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Optical Heterodyne Study of the Taylor Instability in a Rotating Fluid*

J. P. Gollub and Michael H. Freilich
Physics DePa&ment, Have+os College, Have+os, Pennsylvania 19041

(Received 16 September 1974; revised manuscript received 19 November 1974)

The Taylor instability in a rotating Quid confined between two cylinders has been inves-
tigated by light scattering. For rotation rates f asymptotically close to the critical rota-
tion rate f, we find that the amplitude of the ordered flow varies as (f f ) 'I+ —3. The
axial structure of the ordered flow is sinusoidal near f, but harmonics become substan-
tial for f-f, large. The main features of the Landau approach to hydrodynamic instabil-
ities are thus confirmed.

A number of recent papers' ' have discussed
the behavior of fluids near hydrodynamic instabil-
ities. One motivation for this work is the sugges-
tive analogy between fluid instabilities and sec-
ond-order phase transitions, both of which ex-
hibit an order parameter that grows from zero
in the neighborhood of a critical point. Another
is the hope of understanding the transition to tur-
bulence, which occurs by means of a succession
of progressively more complicated instabilities.
Most of the previous work has been concerned
with the Rayleigh-Bd'nard or convective instabili-
ty. %e have performed an experimental study of
the Taylor instability~ in a rotating fluid, and
find excellent agreement with the Landau pic-
ture" of hydrodynamic instabilities.

The Taylor instability occurs when a fluid is
confined between an outer stationary cylinder and
an inner rotating one. If the rotation rate f ex-
ceeds a critical value f, , the radial pressure
gradient and the viscous forces are not sufficient
to provide the required centripetal acceleration
of the fluid, and a new flow pattern perturbs the
z-independent Couette flow. Superimposed on the
original azimuthal flow Ve(r), there is now (Fig.
1) a toroidal roll pattern much like that of the
Rayleigh-Benard instability. Near f„ the veloc-
ity components V„and V, are of course quite
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FIG. 1. (a) Side view of the cylindrical apparatus and
light paths. The flow pattern shown schematically is
actually superimposed on a much faster azimuthal Qow
perpendicular to the page. The axis of the rotating cyl-
inder is along the g direction. (b) Top view showing
the method used to mix the scattered and reference
beams. Each arm is 80 cm long.
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small. If f is increased considerably beyond f, ,
there are further instabilities in which the vorti-
ces acquire circumferential waves, and eventual-
ly a transition to a turbulent state (nonperiodic in
time) occurs. The first instability is the subject
of this paper.

According to the Landau theory' and subsequent
work' one expects that just above f„ the radial
velocity should be of the form V„=A,(r, s) cos(k,z),
where e = (f—f,)/f, and the amplitude A, varies
as E"'. Fluctuations may influence this depen-
dence" for e &10 ', but this region is probably
not experimentally accessible. As c is increased
higher harmonics should appear as a result of the
the nonlinear terms in the Navier-Stokes equa-
tions, so that

V„=Q,A, (r, ~) cos(Pk,z).

The discussion above refers to the steady-state
situation. The response time of the system when
perturbed from equilibrium is expected to di-
verge as ~ -0+. The major new result of the
present work is the measurement of A~(e) for p
= 1, 2.

In order to study V„(r, z, e) we have utilized la-
ser light (5 mW at 5145 A) scattered at an angle
of 171' from the forward direction by a dilute sus-
pension of 2-p, m polystyrene latex spheres in wa-
ter, as shown in Fig. 1. The scattered light was
mixed with an unscattered but attenuated beam by
use of a Michelson-like interferometer, and the
power spectrum" of the photocurrent was ob-
tained from a real-time spectrum analyzer. The
power spectrum exhibits a peak approximately
200 Hz wide at a frequency in the range 0 to
10000 Hz. For our geometry the ratio of the lo-
cal radial velocity to the mean frequency of the
peak is 1.94&&10 ' cm sec 'Hz '. The scattering
volume was experimentally determined to be
about 1 mm long in the radial direction and 0.2
mm in the orthogonal directions.

The fIuid was contained between an inner black
aluminum cylinder of radius 1.555 cm, and a pre-
cision-bore Pyrex tube of inner radius 2. 540 cm.
The cylindrical region was 30 cm long, and was
temperature controlled to within 0.03'C. Temper-
ature control was necessary because f, changes
by 2% per degree because of the temperature de-
pendence of the kinematic viscosity of the fluid.
At 27.0'C, we found f, to be 0.0651+ 0.0002 Hz,
which is consistent with the predictions of Chan-
drasekhar. ' (A quantitative comparison is not
possible because the linear stability theory has
only been evaluated for special geometries in
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FIG. 2. Axial variation of the radial velocity for
(f-f, )/f, =0.014. The solid curve includes the funda-
mental term and a small second-harmonic term.

which the ratio R,/R, of radii either is —, or ap-
proaches unity. However, previous work" has
established the correctness of theoretical predic-
tions for f, and k, .) The rotation rate was mea-
sured electronically to an accuracy of 0.02% and
was constant to within 0.o4%.

The z dependence of V„was studied halfway be-
tween the inner and outer cylinders by translat-
ing the apparatus with the optics unchanged. In
Fig. 2 we present the results for a=0.014. The
maximum value of V„ is only 0.06VO, so that the
periodic structure is a fairly small perturbation
on the azimuthal flow. As predicted for small e,
the flow is nearly sinusoidal. However, there is
a small second-harmonic term, which can be de-
tected by the difference in magnitude of the posi-
tive and negative peaks. The amplitudes of the
fundamental and second-harmonic terms (ob-
tained by computer Fourier analysis) are A,
= 0.0155 cm/sec and A, = 0.0019 cm/sec, and the
solid curve shows that these two terms alone pro-
duce an excellent fit, with a fundamental wave
number k, =3.05 cm '. The product k]Rg is 7.75,
which can be roughly compared to Chandrasek-
har's prediction' k,R, =6.4 for the case R,/R, = &.

As e becomes larger, the second and higher
harmonies increase in importance relative to the
fundamental term, because of their dependence
on higher powers of e. In Fig. 3, we present V„(z)
for ~=0.465. Here the magnitude of V„has a
higher and sharper peak in the outward flowing
regions than in the inward flowing ones. We find
that three terms are necessary to produce a fit
to within the accuracy of the experiment, and the
amplitudes are A, = 0. 1030 cm/sec, A, = 0.0356
cm/sec, and As=0. 0072 cm/sec, The wave num-
ber k, is 3.20 cm ', and is independent of e over
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FIG. B. Axial variation of the radial velocity for
(f—f~)/f~=0. 465. The solid line includes the fundamen-
tal and the second- and third-harmonic terms.

the range 0&& &0.5 to within the precision of the
measureinents (5'%%uo). The precision is limited by
small thermally induced drifts in the flow pattern
near ~=0.

The dependence of the Fourier coefficients A~
on & is shown in Fig. 4, Points marked by a
cross were obtained by fixing the rotation rate,
allowing the system to equilibrate (which re-
quired at least 15 min when e &0.01), measuring
V„(z), and then performing a complete Fourier
analysis. The first two amplitudes A, and A, can
also be obtained from a simpler procedure, in

which only the magnitudes P, and P of the posi-
tive and negative peaks in V„(z) at each value of
e need be measured. We utilize the combinations
~(P, +P ) =A, +As+. . . and 2(P, -P ) =A2+A4+. . .
to accomplish this. The amplitude A, is at most
7% of A, in the range of interest, and can be re-
moved as a small correction by using As(e) as
obtained from Fig. 4 and other data. Removal of

A4 is unnecessary, as it was found to be negligi-
ble over the range of ~ studied. Points for which

A, and A, were obtained in this manner are indi-
cated by dots in Fig. 4. These points are consis-
tent with those obtained by complete Fourier anal-
ysis of V„(z).

To test the prediction that A, varies as &"', a
least-squares analysis was performed, in which

the weighted sum of the squares of the deviations
from D(f -f,) was minimized with D, P, and (if
desired) f, as free parameters. The weighting
was determined by assuming the measurement
error hA, to be independent of e. We determined
experimentally that 0.0649 &f, &0.0653 Hz by not-
ing the rotation rate at which the photocurrent
power spectrum no longer has a peak at v &0.
The uncertainty arises partly from the fact that
frequency shifts of less than 200 Hz are not de-

l: = (f — fg)/fg

FIG. 4. Dependence of the Fourier coefficients A on
the rotation rate. The solid lines represent the results
of least-squares analyses, with f,= 0.0651 Hz.

tectable, and partly from what appear to be slight
variations in f, from run to run. We find that A,
= (0.145 + 0.013)e'""'s cm/sec, where the uncer-
tainties are due mainly to the uncertainty in f,.
If we treat f, as a free parameter, the best fit oc-
curs when f,=0.0649 Hz and P=0.52. We con-
clude that the measurements are consistent with
the prediction A, —&'". The data of Berge and
Dubois, ' who obtained P & 2 for the convective in-
stability, may have been influenced by the second
and higher harmonics, which were not measured
in their experiments.

Applying the same approach to A, (e), we found
that A, = (0.063+ 0.005)e'"""cm/sec represents
the data quite well. In order to make sure that
we were actually observing asymptotic behavior,
we repeated the analysis after eliminating points
for e&0.1, and found the exponent to be 0.76
+0.06, unchanged except for a larger error. We
have not considered As in detail because the data
are at present insufficient for an accurate deter-
mination of the ~ dependence of A~.

Our results confirm the Landau approach to
fluid behavior asymptotically near an instability
leading to a spatially periodic but time-indepen-
dent flow. In particular, a single spatial Fourier
component dominates near the critical point, and
its amplitude grows as e'". However, the expo-
nent 0.77 + 0.03 of the second-harmonic term,
which becomes important farther from the criti-
cal point, is not understood at the present time.
Hopefully this and other experiments will stimu-
late theoretical work aimed at understanding the
nonasymptotic region.

We acknowledge with gratitude the help of Wil-
liam Davidon with the statistical analysis and the
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helpful experimental advice of A1bert Koenig and
Tom Davis.
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Breaking the Roton Barrier: An Experimental Study of Motion Faster than the Landau
Critical Velocity for Roton Creation in He Ilf

A. Phillips and P. V. E. Mcclintock
Department of Physics, University of Lancaster, Lancaster, England

(Received 9 September 1974)

We report the first observation of objects moving through He II with equilibrium drift
velocities p beyond the Landau critical velocity o for roton creation. With T 0.4 K, P
=25 bar, Il=2 kV cm, v-p~ for negative ions is larger than a theoretical prediction by
a factor of 10 . The vortex-ring nucleation rate is found to decrease with Eabove 300
V cm, thus resolving apparent inconsistencies between earlier experiments.

In his celebrated explanation of superfluidity,
Landau' showed that the kinetic energy of a liq-
uid flowing at velocity v through a tube (or that
of a. heavy object moving through the liquid) can-
not be dissipated through the creation of an exci-
tation of energy e and momentum p in the liquid
unless v ~ «/p. For He 11 the minimum value of
e/p is nonzero, occurring close to the roton min-
imum in the elementary excitation spectrum, so
that a, critical velocity v, =(e/P);„=50 m sec '
exists, below which dissipation ought not to oc-
cur in the superfluid. Measured critical veloci-
ties are usually orders of magnitude smaller,
because of the onset of vortex formation at lower
velocities, but Hayfield' reported that the drift
velocity v of negative ions in He II under pres-
sure P&12 bar below 0.6 K appeared to reach
and to be limited by v, when the applied field was
raised to about 70 V cm '. This has remained
the only known situation to which Landau's origi-
nal criterion for the breakdown of superfluidity
appears to be relevant.

Takken' has considered roton creation by nega-
tive ions moving at velocities slightly greater
than v, on the basis of a wave radiation model in

which each ion is assumed to generate a conical
wave of coherent roton radiation, much like the
disturbance produced by an airplane breaking the
sound barrier. By analogy with the aerodynamic
case, a rapid increase in drag is expected as the
velocity increases past v, : Takken concluded
that an upper bound on v is given by v„b=v, (1
+10 "F'), where the electric field F is in V
cm '. A 1% increase of v above v, would there
fore require I ) 10' V cm ', implying that any
increase of v beyond v, ought to be almost impos-
sible to observe experimentally.

An attempt by Neeper and Meyer4 to test this
remarkable assertion was thwarted by an unex-
pected increase in the vortex nucleation rate v
with falling temperature, such that at 0.3 K only
vortex rings, and no bare ions, arrived at their
collector. Our recent observation' that the field
emission current at 0.3 K in He II increases
dramatically with P above 12 bar, and is temper-
ature independent below 0.4 K, seemed to be in-
consistent with Weeper and Meyer's result. Ap-
proximate values of v deduced' from the field-
emission measurements apparently indicated the
feasibility of our present experiment to test Tak-
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