phase deposition methods fail. Herein, we prepared Pt/SiO2 

catalysts encapsulated by an ultra-thin porous alumina film by MLD, as schematically 

shown in Fig. 1. Due to the conformal oxide coverage and sub-nanometer pores, the 

reaction rates of larger reactants should be slowed because they diffuse much more slowly 

than the smaller reactants through the oxide layer. Since the porous film is only several 

nanometers thick, the mass diffusion barrier for the smaller molecules is minimal. The 

combination of the catalytic properties of Pt nanoparticles and the molecular sieving 

capability of the porous oxide films was evaluated by examining the liquid-phase 

hydrogenation of n-hexene versus cis-cyclooctene. 

The Pt nanoparticles were deposited on mesoporous silica particles by ALD using 

methylcyclopentadienyl-(trimethyl) platinum(IV) (MeCpPt-Me3) and oxygen as 

precursors in a fluidized bed reactor, as described in detail elsewhere.10 The silica particles 

are 30-75 μm in diameter with an average pore size of 15 nm and a Brunauer-Emmett-  
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Fig. 1. Schematic representation of supported metal catalysts (a) before and (b) after a 

porous coating on all surfaces of the catalyst particles. 

 

 

Teller (BET) surface area of 270 m2/g. Three cycles of Pt ALD were carried out at 300 ºC 

to obtain a Pt loading of 2.2 wt.%, as measured by inductively coupled plasma-atomic 

emission spectroscopy (ICP-AES). One cross-sectional scanning transmission electron 

microscopy (STEM) image of Pt/SiO2 is displayed in Fig. 2a. The white points in the 

picture are Pt nanoparticles. The Pt nanoparticles are uniformly dispersed on the surface of 

silica gel particles and inside of the porous structures. The average Pt particle size is about 

2 nm. The Pt/SiO2 particles were coated with three thicknesses of alucone MLD films, 

deposited with 20, 30, and 40 cycles of alternating reactions of TMA and EG in a fluidized 

bed reactor at 160 ºC.11 Three corresponding thicknesses (~2, 3, and 4 nm) of porous 

alumina films were then formed by oxidation at 400 ºC in air, as described elsewhere.8 

During the oxidation process, the samples were heated in air from room temperature to 400 

℃ at a rate of 1 ℃/min, kept at 400 ℃ for one hour, and then cooled to room temperature 

at the same rate. The organic component was removed completely and highly porous 

Support Catalyst particles Porous coating (a) (b) 
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alumina films were formed. The carbon chain length of the polymer component determines 

pore size, so MLD precursors with different carbon chain lengths could lead to porous 

metal oxide films with different pore sizes. The mass fraction of Pt in the catalyst decreased 

slightly as the number of MLD cycles increased, as shown in Fig. 2b, because the alumina 

film increased the catalyst weight.  

 

 

 

Fig. 2. (a) Cross-sectional STEM image of the Pt nanoparticles on silica gel particles, (b) 

Pt content, (c) surface area and pore volume, and (d) pore size distribution of the Pt/SiO2 

particles coated with different thicknesses of porous alumina films. 

 

 

A Quantachrome Autosorb-1 was used to obtain nitrogen adsorption and desorption 

isotherms of catalyst particles at -196 ºC. The specific surface areas of the samples were 
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calculated using the BET method in the relative pressure range of 0.05–0.25. The total pore 

volumes were calculated from the adsorption quantity at a relative pressure of P/P0 = 0.99. 

The pore size distribution curves were derived from the adsorption branches of the 

isotherms using the Barrett–Joyner–Halenda (BJH) method. As shown in Fig. 2c, the 

surface area of the Pt/SiO2 particles decreased from 266 to 219 m2/g with 20 cycles of 

MLD coating, and slightly increased with the further deposition of MLD films. This 

increase is due to the contribution of the higher surface area porous alumina films, which 

can have a surface area as high as 1000 m2/g.8 The pore volume of the Pt/SiO2 particles 

decreased from 0.99 to 0.81 cm3/g with 20 cycles of MLD coating, and slightly decreased 

again to 0.79 cm3/g with the further deposition of MLD films. As shown in Fig. 2d, the 

average pore size of the silica gel particles was about 15 nm. The number of mesopores 

decreased with the deposition of Pt nanoparticles, but there was no further decrease with 

the deposition of porous alumina films. Clearly, a large number of micropores were formed 

after MLD coating, compared to silica gel or Pt/SiO2 particles. The average pore size of 

the porous film was estimated to be 0.6 nm.8  

The catalytic hydrogenation of olefins (n-hexene >99%, and cis-cyclooctene >95%) 

was carried out in an ethyl acetate solution under a static hydrogen atmosphere at 35 ºC. 

The reactions were conducted in unstirred mini-batch reactors assembled from 3/8 inch 

stainless steel Swagelok® parts. Port connectors sealed with a cap on one end and one three-

way valve on the other end gave a reactor volume of about 2 mL. In a typical run, n-hexene 

or cis-cyclooctene (0.08 g), ethyl acetate (0.78 g) and the Pt catalysts (~0.006 g) were added 
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to the reactor. All catalysts had an identical Pt loading even though the total mass within 

the reactor increases as the number of MLD cycles increases. The mass ratio of Pt to olefin 

was 0.15%. The residual air in the reactor was expelled by flushing with hydrogen. The 

reactor was first pressurized with hydrogen to 20 psi and depressurized to atmosphere 

pressure. This process was repeated 50 times. After this flushing process, more than 

99.999% of air was replaced by hydrogen gas. The control experiments indicated that the 

mass loss of the reactants and the solvent during this flushing process was less than 0.5 

wt.%. The reaction was carried out at 1 atm of hydrogen and 35 ºC for 24 hours. The 

amount of hydrogen in the closed system was more than enough for the hydrogenation 

reaction. After the reaction, the catalyst powder was filtered off and the filtrate was 

analysed using a gas chromatograph (Agilent, 6890N) equipped with a 30 m DB-5 column 

and FID detector to determine the conversion and selectivity. 

The control experiments indicated that there was no catalytic activity of olefin 

hydrogenation for both silica gel particles and alumina ALD films. The catalytic activity 

resulted solely from Pt. The results are listed in Fig. 3. For the uncoated Pt/SiO2 catalyst, 

the conversion of n-hexene and cis-cyclooctene was 9.1% and 6.9%, respectively. The 

conversion of n-hexene decreased with ~2 nm of porous alumina film (20 cycles of MLD), 

and decreased slightly more with further increases in film thickness. The conversion of n-

hexene fell to 4.5% after the catalyst was coated with ~4 nm of alumina film. In contrast, 

the conversion of cis-cyclooctene decreased almost linearly as the thickness of the porous 

alumina films increased, and no obvious cis-cyclooctene conversion (<0.02 %) was 
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observed with ~4 nm of alumina films. Clearly, the naked Pt nanoparticles displayed 

indiscriminate catalysis of olefin hydrogenation. In contrast, the Pt nanoparticles 

encapsulated with a porous alumina shell showed selectivity for catalytic hydrogenation of 

n-hexene versus cis-cyclooctene due to the size discrimination of the ultra-thin porous 

layer. 

 

 

 

Fig. 3. Size-selective hydrogenation of n-hexene and cis-cyclooctene catalyzed by 

Pt/SiO2 particles coated with different thicknesses of porous alumina films. 

 

 

Previous studies of H2 chemisorption indicated that the Pt dispersion decreased 

when the Pt nanoparticles were encapsulated with porous alumina films due to the contact 

points between Pt particles and the porous metal oxide films.12 About 42% of the Pt surface 

area was lost with the deposition of 40 cycles of MLD films.12 In this study, the reduction 

of the conversion of n-hexene was 51% with the deposition of 40 cycles of MLD films on 
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Pt/SiO2, compared to the naked Pt/SiO2. It is believed that the decline in the conversion of 

n-hexene was mainly caused by the loss of Pt metal surface, rather than the mass diffusion 

limitation resulting from the thin porous oxide films. The porous structure allows smaller 

reactants to access the encapsulated active sites, and inhibits or prevents the reactants with 

larger molecular size from accessing the Pt sites. Since the film is ultra-thin, the reactants 

and products of small molecules can pass freely through the porous films. The molecular 

size of H2 is so small, that the size effects for H2 molecules can be neglected. The size-

selectivity effect results mainly from the difference in the molecular size of olefins. 

In summary, a novel strategy to prepare a supported size-selective metal 

nanoparticle catalyst with an ultra-thin porous shell was developed. The thickness of the 

porous oxide films could be well controlled at subnanometer scale by applying the MLD 

technique. The pore size of the film was about 0.6 nm. The size selective effect of the 

porous alumina films was verified by the liquid-phase hydrogenation of n-hexene versus 

cis-cyclooctene. This catalyst showed great selectivity in the hydrogenation of olefins. 

Importantly, the mass diffusion limitation was not significant due to the ultra-thin films. 

The success of making these materials by MLD opens up a new method for preparing size-

selective catalysts. 
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ABSTRACT 

We report the synthesis of a highly active, supported nanostructured metal 

nanoparticle catalyst with an ultra-thin porous shell and gaps between the metal 

nanoparticles and the shell for size-selective reactions. The size-selectivity of the catalysts 

could be realized through the porous shell. The gaps were able to reduce catalytic activity 

loss due to the contact areas between the shell and the catalytic sites. Evaluations of the 

activity and selectivity of the catalysts were made by catalytic hydrogenation of n-hexene 

versus cis-cyclooctene. Further verification of the high catalytic activity of the 

nanostructured catalysts was by oxidation of carbon monoxide. 

 

Keywords: atomic/molecular layer deposition, hydrogenation, porous films, size selective, 

supported catalysts 
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Heterogeneous catalysts are widely used because of their many advantages, 

including the ease of separating the catalysts by filtration after a reaction, and their 

reusability.1-3 However, compared to other catalysts (e.g., enzyme and organometallic 

catalysts), it is generally difficult for a heterogeneous catalyst to selectively convert certain 

molecules in a reactant mixture to desired products.4, 5 A size-selective catalyst, that has a 

metal core and a porous oxide shell, is one kind of catalyst that can increase reaction 

selectivity through reactant molecular discrimination.5-16 Its porous structure allows 

smaller reactants to access the encapsulated active sites, and to inhibit or prevent larger 

molecular reactants from accessing the active sites. Zeolites,8-13 metal organic frameworks 

(MOFs),15 mesoporous titania,17 and mesoporous silica,18-22 that have well-defined porous 

structures, have been used to encapsulate metal nanoparticle catalysts to form a porous 

core-shell structure (called “core-shell” elsewhere in this paper). Zeolites have an inherent 

microporous system of molecular dimensions, that allow size-selective catalysis, but their 

shells are relatively thick (normally ≥200 nm). For example, Nishiyama et al.8 applied 

ethanol, tetrapropylammonium hydroxide (TPAOH), and a fumed silica aqueous solution 

to synthesize 40 μm thick silicalite-1 coatings on spherical Pt/TiO2 particles that were 0.5 

mm in diameter. Lu et al.15 encapsulated unsupported surfactant-capped Pt nanoparticles 

in a zeolitic imidazolate framework (ZIF-8), that had an average pore size of 1.2 nm and a 

thickness of about 200 nm, and demonstrated that the porous coating greatly increased the 

selectivity of hydrogenation of n-hexene over that of cis-cyclooctene. However, the 

conversion of n-hexene decreased significantly, from 16.6% (the naked catalyst) to 7.3% 
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(the size-selective catalyst). A decrease in catalytic activity has been commonly observed 

in “core-shell” structured size-selective catalysts.5, 10, 12 We believe that this was because 

of the combined effect of the thickness of the porous shell and blockage of active sites due 

to the contact areas between the porous shell and the catalytic sites. The above-mentioned 

examples were based on the liquid phase methods used to prepare relatively thick porous 

shells. Mesoporous silica shells can be prepared as thin as 10 nm,18 but their layers are not 

normally selective, since pore sizes are too large. Current research activities that have been 

studying size-selective catalysts have mainly focused on encapsulating unsupported 

catalysts or nanoparticles supported on dense catalyst supports. However, the metal 

nanoparticles that are used in industry are normally dispersed on high surface area supports 

so that the resulting metal nanoparticles have a large fraction of their atoms on the surface. 

It is difficult to use liquid methods to apply such porous shells to catalyst particles that 

have highly porous supports. In addition, the catalytic activity of the catalysts would be 

significantly reduced because of the mass transport limitations posed by the thick porous 

shell and the contact areas between the active sites and the porous shell. 

Recently, we synthesized a size-selective catalyst with an ultra-thin porous alumina 

shell coated on Pt/SiO2.
23 Ultra-thin porous alumina films were formed from the oxidation 

of hybrid organic/inorganic aluminum alkoxide (alucone) films deposited by molecular 

layer deposition (MLD), which is a layer-by-layer gas phase thin film coating technique. 

Advantages of such a “core-shell” nanostructured catalyst are that the porous films can be 

deposited conformally on highly porous 3D structures and the thickness of the porous films 
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can be precisely controlled at an angstrom level by varying the number of MLD coating 

cycles. Since the pore size of the porous films is mainly determined by the carbon chain 

length of the organic components in the MLD precursor, the pore size could be finely tuned 

by choosing precursors with carbon chains of suitable lengths. In our previous study,23 

various thicknesses of porous alumina films were deposited on Pt and its high surface area 

silica support. Compared to a naked catalyst, this new nanostructured catalyst, with a 

porous shell formed from 40 cycles of alucone MLD, showed significant improvement in 

selectivity toward hydrogenation of n-hexene, as compared to cis-cyclooctene, due to the 

size discrimination of the porous shell. However, there was still about a 51% loss for the 

n-hexene conversion, although this was lower than the results reported by other groups.15 

Since the porous alumina shell is ultra-thin, the mass transport limitation should not have 

much influence. It is hypothesized that the reduction in activity was mainly caused by a 

decrease in the active sites due to the contact areas between the porous shell and the 

catalytic metal nanoparticles. This could also be a common reason for the catalytic activity 

loss of the core-shell catalysts that had been prepared by conventional liquid phase 

methods. 

To reduce the contact areas, we propose a new approach to overcome this dilemma. 

The idea is to introduce a sacrificial layer of self-assembled monolayers (SAMs) using 

thiols, which could be selectively deposited on the surface of the metal nanoparticles (e.g., 

Pd, Au and Pt).24-27 For example, Cargnello et al.28 employed thiols to form a protective 

layer on Pd nanoparticles to synthesize a Pd@CeO2 core-shell structured catalyst. For this 
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report, we selectively deposited thiol SAMs on metal nanoparticles before depositing MLD 

layers on both the catalytic metal particles and the catalyst support. The SAMs and the 

organic components of the MLD film can be removed by oxidation in air. After the 

oxidation process, microporous structures in MLD films and gaps between the porous shell 

and the metal nanoparticles would form, as schematically shown in Figure 1. In this way, 

the contact areas between the shell and the metal nanoparticles could be greatly reduced. 

For this study, Pt nanoparticles were chosen as the catalysts, since they are very active in 

a wide range of catalytic reactions. Hexanethiol was used to form SAMs on the surface of 

the Pt nanoparticles. This nanostructured catalyst was employed to catalyze the carbon 

monoxide (CO) oxidation reaction and hydrogenation reactions of n-hexene and cis-

cyclooctene. CO-chemisorption was also employed to verify the high Pt dispersion of the 

size-selective catalysts with gaps. 

Platinum nanoparticles were deposited on porous γ-alumina particles by atomic 

layer deposition (ALD) in a fluidized bed reactor,29, 30 as described in detail elsewhere.31 

The Pt loading was 2.4 wt.%, determined by inductively coupled plasma-atomic emission 

spectroscopy (ICP-AES). The dispersion of Pt particles and the particle size distribution 

were observed by cross-sectional scanning transmission electron microscopy (STEM), as 

shown in Figure 2a. The small white spots in that figure are Pt nanoparticles with an 

average particle size of 1.6 nm. Pt nanoparticles were uniformly deposited on both surfaces 

and inside the porous structures of the γ-alumina particles.  
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Figure 1. Schematic representation of supported metal catalysts: (a) Pt deposited on 

porous γ-alumina particles, (b) SAMs selectively deposited on the surface of Pt 

nanoparticles, (c) alucone MLD film coated on the surfaces of Pt particles and catalyst 

support, and (d) porous films and gaps formed after removal of organic components. 

 

 

SAMs were deposited on the surfaces of Pt nanoparticles by immersing the Pt/γ-

alumina particles in a 10 mM ethanol solution of hexanethiol for 24 hours. Alucone MLD 

films were coated on SAMs-treated Pt/γ-alumina particles, as described previously.32 

Different cycles (30, 40, and 50) of alucone MLD layers were applied. The SAMs and the 

organic components in the films were removed by oxidation in air at 400 °C. Catalysts 

were formed that had three corresponding thicknesses of ultra-thin porous shells and gaps 

between the Pt nanoparticles and the porous shells. Details of catalyst preparation processes 

are presented in Supporting Information. 

The surface areas and pore volumes decreased slightly with the deposition of Pt 

nanoparticles and decreased further with SAMs coated on the surfaces of the Pt 

nanoparticles (Figure 2b). This decrease was due to the blockage by the SAMs of some 

micropores (Figure 2c) and the mesopore size reductions in the catalyst support (Figure S1 

(a) (b) 

(c) (d) 
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in the Supporting Information). The pore volumes and surface areas decreased further after 

30 cycles of MLD coating deposited on the SAMs-treated sample. This trend continued 

with an increase in the number of MLD cycles (Figure S2 in the Supporting Information). 

After oxidation, as shown in Figure 2b, the sample with 30 cycles of MLD films had a 

larger surface area and pore volume than the SAMs-treated sample did. This increase was 

due to the fact that both the SAMs and the organic components in the MLD films were 

removed during the oxidation process. The pore size of the porous shell was about 0.6 nm, 

as we reported earlier.33 Similar results were observed for the samples coated with a larger 

number of MLD coating cycles. 

 

 

 

Figure 2. (a) STEM image of Pt/γ-alumina, (b) surface area and pore volume (after 

oxidation for all MLD coated samples), and (c) micropore size distribution of the γ-

alumina particles, Pt/γ-alumina particles, and SAMs-treated Pt/γ-alumina particles with 

and without porous films and gaps between Pt nanoparticles and porous shells. 
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The experimental details of hydrogenation reactions are shown in the Supporting 

Information. Control experiments indicated that both γ-alumina particles and porous 

alumina shells from alucone MLD films showed no catalytic activity for olefin 

hydrogenation. The results for catalytic hydrogenation reactions are shown in Figure 3. For 

the naked sample, the reaction rates of n-hexene and cis-cyclooctene were 28.5 mmol·h-

1gPt
-1 and 10.9 mmol·h-1gPt

-1, respectively. The difference in the reaction rates was due to 

the chemical properties of these two different olefins. The reaction rates of both n-hexene 

and cis-cyclooctene decreased (26.7 mmol·h-1gPt
-1 and 7.3 mmol·h-1gPt

-1, respectively) after 

the deposition of 30 cycles of alucone MLD and decreased further with the increase in the 

number of MLD cycles. The decrease in the cis-cyclooctene reaction rate was due to the 

size-selective effect of the porous shell, since the molecular size of cis-cyclooctene was 

close to, or larger than, the pore size of the porous films. The sample with 30 cycles of 

alucone MLD still showed activity in catalyzing the hydrogenation of cis-cyclooctene, 

indicating that the porous films formed from 30 cycles of alucone MLD were not thick 

enough or did not completely cover the Pt nanoparticles. The growth rate of MLD films on 

SAMs treated Pt/alumina would be slower than that of MLD on metal oxide surfaces. This 

should be due to the lack of functional groups on the Pt nanoparticles, which are necessary 

to initiate the alucone MLD coating process. Therefore, the first few cycles of coating 

deposited preferentially onto the most energetic (e.g., edge) sites, rather than uniformly 

blanketing the Pt particles entirely. With the deposition of SAMs on Pt/alumina, the surface 

functional groups of the sample may be reduced and a longer nucleation period would be 
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needed. Another possibility is that there were some defects in the thin porous films due to 

the high temperature oxidation process to remove the SAMs and the organic components 

in the MLD films. With the increase in the number of MLD coating cycles, the porous 

films will be thicker with stronger mechanical properties. For the sample coated with 40 

cycles of alucone MLD, the reaction rates of n-hexene and cis-cyclooctene decreased to 

23.3 mmol·h-1gPt
-1 and 1.9 mmol·h-1gPt

-1, respectively. When the catalyst was coated with 

50 cycles of alucone MLD, the reaction rate of n-hexene decreased to 23.2 mmol·h-1gPt
-1 

(a loss of about 19%), while the reaction rate of cis-cyclooctene decreased to 0.6 mmol·h-

1gPt
-1 (a loss of about 95%), as compared to the naked catalyst.  

 

 

 

Figure 3. Hydrogenation results of n-hexene and cis-cyclooctene catalyzed by naked Pt/γ-

alumina particles and coated with different thicknesses of porous films (with gaps). 
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Clearly, the naked Pt catalysts showed indiscriminate catalysis of olefin 

hydrogenation. However, the Pt catalysts, coated with a porous alumina shell, displayed 

selectivity for catalytic hydrogenation of n-hexene over that of cis-cyclooctene due to the 

size discrimination of the ultra-thin porous shell. In the work of Lu et al.,15 the n-hexene 

conversion loss was about 56% (decreased from 16.6% to 7.3%) with the same reaction 

conditions used in this study. In our previous work,23 the n-hexene conversion loss was 

51% after 40 cycles of alucone MLD was deposited on the catalysts without gaps between 

the Pt nanoparticles and the shell. In this current work, the new nanostructured catalysts 

showed much higher catalytic activity while maintaining a strong size-selective effect. To 

further verify this, another series of samples were prepared with a porous alumina shell, 

but without the introduction of gaps. These samples were prepared by directly coating 

various thicknesses of alucone MLD films on Pt/γ-alumina particles. A catalyst with porous 

films (formed from 50 cycles of alucone MLD) was employed to catalyze the 

hydrogenation reactions for both n-hexene and cis-cyclooctene. The catalyst with 50 cycles 

of alucone MLD coating showed reaction rates of 14.3 mmol·h-1gPt
-1 and 0.5 mmol·h-1gPt

-

1 for n-hexene and cis-cyclooctene, respectively. This catalyst showed good selectivity, as 

compare to that of the naked catalyst. However, the decrease in the n-hexene reaction rate 

was about 50%, which was consistent with our previously reported results.23 This indicated 

a significant catalytic activity loss, as compared to that of the catalysts with gaps. For the 

catalysts with gaps, when the cycles of the alucone MLD increased from 40 to 50, there 

was almost no change in the reaction rate of n-hexene. This indicated that there was a 
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negligible mass diffusion limitation caused by the porous shell. The activity losses of the 

coated samples were caused by the contact areas between the Pt nanoparticles and the 

porous shells. The reaction rate loss of n-hexene was about 19%, so there was still about a 

19% loss of the Pt metal surface. This could indicate that the porous shell was not free 

standing. 

The porous alumina supported catalysts, with and without gaps, were all employed 

for the oxidation reactions of carbon monoxide. The experimental details of CO oxidation 

reactions are shown in the Supporting Information. The results of CO oxidation reactions 

catalyzed by the naked catalyst and coated catalysts with gaps are shown in Figure 4. For 

the uncoated catalyst, the CO conversion reached 100% at 215 °C, and for all of the coated 

catalysts with gaps, the CO conversion reached 100% at 223 °C (8 °C higher than the 

uncoated catalyst). The molecule sizes of carbon monoxide and oxygen were so small that 

the porous shell would not limit significant mass transport. In contrast, the coated catalysts 

without gaps showed a significant reduction in activity. As shown in Figure S4 in the 

Supporting Information, the CO conversion reached 100% at 234 °C for the samples with 

30 and 40 cycles of MLD coating (without gaps). This was 19 °C higher than that of the 

naked sample, while the conversion of the sample with 30 cycles of coating was higher 

than that of the sample with 40 cycles of coating when the reaction temperature was lower 

than 200 °C. This indicated that the sample with 30 cycles of MLD coating had fewer 

contact areas. The CO conversion reached 100% at 247 °C for the sample with 50 cycles 

of MLD coating (without gaps), which was 32 °C higher than that of the naked sample, 
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and 13 °C higher than that of the samples with 30 and 40 cycles of MLD coating. This was 

due to the fact that the sample with 50 cycles of coating had more contact areas than the 

samples with 30 and 40 cycles. These results are consistent with those of a previous work.34 

Liang et al.34 encapsulated Pt/silica with a similar porous alumina shell by MLD, and used 

these samples for a CO oxidation reaction; after 20 MLD cycles, the temperature for a 100 

% CO conversion had increased 50 °C, as compared to that of the naked catalyst.  

In order to observe the porous films and the gaps between the Pt nanoparticles and 

the porous shell, Pt nanoparticles were deposited on dense alumina nanoparticles by ALD. 

Larger Pt nanoparticles were synthesized by applying four cycles of Pt ALD on the 

substrate for the ease of observing Pt nanoparticles and porous films by TEM. As shown 

in Figure S5a in Supporting Information, the Pt nanoparticles (average particle size of ~3 

nm) dispersed uniformly on the substrate surface. SAMs were deposited on the Pt 

nanoparticles supported on the dense alumina nanoparticles, following the same steps 

mentioned above. Then, 50 cycles of alucone MLD films were employed on the SAMs 

treated Pt/dense-alumina nanoparticles. After the removal of SAMs and organic 

components in the alucone MLD films by oxidation, gaps (~0.4 nm) between the Pt 

nanoparticles and porous alumina films could be observed (Figure S5b-d in the Supporting 

Information). In contrast, for the sample with a porous alumina shell but without gaps, as 

expected, no gaps between the Pt nanoparticles and the porous alumina films were 

observed by TEM (Figure S5e in the Supporting Information). 
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Figure 4. CO conversion of CO oxidation catalyzed by naked Pt/γ-alumina particles and 

coated with different thicknesses of porous films (with gaps). 

 

 

To further verify that the catalysts with gaps had fewer contact areas than the 

catalysts without gaps, a CO-chemisorption test was employed on the naked catalyst, and 

on the 50 cycles of alucone MLD coated catalysts with and without gaps. The naked 

catalyst showed a Pt dispersion of 61.5%. The Pt dispersions were 48% and 30.6% for the 

coated catalysts with and without gaps, respectively. These Pt dispersion results were 

consistent with the results of n-hexene hydrogenation. The coated catalyst with gaps 

showed a higher Pt dispersion, as compared to the catalyst without gaps, indicating that the 

introduction of gaps could reduce the contact areas between the Pt nanoparticles and porous 

alumina films.  

This series of tests indicated that the contact areas between the Pt particles and the 

porous films caused a lower catalytic activity of the catalyst, when the porous films were 
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be deposited on nanoparticles, on both the support surface and inside the porous structure 

of the support. Otherwise, the Pt activity of the catalyst would not decrease that much. The 

introduction of gaps greatly reduced the contact areas between the porous shell and the Pt 

nanoparticles and, thus, maintained the high catalytic activity of the catalysts for olefin 

hydrogenation and CO oxidation. 

The SAMs were attached to catalytic centers by sulfur-platinum bonds, which may 

have decreased the catalytic activity of the catalyst.35 We employed X-ray photoelectron 

spectroscopy (XPS) to detect different elements on the catalyst surface. Figure S6 in the 

Supporting Information shows the XPS spectra for thiol-treated porous γ-alumina support, 

and thiol-treated Pt/γ-alumina before and after oxidation. In all three samples, sulfur could 

be detected, but the sulfur peaks were very weak. High resolution XPS on sulfur was also 

employed to investigate and determine sulfur bonding status (Figure 5). A sulfur peak was 

observed at 169 eV on the thiol-treated γ-alumina sample (this was a sulfur-oxygen 

bond),36 which could have been due to the fact that the physisorbed thiol had not been 

completely removed in the rinsing process. For the thiol-treated Pt/γ-alumina sample, 

before oxidation, one peak of sulfur was observed at 162.5 eV, representing a sulfur-metal 

bond.36, 37 This peak was from the SAMs formed on the Pt surface. After oxidation, all of 

the sulfur attached to the Pt particles was removed, as shown in Figure 5. A sulfur peak 

was observed at 169 eV for the thiol-treated Pt/γ-alumina sample, after oxidation. This was 

due to the fact that the oxidized sulfur was trapped in the porous structure of the porous γ-

alumina catalyst support or the porous shells, or both. Also, the carbon peak was weaker 
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(Figure S7 in the Supporting Information), indicating the removal of the organic 

components during oxidation. Clearly, after the oxidation process, the sulfur was removed 

from the Pt nanoparticles surfaces, which did not affect the catalytic activity of the catalyst. 

 

 

 

Figure 5. High resolution XPS spectra of sulfur (2p) of thiol treated porous γ-alumina 

support and thiol treated Pt/γ-alumina before and after oxidation. 

 

 

In summary, a novel supported nanostructured metal catalyst was developed with 

an ultra-thin porous shell and gaps between the metal particles and the shell. The film 

thickness could be precisely controlled by varying the number of MLD coating cycles. The 

gaps were formed by introducing one sacrificial layer of SAMs, which were selectively 

deposited on the surfaces of the metal nanoparticles before the alucone MLD films were 
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tested by hydrogenation reactions of n-hexene and cis-cyclooctene. This new 

nanostructured catalyst showed higher catalytic activity than the catalysts without the 

introduction of gaps did. The success of this gap forming strategy provides a new method 

for retaining the activity of size-selective catalysts, especially those consisting of a metal 

core and oxide shell structures. 
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SUPPORTING INFORMATION 

 

Experimental 

Pt atomic layer deposition (ALD) process: Platinum nanoparticles were deposited 

on porous γ-alumina particles by ALD in a fluidized bed reactor,1 as described in detail 

elsewhere.2 The alumina particles were about 40 μm in diameter, and their Brunauer-

Emmett-Teller (BET) surface area was 95.5 m2g-1. Methylcyclopentadienyl-(trimethyl) 

platinum (IV) and oxygen were the precursors for Pt ALD. One cycle of Pt ALD was 

applied at 300 °C. For the γ-Al2O3 nanoparticles supported Pt nanoparticles, four cycles of 

Pt ALD were applied at the same temperature using the same precursors. 

Self-assembled monolayers (SAMs) coating: SAMs were deposited on the surface 

of the Pt nanoparticles by immersing the Pt/γ-alumina particles in a 10 mM ethanol solution 

of hexanethiol for 24 hours. Then, the samples were rinsed (using ethanol to remove non-

chemisorbed thiols) and dried under a nitrogen flow. 
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Aluminum alkoxide (alucone) molecular layer deposition (MLD) process: The 

alucone MLD films were coated on Pt/γ-alumina particles and SAMs-treated Pt/γ-alumina 

particles by alternatively introducing trimethylaluminum (TMA) and ethylene glycol (EG) 

into the fluidized bed reactor at 160 °C. Different cycles (30, 40, and 50) of alucone MLD 

films were applied. 

Formation of porous alumina films: The SAMs and organic components in the films 

were removed by oxidation in air at 400 °C. During the oxidation process, the samples 

were heated from room temperature to 400 °C, at a rate of 1 °C min-1, and cooled down to 

room temperature, at the same rate, after being kept at 400 °C for one hour. The catalysts 

formed with three corresponding thicknesses of ultra-thin porous shells and gaps between 

the Pt nanoparticles and the porous shells. 

Hydrogenation of olefins: The nanostructured catalysts were applied for 

hydrogenation reactions of n-hexene (>99%) and cis-cyclooctene (>95%). The 

hydrogenation reactions occurred in an unstirred mini batch reactor (about 2 mL) 

assembled from Swagelok® stainless steel parts. The reactor was connected to a three-way 

valve, with one port connected to a regulated hydrogen cylinder and the other port opened 

to air. In a typical test, n-hexene or cis-cyclooctene (~0.08 g), ethyl acetate (~0.78 g), and 

the catalysts (~0.007 g) were added to the reactor. The mass ratio of Pt to olefin was about 

2/1000. All catalysts had an identical Pt loading, even though the total catalyst mass within 

the reactor increased as the number of MLD cycles increased. 
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The reactor was first opened to a regulated hydrogen cylinder that pressurized the 

reactor to 20 psi (relative pressure) and then opened it to air to depressurize the reactor to 

atmospheric pressure. After flushing the reactor with hydrogen (following the above steps) 

for 30 times, 99.999% of the air in the reactor was replaced by hydrogen gas. Control 

experiments indicated that no catalytic reactions occurred during this flushing process, and 

the losses of reactants and the solvent were negligible. The reaction was carried out at 1 

atm of hydrogen and 35 °C for 24 hours. After the reaction, the catalysts were filtered off 

and the filtrate was analyzed to determine the reaction rate and selectivity, using a gas 

chromatograph (Agilent, 6890N), equipped with a 30 m DB-5 column and a FID detector. 

CO oxidation reactions: The CO oxidation reactions were carried out in a fixed bed 

quartz reactor with quartz wool supporting the catalysts. Similar to the hydrogenation 

reactions, different amounts of catalysts (with different thicknesses of coating) were used 

for the reactions to assure an identical Pt loading. The catalysts (~35 mg) were diluted with 

0.5 g of quartz sands (60-120 mesh) to make certain that the catalysts were uniformly 

distributed. The temperature was measured with a thermal couple. First, the catalysts were 

oxidized at 400 °C for 30 min in 10% O2/90% He and then reduced in 50% H2/50% He 

(total 50 sccm) for 30 min at the same temperature. Then, the reactor was cooled to 30 °C 

in a helium flow. A gas mixture, with 4% CO, 4% O2 and 92% He of a total flow rate of 50 

sccm, was introduced into the reactor for CO oxidation reaction. MKS® mass flow 

controllers were used to control the gas flow rate. Reactions were at a temperature of 30 °C 

to a temperature at which the CO conversion reached 100%. Reaction products were 
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analyzed by an online gas chromatograph (SRI 8610C) equipped with a 6 feet HAYESEP 

D column, a 6 feet MOLECULAR SIEVE 13X column, and a FID detector. 

Characterization 

Nitrogen adsorption and desorption: The nitrogen adsorption and desorption 

isotherms of catalyst particles were obtained at -196 °C. The surface areas of the samples 

were calculated using the BET method in a relative pressure range of 0.05–0.25. The size 

distributions of micropores and mesopores were determined using the Horvath and 

Kawazoe (HK) method and the Barrett-Joyner-Halenda (BJH) method, respectively. The 

total pore volume was calculated from the adsorption quantity at a relative pressure of 

P/P0= 0.99.  

With the deposition of Pt nanoparticles on the porous γ-alumina support, the pore 

volume and surface area of the sample decreased slightly from 0.28 cm3g-1 to 0.27 cm3g-1, 

and from 95.5 m2g-1 to 94.3 m2g-1, respectively (Figure 2b). The surface area and pore 

volume decreased (84.3 m2g-1 and 0.23 cm3g-1) with SAMs coating on the surface of the Pt 

nanoparticles. These decreases in the pore volume and surface area were due to the 

blockage of small pores (Figure 2c) and the reduction in size of the mesopores in the 

catalyst support (Figure S1) caused by the SAMs. The pore volume and surface area further 

decreased after 30 cycles of MLD coating were deposited on the SAMs-treated sample. 

This trend continued with increases in the number of MLD cycles (Figure S2). As shown 

in Figure S1, the pore volume and the size of larger pores decreased with increases in the 

number of MLD cycles. The total pore volume for micropores also decreased with MLD 
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coating (Figure S3), since the MLD films had a dense structure before oxidation. As shown 

in Figure 2b, the sample with 30 cycles of MLD coating after oxidation had a larger surface 

area (85.6 m2g-1) and pore volume (0.24 cm3g-1) than the SAMs-treated sample and the 

sample coated with 30 cycles of MLD films before oxidation. This increase was due to the 

fact that both the SAMs and the organic components of the MLD films were removed 

during the oxidation process. The pore size of the porous shell was about 0.6 nm, as we 

reported earlier.3 Similar results were observed for the samples coated with a larger number 

of MLD coating cycles. The pore volume and surface area decreased with an increase in 

the number of MLD coating cycles. As shown in Figure 2c, more micropores (about 0.6 

nm in diameter) were observed after the oxidation process. These new pores could have 

resulted partly from the porous shell formed after oxidation and partly from the intrinsic 

pores recovered after the SAMs were removed. The γ-alumina support itself has 

micropores with 0.6 nm in diameter (Figure S3), and this is the reason why the micropore 

size distribution of the catalyst did not change after the deposition of porous alumina film. 

Transmission electron microscopy (TEM) on dense alumina supported samples: In 

order to observe the porous films and the gaps between the Pt nanoparticles and the porous 

shell, Pt nanoparticles were deposited on dense alumina nanoparticles by ALD. Larger Pt 

nanoparticles were synthesized by applying four cycles of Pt ALD on the substrate for ease 

in observing the Pt nanoparticles and porous films with TEM. As shown in Figure S5a, Pt 

nanoparticles (average particle size ~3 nm) were uniformly dispersed on the substrate 

surface. SAMs were deposited on the Pt nanoparticles supported on the dense alumina 
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nanoparticles, following the same steps mentioned above. Then, 50 cycles of alucone MLD 

films were employed on the SAMs-treated Pt/dense-alumina nanoparticles. After removal 

of the SAMs and organic components from the alucone MLD films by oxidation, gaps 

(~0.4 nm) between the Pt nanoparticles and porous alumina films could be observed 

(Figure S5b-d). For comparison, another sample of porous alumina coated Pt/dense-

alumina nanoparticles without gaps was synthesized and no gaps between the Pt 

nanoparticles and the porous alumina films could be observed after oxidation (Figure S5e). 

For the porous alumina coated Pt/dense-alumina nanoparticles without gaps, the porous 

film could be observed on the Pt nanoparticles with a film thickness of about 2 nm, which 

was thinner than the expected value (~5 nm). This could be due to the lack of functional 

groups on the Pt nanoparticles, which are necessary to initiate the alucone MLD coating 

process. Therefore, the first few cycles of coating deposited preferentially onto the most 

energetic (e.g., edge) sites rather than uniformly blanketing the Pt particles entirely. There 

could be one nucleation period, which would slow down the MLD film growth rate. The 

porous film, formed on the coated sample with gaps, was thinner than the coated samples 

without gaps. This could be due to the fact that after the SAMs deposition, the surface 

functional groups of the sample were reduced and a longer nucleation period was needed. 

This could also explain why more alucone MLD cycles were needed to achieve the high 

selectivity of the catalyst with SAMs, as compared to the catalyst without SAMs in our 

previous report.4 
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CO-chemisorption: CO-chemisorption was carried out using a Micromeritics 

AutochemⅡ 2920 to investigate the Pt dispersion of the naked catalyst and the catalysts 

coated with porous alumina films formed from 50 cycles of alucone MLD coating, both 

with and without gaps. All three catalysts were reduced at 350 °C for 0.5 h and degassed 

at the same temperature in pure He for 1.5 h. The CO adsorption isotherms were obtained 

at 50 °C and the stoichiometry of Pt:CO was assumed to be 1:1.  

X-ray photoelectron spectroscopy (XPS) analysis: The XPS spectra of hexanethiol-

treated porous γ-alumina, hexanethiol-treated Pt/γ-alumina particles (before and after 

oxidation) were recorded with a Kratos Axis 165 X-ray photoelectron spectrometer, using 

a monochromatic Al Kα radiation (hν = 1486.6 eV), at a take-off angle of 0°. The survey 

scan spectra and C (1s), S (2p) core level spectra were recorded at a pass energy of 160 eV 

and 40 eV, respectively. All binding energy values were corrected based on C 1s signal at 

284.5 eV.  
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Figure S1. Pore size distribution (for pore sizes larger than 2 nm) of the Pt/γ-alumina 

particles coated with SAMs and different thicknesses of MLD films (before and after 

oxidation). 

 

 

 

Figure S2. Surface areas and pore volumes of the naked Pt/γ-alumina particles and coated 

with different thicknesses of MLD films (without oxidation). 
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Figure S3. Pore size distribution (for pore sizes smaller than 2 nm) of the Pt/γ-alumina 

particles coated with SAMs and different thicknesses of MLD films (before and after 

oxidation). 

 

 

 

Figure S4. CO conversion of CO oxidation catalyzed by naked Pt/γ-alumina particles and 

coated with different thicknesses of porous films (without gaps). 
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Figure S5. TEM images of (a) Pt/dense-alumina nanoparticles, (b, c, d) Porous alumina 

coated Pt/dense-alumina nanoparticles with gaps, and (e) Porous alumina coated 

Pt/dense-alumina nanoparticles without gaps. 
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Figure S6. XPS spectra survey scan of thiol-treated porous γ-alumina support, and thiol-

treated Pt/γ-alumina before and after oxidation. 

 

 

 

Figure S7. XPS spectra high resolution of carbon (1s) of thiol-treated porous γ-alumina, 

and thiol-treated Pt/γ-alumina before and after oxidation. 
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ABSTRACT 

A recyclable highly dispersed Ni/SiO2 catalyst was prepared by atomic layer 

deposition. Chemoselective reduction of nitroarenes was studied using the prepared 

Ni/SiO2 as the catalyst and hydrazine hydrate as a hydrogen donor. Different kinds of 

nitroarenes were converted to the corresponding anilines with high yields. The high activity 

of the catalysts could be resulted from the highly dispersed Ni nanoparticles. 

 

Keywords: atomic layer deposition (ALD), nickel nanoparticles, heterogeneous catalysis, 

chemoselective, transfer hydrogenation, nitroarenes 
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1. INTRODUCTION 

Aromatic amines are useful intermediates in the preparation of dyes, 

pharmaceuticals, and agricultural chemicals, which can be obtained by the reduction of 

aromatic nitro compounds. A variety of procedures involving metal catalysts and other 

reducing agents are available for this purpose.1-4 However, the selective reduction of a nitro 

group in the presence of other reducible functional groups in a molecule is a challenging 

task. In addition, reduction of aromatic nitro compounds often stops at an intermediate 

stage, yielding hydroxylamines, hydrazines, azoarenes, or azoxyarenes as by-products.5-7 

Recently, many catalysts involving metal nanoparticles (e.g., Au,8-10 Ag,11 Fe,12 Fe-Ni,13 

Ni-B,14, 15 Ru,16, 17 and Pd18, 19) have been employed for the reduction of nitro groups. 

Among the catalysts, gold showed the highest activity and selectivity. However, gold is a 

noble metal and very expensive. Nickel and iron are good reducing agents and much 

cheaper than gold. Various liquid phase based methods were applied to prepare Ni and Fe 

nanoparticle catalysts for the reduction of nitroarenes. These catalysts showed relatively 

high selectivity toward aromatic amines, but the activity was much lower than that of 

gold.12-14 It is very important that an efficient, cost-effective and chemoselective catalyst 

be developed for the hydrogenation of nitroarenes. 

Atomic layer deposition (ALD) is a layer-by-layer gas phase process, which has 

been employed to uniformly deposit conformal films on porous nanostructures.20, 21 The 

growth of these films can be controlled at atomic level through self-limiting, sequential 

binary reactions on the substrate surface. ALD also allows the uniform deposition of highly 
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dispersed metal nanoparticles (2 nm or smaller). Metal nanoparticles, such as Pt and Pd, 

have been successfully deposited on a porous substrate by ALD.22, 23 This is very important 

for the metal nanoparticles in catalysis application, especially for supported catalysts.22 

These advantages have expanded the ALD applications in the catalysis area. As a part of 

our effort in this area, we demonstrated excellent performance of platinum nanoparticles 

deposited by ALD for different liquid phase catalytic reactions.24, 25 Recently, Gould et 

al.26 demonstrated that Ni nanoparticles deposited by ALD had excellent performance in 

propylene hydrogenolysis reactions. It was demonstrated that smaller metal nanoparticles 

showed higher activity for hydrogenation of nitroarenes.11, 27 It is expected that nickel 

nanoparticles, deposited by ALD, would have excellent properties for the reduction of NO2 

groups. 

Here, we report the chemoselective reduction of aromatic nitro compounds to 

corresponding anilines by highly dispersed ALD nickel nanoparticles, supported on SiO2 

in combination with a convenient hydrogen donor. The reaction conditions were optimized 

using different amounts of hydrazine hydrate. Reduction reactions of different nitroarenes 

were studied to evaluate the performance of the catalysts. 

 

2. EXPERIMENTAL SECTION 

2.1. Materials. All solvents, hydrazine hydrate and reactants were provided by 

J&K Chemical. Silica nanoparticles (20 to 30 nm in diameter) and silica gel particles were 

purchased from US Research Nanomaterials and Sigma Aldrich, respectively. The silica 
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gel particles were 30-75 μm in diameter with an average pore size of 15 nm and a Brunauer-

Emmett-Teller (BET) surface area of about 270 m2/g. Bis(cyclopentadienyl)nickel was 

purchased from Alfa Aesar. 

2.2. Ni nanoparticles Deposited on SiO2 by ALD. Ni ALD was carried out using 

bis(cyclopentadienyl)nickel (NiCp2) and hydrogen as precursors at 300 °C in a fluidized 

bed reactor. The ALD reactor system was described in detail previously.28 Both silica 

nanoparticles (20-30 nm) and porous silica gel particles were used as substrates. In this 

study, one cycle of Ni ALD was applied on silica gel particles and different cycles of Ni 

ALD were applied on silica nanoparticles. The details of Ni ALD are introduced in the 

Supporting Information. 

2.3. General Procedure of Nitroarenes Reduction with Hydrazine Hydrate 

Catalyzed by Ni/SiO2. Hydrazine hydrate was chosen as the hydrogen donor for the 

reduction of aromatic nitro compounds. Ni supported on silica gel particles was applied to 

catalyze the reaction. In a typical reaction, nitroarenes (6 mmol), NH2NH2 (4-8 

equivalents), ethanol (10 mL) and Ni/SiO2 catalysts (10 mg) were added into a sealed 

copper tube with an open end and 12 mL in volume. The reaction was carried out at 

atmospheric pressure and an appropriate temperature (see Table 1). The products of the 

reaction were monitored by a LC-20AT high-performance liquid chromatography (HPLC) 

equipped with a Hypersil ODS (C18) column and SPD-20A/20AV UV-VIS detector. 

Methanol and water (80% methanol and 20% water) were employed as the mobile phase 

at a flow rate of 1 mL/min. The mixture was separated at 25 °C with 254 nm as the detection  
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Table 1. Evaluation of the Effects of Hydrazine Amounts and Solvent on the Reduction 

of 4-Fluoronitrobenzene to p-Fluoroaniline Catalyzed by One Cycle of Ni ALD-

Deposited on Silica Gel Particles.a 

 

Entry Catalyst Tem(ºC) Solvent NH2NH2 Selectivity(%)  Yield(%) 

1 No catalyst 100 EtOH 4 eq. 0 0 

2 Ni/SiO2 60 EtOH 4 eq. 98.1 59.2 

3 Ni/SiO2 80 EtOH 4 eq. 97.8 75.8 

4 Ni/SiO2 100 EtOH 4 eq. 98.2 95.0 

5 Ni/SiO2 120 EtOH 4 eq. 97.9 71.7 

6 Ni/SiO2 100 EtOH 6 eq. 98.1 96.5 

7 Ni/SiO2 100 EtOH 8 eq. 98.2 97.8 

8 Ni/SiO2 100 THF 8 eq. 97.5 92.7 

9 Ni/SiO2 100 CH3OH 8 eq. 97.9 94.2 

10 Ni/SiO2 100 t-BuOH 8 eq. 98.5 95.8 

11 Recycle1 100 EtOH 8 eq. 98.5 95.7 

12 Recycle2 100 EtOH 8 eq. 98.0 95.2 

13 Recycle3 100 EtOH 8 eq. 97.8 94.3 

14 Recycle4 100 EtOH 8 eq. 97.2 94.0 

aReaction conditions: 6 mmol nitroarenes, 4-8 equivalents NH2NH2, 10 mL solvent and 

10 mg Ni/SiO2 catalysts (except entry 1) were added into the reactor. The reactions 

were carried out at different temperatures for 8 hr. 

 

 

wavelength. The identities of all products were compared with authentic samples. For the 

recycling studies of 4-fluoronitrobenzene reduction with hydrazine hydrate, the reaction 

conditions were as follows: 6 mmol of 4-fluoronitrobenzene, 10 mg of Ni/SiO2, 48 mmol 

of hydrazine hydrate (in each cycle), and 10 mL of ethanol, for 8 hr at 100 °C. After each 
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run, the catalyst (Ni/SiO2) was isolated by a magnet and rinsed thoroughly with ethanol, 

since the Ni/SiO2 particles were highly magnetic. 

2.4. Catalyst Characterization. Inductively coupled plasma-atomic emission 

spectroscopy (ICP-AES) was employed to analyze the Ni content of the catalysts. The Ni 

particles were directly observed by high resolution transmission electron microscopy 

(HRTEM). X-ray photoelectron spectroscopy (XPS) was applied to verify the composition 

of Ni on the silica particles. Fourier transform infrared spectroscopy (FTIR) was employed 

to verify the complete removal of the organic ligand from the ALD precursor. 

 

3. RESULTS AND DISCUSSION 

3.1. Characterization of Ni/SiO2. The ICP-AES result showed that the Ni loading 

of one cycle of Ni ALD on the silica gel particles was 0.73 wt.%. Figure 1 shows the 

HRTEM images of ALD deposited Ni nanoparticles (2 cycles and 15 cycles) on 20-30 nm 

silica nanoparticles and the size distribution of Ni nanoparticles. The average size of Ni 

nanoparticles was 2.4 nm and 2.6 nm for the 2 cycle- and 15 cycle-sample, respectively. 

This particle size was similar to the values reported by Gould et al.26 We believe that the 

average size of Ni nanoparticles deposited on silica gel particles, with only 1 cycle of Ni 

ALD, should be about 2.4 nm, or even smaller. The TEM images also indicated that the Ni 

nanoparticles were highly dispersed on the silica support. Figure S1 shows the Ni (2p) high 

resolution XPS spectrum for Ni supported on a silica gel sample. Carbon peaks were also 

observed on the survey scan of the XPS spectrum (Figure S2). To verify whether there 
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were substantial organic ligands from the Ni precursor left on Ni particles, FTIR was 

applied to analyze the organic groups. Figure S3 shows that there were no characteristic 

peaks for the cyclopentadienyl group. This means that all organic groups of the precursor 

were removed during the ALD hydrogen reduction process. 

3.2. Catalytic Reduction of 4-Fluoronitrobenzene. To optimize the reaction 

conditions, the reduction of 4-fluoronitrobenzene was initially investigated with different 

amounts of hydrazine, and different solvents at different temperatures (Table 1). Ni/silica 

gel particles were used as catalysts in all catalytic reactions. The recyclability of the catalyst 

was also investigated by recycling the catalyst for reduction of 4-fluoronitrobenzene. As 

shown in Table 1, the control experiment shows that no reaction was processed without a 

catalyst. Temperature was a key factor in the reduction of 4-fluoronitrobenzene. At 60 °C, 

when 4 equivalents of hydrazine hydrate were added, the selectivity to p-fluoroaniline was 

98.1%, and the yield was only 59.2%. The yield increased with increases of temperature 

up to 100 °C (75.8% at 80 °C and 95.0% at 100 °C). However, both selectivity and yield 

decreased at 120 °C, which was due to some side reactions at higher temperatures. Based 

on this initial study, 100 °C was selected as the reaction temperature in the following 

studies. At 100 °C, the yield increased to 96.5% and 97.8% when the hydrazine amount 

was increased to 6 and 8 equivalents, respectively. Solvents normally have a significant 

influence on the performance of the catalyst.29, 30 In this study, different solvents 

(Tetrahydrofuran (THF), methanol, and tertiary butanol) were used for this reaction. The 

selectivity and yield showed no significant differences, which indicated that the solvents 
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Figure 1. HRTEM images of (a) 2 cycles and (b) 15 cycles of ALD deposited Ni 

nanoparticles on 20-30 nm silica particles. The inset images show the size distribution of 

Ni nanoparticles. 
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magnet for separation. The catalyst particles were recycled four times. Both the selectivity 

and yield only slightly decreased after cycling, as shown in Table 1, which indicated that 

the ALD prepared Ni/SiO2 catalysts could maintain good activity and stability in the liquid 

phase reactions. 

3.3. Reduction of Nitro Compounds into Amines with Hydrazine Hydrate 

Catalyzed by Ni/SiO2. In order to investigate and determine the scope and limitations of 

this reductive methodology, a series of nitroarenes were examined. As shown in Table 2, 

for a reaction time of 8 hr, the selectivity and yield of most nitroarene reduction reactions 

were higher than 90%. For example, the selectivity and yield of aniline was 95.2% and 

93.8%, respectively. Turnover frequency (TOF), which is defined as the reactant molecules 

reacting per active site in unit time, was calculated to investigate and determine the activity 

of the catalyst (Table 2). The conversion of nitroarenes was close to 100% for 8 hr of 

reaction; thus, it would not be accurate to calculate TOF at that high conversion. To 

calculate an accurate TOF, reactions were also carried out for 2 hr. The active metal surface 

area (ASA) and dispersion of the catalysts were calculated by using the measured size of 

Ni nanoparticles in Equations 1 and 2:26 

ASA [𝑚2/𝑔] =
𝐿×𝑓

𝑑×𝑧
                                               (1) 

Dispersion [%] =
𝐴𝑆𝐴×𝑀

𝑁×𝐴×𝐿
                                          (2) 

where L is the weight fraction of metal loading, f is the particle shape correction factor (f 

= 6 for a sphere), d is the average diameter of the supported particles measured by TEM 

(assume the size of Ni particles on silica gel is 2.4 nm), z is the metal density, M is the 
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formula weight of the supported metal, N is Avogadro’s number and A is the metal atomic 

surface area (for Ni, A = 6.494 Å2/atom). Base on Equation 1, the ASA for the Ni/SiO2 

catalyst is 2.05 m2/g. The metal dispersion was then calculated from Equation 2 to be 42%. 

Based on the conversion and reaction time (conversion at a reaction time of 2 hr), TOF was 

calculated. As shown in Table 2, almost all of the TOF of entry 1-8 were higher than 0.7 s-

1, which is pretty high in the reduction of nitroarene systems. 

Liu et al.9 applied Au/meso-CeO2 as the catalyst for the reduction of nitrobenzene 

and got a TOF of 20 h-1 (5.56×10-3 s-1). Petkar et al.13 employed Fe-Ni bimetallic system 

to catalyze the reduction of aromatic nitro compounds and got a TOF of 4.76×10-3 s-1 for 

nitrobenzene. As shown in Table 2, the TOF of nitrobenzene in our system was 0.78 s-1, 

which was more than two orders of magnitude higher than the reported values. The high 

catalytic activity of the catalysts could be due to the highly dispersed Ni nanoparticles 

prepared by ALD. In the above-mentioned previous studies, the metal nanoparticles 

catalysts were normally prepared by the liquid impregnation method and the metal 

nanoparticles were very large. In our current study, the Ni nanoparticles were prepared by 

ALD and the particle sizes were smaller than 3 nm. The effect of particle size on the 

catalytic activity was reported previously. Mahata et al.27 reported that smaller Ni 

nanoparticles showed higher activity for hydrogenation of nitroarenes. Shimizu et al.11 also 

demonstrated that catalyst activity increased with the decrease in silver nanoparticle size 

for hydrogenation of nitroarenes. In addition, Gould et al. reported that the surface 
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Table 2. Chemoselective Reduction of Nitro Compounds to Amines with Hydrazine 

Hydrate Catalyzed by 1 Cycle of Ni ALD-Deposited on Silica Gel Particles. 

 

Entry Reactant Product Selectivity 

(%)a 

Yield 

(%)b 

TOF 

(s-1)c 

1 

    

95.2 (95.8) 93.8 

(45.4) 

0.78  

2 

  

94.2 (94.5) 92.7 

(42.7) 

0.75  

3 

  

94.0 (95.0) 91.9 

(41.5) 

0.72  

4 

   

95.7 (95.5) 93.7 

(42.6) 

0.74  

5 

   

96.0 (96.3) 94.7 

(43.3) 

0.74  

6 

   

94.8 (94.9) 92.1 

(41.1) 

0.72  

7 

  

87.1 (89.3) 74.8 

(37.4) 

0.69  

8 

  

89.2 (90.5) 76.1 

(38.7) 

0.71  

Reaction conditions: 6 mmol nitroarenes, 48 mmol NH2NH2, 10 mL ethanol and 10 mg 

Ni/SiO2 catalysts were added into the reactor. The reactions were carried out at 100 °C 

for 2 hr and 8 hr, respectively. aValues in parenthesis are the selectivity of the reactions 

after 2 hr. bValues in parenthesis are the yields of the reactions after 2 hr. cTOF values 

were calculated using the results with reaction time of 2 hr. 
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structures of the ALD Ni nanoparticles were different from those of the larger Ni particles 

prepared by incipient wetness method.26 This could also be a reason for the high catalytic 

activity of the catalysts. 

The hydrogenation of nitroarenes often stops at an intermediate stage, yielding 

various by-products. For hydrogenation of halogenated nitroarenes, the hydrogenolysis of 

the C–X, in which X represents halogen, always happens.31 Due to the high activity of 

ALD Ni nanoparticles, the hydrogenation of nitroarenes did not stop at the intermediate 

stage. The Ni nanoparticles also showed no activity in hydrogenolysis of the C-X bond in 

our current study, since no dehalogenation products were observed. Gawande et al.32 also 

reported that no dehalogenation occurred in the hydrogenation of halogenated nitroarenes 

using Fe3O4-Ni nanoparticles. This was our hypothesis for the high selectivity of our ALD 

Ni catalysts. More studies are being conducted to reveal the effects of Ni particle size on 

the activity and selectivity of the reactions. 

The ALD catalysts showed excellent selectivity and yield of the reduction of 

nitroarenes with fluorine and chlorine. In particular, no defluorination and dechlorination 

by-products were observed (entry 2-5) and the selectivities of all reactions were higher than 

94%. This result was very good compared to other reported results with different kinds of 

catalyst systems in which the selectivity were always lower than 90%, or even lower.9, 30, 

33 The high selectivity of reaction is highly desirable in industry, because these by-products 

do not need to be separated, which is a costly process. For example, for entry 5, the product 

is solely 3-chloro-4-fluoro-benzenamine, which is a raw material for norfloxacin. The 
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effective control of defluorination and dechlorination could help provide high purity raw 

material for norfloxacin. However, the selectivity and yield of the transfer hydrogenations 

of p-nitrobenzoic acid and methyl p-nitrobenzoate were lower than 90% and 80%, 

respectively. This was largely possible due to the existence of other electron-withdrawing 

groups on the reactants molecules. Compared to the reported catalytic systems, our 

catalytic system is much simpler in terms of both catalyst preparation and experimental 

procedure. It is an efficient, cost-effective and chemoselective catalyst for the reduction of 

nitroarenes. 

 

4. CONCLUSIONS 

Highly dispersed nickel nanoparticles were deposited on both porous silica gel 

particles and 20-30 nm dense silica nanoparticles. The prepared Ni/silica gel catalysts can 

activate hydrazine hydrate as a reducing agent in the transfer hydrogenation of aryl nitro 

compounds into the corresponding amines with high selectivity and high yield. To the best 

of our knowledge, this is the first report of ALD prepared nickel nanoparticles for the 

transfer hydrogenation of aryl nitro compounds. The current work has extended the utility 

of a readily available catalyst (Ni/SiO2) toward new applications in catalysis and organic 

chemistry.  
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SUPPORTING INFORMATION 

 

Experimental Details 

Ni ALD:  Ni ALD was carried out using bis(cyclopentadienyl)nickel (NiCp2) and 

hydrogen as precursors at 300 °C in a fluidized bed reactor, as described previously.1 The 

solid NiCp2 precursor was loaded in a heated bubbler and carried by nitrogen gas. Both 

silica particles (20-30 nm) and porous silica gel particles were used as substrates and 
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degassed under a nitrogen flow in the reactor before ALD reactions. The particle substrates 

were fully fluidized under a nitrogen flow, with the flow rate controlled by a mass flow 

controller. By introducing the NiCp2 precursor into the reactor, the O-H bond of the 

hydroxyl groups on the substrate was replaced by an O-Ni bond due to the reaction of the 

NiCp2 precursor and the O-H groups. During the nitrogen purge step, the excess NiCp2 

precursor was removed to prevent a chemical vapor deposition reaction of the excess NiCp2 

precursor and incoming hydrogen gas. In the next step, hydrogen was introduced to remove 

the organic ligands on Ni surfaces, reduce the Ni-O to metallic Ni, and regenerate the 

surface hydroxyl groups. A nitrogen purge process was also applied to remove excess 

hydrogen. This is the so-called one cycle of Ni ALD.  

Characterization Details 

XPS analysis: The XPS spectra of Ni on silica gel particles were recorded with a 

Kratos Axis 165 X-ray photoelectron spectrometer using a monochromatic Al Kα radiation 

(hν= 1486.6eV), at a take-off angle of 0°. The survey scan spectrum and Ni 2p core level 

spectrum were recorded at a pass energy of 160 eV and 20 eV, respectively. All binding 

energy values were corrected to C 1s signal (284.5 eV). As shown in Figure S1, the peaks 

at 855.7 eV and 860 eV represented NiO; a metallic Ni signal was observed at 853.1 eV.2, 

3 This indicated that the Ni nanoparticles were partially oxidized in air. Carbon peaks were 

also observed from the survey scan data (Figure S2). The carbon was mainly from the 

background contamination, while some could have been from the organic ligands left on 

the Ni particles during the ALD process. 
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FTIR analysis: The FTIR spectrum was recorded using a Nicolet Nexus 470 FT-

IR spectrometer. The spectrum was collected in the range of 4000-400 cm-1. The 

transmittance was measured using a Ni/silica gel-containing potassium bromide pellet. The 

loading of Ni on silica was 1 wt. %. As shown in Figure S3, there were no characteristic 

peaks of the cyclopentadienyl group at 3043 and 3100 cm-1.4 No carbon chain peaks were 

observed. This indicated that the organic groups of the precursor were removed during the 

hydrogen reduction process and no substantial organic ligands bonded to Ni nanoparticles. 

The peak at 3440 cm-1 represented the O-H bond and the peak at 1634 cm-1 represented a 

deformation vibration peak of H-O-H from water.5 The peak at 1870 cm-1 was a SiO2 

network vibration peak and the peaks at 1014 cm-1  and 563 cm-1 were Si-O stretching 

vibration peaks. The peaks at 966 cm-1 and 802 cm-1 represented a Si-O in-plane stretching 

vibration peak and a symmetric stretching vibration peak.6 The peak at 1700 cm-1 

represented C=O bond and the peak at 1267 cm-1 was the symmetric deformation vibration 

peak for the C-H bond.6 These peaks could have been the organic components that had 

formed in the ALD reactions and were trapped by the porous structure of the substrate. 
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Figure S1. High resolution XPS spectrum of Ni (2p) for Ni supported on silica gel 

sample. 
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Figure S2. XPS spectrum of survey scan of Ni supported on silica gel sample. 

 

 

 

Figure S3. FTIR spectrum of Ni supported on silica gel sample.  
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ABSTRACT 

A highly stable and extremely active nickel (Ni) nanoparticle catalyst, supported on 

porous γ-Al2O3 particles, was prepared by atomic layer deposition (ALD). The catalyst was 

employed to catalyze the reaction of dry reforming of methane (DRM). The catalyst 

initially gave a low conversion at 850 °C, but the conversion increased with an increase in 

reaction time, and stabilized at 93% (1730 Lh-1gNi
-1 at 850 °C). After regeneration, the 

catalyst showed a very high methane reforming rate (1840 Lh-1gNi
-1 at 850 °C). The 

activated catalyst showed exceptionally high catalytic activity and excellent stability of 

DRM reaction in over 300 hours at temperatures that ranged from 700 °C to 850 °C. The 
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excellent stability of the catalyst resulted from the formation of NiAl2O4 spinel. The high 

catalytic activity was due to the high dispersion of Ni nanoparticles deposited by ALD and 

the reduction of NiAl2O4 spinel to Ni during the DRM reaction at 850 °C. It was verified 

that NiAl2O4 can be reduced to Ni in a reductive gas mixture (i.e., carbon monoxide and 

hydrogen) during the reaction at 850 °C, but not by H2 alone. 

 

Keywords: atomic layer deposition (ALD), Ni nanoparticle, supported catalyst, NiAl2O4 

spinel, dry reforming of methane (DRM) 

 

1. INTRODUCTION 

Methane reforming with carbon dioxide (CH4+CO2 → 2H2+2CO), also called dry 

reforming of methane (DRM), obtained considerable attention due to the advances in shale 

gas recovery [1, 2]. DRM is important because the two main greenhouse gases (carbon 

dioxide and methane) could be converted to syngas (carbon monoxide and hydrogen) in 

this reaction process. The H2/CO ratio is always lower than 1 due to a reverse water-gas 

shift reaction (CO2+H2 ⇌ CO+H2O). This gas mixture could be used to blend streams from 

methane steam reformation to produce syngas with the desired H2/CO ratio, which could 

be applied in the Fischer−Tropsch (FT) synthesis [3, 4]. Different metal catalysts (e.g., Rh 

[5, 6], Pt [7, 8], Ir [9], Pd [10], Ru [11, 12], and Ni [13, 14]) were employed to catalyze the 

DRM reaction. Among them, noble metal catalysts showed better resistance to coking, as 
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compared to Ni catalysts [15, 16]. However, due to the limited availability and high cost 

of noble metals, it was considered desirable to develop a Ni-based catalyst.  

The main disadvantage of the Ni catalyst for DRM reaction is deactivation, due to 

coking and sintering of Ni metal nanoparticles to form larger particles with lower catalytic 

activity [17]. Coking could be decreased by running the reaction at high temperatures and 

using small Ni particles, because their step edges are small enough to limit carbon 

nucleation and growth [4, 18]. However, the aggregation of small Ni nanoparticles will be 

more extreme at higher reaction temperatures. Therefore, there is a trade-off when Ni 

nanoparticles are used at higher temperatures. The supported Ni catalysts are normally 

synthesized by an impregnation method using an aqueous solution of nickel nitrate 

hexahydrate (Ni(NO3)2·6H2O) [13, 14, 19-21]. The Ni nanoparticles that are synthesized 

by the impregnation method are relatively large, typically tens of nanometers [22-24]. They 

have lower Ni surface areas, compared to smaller Ni nanoparticles, and are easier to get 

coked. 

Atomic layer deposition (ALD) is a self-limiting and self-terminating gas phase 

deposition technique that has been successfully demonstrated for the synthesis of metal 

nanoparticles (e.g., Pd and Pt) on different substrates [25, 26]. Small Ni nanoparticles (~3 

nm) could be synthesized by ALD and have been demonstrated to be an excellent catalyst 

with high catalytic activity for catalyzing hydrogenation of propylene [27]. In addition, the 

ALD Ni nanoparticles strongly interacted with the substrate, which was more stable, when 

compared to the Ni nanoparticles prepared by conventional methods. Alumina was 
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demonstrated to be a better catalyst support for the Ni catalyst, as compared to some other 

catalyst supports (e.g., SiO2 and MgO-SiO2). This could be due to the fact that the alumina 

support increased the overall basicity of the supported Ni catalyst and there was a stronger 

metal-support interaction between the Ni and alumina support [28, 29]. 

Gould et al. [30] deposited Ni nanoparticles (~3 nm) on dense alumina nanoparticles 

by ALD to catalyze the DRM reaction and applied porous alumina film obtained from 

aluminum alkoxide (alucone) molecular layer deposition (MLD) films to stabilize the Ni 

nanoparticles. The idea was to use ALD to prepare highly dispersed Ni nanoparticles with 

high catalytic activity and to use porous alumina films to encapsulate the Ni nanoparticles 

for greater thermal stability. Their results showed that five cycles of alucone MLD could 

increase the thermal stability and steady-state activity of the catalyst. However, previous 

studies by Liang et al. indicated that the porous alumina film formed from ten cycles of 

alucone MLD by calcination could not completely encapsulate 1.8 nm average size Pt 

particles [31]. Similarly, it would be difficult to use porous alumina films obtained from 5 

cycles of alucone MLD coating to encapsulate 3 nm Ni nanoparticles. Therefore, the 

increase in catalyst stability, with five cycles of MLD coating, should not result from 

stabilization of Ni particles by alumina film encapsulation. The interaction between the Ni 

nanoparticles and the deposited alumina film could be the key. In the study by Gould et al., 

dense alumina nanoparticles were used as catalyst support [30]. We hypothesize that the 

catalytic performance could be very different if we used porous alumina particles as the 

catalyst support. There will be more interaction between the Ni nanoparticles and the 
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porous alumina support (as schematically shown in Fig. S1), since there is more interfacial 

contact between nanoparticles and the concave surface (porous support), compared to the 

case of a convex surface (dense particle support). Thus,  the thermal stability of the highly 

dispersed ALD Ni nanoparticles would be improved. In this study, we synthesized a porous 

γ-Al2O3 supported Ni nanoparticles catalyst using the ALD technique. The DRM reaction 

was initially carried out at 850 °C, to activate the catalyst, and then run at different 

temperatures. The reduction mechanism of NiAl2O4 spinel was studied. 

 

2. EXPERIMENTAL 

2.1. Materials. Dense alumina nanoparticles (50-100 nm, gamma phase) and 

porous γ-Al2O3 particles were purchased from Sigma-Aldrich and Alfa Aesar, respectively. 

The porous alumina particles were 40 μm in diameter, with a Brunauer−Emmett−Teller 

(BET) surface area of 95.5 m2/g. The dense alumina nanoparticles had a BET surface area 

of 137 m2/g. Bis(cyclopentadienyl)nickel (NiCp2) and Ni(NO3)2·6H2O were purchased 

from Alfa Aesar and Fisher Scientific, respectively. 

2.2. Catalyst Preparation and Characterization. Ni nanoparticle ALD was 

carried out using NiCp2 and hydrogen as precursors at 300 °C in a fluidized bed reactor. 

The ALD reactor system has been previously described in detail [32]. Both porous γ-Al2O3 

particles and dense alumina nanoparticles were used as the substrates and one cycle of Ni 

ALD was applied. These two catalysts were labeled as ALD Ni/γ-Al2O3, and ALD Ni/NP-

Al2O3, respectively. To obtain a better characterization result, a porous γ-Al2O3 supported 
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Ni catalyst with four cycles of Ni ALD (a Ni loading of 4 wt. %) was synthesized and 

labeled as ALD 4-Ni/γ-Al2O3. For comparison, Ni nanoparticles supported on porous γ-

Al2O3 particles were also prepared by the incipient wetness (IW) method. An aqueous 

solution of Ni(NO3)2·6H2O was added to the porous γ-Al2O3 particles and dried at 110 °C, 

while stirring continuously. The sample was then calcined in air at 550 °C for 6 hours. The 

catalyst prepared by the IW method was labeled as IW Ni/γ-Al2O3. 

The Ni loadings of different catalysts were measured by inductively coupled 

plasma-atomic emission spectroscopy (ICP−AES, Model ARL 34101, Thermo Electron, 

Waltham, MA).  

The average size and dispersion of the Ni nanoparticles supported on alumina 

nanoparticles were observed by transmission electron microscopy (TEM) with a FEI 

Tecnai F20 TEM. 

In order to measure the coke content of the used catalyst, derivative 

thermogravimetric (DTG) analyses of the samples were made using a TA Instruments Q50 

thermogravimetric analyzer. The DTG analyses were carried out with an air (40 mL/min) 

and N2 (40 mL/min) stream. The temperature was increased from room temperature to 

200 °C, at a heating rate of 10 °C/min, and kept at 200 °C for 60 min, and then increased 

to 1000 °C at the same rate. 

X-Ray diffraction (XRD) spectra were recorded on a Philips X-Pert Multi-purpose 

Diffractometer, using Cu Kα 1 radiation (λ=0.15416 nm). 
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X-ray photoelectron spectroscopy (XPS) measurements were performed using a 

Kratos Axis 165 X-ray photoelectron spectrometer with a monochromatic Al Kα radiation 

(hν = 1486.6 eV). All binding energy values were corrected based on a C (1s) peak at 284.5 

eV. 

H2-temperature programmed reduction (TPR) tests were performed using an AMI-

300. Typically, 100 mg of the sample were charged in a quartz tube and reduced up to 

900 °C at a heating rate of 10 °C/min in a stream of 10% H2 in Ar. The ALD Ni/γ-Al2O3 

and ALD Ni/NP-Al2O3 samples were oxidized at 550 °C for 1 hour before the TPR test. 

2.3. General Procedure for Dry Reforming of Methane. Different amounts of 

various catalysts were loaded into a quartz tube reactor (10 mm diameter) to keep the Ni 

content consistent (~0.64 mg). Quartz wool was employed to support the catalysts. The 

catalysts, using porous γ-Al2O3 as supports, were diluted with 0.5 gram of quartz sands 

(60-120 mesh) and were well distributed in the quartz sands. A thermal couple was applied 

to measure the temperature. The ALD synthesized catalysts were oxidized at 550 °C to 

remove any residual organic components from the Ni ALD precursor. All of the catalysts 

were reduced with 20% H2 and 80% Ar (with a total flow rate of 100 sccm) at 700 °C for 

1 hour before the DRM reaction. CH4 and CO2 that were balanced with Ar (20% CH4, 20% 

CO2, and 60% Ar, with a total flow rate of 100 sccm), were introduced into the reactor at 

different temperatures for a DRM reaction. The catalysts were regenerated after the 

reaction and applied to catalyze the DRM reaction again. In a typical regeneration process, 

the catalyst was first oxidized in 20% O2 and 80% Ar at 700 °C for 1 hour and then reduced 
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in 20% H2 and 80% Ar at the same temperature for 1 hour. The gas flow rates were 

controlled by MKS® mass flow controllers. The reaction products were analyzed by an 

online gas chromatograph (SRI 8610C) equipped with a 6-foot HAYESEP D column, a 6-

foot MOLECULAR SIEVE 13X column, and a thermal conductivity detector (TCD). 

 

3. RESULTS AND DISCUSSION 

3.1. Catalytic Performance The ALD Ni/γ-Al2O3 catalyst was first employed to 

catalyze the DRM.  Fig. 1 shows the DRM reaction results at different temperatures as 

catalyzed by ALD Ni/γ-Al2O3. In the first cycle (here, one cycle means testing at different 

temperatures without regeneration), the reaction was carried out at 700 °C, but no 

conversion was observed. The temperature of the DRM reaction was then increased to 850 

°C, while the methane conversion kept increasing during the first 10 hours, and then 

stabilized at ~93%. This increase could have been due to the activation of the catalyst. 

After running at 850 °C for 75 hours, the catalyst was regenerated at 700 °C. In the second 

cycle, the methane conversion was 99% at 850 °C, and did not decrease in 140 hours. This 

excellent stability could have been due to the fact that the sintering of Ni nanoparticles 

would be inhibited by the porous structure of the catalyst support and the strong interaction 

between the Ni nanoparticles and the catalyst support. When the reaction temperature was 

decreased to 800 °C, the methane conversion decreased to 95%, but only slightly decreased 

to 93% after 50 hours of reaction. The methane conversion decreased to 72%, after the 

reaction temperature had decreased to 750 °C, and slightly decreased with an increase in 
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the reaction time (70% after about 50 hours). The reaction temperature then decreased 

further to 700 °C, while the methane conversion decreased to 40%, and then decreased 

slightly to 38% after about 50 hours of reaction. Table 1 shows the methane reforming rate 

in the DRM reaction, for the second cycle of DRM reaction, which was calculated from 

the methane conversion (shown in Fig. 1), gas flow rate, and catalyst loading. The methane 

reforming rate at 850 °C in the second cycle was as high as 1840 Lh-1gNi
-1. This value could 

have been underestimated, since the methane conversion was pretty close to 100%. The 

third cycle showed results similar to those of the second cycle. This series of experiments, 

showed that the decreases in methane conversion at each temperature level should not have 

been due to the sintering. Otherwise, the performance of the catalyst in the third cycle 

would have been worse than that in the second cycle. It is believed that this decrease 

resulted from a slight coking on the catalyst. The catalyst color changed to black after the 

reaction due to coking (Fig. S2). 

In previously reported studies of DRM, a reaction was normally carried out in a 

temperature range of 700 °C to 800 °C [19, 20, 30, 33-35]. Only a few reports studied DRM 

reactions at 850 °C, since Ni nanoparticles would aggregate to form larger particles at those 

high temperatures. In this study, it was found that it was beneficial to run the DRM reaction 

at 850 °C, since the ALD Ni/γ-Al2O3 catalyst can be activated at that high temperature. In 

Table 1, the activity of the ALD Ni/γ-Al2O3 catalyst was compared with some other 

Ni/Al2O3 catalysts synthesized by other groups. Wang et al. [36] synthesized a gamma-

alumina supported Ni catalyst by a wetness impregnation method and showed methane 
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reforming rates of 137 Lh-1gNi
-1 and 157 Lh-1gNi

-1 at 700°C and 800°C, respectively. The 

porous alumina coated Ni nanoparticles, supported on dense alumina nanoparticles 

synthesized by Gould et al., gave a methane reforming rate of 700 Lh-1gNi
-1 at 700 °C [30]. 

Baktash et al. [35] synthesized an inverse catalyst with Ni nanoparticles encapsulated with 

alumina that gave a maximum methane reforming rate of 1500 Lh-1gNi
-1 at 800 °C. In our 

study, the ALD Ni/γ-Al2O3 catalyst showed methane reforming rates of 1840 Lh-1gNi
-1 at 

850 °C, 1740 Lh-1gNi
-1 at 800 °C, and 720 Lh-1gNi

-1 at 700 °C even after several hundreds 

of hours of reaction at high temperatures, which was still higher than the value reported by 

Gould et al. [30]. Clearly, the porous alumina supported ALD Ni nanoparticles showed 

much better activity, as compared to other catalysts reported previously. 

 

 

Table 1. Catalytic activities comparison of different Ni/Al2O3 catalysts in DRM reaction. 

Catalyst 
Methane reforming rate (Lh-1gNi

-1) 
References 

850 °C 800 °C 750 °C 700 °C 

ALD Ni/γ-Al2O3 1840 1740 1320 720a This work 

Ni/γ-Al2O3 N/A 157 N/A 137 [36] 

Inverse Ni/Al2O3 

catalyst 
N/A 1500 N/A N/A [35] 

ALD Ni/dense γ-Al2O3 N/A N/A N/A 700 [30] 

a The results were tested after about 250 hours of reaction at high temperatures. 
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To verify that ALD is a better way to prepare supported Ni nanoparticles catalysts, 

as compared to the traditional impregnation method, an IW Ni/γ-Al2O3 catalyst was 

employed to catalyze the DRM reactions (results shown in Fig. 2). The corresponding 

methane reforming rates of the second cycle of the DRM reaction are shown in Table 2. 

The reaction was first carried out at 850 °C. The catalyst was activated at the beginning of 

the reaction, and then, the methane conversion was kept at about 90%. Between each cycle, 

the catalyst was regenerated by following the same procedures that are mentioned above. 

In the second cycle, the methane conversion was decreased from 94% to 88% in 48 hours 

at 850 °C. The methane conversion decreased to 69% after the reaction temperature 

decreased to 800 °C, and decreased further to 56% in 48 hours. The conversions of methane 

were lower than 30% and 10% at 750 °C and 700 °C, respectively. This catalyst showed 

lower stability and much lower activity, as compared to the ALD Ni/γ-Al2O3. In the third 

cycle, the performance of the catalyst was much worse. The lower catalytic activity and 

stability of the IW Ni/γ-Al2O3 catalyst could have been caused by two things: (1) the Ni 

nanoparticles synthesized by the IW method were much larger than the ALD-deposited Ni 

nanoparticles, which would have had lower catalytic activity due to a lower reactive surface 

area, and coking formation was easier; and (2) the bonding force between the Ni 

nanoparticles and the catalyst support for the IW Ni/γ-Al2O3 catalyst could have been 

weaker than that of the ALD Ni/γ-Al2O3 catalyst, since the Ni nanoparticles strongly 

interacted with the substrate in the ALD process. 
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Fig.1. Methane conversion of dry reforming of methane catalyzed by ALD Ni/γ-Al2O3 

at different temperatures. 

 

 

Table 2. Rate of dry reforming of methane and H2/CO ratio catalyzed by three different 

catalysts at different temperatures. 

 

Catalyst 

CH4 reforming rate (L·h-1gNi
-1) H2/CO ratio in the product 

850 °C 800 °C 750 °C 700 °C 850 °C 800 °C 750 °C 700 °C 

ALD Ni/γ-

Al2O3 

1840 1740 1320 720 0.82 0.78 0.68 0.55 

IW Ni/γ-

Al2O3 

1700 1150 480 150 0.70 0.61 0.51 0.38 

ALD Ni/NP-

Al2O3 

1380 850 410 190 

(706)a 

0.74 0.73 0.71 0.65 

Note: The results in this table were calculated based on the second cycle of DRM 

reaction for all three catalysts.  
a The value in brackets was calculated based on the result of DRM reaction carried out 

at 700 °C directly after reduction without running at higher temperatures. 

 

 

To check the effect of porous catalyst support on the DRM reaction, the ALD 

Ni/NP-Al2O3 sample was also used to catalyze the DRM reaction. As shown in Fig. 3, the 
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dense substrate supported catalyst showed high catalytic activity at the beginning, but no 

gradual increase of conversion when the reaction was carried out at 850 °C. This means 

that the catalysts can be activated very easily. Thus, it is reasonable to hypothesize that 

there was a much stronger interaction between the Ni nanoparticles and the porous γ-Al2O3 

support for ALD Ni/γ-Al2O3 catalyst, as compared to the ALD Ni/NP-Al2O3 catalyst. After 

60 hours of reaction at 850 °C, the methane conversion decreased from 89% to 73%. The 

methane conversion decreased to 52% after the reaction temperature decreased to 800 °C 

and further decreased with an increase in the reaction time (from 52% to 45% after 50 

hours). When the reaction temperature decreased to 750 °C, the methane conversion 

decreased to 28%, and decreased further to 22% in 50 hours. The reaction temperature was 

then decreased to 700 °C, and the methane conversion decreased to 11%, and decreased 

further to 9% in only 5 hours. It is believed that the decreases in catalytic activity at each 

temperature resulted from both the sintering of Ni nanoparticles and coking on the catalyst. 

Clearly, the activity and stability of ALD Ni/NP-Al2O3 were much lower than those of the 

ALD Ni/γ-Al2O3 catalyst, indicating that porous γ-Al2O3 (as compared to dense alumina 

nanoparticles support) was a better support for the Ni catalyst in the DRM reaction. 

Between each cycle, the catalyst was regenerated following the same procedures 

mentioned above. In the second and third cycles, the methane conversion increased at the 

beginning of each reaction, indicating that activation was needed for the catalyst after 

regeneration. The catalyst showed similar results, as compared to the first cycle. The 

decreases in catalytic activity at each temperature resulted from the coking of the catalyst. 
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The reasons why the catalyst was activated at the beginning of the second and third cycles 

will be discussed in a later section. The average size of Ni nanoparticles increased from 3 

nm to ~37 nm after three cycles of the DRM reactions (Fig. S3). As shown in the TEM 

image, the alumina nanoparticle supports were sintered to form a larger particle support. 

The dependence of catalyst coking and Ni nanoparticles sintering on the reaction 

temperature was also verified (Fig. S4). The sintering of Ni nanoparticles was more severe 

at 850 °C, as comparted to 700 °C, but coking happened under both temperatures. The 

DTG results (Fig. S5 and Fig. S6) showed no obvious coke content on the catalyst due to 

the low content of coke. Carbon nanotubes were observed on the catalyst used at 850 °C 

(Fig. S7). The corresponding methane reforming rates of the second cycle of the DRM 

reaction are shown in Table 2. In each cycle, the methane reforming rate at 700 °C was 

about 190 Lh-1gNi
-1, which was lower than the result of about 700 Lh-1gNi

-1 reported by 

Gould et al. [30]. The reason for the lower catalytic activity was believed to be the sintering 

of Ni nanoparticles in a series of reactions at much higher temperatures, before the reaction 

at 700 °C. To verify this, another reaction was carried out (directly after the reduction at 

700 °C without running at higher temperatures) employing ALD Ni/NP-Al2O3 as the 

catalyst at 700 °C. The result was similar to Gould’s result (Fig. S8), and the methane 

reforming rate was also similar to Gould’s result (Table 2). 
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Fig. 2. Methane conversion of dry reforming of methane catalyzed by IW Ni/γ-Al2O3 at 

different temperatures. 

 

 

Based on this series of experiments, it was clear that the ALD Ni nanoparticles were 

much more active than the Ni nanoparticles synthesized by the IW method. Also, the 

porous γ-Al2O3 supported ALD Ni nanoparticle catalyst showed higher activity and greater 

stability, as compared to the dense alumina supported ALD Ni nanoparticle catalyst. The 

higher activity of the porous γ-Al2O3 supported catalyst could have been due to a larger 

number of Ni-Al2O3 interfacial sites formed between the Ni nanoparticles deposited inside 

the cavities of the porous alumina support, as compared to those of the dense alumina 

supported catalyst. The greater stability could have been due to the porous structure of the 

support, which could limit the sintering of the Ni nanoparticles and, thus, inhibit coking 

during the reaction. Another reason for the greater stability could have been the stronger 

Ni-support interaction formed by depositing Ni nanoparticles on the porous support, as 

compared to that of the dense substrates. Similar phenomena have also been reported. Gao 
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et al. [37] found that the Ni nanoparticles deposited inside the cavities of the Al2O3 

nanotubes could form more Ni-Al2O3 interfacial sites and stronger Ni-Al2O3 interactions, 

which showed higher catalytic activity and greater stability in catalyzing hydrogenation of 

cinnamaldehyde, as compared to that of the Ni nanoparticles deposited on the outside wall 

of the Al2O3 nanotubes by ALD. The increase in the catalytic activity of the ALD Ni/γ-

Al2O3 catalyst at the beginning of the DRM reaction at 850 °C indicated that an activation 

period was needed to reduce the Ni catalyst from NiO or NiAl2O4 to Ni. This indicated that 

the catalysts can be activated at a high temperature first, and then high catalytic activity 

can be achieved at a lower reaction temperature (e.g., 700 °C). 

The ALD Ni/γ-Al2O3 catalyst was first activated by running the DRM reaction at 

850 °C for 10 hours, and then the reaction temperature was directly decreased to 700 °C 

(Fig. 4). The catalyst showed activity in catalyzing the DRM reaction. In contrast, no 

conversion was observed for the same catalyst (after the standard reduction process) when 

directly employed to catalyze the DRM reaction at 700 °C. This means that the ALD Ni/γ-

Al2O3 catalyst can be activated by the DRM reaction at 850 °C. Between each cycle, the 

catalyst was regenerated. In the second and third cycles, the methane conversions increased 

at the beginning of the reaction, which indicated that the catalyst had not been fully 

activated in the previous cycles of reactions. In the third cycle, the catalyst took a shorter 

time to recover, as compared to recovery in the second cycle. This could have been due to 

the fact that the catalyst was further activated in the second cycle. Compared to the results 

of the first batch of the catalyst (Fig. 1), the initial activity at 700 °C in the third cycle of 
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the catalyst was higher, but the conversion decreased more quickly with increased reaction 

time. The reason for the decrease in conversion should not have been the sintering of Ni 

nanoparticles, since the methane conversion at 700 °C did not decrease much during the 

first two cycles. This decrease would have been due to the fact that the catalyst was not 

fully activated. These results supported our hypothesis that catalysts can be activated at a 

high temperature, and high catalytic activity can be achieved at a lower reaction 

temperature. 

 

 

 

Fig. 3. Methane conversion of dry reforming of methane catalyzed by ALD Ni/NP-Al2O3 

at different temperatures. 
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Fig. 4. Methane conversion of dry reforming of methane catalyzed by ALD Ni/γ-Al2O3 at 

700 °C and 850 °C. 

 

 

Chen et al. [38] previously reported that alumina supported Ni catalyst (calcined at 

750 °C) showed low activity at the beginning of a reaction carried out at 750 °C, but the 

activity increased with increased reaction time. They claimed that the increase in activity 

was due to the reduction of NiAl2O4 spinel by hydrogen produced from the DRM reaction. 

However, from their H2-TPR results, NiAl2O4 spinel can hardly be reduced by hydrogen 

at 750 °C. Thus, the mechanism of catalyst activation should not be the reduction of 

NiAl2O4 spinel by hydrogen alone. To verify this, the ALD Ni/γ-Al2O3 catalyst was 

reduced in 20% H2 and 80% Ar (with a total flow rate of 100 sccm) at 850 °C for 10 hours. 

It was reported that NiO could be easily reduced under these reduction conditions [13]. The 

reduced catalyst was applied to catalyze a DRM reaction at 700 °C; however, no conversion 

was observed at 700 °C. This indicated that hydrogen could not reduce/activate the catalyst 

at 850 °C, and the amount of reduced Ni and NiO in this catalyst was very small. Thus, the 
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Ni content should be mainly NiAl2O4 spinel. The existence of NiAl2O4 spinel has been 

verified by XPS and H2-TPR in a later section. However, in the DRM reaction, the methane 

conversion reached 90% after reaction at 850 °C for 10 hours. This indicated that catalysts 

can be activated more easily in a mixed gas atmosphere of reaction products (e.g., H2 and 

CO), since the DRM product at 850 °C was mainly H2 and CO. 

To investigate and determine the role of gases in catalyst activation, a catalyst was 

reduced in different gases and then employed for a DRM reaction. First, one batch of a 

fresh catalyst was reduced in 16% H2, 20% CO (H2/CO ratio was similar to the gas mixture 

of H2 and CO in the product of DRM at 850 °C) and 64% Ar (with 100 sccm of total flow 

rate) at 850 °C for 10 hours. The catalyst was employed to catalyze the DRM reaction at 

700 °C. The initial conversion was 22%, but decreased quickly to 7% in 4 hours (Fig. S9). 

This indicated that the mixture of H2 and CO was a better activator than H2 alone. After 4 

hours of reaction at 700 °C, the reaction temperature was increased to 850 °C, and the 

conversion increased to 94% after about 30 hours. The methane conversion at 700 °C, 

which was lower than that shown in the first batch (Fig. 1), kept decreasing. This could 

have been due to the fact that 10 hours may not have been long enough for the reduction 

of the catalyst, or because the amounts of H2 and CO introduced were not enough for the 

reduction process, or both. After the catalyst was regenerated, it was applied for use in the 

DRM reaction at 700 °C. The methane conversion was higher than that in the first cycle, 

indicating that the catalyst had been further activated during the first cycle of reaction at 

850 °C. The fresh catalyst was also reduced in methane and the reduced catalyst showed 
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activity in catalyzing a DRM reaction (Fig. S10). However, the methane conversion was 

very low (lower than 2%), indicating that the methane was also a reducing agent of the 

catalyst, but it was not as good as the mixture of hydrogen and carbon monoxide. It has 

been demonstrated that the NiAl2O4 spinel can be reduced by the carbon formed on the 

surface at a relative high temperature in a chemical-looping combustion reaction [39]. In 

this study, it is possible that the reduction of NiAl2O4 spinel in the mixed gases atmosphere 

of the reaction could have been partly the result of the carbon that formed on the catalyst 

surface from a Boudouard reaction (2CO ⇌ CO2+C) and a methane decomposition reaction 

(CH4 → 2H2+C). 

3.2. Catalysts Characterization. ICP-AES results showed that the Ni loadings of 

ALD Ni/γ-Al2O3 and ALD Ni/NP-Al2O3 catalysts were both 0.97 wt. %. The Ni loading 

of the IW Ni/γ-Al2O3 sample was 1.15 wt. %. Fig. 5 shows the TEM image of the ALD 

Ni/NP-Al2O3 sample and the size distribution of Ni nanoparticles (inset image). The 

average Ni nanoparticle size was 3.6 nm, which was similar to the value reported by Gould 

et al. [30]. Clearly, the Ni nanoparticles were distributed uniformly on the alumina 

nanoparticle substrate. It is reasonable to expect that the average size of Ni nanoparticles 

deposited by ALD on porous γ-Al2O3 substrate would also be about 3.6 nm. In contrast, 

the size of Ni particles prepared by the IW method were normally much larger, typically 

by tens of nanometers [22-24]. 
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Fig. 5. TEM image of an ALD Ni/NP-Al2O3 catalyst. The inset image shows the size 

distribution of Ni nanoparticles. 

 

 

To further verify the effect of the activation of a catalyst on DRM reaction activity, 

we investigated the Ni redox status of the catalyst before and after reduction. The ALD 4-

Ni/γ-Al2O3 sample was first oxidized in air at 550 °C for 1 hour, and then reduced at 850 

°C in 45% H2 and 55% CO (with a total flow rate of 100 sccm) for 20 hours and 120 hours, 

respectively. XPS and XRD tests were applied to these four as-deposited, oxidized and 

reduced samples. Fig. 6 shows high resolution Ni (2p) XPS spectra of the ALD 4-Ni/γ-

Al2O3 catalyst before and after being heated at 550 °C for 1 hour. Metallic Ni was observed 

in the as-deposited ALD 4-Ni/γ-Al2O3 at 852.8 eV and 853.5 eV [40, 41]. The NiAl2O4 

spinel was observed at 856.2 eV [42, 43], and the peak at 861.5 eV represented NiO [44]. 
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The formation of the NiAl2O4 increased the interaction between Ni nanoparticles and the 

γ-Al2O3 support. The strong interaction between Ni and alumina support improved the 

dispersion of Ni and retarded the sintering of Ni nanoparticles [38, 45]. This was the reason 

for the high activity and thermal stability of ALD Ni/γ-Al2O3. For the oxidized sample, the 

metallic Ni could not be observed, while the peaks of NiO and NiAl2O4 became stronger. 

This indicated that the metallic Ni oxidized to NiO and NiAl2O4 during the oxidation 

process. Compared to the as-deposited sample, the carbon peak of the oxidized sample was 

weaker, indicating the removal of the residual organic component from the Ni ALD process 

(Fig. S11). After the oxidized sample was reduced in a mixture of H2 and CO for 120 hours, 

the Ni signal could not be detected by XPS. This was due to the fact that the Ni 

nanoparticles were coated by carbon formed from the Boudouard reaction. This was also 

verified by high resolution C (1s) XPS analysis (Fig. S11), since the carbon peak was 

significantly stronger after reduction. Metallic Ni could be observed by XRD in both 

reduced samples (Fig. S12). Based on the XPS and XRD results, it was verified that the 

NiAl2O4 spinel was formed during the ALD process and the spinel could be reduced in a 

mixture of CO and H2 at 850 °C. 

The samples were also analyzed by H2-TPR. The ALD Ni/γ-Al2O3 and ALD 

Ni/NP-Al2O3 samples were oxidized at 550 °C for 1 hour before the TPR test. As shown 

in Fig. 7, the H2-TPR result of the ALD Ni/γ-Al2O3 sample analysis showed hydrogen 

consumption at four temperatures. The peak at 280 °C was attributed to free NiO, since the 

reduction temperature of a commercial NiO was reported to about 300 °C [46]. The peak 
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at 570 °C represented the reduction of NiO that interacted with the support. Previous 

studies had indicated that the reduction peak of NiO that interacted with the support 

appeared to be within a range of 500-700 °C [47]. Generally, the reduction peak of 

stoichiometric NiAl2O4 spinel should be higher than 800 °C; therefore, a peak at 780 °C in 

this study could be due to the reduction of non-stoichiometric nickel aluminate [46, 48]. 

The hydrogen consumption near 900 °C was due to reduction of the stoichiometric NiAl2O4 

spinel, and the peak kept increasing until 900 °C. However, due to limitations of the 

instrument, a higher temperature H2-TPR test could not be processed. Therefore, the 

amount of the NiAl2O4 could not be determined by a H2-TPR test. As we know, NiO can 

be reduced at 700 °C, so, it was reasonable to expect that all NiO in the ALD Ni/γ-Al2O3 

could be reduced at 700 °C. However, the catalyst that reduced at 700 °C showed no 

activity in catalyzing a DRM reaction at 700 °C, as we discussed earlier. Therefore, the 

amount of NiO in the catalyst should have been very small and the majority of Ni in the 

ALD Ni/γ-Al2O3 catalyst should have been in the format of NiAl2O4. Thus, we concluded 

that the activation of the ALD Ni/γ-Al2O3 catalyst was due to the reduction of NiAl2O4 

spinel to metallic Ni in the mixed gases atmosphere of the DRM reaction. Some NiAl2O4 

spinel may have formed again during the regeneration process, since the NiAl2O4 spinel 

could form by calcining the catalyst at 600 °C in the presence of O2 [49]. This could be the 

reason why the methane conversion increased at the beginnings of the second and third 

cycles of the DRM reactions catalyzed by ALD Ni/NP-Al2O3. 
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Fig. 6. High resolution XPS spectra of nickel (2p) of the as-deposited ALD 4-Ni/γ-Al2O3 

sample, and the sample oxidized at 550 °C for 1 hour. 

 

 

H2-TPR tests were also employed for the IW Ni/γ-Al2O3 and ALD Ni/NP-Al2O3 

samples. As shown in Fig. 7, for the ALD Ni/NP-Al2O3 sample, the peak at 280 °C was 

attributed to the reduction of free NiO. The peak for the reduction of NiO that interacted 

with the support at 500 °C was lower than that for the ALD Ni/γ-Al2O3 catalyst (570 °C). 

This have been due to the different morphology of the substrates. There would be more 

interaction between the Ni nanoparticles and the porous alumina support (concave surface), 

compared to the case of dense alumina particle support (convex surface). The reduction of 

NiAl2O4 spinel can be observed at 860 °C. This temperature was also lower than that of 

the ALD Ni/γ-Al2O3 catalyst, which indicated weaker interaction between Ni nanoparticles 

and the catalyst support. The ALD Ni/NP-Al2O3 catalyst showed an activity decrease 
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during the reaction, which was due to the fact that NiO could be easily reduced to metallic 

Ni during the reduction process, and the Ni nanoparticles were easier to get sintered, as 

compared to the catalysts supported on a porous substrate. 

 

 

 

Fig. 7. H2-TPR results of ALD Ni/γ-Al2O3, IW Ni/γ-Al2O3, and ALD Ni/NP-Al2O3 

catalysts. 
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spinel, respectively. The lower reduction temperature of NiAl2O4 spinel indicated the 

weaker interaction between the Ni nanoparticles and the catalyst support as compared to 

the ALD Ni/γ-Al2O3 catalyst. The amount of the NiAl2O4 spinel was not much, as 

compared to NiO. During the catalytic reactions, it was found that the catalyst still needed 

a short activation period. This could have been due to the existence of NiAl2O4 spinel, 

which was not reduced during the reduction process at 700 °C, but it could have been 

reduced during the DRM reaction. 

Ni in the format of NiAl2O4 is not as reactive as metallic Ni for a DRM reaction 

[38]. In most of the previously reported studies, the Ni/Al2O3 catalysts were reduced in H2 

at a relatively low temperature [35, 36, 38]. There was a high possibility that only NiO was 

reduced, but not the NiAl2O4 spinel. In the study of Gould et al. [30], the catalyst coated 

with five cycles of alucone MLD showed a higher steady-state methane reforming rate and 

better stability, as compared to the uncoated catalyst. More Ni-Al2O3 interfacial sites could 

be formed after the deposition of porous alumina films on the alumina nanoparticles 

supported the Ni catalyst and, thus, increased the interaction of Ni and alumina. This could 

be the reason why the coated catalyst prepared by Gould et al. showed higher steady-state 

activity. Even though it is well known that alumina is a better support for the Ni catalyst in 

high temperature DRM applications, due to the fact that the formation of NiAl2O4 could 

help improve the dispersion of Ni and retard the sintering of Ni nanoparticles, no report 

investigated the activation mechanism of the catalyst in the DRM reaction. Our study 
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further verified that the activation/reduction of the Ni catalyst was very important for 

catalytic activity. 

 

4. CONCLUSION 

Ni nanoparticles were loaded on both dense alumina nanoparticles and porous 

alumina substrates. The ALD synthesized porous γ-Al2O3 supported Ni nanocatalyst 

showed both high activity and stability in the DRM reaction. The porous alumina substrate 

was demonstrated to be a better support for the DRM reaction, as compared to the dense 

alumina nanoparticles in terms of activity and stability. NiAl2O4 spinel was formed after 

Ni nanoparticles were deposited on the porous γ-Al2O3 by ALD. NiAl2O4 spinel could be 

reduced to metallic Ni in the DRM reaction process by CO and H2 in the product of the 

DRM reaction, which could greatly increase catalyst activity. Methane, or the mixture of 

H2 and CO, can reduce NiAl2O4 to Ni at 850 °C, but hydrogen alone cannot. This study 

indicates that it is feasible to deposit highly dispersed and stable Ni nanoparticles on a 

porous γ-Al2O3 support and then reduce the catalyst with a mixture of H2 and CO to 

produce a highly stable and active catalyst for the DRM reaction. 
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SUPPLEMENTARY INFORMATION 

 

Ni ALD: Ni ALD was carried out using bis(cyclopentadienyl)nickel (NiCp2) and 

hydrogen as precursors at 300 °C in a fluidized bed reactor, as described in detail 

previously [1]. The solid NiCp2 precursor was loaded into a heated bubbler and carried by 

nitrogen gas into the reactor. Both dense alumina nanoparticles (BET surface area of 137 

m2/g) and porous γ-alumina particles (BET surface area of 95.5 m2/g) were used as 

substrates for Ni ALD and degassed under a nitrogen flow in the reactor before ALD 

reactions. The particle substrates were fully fluidized during precursor dose time and 

nitrogen flush time. By introducing the NiCp2 precursor into the reactor, the O-H bond of 

the hydroxyl groups on the substrate was replaced by an O-Ni bond, due to the reaction of 

the NiCp2 precursor with the OH groups. During the nitrogen purge step, the excess NiCp2 

precursor was removed to prevent a chemical vapor deposition reaction between the excess 

NiCp2 precursor and the incoming hydrogen gas. In the next step, hydrogen was introduced 

to remove organic ligands on Ni surfaces, and to regenerate the surface hydroxyl groups. 
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A nitrogen purge process was also applied to remove excess hydrogen. This is the so-called 

“one cycle of Ni ALD”. In this study, one cycle of Ni ALD was applied on both substrates, 

and the Ni loading was 0.97 wt. %. A longer Ni precursor dose time was used for porous 

γ-alumina particles. These two catalysts were labeled as ALD Ni/γ-Al2O3, and ALD 

Ni/NP-Al2O3, respectively. To obtain a better characterization result, a porous γ-Al2O3 

supported Ni catalyst, with a Ni loading of 4.0 wt. %, was synthesized using four cycles of 

Ni ALD and labeled as ALD 4-Ni/γ-Al2O3. 

Effect of reaction temperature on catalyst coking and Ni nanoparticles 

sintering: To study the effects of reaction temperature on catalyst coking and Ni 

nanoparticles sintering, the DRM reactions were carried out at two different temperatures. 

Fig. S4 shows the Ni nanoparticle size distribution of the ALD Ni/NP-Al2O3 catalyst after 

50 hours of DRM reaction at 700 °C (increased from ~3.6 nm to 13.5 nm) and after 50 

hours of DRM reaction at 850 °C (increased from ~3.6 nm to 19.0 nm), respectively. This 

indicated that the Ni nanoparticles were sintered at both 700 °C and 850 °C, and the 

sintering at 850 °C was more severe than that at 700 °C. The coking content was measured 

by derivative thermogravimetry (DTG) analysis. Fig. S5 shows the DTG results for the 

three samples (fresh catalyst, and catalysts used at 700 °C and 850 °C). The weight loss at 

about 250 °C for all three samples was attributed to the removal of physically bonded water. 

The slight weight loss at 580 °C could have been the expulsion of residual water, since this 

weight loss was observed for all three samples and, also, on γ-Al2O3 nanoparticles (Fig. 

S6). A weight loss at 700 °C could only be observed for the catalyst used at 850 °C. This 
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weight loss was the oxidation of filament carbon (e.g., carbon nanotubes). This result was 

consistent with the results of a TEM observation that carbon nanotubes could only be 

observed for the catalyst used at 850 °C (Fig. S7), but could not be observed for the catalyst 

used at 700 °C. The amorphous carbon on Ni nanoparticles was also observed for both 

catalysts by TEM, as shown in Fig. S4. After 50 hours of DRM reaction at 700 °C and 

850 °C, the average carbon thicknesses for Ni nanoparticles were about 1.7 nm and 2.3 nm, 

respectively. Thus, the amorphous carbon content could be estimated based on the coking 

thickness, the size of Ni nanoparticles, and the total loading of Ni nanoparticles. The 

content was lower than 0.25% for both samples. This could have been the reason that no 

amorphous carbon was detected by DTG analysis due to the content being too low. The 

coking on the catalyst was very light during the DRM reaction. Since the ALD Ni/γ-Al2O3 

catalyst showed a higher stability, as compared to the ALD Ni/NP-Al2O3 catalyst, it was 

reasonable to expect that the coking of ALD Ni/γ-Al2O3 catalyst would be even lighter than 

that of the ALD Ni/NP-Al2O3 catalyst. 

X-ray photoelectron spectroscopy (XPS) analysis: The XPS spectra were 

recorded with a Kratos Axis 165 X-ray photoelectron spectrometer using a monochromatic 

Al Kα radiation (hν = 1486.6 eV), at a take-off angle of 0°. The survey scan spectra and C 

(1s), Ni (2p) core level spectra were recorded at a pass energy of 80 eV and 20 eV, 

respectively. All binding energy values were corrected based on a C (1s) signal at 284.5 eV. 

Three samples were analyzed: as-deposited ALD 4-Ni/γ-Al2O3, oxidized ALD 4-Ni/γ- 
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Al2O3, and the oxidized sample reduced in 45% H2 and 55% CO (with a total flow rate of 

100 sccm) at 850 °C for 120 hours. 

X-Ray diffraction (XRD) analysis: Powder XRD spectra were recorded by a 

Philips X-Pert Multi-purpose Diffractometer, using Cu Kα 1 radiation (λ=0.15416 nm) at 

45 kV tube voltage, and 40 mA tube current with a scanning speed of 1.5°/min between 5° 

and 90° 2θ. Four samples were analyzed: as-deposited ALD 4-Ni/γ-Al2O3, oxidized ALD 

4-Ni/γ-Al2O3, and the oxidized sample reduced in 45% H2 and 55% CO (with a total flow 

rate of 100 sccm) at 850 °C for 20 hours and 120 hours, respectively. As shown in Fig. S12, 

the spectra of the as-deposited ALD sample and the sample oxidized at 550 °C showed 

almost no difference, and did not conclusively demonstrate the existence of NiO and 

NiAl2O4. The XPS results verified the existence of NiAl2O4 spinel in the ALD prepared Ni 

nanoparticle catalyst supported on porous γ-alumina particles (discussed in the main 

manuscript). After 20 hours of reduction in 45 % H2 and 55% CO (with a total flow rate of 

100 sccm), metallic Ni peaks were observed (44.5°, 51.8°, and 76.3°) [2, 3]. After the 

sample was reduced for 120 hours, higher Ni peaks were observed. The new peaks at 31.9°, 

34.8°, 38.7°, and 56.2° of the reduced samples were from an orthorhombic crystal system 

of alumina, indicating the phase change of alumina support after reduction at 850 °C [4]. 

The peaks at 29.3° and 48.5° of the reduced samples were from nickel carbide [5], which 

was due to the carbon formation from the Boudouard reaction (2CO ⇌ CO2+C). The strong 

peaks at 26.3° and 65° for the sample reduced for 120 hours were from SiO2 [6], since  
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quartz fiber was applied to support the catalyst in the reduction process and some quartz 

fiber may have been mixed with the sample. 
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Fig. S1. Catalyst nanoparticles supported on (a) convex surface and (b) concave surface. 

There is more interfacial contact between nanoparticles and the concave surface, as 

compared to the case of a convex surface. 

 

 

(a) (b) 



114 
 

 

Fig. S2. Photo of fresh and used ALD Ni/γ-Al2O3 catalysts. The white particles in the 

used catalyst are quartz sands, and the darker color is from coking. 

 

 

 

Fresh Used 
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Fig. S3. TEM image of an ALD Ni/NP-Al2O3 catalyst after three cycles of DRM 

reactions. The inset image shows the size distribution of Ni nanoparticles. The alumina 

nanoparticles supports were sintered to form larger particles. 
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Fig. S4. TEM images of an ALD Ni/NP-Al2O3 catalyst (a) after 50 h of DRM reaction at 

700 °C and (b) after 50 h of DRM reaction at 850 °C. The inset figures show the size 

distributions of Ni nanoparticles. 
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Fig. S5. DTG analysis of a fresh ALD Ni/NP-Al2O3 catalyst and the catalysts used at 

700 °C for 50 h and at 850 °C for 50 h, respectively. 

 

 

 

Fig. S6. DTG analysis of γ-Al2O3 nanoparticles. 
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Fig. S7. TEM images of an ALD Ni/NP-Al2O3 catalyst after 50 h of DRM reaction at 

850 °C. Carbon nanotubes can be observed on the catalyst used at 850 °C. 

 

 

 
Fig. S8. Methane conversion of dry reforming of methane catalyzed by ALD Ni/NP-

Al2O3 at 700°C. The ALD Ni/NP-Al2O3 catalyst was reduced at 700 °C for 1 h and then 

directly used for DRM at 700 °C. 
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Fig. S9. Methane conversion of dry reforming of methane catalyzed by an ALD Ni/γ-

Al2O3 catalyst reduced by carbon monoxide and hydrogen mixture. The fresh ALD Ni/γ-

Al2O3 catalyst was reduced in 16% H2, 20% CO (H2/CO ratio was similar to the gas 

mixture of H2 and CO in the product of DRM at 850 °C) and 64% Ar (with a total flow 

rate of 100 sccm) at 850 °C for 10 h. 

 

 

 

Fig. S10. Methane conversion of dry reforming of methane catalyzed by methane reduced 

ALD Ni/γ-Al2O3. The fresh ALD Ni/γ-Al2O3 catalyst was reduced in 20% CH4 and 80% 

Ar (with a total flow rate of 100 sccm) at 850 °C for 10 h. 
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Fig. S11. High resolution XPS spectra of carbon (1s) of as-deposited ALD 4-Ni/γ-Al2O3 

sample and the sample oxidized at 550 °C before and after reduction. 

 

 

 

Fig. S12. XRD spectra of as-deposited ALD 4-Ni/γ-Al2O3 sample and the sample first 

oxidized at 550 °C and then reduced at 850 °C for different lengths of time. 
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ABSTRACT 

A nickel (Ni) nanoparticle catalyst, supported on 4-channel α-Al2O3 hollow fibers, 

was synthesized by atomic layer deposition (ALD). Highly-dispersed Ni nanoparticles 

were successfully deposited on the outside surface and inside porous structure of hollow 

fibers. The catalyst was employed to catalyze dry reforming of methane (DRM) reaction 

and showed a methane reforming rate of 2040 Lh-1gNi
-1 at 800 °C. NiAl2O4 spinel was 

formed when Ni nanoparticles were deposited on alpha-alumina substrates by ALD, which 

could enhance the Ni-support interaction. Different cycles (2, 5, and 10) of Al2O3 ALD 

films were applied on the Ni/hollow fiber catalysts to further improve the interaction 

between the Ni nanoparticles and the hollow fiber support. Both the catalyst activity and 

stability were improved with the deposition of Al2O3 ALD films. Among the overcoated 

catalysts, the catalyst with 5 cycles of Al2O3 ALD showed the best performance. 

Topical Heading: Reaction Engineering, Kinetics and Catalysis 

Keywords: atomic layer deposition (ALD), nickel nanoparticles, dry reforming of methane 

(DRM), hollow fiber 
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1. INTRODUCTION 

The dry reforming of methane (DRM, CH4+CO2 →  2H2+2CO), has been 

proposed as an important reaction for the utilization of carbon dioxide. In this reaction, 

syngas (carbon monoxide and hydrogen) is produced and can be employed in 

Fischer−Tropsch synthesis (FTS) to produce liquid hydrocarbons, or converted to methanol 

or dimethyl ether in catalytic processes.1,2 The H2/CO ratio of syngas produced by the DRM 

reaction is lower than 1 due to the accompanied reverse water-gas shift reaction (CO2+H2 

⇌ CO+H2O). Such syngas is suitable for FTS reaction to produce chemicals with high 

values, since the lower H2/CO ratio in the feedstock gas could lead to a higher selectivity 

of C5+ in the products of FTS.3,4 Nickel-based catalysts5,6 were popularly investigated for 

DRM because of the relatively low cost and adequate availability. The main drawback of 

Ni-based catalysts for industrial application is the deactivation of the catalyst caused by 

coking and/or sintering.7 It is highly desirable to develop a coking- and sintering-resistant 

Ni-based catalyst. 

The formation of NiAl2O4 spinel is favorable in reducing the coking and retarding 

the sintering.8,9 Therefore, alumina was widely employed as catalysts support for DRM 

reactions. Atomic layer deposition (ALD), has been reported to prepare Ni nanoparticles 

for DRM reactions. Gould et al.10 deposited Ni nanoparticles (~3 nm) on nonporous γ-

Al2O3 nanoparticles for DRM reaction. Our recent work revealed that the interaction 

between the alumina support and the ALD Ni nanoparticles was the key for the high activity 

and stability of ALD Ni nanoparticles for DRM reaction.11 The formation of NiAl2O4 spinel 
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increased the thermal stability of the catalyst, and partial reduction of NiAl2O4 spinel to 

metallic Ni under the reductive atmosphere in DRM reaction at 850 °C greatly increased 

the catalytic activity.11 

Though γ-Al2O3 was widely used as support for Ni-based catalysts, it is not suitable 

for the methane reforming process due to phase transformation at elevated temperatures, 

which also accompanies with coarsening and marked decrease in surface area.12,13 Among 

different phases of Al2O3, α-Al2O3 is the most thermally and mechanically stable phase, 

which makes it more suitable for industrial applications. α-Al2O3 has been employed to 

prepare industrial packed bed catalyst support.14 The packed bed reactor has advantages of 

reduced surface area loss caused by attrition, and low maintenance and operation cost. The 

geometric surface area to volume ratio of the industrial catalyst is a major factor, which 

affects the catalyst activity. Therefore, development of strong shaped catalyst with a large 

surface area and voidage is highly desirable. Ceramic hollow fiber has high packing density 

due to its high surface area per unit volume, which is important for the catalysts in industrial 

process.15,16 Generally, it is relatively hard to form NiAl2O4 spinel on α-Al2O3 supported 

Ni catalysts.17 In this report, we deposited highly dispersed Ni nanoparticles on a novel 

four-channel α-Al2O3 hollow fibers with geometric surface area to volume as high as 3,000 

m2/m3 by ALD and applied this catalyst for DRM reaction. The 4-channel hollow fiber had 

a higher surface area per unit volume and mechanical strength than conventional single-

channel ceramic hollow fibers and some other conventional industrial catalyst supports. To 

increase the interaction between Ni nanoparticles and α-Al2O3 hollow fibers, a few cycles 
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of alumina ALD were applied. The Ni catalyst supported on α-Al2O3 hollow fiber had 

higher catalytic activity than the previously reported ALD Ni/γ-Al2O3 catalyst in DRM 

reaction under the same operation conditions. 

 

2. EXPERIMENTAL 

2.1. Catalyst Preparation. The synthesis of 4-channel α-Al2O3 hollow fibers 

(Figure 1) was described in detail elsewhere.18 Ni nanoparticles were deposited by ALD 

using bis(cyclopentadienyl)nickel (NiCp2, Alfa Aesar) and hydrogen as precursors in a 

viscous flow reactor at 300 °C. The solid NiCp2 precursor was loaded into a heated bubbler 

and carried by nitrogen gas into the ALD reactor. Five cycles of Ni ALD were applied on 

the α-Al2O3 hollow fibers and the catalyst was labeled as Ni/α-Al2O3-HF. In addition, we 

also attempted to coat Al2O3 thin films onto the Ni/α-Al2O3-HF by ALD in the same reactor 

at 177 °C using trimethylaluminum (TMA, Sigma-Aldrich) and water as precursors to 

increase the interaction between the Ni nanoparticles and alumina catalyst support. In that 

case, different cycles (2, 5, and 10) of Al2O3 ALD films were coated on the Ni/α-Al2O3 HF 

catalyst. The catalysts were labeled as 2Al2O3-Ni/α-Al2O3-HF, 5Al2O3-Ni/α-Al2O3-HF, and 

10Al2O3-Ni/α-Al2O3-HF, respectively. For the ease of characterization, another sample of 

Ni nanoparticles supported on nonporous α-Al2O3 nanoparticles (US Research 

Nanomaterials) was synthesized by applying 5 cycles of Ni ALD on the nonporous α-Al2O3 

nanoparticles in a fluidized bed reactor, as described in detail previously.19 This sample 

was labeled as Ni/α-Al2O3-NPs. To demonstrate that ALD is a better way to synthesize Ni 
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nanoparticles as compared to conventional impregnation method, another batch of Ni 

catalyst supported on four-channel α-Al2O3 hollow fibers was synthesized by impregnation 

method. The α-Al2O3 hollow fibers were added into an aqueous solution of Ni(NO3)2·6H2O 

(Fisher Chemical) and dried at 110 °C with continuously stirring. The sample was then 

calcined in air at 550 °C for 6 hours. This sample was labeled as IM-Ni/α-Al2O3-HF. 

 

 

 

Figure 1. Photos of four-channel structured α-Al2O3 hollow fibers. 

 

 

2.2. Dry reforming of Methane. DRM reactions were carried out in a quartz tube 

reactor (10 mm in diameter), and quartz wool was employed to support the catalyst. 

Different amount of catalysts for catalysts with different Ni contents were loaded into the 
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reactor to keep the Ni contents consistent (~0.73 mg). Hollow fiber supported catalysts 

were cut into short pieces (~1 cm in length) and stacked in the reactor tube. A thermal 

couple was employed to measure the reactor temperature. All catalysts were reduced for 

one hour in an atmosphere of 20% H2 and 80% Ar (with a total flow rate of 100 sccm) at 

700 °C before the DRM reaction. A mixture of methane and carbon dioxide (60 sccm, 

CH4/CO2=1:1) was introduced into the reactor at different temperatures for the DRM 

reaction. The gas flow rates were controlled by MKS® mass flow controllers. The catalysts 

were regenerated after certain length of reaction time and then applied to catalyze the DRM 

reaction again. In a typical regeneration process, the catalyst was first oxidized at 700 °C 

in 20% O2 and 80% Ar for one hour and then reduced in 20% H2 and 80% Ar at the same 

temperature for one hour. The reaction products were analyzed by an online gas 

chromatograph (SRI 8610C) equipped with a 6-foot HAYESEP D column, a 6-foot 

MOLECULAR SIEVE 13X column, and a thermal conductivity detector (TCD). 

2.3. Catalyst Characterization. Inductively coupled plasma-atomic emission 

spectroscopy (ICP-AES) was employed to investigate the Ni content of the catalysts. 

Transmission electron microscopy (TEM) was applied to observe the Ni nanoparticles. The 

specific surface areas of the catalysts were calculated using the Brunauer–Emmett–Teller 

(BET) method from the N2 adsorption isotherms of the catalysts obtained at -196 °C using 

a Quantachrome Autosorb-1. The Ni redox status and the interaction between the Ni 

nanoparticles and the alumina support was investigated by X-ray photoelectron 

spectroscopy (XPS). The XPS spectra were recorded with a Kratos Axis 165 X-ray 
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photoelectron spectrometer using a monochromatic Al Kα radiation (hν = 1486.6 eV), at a 

take-off angle of 0°. The C (1s), Ni (2p) core level spectra were recorded at a pass energy 

of 20 eV. All binding energy values were corrected based on C (1s) signal at 284.5 eV.  

 

3. RESULTS AND DISCUSSION 

3.1. Characterization of Ni Catalyst. Ni content is 0.12 wt.% after 5 cycles of Ni 

ALD deposited on the α-Al2O3 hollow fibers, determined by ICP−AES. The Ni loadings 

were 2.91 wt.% and 0.47 wt.% for Ni/α-Al2O3-NPs and IM-Ni/α-Al2O3-HF catalysts, 

respectively. Since it’s very difficult to prepare cross-sectioned samples of Ni/α-Al2O3-HF 

catalyst for TEM analysis, TEM was applied on the Ni/α-Al2O3-NPs particles (~80 nm in 

diameter). Figure 2 shows a TEM image of Ni/α-Al2O3-NPs catalyst. The black spots in 

the figure are Ni nanoparticles, and the inset figure shows an average Ni nanoparticle size 

of about 3.1 nm, which is close to the value reported by Medlin’s group20 and our previous 

work.11,21 It is reasonable to expect that the Ni nanoparticles deposited on the hollow fibers 

by ALD should have a similar particle size. 

Al-Megeren et al.14 compared different industrial catalysts for methane reforming 

and found out that the best catalyst was a 10-hole catalyst consisting of pure α-Al2O3, which 

showed a geometric surface area to volume ratio of 2,013 m2/m3 and a BET surface area 

of 3.0-3.5 m2/g. In this study, the BET surface area and the geometric surface area to 

volume ratio of the 4-channel α-Al2O3 hollow fiber were 4.76 m2/g and 3,000 m2/m3, 

respectively. The higher geometric surface area to volume ratio of the 4-channel structured 
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hollow fiber is due to the higher specific surface area. Since the geometric surface area is 

an important factor for the catalyst activity, the 4-channel hollow fiber is expected to be a 

better support for industrial methane reforming catalyst.14 As compared to conventional 

impregnation method, ALD was demonstrated to be a better method to prepare alumina 

supported Ni nanoparticle catalyst for DRM reaction due to the highly dispersed Ni 

nanoparticles and the formation of NiAl2O4 spinel during ALD.11 Therefore, it is 

anticipated that the ALD synthesized Ni/α-Al2O3-HF would show excellent performance 

for DRM reaction. 

 

 

 

Figure 2. TEM image of Ni nanoparticles deposited on nonporous alumina nanoparticles. 

The inset image shows the size distribution of Ni nanoparticles. 
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High resolution XPS on Ni (2p) was employed on the ALD (15 cycles) Ni 

nanoparticles supported on nonporous α-Al2O3 nanoparticles. As shown in Figure 3, a 

strong peak at 852.5 eV represents metallic Ni22 and the small peak at 855.8 eV represents 

NiAl2O4 spinel.23 Only little amount of NiO was observed at 861 eV.24 Typically, the 

NiAl2O4 spinel can be formed by calcination of Ni/alumina samples at a relative high 

temperature in the presence of oxygen. It was reported that NiAl2O4 spinel could be formed 

by calcining Ni/α-Al2O3 sample prepared by impregnation method at 1300 °C, but not at 

800 °C.17,25 However, in this study, NiAl2O4 was formed in the as-deposited Ni/α-Al2O3-

NPs by ALD. This was also observed in as-deposited ALD synthesized Ni/gamma-alumina 

catalysts, as reported in our previous study.11 Obviously, the synthesis of Ni nanoparticles 

using ALD technique would be different from some other conventional methods, such as 

impregnation method. The ALD synthesized Ni nanoparticles would have stronger 

interaction with the support due to the existence of NiAl2O4. 

3.2. Dry Reforming of Methane. The Ni/α-Al2O3-HF, Ni/α-Al2O3-NPs, and IM-

Ni/α-Al2O3-HF catalysts were employed to catalyze the DRM reaction, and the results are 

shown in Figure 4. The reaction catalyzed by Ni/α-Al2O3-HF was first carried out at 850 °C. 

The methane reforming rate was 2150 Lh-1gNi
-1 at the beginning and decreased with the 

increase in reaction time, which could be due to the sintering of Ni nanoparticles or the 

poisoning of the catalyst by some gas molecules or both. The methane reforming rate was 

later stabilized at 1970 Lh-1gNi
-1 after 36 hours of reaction. After the reaction temperature 

decreased to 800 °C, the methane reforming rate increased to 2060 Lh-1gNi
-1 and slightly 
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decreased to 2020 Lh-1gNi
-1 in 48 hours. The decrease of methane reforming rate at 800 °C 

was due to the further sintering of Ni nanoparticles or coking of the catalyst or both. The 

increase of methane reforming rate (after the reaction temperature decreased from 850 °C 

to 800 °C) was due to the sweep of Ar gas (the flow of CO2 and CH4 was stopped and only 

pure Ar was introduced into the reactor) when the reaction temperature decreased from 

850 °C to 800 °C. 

 

 

Figure 3. High resolution XPS spectrum of Ni (2p) of as-prepared Ni/alpha-alumina 

catalysts with 15 cycles of Ni ALD deposited on alpha-alumina nanoparticles. 

 

 

To confirm this, another two DRM reactions were carried out using the regenerated 

Ni/α-Al2O3-HF catalyst. One reaction was carried out at 850 °C for 48 hours and pure Ar 

was introduced into the reactor to flush the catalyst for 30 min at 850 °C and the DRM  
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Figure 4. Methane reforming rate of dry reforming of methane catalyzed by Ni/α-Al2O3-

HF, Ni/α-Al2O3-NPs, and IM-Ni/α-Al2O3-HF catalysts. 

 

 

reaction was carried out at 850 °C again. As shown in Figure 5a, the catalyst activity 

increased after the sweep of Ar. The other reaction was carried out at different temperatures 

(from 850 °C to 700 °C), but the mixture of CO2 and CH4 was kept passing through the 

reactor while decreasing the reaction temperature and the catalyst did not show an activity 

increase after the reaction temperature decreased from 850 °C to 800 °C (Figure 5b). From 

these sets of experiments, it is demonstrated that the increase of methane reforming rate of 

Ni/α-Al2O3-HF catalyst after the reaction temperature decreased to 800 °C (Figure 4) was 

due to the sweep of Ar. This could be due to the fact that the sweep of Ar at high 

temperatures could remove some poisonous gas molecules (e.g., CO) adsorbed on the 

active metal nanoparticles. This was further verified since the catalyst showed much lower 

activities at lower temperatures without Ar passing through while decreasing reaction 

temperature (Figure 5b). 
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Figure 5. Methane reforming rate of dry reforming of methane catalyzed by Ni/α-Al2O3-

HF: (a) after 48 hours of reaction at 850 °C, pure Ar flushed the catalyst for 30 min, and 

(b) at different temperatures, the mixture of methane and carbon dioxide (60 sccm, 

CH4/CO2=1:1) was kept passing through the reactor, while decreasing reaction 

temperatures. 

 

 

The methane reforming rate decreased to 1780 Lh-1gNi
-1 when the reaction 

temperature decreased to 750 °C and slightly decreased to 1760 Lh-1gNi
-1 in 48 hours. When 

the reaction temperature decreased to 700 °C, the methane reforming rate decreased to 

1070 Lh-1gNi
-1 and further decreased to 900 Lh-1gNi

-1 after 70 hours. This quicker decrease 
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of catalyst activity at 700 °C compared to that at 750 °C could be due to the fact that coking 

was more severe at 700 °C, since there would be heavier coking at lower temperatures.2 

To verify that the hollow fiber structure is beneficial for the catalyst performance, 

the Ni/α-Al2O3-NPs catalyst was also employed to catalyze DRM reaction at the same 

temperatures. As shown in Figure 4, the Ni/α-Al2O3-NPs catalyst showed a much worse 

performance than the Ni/α-Al2O3-HF catalyst. For example, the Ni/α-Al2O3-NPs catalyst 

showed an average methane reforming rate of 470 Lh-1gNi
-1 at 800 °C, which is more than 

1500 Lh-1gNi
-1 lower than that of the Ni/α-Al2O3-HF catalyst. The better performance of 

Ni/α-Al2O3 HF catalyst, as compared to Ni/α-Al2O3 NPs catalyst, should be due to the 

combined effect of the high spatial dispersion of Ni nanoparticles and the porous structures 

inside the hollow fiber, which could help limit the sintering of Ni nanoparticles. 

The results of DRM reaction catalyzed by IM-Ni/α-Al2O3-HF are also showed in 

Figure 4. The catalyst showed both lower activity and lower stability as compared to Ni/α-

Al2O3-HF. For example, the IM-Ni/α-Al2O3-HF catalyst showed an average methane 

reforming rate of 1230 Lh-1gNi
-1 at 800 °C, which is more than 800 Lh-1gNi

-1 lower than that 

of Ni/α-Al2O3-HF catalyst. This indicates that ALD is a better way to prepare Ni 

nanoparticles for DRM reaction than the conventional impregnation method. The IM-Ni/α-

Al2O3-HF catalyst showed better performance as compared to Ni/α-Al2O3-NPs, which 

could also demonstrate that the four-channel hollow fibers are better catalysts supports as 

compared to the nonporous α-Al2O3 nanoparticles. 
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These three reactions demonstrated that it is suitable to fabricate α-Al2O3 four-

channel hollow fiber supported Ni nanoparticle catalyst by ALD for methane reforming 

reactions. However, the Ni-support interaction of Ni/α-Al2O3 hollow fiber is not strong 

enough. Recently, it was demonstrated that an over-coating of alumina ALD films on Ni 

nanoparticles catalyst could increase the interaction between the Ni nanoparticles and 

alumina catalyst support.26 In this study, to increase Ni-support interaction, Ni/α-Al2O3-HF 

catalyst was coated with different thicknesses of alumina films by ALD. All three coated 

catalysts 2Al2O3-Ni/α-Al2O3-HF, 5Al2O3-Ni/α-Al2O3-HF, and 10Al2O3-Ni/α-Al2O3-HF 

were employed to catalyze the DRM reaction and the results are shown in Figure 6a. The 

DRM results of Ni/α-Al2O3-HF catalyst are also shown in Figure 6a for the ease of 

comparison. As shown in the figure, all three alumina coated catalysts showed an increase 

of methane reforming rates after reaction temperature decreased to 800 °C and only pure 

Ar was passing though the reaction when decreasing the reaction temperature for all 

reactions. This can further demonstrate the increase of activity of ALD Ni/hollow fiber 

catalyst after sweep of Ar is not accidental. Among these catalysts, the 2Al2O3-Ni/α-Al2O3-

HF catalyst showed the highest activity at 850 °C, and the methane reforming rate 

stabilized at 2040 Lh-1gNi
-1. The methane reforming rate slightly increased to 2165 Lh-1gNi

-

1 after the reaction temperature decreased to 800 °C and decreased to 2050 Lh-1gNi
-1 in 48 

hours. When the reaction temperature decreased to 750 °C, the methane reforming rate 

decreased to 1865 Lh-1gNi
-1, and further decreased to 1740 Lh-1gNi

-1 in 48 hours. The 

methane reforming rate decreased from 1250 Lh-1gNi
-1 to 690 Lh-1gNi

-1 in 48 hours at 700 °C.  
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Figure 6. Methane reforming rate of (a) first cycle and (b) second cycle of dry reforming 

of methane reactions catalysed by Ni/α-Al2O3-HF, 2Al2O3-Ni/α-Al2O3-HF, 5Al2O3-Ni/α-

Al2O3-HF, and 10Al2O3-Ni/α-Al2O3-HF. 
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The higher activities of 2Al2O3-Ni/α-Al2O3-HF catalyst at 850 °C, 800 °C, and 750 °C, as 

compared to those of the naked catalyst, are due to the fact that 2 cycles of Al2O3 ALD 

could improve the interaction between the Ni nanoparticles and the hollow fiber support, 

which could retard the sintering of Ni nanoparticles. The worse performance of 2Al2O3-

Ni/α-Al2O3-HF catalyst at 700 °C, as compared to that of the naked catalyst, could be due 

to the fact that coking was more severe for the 2Al2O3-Ni/α-Al2O3-HF catalyst at 700 °C. 

However, the exact reason is still not clear since the morphology of Ni nanoparticles could 

influence the coking resistance of the catalyst.27 

The 5Al2O3-Ni/α-Al2O3-HF catalyst showed slightly lower activity at beginning, as 

compared to that of the 2Al2O3-Ni/α-Al2O3-HF catalyst, but much higher stability through 

the whole reaction process. For the reaction catalyzed by the 5Al2O3-Ni/α-Al2O3-HF 

catalyst, the methane reforming rate was also decreased at the beginning of the reaction, 

and the result is similar to that of the reaction catalyzed by naked catalyst. The methane 

reforming rate also increased after the reaction temperature decreased to 800 °C. The 

methane reforming rate at 800 °C only slightly decreased from 2105 Lh-1gNi
-1 to 2095 Lh-

1gNi
-1 in 48 hours. When the reaction temperature decreased to 750 °C, the methane 

reforming rate decreased to 1835 Lh-1gNi
-1, and slightly decreased to 1815 Lh-1gNi

-1 in 48 

hours. The methane reforming rate decreased to 1220 Lh-1gNi
-1 after the reaction 

temperature decreased to 700 °C, and further decreased to 1110 Lh-1gNi
-1 in 48 hours. It 

was reported that the growth rate of alumina ALD is about 0.1-0.2 nm per cycle,28 so 5 

cycles of alumina films is less than 1 nm thick. Therefore, the enhanced performance of 
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the catalyst should not result from stabilization of Ni particles by alumina film 

encapsulation. The enhanced Ni-support interaction is the key. 

The lower activity of the 5Al2O3-Ni/α-Al2O3-HF catalyst at the beginning of the 

reaction compared to that of the 2Al2O3-Ni/α-Al2O3-HF catalyst indicates that 5 cycles of 

Al2O3 ALD may block some reactive sites. However, the 5Al2O3-Ni/α-Al2O3-HF catalyst 

showed much better overall performance as compared to the 2Al2O3-Ni/α-Al2O3-HF 

catalyst. This is due to the fact that 5 cycles of Al2O3 ALD worked better in retarding the 

sintering of Ni nanoparticles. Therefore, it can be concluded that stronger interaction 

between Ni nanoparticles and hollow fiber could be formed after 5 cycles of Al2O3 ALD, 

as compared to the case of 2 cycles of Al2O3 ALD. This can also be proved by the higher 

stability of the 5Al2O3-Ni/α-Al2O3-HF catalyst. The 5Al2O3-Ni/α-Al2O3-HF also showed a 

better performance at 700 °C as compared to the Ni/α-Al2O3-HF catalyst, which was due 

to the stronger interaction between the Ni nanoparticles and the catalyst support of the 

5Al2O3-Ni/α-Al2O3-HF catalyst. 

As shown in Figure 6a, the 10Al2O3-Ni/α-Al2O3-HF catalyst showed a higher 

activity and stability at 700 °C compared to the naked catalyst, indicating that the 

overcoating of 10 cycles of Al2O3 ALD still can improve the catalyst performance. 

However, the 10Al2O3-Ni/α-Al2O3-HF catalyst showed a lower activity and stability, as 

compared to the 5Al2O3-Ni/α-Al2O3-HF catalyst at 800 °C and 750 °C. This could be due 

to the fact that 10 cycles of Al2O3 ALD film was too thick and more reactive sites were 

blocked. 
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Table 1. Catalytic activities comparison of different catalysts in DRM reaction. 

Catalyst 

Methane reforming rate (Lh-1gNi
-1) 

850 °Ca 800 °C 750 °C 700 °Cb 

Ni/α-Al2O3-HF 1970 2040 1770 980 

2Al2O3-Ni/α-Al2O3-HF 2040 2120 1775 915 

5Al2O3-Ni/α-Al2O3-HF 1970 2100 1825 1160 

10Al2O3-Ni/α-Al2O3-HF 1970 2040 1750 1160 

ALD Ni/porous γ-Al2O3
11 1840 1740 1320 720 

Ni/MgAl2O4
29 N/A N/A 1300 N/A 

Inverse Ni/Al2O3 catalyst30 N/A 1500 N/A N/A 

ALD Ni/dense γ-Al2O3
10 N/A N/A N/A 700 

aThe methane reforming rates at 850 °C in this work are stabilized value after 48 hours 

of reaction. 
bThe methane reforming rates at 700 °C in this work are the average value of the reaction 

at the first 48 hours at 700 °C. 

 

 

The catalytic activities of different Ni-based catalysts are compared, as shown in 

Table 1. The hollow fiber supported ALD Ni nanoparticle catalyst showed a high methane 

reforming rate at lower temperatures even after a long time of reaction at higher 

temperatures. Compared to our previous results11 and the results reported by other groups, 

the 5Al2O3-Ni/α-Al2O3-HF catalyst demonstrated the best performance. Therefore, 5 
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cycles of Al2O3 ALD is an optimal Al2O3 ALD film thickness to enhance the catalyst 

performance. The high activity of the catalyst should attribute to the highly dispersed Ni 

nanoparticles deposited by ALD, and the strong interaction between the Ni nanoparticles 

and the support. 

All four catalysts were regenerated and employed to catalyze the DRM reactions 

again. The reactions were carried out at 850 °C for 48 hours and then the reaction 

temperature was directly decreased to 700 °C. For the reaction catalyzed by the Ni/α-

Al2O3-HF, the methane reforming rate at 850 °C was about 1810 Lh-1gNi
-1, which is 160 

Lh-1gNi
-1 lower than that in the first cycle (Figure 6b). This is probably due to the sintering 

of Ni nanoparticles during the first cycle of reaction. The methane reforming rate did not 

decrease in 48 hours for the reaction at 850 °C, indicating the high thermal stability of the 

catalyst. The catalyst activity at 700 °C was similar to that of the 1st cycle of reaction. The 

decrease of catalyst activity at 700 °C should be due to the coking of the catalyst.2 All three 

Al2O3 ALD overcoated catalysts gave 1870 Lh-1gNi
-1 of average methane reforming rates 

at 850 °C and there was almost no decrease in 48 hours of reaction. The decreases of 

methane reforming rate indicate that there was slightly sintering of Ni nanoparticles after 

reaction at 850 °C in the 1st cycle reactions for all three coated catalysts. The decreases of 

methane reforming rates for 5Al2O3-Ni/α-Al2O3-HF and 10Al2O3-Ni/α-Al2O3-HF catalysts 

were much lower compared to that of the naked catalyst, thus it is demonstrated that the 

alumina ALD overcoating could inhibit sintering of Ni nanoparticles. The catalysts 

overcoated with 5 and 10 cycles of alumina ALD showed much higher methane reforming 
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rate at 700 °C as compared to the naked catalyst in the 2nd cycle of reactions. This further 

verifies that the overcoating of Al2O3 ALD films is helpful for catalyst performance 

enhancement. 

 

4. CONCLUSION 

Highly dispersed nickel nanoparticles were deposited on the porous structure of 

alpha-alumina 4-channel hollow fibers by ALD. The Ni catalysts were used for DRM 

reactions and showed excellent performance due to the high dispersion of Ni nanoparticles 

and the strong interaction between Ni nanoparticles and the alpha-alumina support. Ultra-

thin alumina ALD films were deposited on the catalyst to further increase the catalyst 

activity and stability. It is believed that the improved performance of coated catalysts was 

resulted from the overcoating of alumina ALD films on the catalyst, which increased the 

interaction between the Ni nanoparticles and the support. The success of synthesizing these 

catalysts opens up a new strategy for preparing supported Ni catalysts for industry 

applications. 
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SECTION 

2. CONCLUSIONS AND FUTURE WORK 

2.1. CONCLUSIONS 

In this dissertation, ALD/MLD was employed to synthesize size-selective catalysts 

and supported Ni catalysts. Ultra-thin porous alumina shells were deposited on Pt/SiO2 

catalyst by oxidation of alucone MLD films to synthesize a novel size-selective catalyst. 

The thickness of porous alumina shells can be precisely controlled in nanometer scale by 

MLD. The average pore size of the porous shells was 0.6 nm. The porous shells could allow 

smaller molecules to pass through and access to the active sites, but prevent large molecules 

from accessing the active sites. The size-selective effect of the porous alumina shells was 

verified by liquid-phase hydrogenation of n-hexene and cis-cyclooctene, in which n-

hexene has a smaller molecule size as compared to cis-cyclooctene. The catalyst showed 

high selectivity in catalyzing hydrogenation of olefins. Importantly, the mass diffusion 

limitation was not significant due to the ultra-thin films. The success of depositing porous 

shells by oxidation of hybrid films deposited by MLD opens up a new method for preparing 

size-selective catalysts. However, the activity decreased after the deposition of porous 

shells due to the contact areas between the active sites and porous shells. 

An improved size-selective catalyst with an ultra-thin porous shell and gaps 

between metal nanoparticles and porous shells was synthesized. A sacrificial layer of thiol-

SAMs were selectively deposited on the surface of metal nanoparticles before the alucone 
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MLD films were deposited on catalyst surface. The thiol-SAMs and organic components 

in the alucone MLD films were removed by oxidation in air, and gaps and porous structures 

in the MLD films were formed. The selectivity and activity of the catalysts were tested by 

hydrogenation reactions of n-hexene and cis-cyclooctene. The new nanostructured catalyst 

showed high selectivity in catalyzing hydrogenation of olefins and higher catalytic activity 

as compared to that of the catalyst without gaps. Both size-selective catalysts with and 

without gaps were analyzed by CO-chemisorption to determine the Pt dispersion. The 

catalyst with gaps showed higher Pt dispersion as compared to the catalyst without gaps, 

which supported the conclusion that the introduction of gaps could effectively reduce the 

contact areas between the active sites and porous shells. The success of this gap-forming 

strategy provides a new method for retaining the activity of size-selective catalysts, 

especially those structures consisting of a metal core and a porous shell. 

Supported Ni nanoparticles were synthesized by depositing Ni nanoparticles on 

different substrates by ALD. Highly dispersed Ni nanoparticles (average particle size: 2.4 

nm) were deposited on porous silica gel particles. The synthesized Ni/silica gel catalysts 

can activate hydrazine hydrate as a reducing agent in the transfer hydrogenation of aromatic 

nitro compounds into the corresponding aromatic amines with high yield. The synthesized 

Ni/silica gel catalyst showed much higher activity as compared to some other catalysts 

prepared by conventional liquid-phase based methods. The Ni/silica gel catalyst can be 

recycled from the solution by a magnet since the catalyst was highly magnetic. The 

recycled catalyst was employed to catalyze hydrogenation of nitroarenes and still showed 
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high yield to corresponding aromatic amines. This work has extended the utility of a readily 

available catalyst (Ni/SiO2) toward new applications in catalysis and organic chemistry. 

Ni nanoparticles were also deposited on both nonporous gamma-alumina 

nanoparticles and porous gamma-alumina particles by ALD. The ALD synthesized porous 

γ-Al2O3 supported Ni catalyst showed both high activity and stability in catalyzing DRM 

reaction. The porous alumina supported catalyst showed better performance than 

nonporous alumina supported catalyst. NiAl2O4 spinel was formed after Ni nanoparticles 

were deposited on the porous γ-Al2O3 support by ALD, which were reduced to metallic Ni 

at 850 °C under the reductive atmosphere of DRM reaction, but could not be reduced by 

hydrogen alone at 850 °C. The formation of NiAl2O4 spinel greatly increased the catalyst 

stability due to the strong interaction between the Ni nanoparticles and porous γ-Al2O3 

support and the reduction of NiAl2O4 greatly increased the catalyst activity. 

Ni nanoparticles were also deposited on alpha-alumina NPs and alpha-alumina 

hollow fibers with four-channel configuration by ALD. Less NiAl2O4 spinel was formed 

on alpha-alumina NPs by ALD, as compared to the Ni NPs on γ-Al2O3 support by ALD. 

The synthesized catalysts were employed for DRM reaction and showed excellent 

performance. To increase the Ni nanoparticles and alpha-alumina support interaction, 

different thicknesses of ultra-thin alumina films were deposited on the Ni/hollow fiber 

catalyst by ALD, and the catalyst activity and stability were both improved by the 

overcoating of alumina ALD films. Among the overcoated catalysts, the catalyst with 5 

cycles of alumina ALD showed the best performance. It is believed that the overcoating of 
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alumina ALD films on the catalyst increased the interaction between the Ni nanoparticles 

and the support.  

 

2.2. FUTURE WORK 

 For the size-selective catalyst, the size-selective effects can be realized by the 

porous shells, and the contact areas between the active sites and porous shells can be 

reduced a lot by introducing gaps between them to maintain a high catalytic activity. 

However, this porous shell may not suitable for some other reactants since the average pore 

size is only 0.6 nm. In order to solve this problem, different MLD precursors can be 

employed for the deposition of hybrid films, since the pore size of the formed porous shells 

is related to the carbon chain length in the precursors. The relationship between the average 

pore size and carbon chain length in the precursors can be investigated to design porous 

shells for application of different reactions. In addition, the formed porous alumina shells 

are not stable in water, which limits the application of this porous shell. Porous titania shells 

can be employed for such size-selective reactions due to its better stability in water. 

For DRM reaction, even though the synthesized supported Ni nanoparticles catalyst 

showed excellent performance in catalyzing the DRM reaction, different methods still can 

be employed to further improve the catalyst performance. Bimetallic catalyst system is one 

important way to improve the catalyst performance. Different bimetallic systems (e.g., Ni-

Co, Ni-Pt, Ni-Rh, and Ni-Pd) catalysts can be employed for DRM reaction. Different 

methods, such as impregnation method and ALD, can also be employed to synthesize the 
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bimetallic catalysts. Catalysts with different metal ratios should be investigated to figure 

out the optimized metal ratios. In addition, different promoters (e.g., MgO, CaO, ZrO2, 

La2O3, and CeO2) can be applied on the supported Ni catalysts. The influence of the amount 

of promoters on catalyst performance should also be investigated to find out an optimized 

Ni-promoter ratio. 
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