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ABSTRACT 

 

This dissertation describes the development of a small-scale model of a caprock-

laden quarry blast and discusses the results from that testing. The purpose of this testing 

was to provide insight into the reasons for poor caprock breakage during blasting. 

Small-scale test blocks were poured using a weak mortar mix to represent a 

limestone formation at a small scale. A cold joint was created in the upper portion of the 

test specimens to represent the bedding plane that separates caprock and substrate layers 

in a caprock-laden limestone bench. The scale-model test blocks were blasted using 

detonating cord. The primary configuration for this work was a single blast hole at a 4” 

burden and spacing from the outside corner of the test block. The blocks were loaded 

with detonating cord, and initiated from the bottom. Following blasting, surface breakage 

of the cap layer was photographed and collected for sizing. Following collection of the 

cap fragments, substrate breakage was photographed and collected for sieving as well.  

Test blocks fragmented well in the substrate portion and poorly in the cap layers. 

Cap breakage was typically limited to single-digit fragment populations. Annular 

fracturing sometimes created uncharacteristically large fragments that exceeded the 

burden and spacing of the blast hole and explains the presence of uncharacteristically 

large boulders in the field.  

This testing provided insight into how a massive, solid layer reacts when blasted 

from below. Cap breakage remained poor regardless of typical blast hole design. The 

results of this work indicated that the caprock fragmentation and the substrate 

fragmentation need to be treated separately by blasters and engineers.  
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1. INTRODUCTION 

In the mining industry, especially for small mines and quarries, peak cost 

efficiency is an essential method of operation. Cost efficiency affects many aspects of 

these operations, from stripping to drilling and blasting, to processing and sale. To 

maximize revenue and peak efficiency, operations regularly scrutinize the blasting of 

rock benches to ensure that blasted material can be effectively processed. The primary 

objective of improving blasting operations is ensuring that fragmentation of the blasted 

rock is optimum and economically viable for downstream processes. Fragmentation, or 

the degree and range of rock breakage due to blasting, is optimized to obtain the best 

results with current methods and equipment. In mining operations, an optimum 

fragmentation distribution has either the lowest unit cost per saleable ton of material, or 

highest monetary yield (Engin, 2010); this cost includes secondary crushing and 

handling. For quarries and mines with fairly stable commodity prices, maintaining the 

lowest unit cost is a preferred method.  

 

1.1.  OPTIMIZATION METHODS 

To obtain the fragmentation required for efficient operation, blasters and 

engineers use many different techniques for designing and improving their blasts. These 

methods can range from using simple rules of thumb, developed by years of experience, 

to utilizing complex calculations and computational techniques that provide a more in-

depth analysis of the rock mass. By employing these methods, blasters can modify blast 

designs to obtain the most desirable results. These techniques are intended to produce a 
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specific mean fragment size of blasted rock that can be easily processed. In addition, 

oversized fragments and fines are kept to a minimum which may reduce revenue losses.  

The rule-of-thumb methods are often employed by smaller mines and quarries. 

These forms of blast design refer to best practices in the blasting industry and rely 

heavily on the blaster’s previous experience with the specific geologic deposit. A benefit 

to using these methods is that they require minimal training to employ, and if geologic 

features remain consistent throughout the rock mass, can obtain adequate results for the 

operation. A detriment to rule-of-thumb methods is that these methods are not easily 

employed by newer blasters without experience in the deposit, potentially causing less 

accurate or inconsistent results than an engineered solution. This loss of accuracy can 

lead to a lower recovery of revenue compared to an analyzed blasting configuration.  

Engineered blasting solutions are typically seen in larger quarries where small 

percentage changes in blasting procedures have a monetary yield significant enough to 

justify the additional cost of blasting studies. These blasting configurations are the result 

of intensive studies, and analysis of blasting conditions and outcomes that meet the needs 

of downstream processes.  Engineered blasting solutions can range from field 

observations like muck pile analysis, to mathematical modeling methods and 

computerized simulations. These blasting solutions can lead to higher revenue by 

highlighting problem areas and revealing solutions to increase mineral recovery. 

With typical engineered blasting solutions, a characteristic fragment size is 

calculated and a distribution coefficient is applied to describe the extent of a muck pile’s 

fragment sizes. These are usually based on the Rosin-Rammler distribution curve, one of 

the most common means of describing muckpile fragmentation, and will be discussed in 
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the following section. These estimations are most valuable when there is consistency and 

uniformity within a rock mass. However, current models that function in this capacity 

have difficulty accurately accounting for grossly oversized fragments that result from 

non-uniform geology. These estimations account for stratified and jointed rocks by using 

an adjustment coefficient obtained from experimental results. They do so only by 

assuming the discontinuities are relatively uniform in distribution and can be relied upon 

to adjust a block size estimation that characterizes the bench in its entirety. Deviation 

from the estimation of these discontinuities can drastically change the results obtained 

from the model when compared to actual muck pile data. 

Inconsistencies in results, especially too much oversize, have led to many 

traditional blasters dismissing blasting models as useless, or at least superfluous, when 

compared to proven field methods. Oversize, as a result of adverse geology that is not 

represented by a modeling or estimation solution, stands in stark contrast to the extra 

effort required in utilizing engineered estimation methods. The oversize created from 

inappropriate blast design must usually be re-handled, broken additional times by 

mechanical means or blasting, then transported to be processed as originally intended. As 

a result, the cost per unit to mine the material increases, reducing operational efficiency. 

 Smaller quarrying operations tend to use more basic means to try to deal with 

oversize by reducing stemming, pattern burden and spacing, or by drilling satellite holes 

to increase powder factor in problem areas of the bench. These methods are typically 

applied reactively, depending on breakage of previous blasts. 
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1.2. CAPROCK 

Barring misfires and grossly improper blast design, oversize fragments are 

typically located near the top of a shot and at locations within the bench that have larger 

block sizes when compared to the surrounding strata. One of the most common rock 

formations that can produce these large boulders in a shot is a caprock-laden rock bench. 

Examples of these types of benches can be found in areas of the Bethany and Winterset 

limestone seams that are present near Kansas City, Missouri, and discussed in Section 2. 

These caprock layers can produce oversize fragments that lay on top of the muck pile 

post-blast. 

Caprock is a colloquial term that can have a slightly different meaning depending 

on the industry that is describing it. The term caprock is used more frequently in 

petroleum engineering to describe a massive rock formation overlying a petroleum 

reservoir, or aquifer. Many studies have been performed on these formations for the 

purposes of resource extraction or sequestration, typically examining the caprock mass 

for integrity and permeability, with an emphasis on preserving the intact nature of the in-

situ cap formation. For the mining and quarrying industry, caprock has a different 

denotation. In this context, it describes thick overlying layers of rock in a bench that are 

inconsistent with the underlying layers.  

Caprock layers can make blasting operations difficult, especially since the thick 

upper rock layers often reside in the region of the blast holes that usually contain 

stemming material. Since quarry blasting typically occurs in an orientation perpendicular 

to the bedding planes that define the rock layers, the distribution of explosive energy is 

altered due to the influence of the bedding planes. The change in energy distribution, 
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coupled with the lack of explosives in the top of the blast hole increases the chances of 

uncharacteristic oversize occurring in a muckpile. 

As stated in Section 1.1, the generated oversize fragments, especially those 

fragments originating from caprock layers, can be difficult to represent using many of the 

conventional estimation methods.  Discrepancies in size and material properties between 

the caprock and differing lower layers of rock, make the task difficult for assigning 

estimation values describing the rock mass in the model. When compared to the results 

from semi-empirical models such as Kuz-Ram, the oversize portion is severely 

underestimated, especially if the block size of the rock strata below the caprock is the 

joint spacing criterion used to define the rock mass. This adverse geology causes these 

estimation methods to become inappropriate for these applications even though they are 

an excellent resource for optimizing blasting operations. In this thesis, a better method of 

describing or assessing the breakage of the oversize fragments in caprock portions of a 

bench was created to define the workings of caprock and blasting in the stemmed region 

of a bench. 

 

1.3. OBJECTIVE 

The objective of this work is to establish a method to reasonably predict the 

behavior of caprock relative to normal blasting conditions. The method of testing, as well 

as interpretation of results can be used to represent operations where caprock causes 

difficulties with fragmentation. Field blasting design, and practices, need to be modified 

to make any improvements to the run-of-mine fragment sizes based on indications made 

by this work.  
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The objectives of the following literature search were to classify the limits of 

current fragmentation estimation methods, and analyze current small-scale testing 

methods.  

  

1.4. CONTRIBUTIONS TO SCIENCE 

The following contributions to science are described in this dissertation by the 

author: 

- A small-scale model to examine caprock blasting phenomena was established. 

- Caprock breakage must be considered as a separate problem from substrate 

breakage.  

- A major problem typically found in small scale test shots was identified, 

specifically the need to design the test block with free faces for the first shot hole 

in a configuration consistent with full scale blast. 

- A possible source of uncharacteristic oversize was identified.  

- Adjustment of the Kuz-Ram and Swebrec models for uncommon geometry by 

adjusting to the actual volume of material broken away from the test specimen 

instead of the theoretical value dependent on burden and spacing. 



7 

 

2. PREVIOUS WORK 

2.1. SCOPE OF LITERATURE SEARCHED 

The presence of oversize material at the top of a muck pile is a frequently 

occurring phenomenon when blasting caprock. Oversize fragments or boulders in mining 

and quarrying may cause additional operating expenses. These expenses include 

increased bench blasting costs, increased secondary breakage for boulders, or even 

complete loss of revenue for spoiled oversize material. Engineers and managers can 

perform a cost analysis based on trends in operating expenses in an attempt to maintain a 

balanced budget. However, this method of evaluation is reactive to mine conditions and 

difficult to keep consistent with varying geologic conditions, multiple rock benches, and 

numerous other factors.  A means of anticipating the results of blasting operations, 

involving caprock as a function of blast design, would provide key information that 

would allow for a complete cost analysis of the influence of current blasting procedures 

on downstream revenue recovery. Given geologic and blasting parameters, a model that 

could estimate an amount and size range for caprock could be readily combined with a 

cost analysis to determine the most effective solution for a mining operation, similar to 

the site-specific solution found by Esen in 2007  (Esen, 2007). 

Initially, literature was explored to see if there was a reliable model to predict 

fragment size when blasting and determine if caprock behavior could be adequately taken 

into account with that model.  While there are many models that can predict fragment 

size and are able to account for varying geology, none were found that could exclusively 

account for rock breakage in caprock.  As a result, a model was selected for this project 
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that would facilitate simple analysis and be readily adapted once a means for estimating 

caprock breakage was formed. Although many aspects of other current models are 

discussed, much of this literature search is centered on the Kuz-Ram fragmentation 

model that is commonly used for basic fragment size estimation in the mining industry. 

The Kuz-Ram model was adapted and used as the basis for general fragmentation 

estimation in this work. 

The first section of this literature search focuses on describing the geologic 

formations that contain caprock. This establishes the basis for many of the assumptions in 

the experimental design section of this work. After describing caprock geology, an 

examination of standard bench blasting models was undertaken to determine their 

viability for assessing the blasting of caprock for this project.  Following the explanation 

of blasting models, a description of the influences of blast forces on rock is presented. 

This section describes the interaction of blast forces as they are appropriated from bench 

blasting and applied to scaled model testing.  

 

2.2. GEOLOGY OF CAPROCK 

Caprock is a term commonly used by blasters and engineers to describe the 

portion of a rock bench that has a thick, massive layer at or near the top. This is a regular 

occurrence with near horizontal sedimentary rock formations. Most often caprock is a 

concern when remedying fragmentation issues in limestone quarrying.   

In the mining industry, rock is commonly classified as resource or waste and 

therefore the bench configuration (top and or bottom) is often limited to the boundaries of 

different sedimentary layers.  To complicate matters in the quarry industry a bed of say 
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limestone may have different layers within it differentiated depending on industrial use 

from chemical characteristics (such as Calcium content) to physical characteristics (such 

as absorbency), which may necessitate the further subdivision of lithological units into 

separate benches for extraction purposes. 

The most difficult aspect of blasting, in regards to caprock, is that the presence of 

caprock is a geologic factor and cannot be controlled within the blasting scenario (Atlas 

Powder Company, 1987).  Limestone deposits, with caprock made of all the same type of 

rock can still vary in properties from layer to layer. Due to the wide variation in geologic 

scenarios, overall characteristic descriptions of a caprock bench are brief. There may be 

differences in grain size, strength, and many other diverse rock characteristics (Tulsa 

Geological Society, 1984).  The best course to investigate caprock is by examining and 

constructing an example of a known rock formation. 

The Bethany Falls and Winterset limestone formations in the Kansas City and St. 

Joseph, Missouri regions are known to produce large oversize from caprock. The strata of 

these formations are fairly consistent in lamination across the region, with slight 

variances in thickness and depth as the topography changes. These formations can range 

from approximately 12 to 30 feet thick for the Bethany Falls formation and 25 to 40 feet 

thick for the Winterset formation (Cramer, 1983). These are average values, but the 

author has drilled shallower benches of both formations. These shallow thicknesses can 

reduce down to 4 feet on the Bethany Falls and dwindle to 5 feet on the Winterset. Where 

the Winterset and underlying Bethany Falls formation overlap, there lays an inter-burden 

of 6 to 10 feet of greasy shale. The author notes that the same type of shale lays beneath 

the Bethany Falls formation as well.  
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Both of these formations have thick upper layers that are separated from the lower 

section of their respective formations. When drilling through both formations, their thick 

top layers of rock are significantly harder than the underlying rock, especially in the 

Winterset formation. These top layers are separated from the rest of their respective 

formations by either a slimy mix of clay and shale mud or, in the case of the Bethany 

Falls member, or by another material that is referred to colloquially as “peanut rock” 

(Cramer, 1983). Peanut rock is a naturally crushed limestone that resides below the thick 

top layer. It is an extremely friable and crumbly layer, ranging from 6 inches to 2 feet in 

thickness. In the author’s experience, drilling peanut rock produces fine cuttings and 

provides very little resistance, sometimes clogging the drill bit if too much feed pressure 

is used. Conversely, when drilling on a Winterset pattern that is especially wet, drilling 

productivity is severely reduced due to the stickiness of the 1 to 4-inch thick clay and 

shale mud seam about 2 ½ to 3 ½ feet below the surface, infilling what is the first 

bedding plane. While sticky, it also has the consistency of a slippery grease. If drill feed 

rate is not significantly reduced, and the hole completely flushed at the bedding plane, the 

clay will more often clog the drill bit than allow constant drilling.  

The bedding planes of the Bethany Falls and Winterset formations around Kansas 

City tend to be relatively flat, with a gentle dip of less than 10% in most places. Because 

of this regional flatness, most vertical blast holes are drilled approximately perpendicular 

to the rock strata. Most beds within the limestone are approximately 1 foot in thickness, 

with the top layer being approximately 3 to 4 feet thick. Vertical joint sets in the Bethany 

Falls formation range from 20 to 50 feet in average spacing. Joint sets in the Winterset 

are often harder to identify because the upper layers of the Winterset formation are often 
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highly weathered and obscured by mud, clay or other intrusive deposits. Figure 2.1 is 

photograph taken by the author of a Winterset bench that has been cleared for drilling. 

Recorded average compressive strengths of both the Bethany Falls and Winterset 

Formations are approximately 12,000 psi to 13,000 psi, with a 700-1,600 psi tensile 

strength (Cramer, 1983). 

 

 

 

Figure 2.1. Stripped Winterset Bench 

 

 

 Rock quarried from the Bethany Falls and Winterset Formations are typically 

used for road rock and concrete, with portions of the Bethany Falls being eligible as 

agricultural lime. These formations supply most of the aggregate needs for the Kansas 

City and St. Joseph regions. Much of the need for this aggregate is an on-demand basis, 

depending on how many development projects are occurring within the region. Most of 

the materials sold for these projects are crushed rock, with low demand for rip-rap 
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materials in the area. The entirety of the bench is usually crushed, but rip-rap scalping 

tonnages can change depending on product demand. An emphasis on managing oversize 

production while reducing fines is essential in producing the largest tonnage of salable 

material. In many instances, models are used to describe the results of blasting operations 

in these limestone quarries in an effort to spoil the least amount of the deposit.  

 

2.3. MODELING BLAST FRAGMENTATION 

When estimating rock fragmentation from blasting, one of the first steps is to find 

what types of mathematical models exist for that purpose, and assess the capabilities of 

each.  This is a daunting task for someone unfamiliar with blast modeling, as there are 

numerous models and as many tertiary articles to their credit.  However, the models and 

techniques found in this document are works that often refer back to the same source 

material for a foundation. From the sources gathered, there are a few distinct types of 

models used in estimating rock fragmentation from blasting. Separating the models in 

this manner makes it easier to determine their viability and appropriateness. Most models 

are generally categorized in two ways, semi-empirical estimations and computer 

simulations. An understanding of both is required before attempting to advance or 

improve on existing methods. 

2.3.1. Semi-Empirical Modeling. Semi-empirical methods of estimating rock 

fragmentation were born from the need for quantitative assessment and estimation of 

blasting results. These methods were the first ones to be developed, predating computer 

simulations by many years. Semi-empirical modeling is often geared towards estimating  
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different aspects of a blast such as size of fragments, range of fragment sizes, speed of 

thrown fragments, and crater size. The inputs for these models are fairly simple, as most  

were developed to be expedient for field use. Many of these equations required manual 

calculations, which made numerous iterations tedious and time consuming. This is why  

semi-empirical models often have few parts and are easy to use. However, a simple set of 

equations can still have a large influence in the improvement of blasting operations. 

The disadvantage of semi-empirical modeling, that includes portions of Kuz-Ram 

and Roth's Scaled Depth of Burial work, is that some additional aspects such as 

resolution or accuracy in the extended regions of analysis are sacrificed for simplicity. 

These models are only applicable to a certain range of inputs, and overextending their 

capabilities can lead to grossly incorrect outputs. Engineers can unwittingly use these 

models without thought to the practical range of operation for which they are made 

(Cunningham, 2005). Steps must be taken to ensure that the models are adjusted properly 

for the intended application and can produce useful outputs. Unlike computer 

simulations, semi-empirical modeling typically cannot account for properties and 

behaviors of individual fragments or fractures. This is primarily due to the scale at which 

these methods function. Semi-empirical methods estimate the behavior of the blast in 

large sections or as a whole. When these methods were created, they were intended to be 

used for estimating large amounts of material at a scale that would benefit mine operators 

and engineers seeking to improve mill and mine tonnages in an expedient manner. 

Assessing blasted material using these methods yields simple approximations of 

fragmentation sizes.  
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Semi-empirical model results are calculated by assigning average numerical 

values for geology conditions and blast conditions. The most easily recognizable semi-

empirical blasting models is the Kuz-Ram model. The need for few inputs, and the output 

of a distinct result, keep this type of modeling popular and useful. For the laboratory 

testing discussed later in this dissertation a means of estimating the expected 

fragmentation of a normal bench blast was required. This was to compare the potential 

differences in fragmentation as seen in a caprock laden bench blast. The search for such a 

method began with the Kuz-Ram model. 

2.3.1.1. The Kuz-Ram model. The Kuz-Ram model is a semi-empirical rock 

fragmentation model developed in 1983 by Claude Cunningham. It is a combination of 

the Kuznetzov estimation of mean fragment size and the Rosin - Rammler size 

distribution. Kuz-Ram is used as a platform for the development of simple fragmentation 

optimization programs. The equations can easily be entered into spreadsheets that can be 

readily modified and adjusted (Cunningham, 2005). Part of the model uses the Kuznetzov 

equation, or a modified version of it, to estimate the mean fragment size produced by a 

given energy input into a volume of rock. The more recent iterations employ a rubric to 

assess rock mass parameters. The Kuz-Ram model has undergone different iterations 

since its creation and has been modified as new contributions been developed. This 

section will examine the source material for Kuz-Ram as well as some of the changes 

made through the various iterations.  

2.3.1.2. Mean diameter of rock fragments. In 1973, V.M. Kuznetzov 

established an equation for estimating the mean fragment size of rocks generated from a 

single-hole blast. This equation is founded on a specific amount of energy from the 
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explosives being imparted into a rock mass of known volume and strength, very similar 

to powder factor, shown in Equation 1 (Kuznetsov, 1973).  

< x > = A( 
𝑉𝑜

𝑄
)4/5  * 𝑄(

1

6
)
        (1) 

Where:   

< x > = mean fragment size (cm) 

A = strength correction factor; assume 7 for medium hard rocks  

Vo = volume of blasted rock (m3) 

Q = TNT equivalent of the explosives weight (kg) 

The Kuznetzov equation is a simple relationship that can be adjusted linearly 

using the correction factor, A, to fit real test data from cratering and bench blasting. It can 

also be easily utilized from within a spreadsheet.  

The Kuznetzov equation does have some drawbacks. It is not easily adapted to 

fluctuating geology and mineralogy. In its initial iteration, the Kuznetsov equation is only 

able to adapt in a linear fashion to geologic conditions. In addition, another limitation was 

found with this equation during the author's Master's Thesis. The equation assumes that 

the amount of energy imparted to the rock, in the form of powder factor, is completely 

used by the amount of rock blasted. When tests were in a confined single-borehole 

configuration, the scaled depth of burial, explained in Section 2.5, was high enough that 

energy was well confined in the surrounding rock, producing small craters. These smaller 

craters had a volume that was inconsistent with those used to establish the Kuznetzov 

equation’s relationship, which led to confusing estimation results (Coy, 2014). An 

accurate means of measuring the volume of blasted rock needs to be established for this 

equation to be accurate in smaller blasts. Even with its detriments, the Kuznetzov 
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equation is still a relatively simple and relatively accurate estimation method that, when 

paired with the Rosin – Rammler equation, comprises the first half of the Kuz-Ram 

model.  

2.3.1.3. The Rosin - Rammler distribution. In 1933 Rosin and Rammler 

developed a method for determining the size distribution of powdered coal as cumulative 

percent of an assayed sample. This method provided a percent passing per sieve size. 

Rosin and Rammler found that for a given sample, if a sieve of characteristic passing 

percentage is established and the uniformity of fragments are within a certain range, the 

distribution of the sample at varying sieve sizes can be determined with reasonable 

accuracy (Rosin R, 1933). The benefit of this estimation, shown in Equation 2, is that it 

has few inputs and is easy to calculate, especially when used with modern spreadsheets 

like Excel. The authors indicate that this distribution is only applicable after a certain 

degree of grinding and crushing has already been conducted (Rosin R, 1933).  

R=e-(X/Xc)^n          (2) 

Where: 

R = % Failing (Retained) screen size 

X = Screen Size 

Xc = Characteristic Size (Usually Mean Size) 

n= Uniformity Index (0 < n < 2) 

The primary application for this type of distribution, as presented by Rosin and 

Rammler, is to represent the spread of particle sizes after they have undergone a 

secondary crushing or milling process, commonly found in coal comminution circuits. It 

is typically applied to a narrow range of particle sizes, so it follows that larger size 
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differences will lead to a less accurate representation of fragment sizes. The loss of 

accuracy can be attributed to a change in the amounts of oversize or fines particles 

compared to the mean portion of the sample that the curve represents. Rosin - Rammler 

curves are typically applied to represent a sieve analysis of a material that has undergone 

a milling process. The circumstances for the creation of the fragments must be uniform to 

properly apply the Rosin - Rammler distribution.  

The approximate useful range for this analysis is in the range of 10-100,000 

microns (1200 mesh up to 4").  (Wills, 1997) This range does not include the extended 

sizes that are encountered from run-of-mine fragmentations as they can range from the 

included fines up to large boulders in excess of 6'. In 1983, Cunningham adapted this 

distribution for blasting and muckpile fragmentation. It constitutes the second portion of 

the Kuz-Ram model. The Rosin-Rammler equation is adequate for describing most of the 

fragment size distribution, but often predicts fewer fines than are measured. Blasting with 

pre-existing fractures would show less dependence on powder factor and a higher 

dependency on blast geometry. This is why blasting in rock with small block sizes is 

more dependent on where the blast hole is located rather than how much explosives are 

used for that blast hole.  (Lownds, 1995) 

2.3.1.4. The original Kuz-Ram model. Cunningham's first composition of the 

Kuz-Ram model was published in 1983. It was a combination of the original Rosin-

Rammler and Kuznetzov equations. Cunningham proposed that the mean blasted 

fragment size obtained from the Kuznetzov equation can be applied as the characteristic 

size in a Rosin-Rammler distribution. From there, the uniformity index is estimated and 

the model adjusted based on field data.  (Rollins, 1989) This model is readily applied to 
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mining operations.  From measured test blasts, the mean size correction factor and 

uniformity index are adjusted so that consistent results can be achieved. This model has 

very basic inputs, but if used properly, can provide usable estimations from blasting 

operations that may reduce the cost of mining and processing minerals (Cunningham, 

1983).  

2.3.1.5. Assessing rock blastability. Until now, the Kuz-Ram model has been 

vague on how the rock quality description has been assessed, with the A correction factor 

being fairly subjective. This metric is dependent on the investigator’s assessment, leading 

to a wide range of results depending on how the investigator assesses the rock. Peter Lilly 

proposed a better method of indicating rock blastability based on multiple rock bench 

attributes. His index is based on a combination of the bench's joint plane spacing and 

orientation, how blocky or massive it is, hardness, and specific gravity of the rock itself. 

This relationship was established to work directly with Lilly's assessment of a specific 

energy input due to blasting, but Lilly also states that it has application when working 

with Cunningham's Kuz-Ram model to help estimate the mean fragment size (Lilly, 

1986). With the addition of this document, Kuz-Ram became much easier to use as it 

provided a rubric that can be used to quantify rock conditions, removing much of the 

guesswork needed to describe the rock mass for estimation purposes.  

2.3.1.6. Kuz-Ram 2. The second iteration of Kuz-Ram was introduced in 1987, a 

year after Lilly's blastability index. Most of the model remains the same as its first 

iteration. The key addition to this version is the inclusion of Peter Lilly's blastability 

index to help determine the mean fragment size. Other additions to this model are the 
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adaptation for emulsions and blasting agents, and the recognition that photographic 

methods can be used in measuring muck pile fragmentation (Cunningham, 1987).  

2.3.1.7. Kuz-Ram 3. The latest version of Cunningham's Kuz-Ram model was 

published in 2005. It features many changes made in the 20 years since the original 

(Cunningham, 2005). The first change to note is the modifications made to the Kuznetsov 

equation. Much of the work done with this version of Kuz-Ram has been to finely adjust 

the mean fragment size so that powder factor is expanded from the original equation. The 

weight strength of the utilized explosive has been adjusted for the application of ANFO 

and related blasting agents, and the exponents have been slightly modified as shown in 

Equation 3. 

X = A * (K)-0.8 * (Qe)
(1/6) * (115/E) (19/30)              (3) 

Where: 

X = Mean Fragment Size (cm) 

A = Rock Factor 

K = Powder Factor (kg/m3) 

Qe = Explosive Weight (kg) 

E = Relative Weight Strength to ANFO 

The changes to the sizing portion of the model made it more accurate when used 

to assess blasting with modern blasting agents. The Rosin-Rammler portion of the 

distribution remains relatively unchanged since 1987. A correction factor has been added 

to the rock blastability index to help correct for errors encountered in the field. Delay 

timing has also been added to the model, making it more applicable to the shot design as 

a whole than rather than a representative single blast hole. Cunningham does point out 
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that there are still limitations with the model. He classifies these limitations into 

unaccounted parameters, limited ability to actually measure fragmentation and difficulty 

in scaling blast effects. He goes into more detail on the detriments of each of these.  

2.3.1.8. Using computers to run the Kuz-Ram model. The Kuz-Ram model is 

an easy-to-employ fragmentation prediction model. Its equations may be calculated by 

hand, or even faster by utilizing a computer spreadsheet and either solving by numerical 

methods or Microsoft Excel's built in program, Solver. Excel also gives the user the 

ability to program and run a script that can find the design that produces fragmentation at 

the lowest unit cost. Mario Morin in 2006, used Microsoft Excel's Visual Basic 

programming language to construct a Monte Carlo simulation within Excel to run 

multiple iterations of Kuz-Ram estimations to find the most statistically likely result that 

would occur with the model and a range of real world values for the blasting conditions 

(Morin M.A., 2006). In 2010, R.C. Engin used a slightly different but still effective 

method for solving for the optimum conditions. By inputting the Kuz-Ram model, 

blasting conditions, and associated costs into Excel's Solver add-on, the lowest unit cost 

was calculated (Engin, 2010). This method of calculation is faster than creating a 

numerical equation in Excel to solve for the optimum solution. The results produced from 

these types of analyses are still sensitive to changes, and the authors did not analyze the 

changes to see if the maxima obtained would be influenced by small changes in the 

design or conditions, as would happen in reality. If these kinds of methods are to be used 

in the future, sensitivity analysis needs to be performed along with the optimization 

because, while conditions on the actual bench may differ slightly from the optimal inputs 

obtained in the Excel optimization, the resulting estimated fragmentation may drastically 
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change. The optimized point can be calculated and used to design the blast, but the design 

needs to be reliable and repeatable on the bench. The user must ensure that the maxima 

found via this method is the global maximum for the entire realm of possibilities versus a 

local maximum (or minimum) which can occur but is not necessarily the maximum gain. 

This is still the fastest way to complete calculations and analysis through semi-empirical 

modeling.  

Over the years, the Kuz-Ram model has been adapted to be applicable in many 

different locations with differing geology. There is still a large amount of interpretation 

that is needed in measuring the geological conditions as well as obtaining a reasonable 

output (Cunningham, 2005).  

2.3.2. The Swebrec Function. Another popular form of semi-empirical 

fragmentation modeling is the Swebrec model developed by Finn Ouchterlony  

(Ouchterlony F., 2005). His model is newer than the Kuz-Ram fragmentation model and 

is very similar in form in that it comprises a two-part model based on Kuznetzov's Mean 

Diameter of Rock Fragments estimation and a characteristic particle size distribution 

curve. However, instead of using the Rosin-Rammler equation to approximate the size 

distribution of rocks, an adapted version of the Gaudin-Schumann equation is used to 

describe the particle size distribution. This adaptation allows for a better approximation 

of the fines region of the fragmentation curve. It was selected because Ouchterlony was 

leading a research effort to better understand and control the generation of fines that 

result from bench blasting.  

Ouchterlony’s Swebrec function is very similar to the Kuz-Ram model. However, 

it takes the estimation used by the Kuz-Ram function and uses it to describe the coarse 
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section of the fragmentation. The fines section is measured using a new equation that is 

more accurate in describing breakage in the lower size registers, fragments less than ¾ 

inch on a full-scale blast. Ouchterlony provides a better description of size distribution 

and has applied his model to many mining applications.  (Ouchterlony F. , What does the 

fragment size distribution of blasted rock look like?, 2005) Ouctherlony observed that the 

fines region takes a logarithmic approach instead of following the simple exponential 

function put forth in the Rosin-Rammler equation. The Swebrec model is appropriate for 

operations that strive to improve estimation and lower the production of fines in their 

blasting.  (Ouchterlony F. , The Swebrec© function: linking fragmentation by blasting 

and crushing, 2005). 

The Swebrec model enables the user to examine the fines region with a larger 

degree of scrutiny and anticipate blasting conditions that are creating additional fines. 

This examination allows the blaster to adjust his methods appropriately. Conversely, 

Swebrec has a limitation when oversized particles are involved. The limitation is 

deliberate to ensure a definite upper boundary for the distribution curve, correcting some 

skewing that occurs as the size distribution function approaches a horizontal asymptote. 

The upper limit is defined as either the burden or spacing of the blast, whichever is larger. 

This upper limit is found in both in the function of the distribution curve and the 

uniformity exponent. Incorporating this upper limit into the Swebrec function allows it to 

account for a smooth distribution and increased accuracy in the fines region of the size 

distribution. This is not applicable to extreme scenarios but will work with most 

applications.  Many of the practical applications of Swebrec require an in-depth study of 
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field conditions such as in-situ block size and varying rock strength characteristics.  

(Ouchterlony F. , Fragmentation monitoring of production blasts at MRICA, 1990)   

Semi-empirical models including the Kuz-Ram and Swebrec can be utilized by 

hand calculations or formulating a spreadsheet that simplifies the input section and 

calculates the results easily. By doing so, these models can be applied without requiring a 

large amount of experience or practice with the methods. Their simplicity allows them to 

be applied across a broader spectrum of blasting applications. However, there is a second 

category of blast modeling to consider.  

 

2.4. COMPUTER MODELING 

Computer simulations work and behave very differently from semi-empirical 

methods of assessment. Simulations require the operator to have an intricate knowledge 

of the materials present and an understanding of their interactions. Unlike the semi-

empirical methods, they work from the minute scale of a single simulation element, 

mimicking the interactions of each specified element as it occurs in the blast. 

Computational models are a newer development to blasting, becoming feasible 

within the past couple decades. Many of these models are based on material and 

explosives properties, and the physical phenomena that govern them. The models allow 

for more in-depth analysis of rock breakage because computers can account for many 

variables and quickly run complex calculations. Two types of computational modeling 

are examined in this review. Finite element analysis (FEA) and peak particle velocity 

(PPV) modeling are two distinct forms of computer modeling for rock fragmentation.  
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2.4.1. Finite Element Analysis. Finite Element Analysis methods are used when  

a simulation requires exacting detail in describing not only the behavior of a blast, but 

also the characteristics of individual fragments within the blast. A Finite Element 

Analysis, or FEA, is constructed by creating a block model that represents the volume of 

the rock to be simulated. This block model is divided into either smaller blocks or nodes, 

constituting the smallest possible fragment element that could be created and displaced. 

With this modeling method, individual elements are the focus of the simulation and are 

given physical characteristics to represent density, strength, hardness, and as required. 

When simulating a bench blast, cylinders of material are removed from the block model 

to represent blast holes. 

Once a block model is established, breakage simulated by applying force to a 

region of the block model, then time-stepped to show the breakage and displacement of 

the elements. Once the forces have equalized, the nodes or elements are assayed to 

determine which blocks remain bonded together, representing the fragments generated 

during a blast. Using an algorithm, these fragments are assigned a size and a distribution 

curve is created from the data describing overall fragmentation of the simulated blast. 

The final result is a fragmentation distribution, much like those presented earlier, but is 

based on exact count of simulated particles, not on general estimations.   

The benefit of an FEA simulation is that if the block model remains accurate at a 

high resolution, it can produce the most accurate prediction of blasting results. Dare-

Bryan used a Finite Element Analysis to estimate fragmentation and compared it to the 

Swebrec function (Dare-Bryan, 2012). He found the simulated results to agree closely 

with the prediction provided by the Swebrec function. However, the simulations show a 
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distinct difference between the fragmentation of blast holes located within large blocks 

and those with narrow or intersecting joint sets. The holes within large blocks showed 

breakage in all directions, whereas holes located near joints and intersections tended to 

fracture toward those joints, producing an overall bowtie pattern as shown in Figure 2.2.  

(Dare-Bryan, 2012) Most of the fractures in this example stop at the joint boundaries 

because when fractures intersect, the intersection point lacks tensile strength and blast 

energy cannot cross the boundary (Lownds C. , 1983). 

 

 

 

Figure 2.2. Dare-Bryan Simulated Limestone Breakage with Jointing (Dare-Bryan, 2012) 

 

 

Donze used a 2-dimensional discrete element model to simulate rock breakage 

from a blast hole in a stress field. Figure 2.3 illustrates the circular elements he used to 

represent the bonds within the rock material. Fractures and discontinuous regions within 

the rock mass are demarcations where the elements have no bond with an adjacent 

element. This method is capable of accounting for discontinuities and rock properties. 
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However, it is only practical on a small scale due to the high resolution of these elements 

(Donze, 1997). 

Fractures in this type of model are generated by disassociating bonds of individual 

elements at locations where stresses exceed the strength criteria of the block model. 

When these fractures intersect, the program recognizes the cluster of associated elements 

surrounded by fractures as an individual fragment broken off from the block model. 

Margolin’s work on numerical simulation of fractures simulates the expansion of existing 

cracks in pre-rendered strata (Margolin L.G., 1982). It does so by calculating the change 

in forces acting on cracks at fracture tips. This model can be used to estimate the damage 

left in strata such as oil shale.  

 

 

 

Figure 2.3. Simulation with Circular Elements (Donze F.V., 1997) 

 

 

Once the generation of fragments is complete, they are categorized by size and a 

characteristic curve is generated to describe their distribution (Donze F.V., 1997). 
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Using finite element methods gives a better understanding of the forces involved, and the 

movement and breakage of fragments at various times during the simulated blast. These 

methods show the interaction of forces, as well as the effects that certain geological 

features can have on the outcome of the blast, provided they are modeled properly and 

the behavior of the materials involved is accurate. Chung also used the FEA method to 

analyze the effectiveness of stemming in a blast. He determined that using two different 

sizes of graded material to constitute the stemming will hold better than using a single 

graded product (Chung, 2002). Cho’s simulation of pressure increased over time, 

estimated the principal stresses encountered in and around blast holes. This simulation 

corroborates results on optimal delay times by Langefors and Kihlstrom, and Stagg and 

Rohll, where the optimal delay periods are shot in relatively fast succession. This study 

also states that drilling and blasting satellite holes reduces boulders without significantly 

increasing the number of fines (Cho, 2004). 

The materials used in finite element models are usually considered homogenous, 

so smaller existing fractures are often overlooked and only major joint sets are considered 

for the block model. Typically, blocks are considered to be uniform and continuous. The 

lack of impurities and discontinuities within a material lead to less distributions of blast 

energies. The inability to account for influences from small discontinuities and flaws in a 

material often leads to the resulting estimated fragmentation differing from what would 

occur during the actual blast. As the accuracy of these models increases, the errors 

produced primarily become the responsibility of the individual assessing the rock mass. 

The principle detriment to this type of modeling is the time required to use it. 

These models perform many calculations to account for all the physical interactions 
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occurring within the simulation at a given time-step. These calculations are not 

reasonable to solve by hand, and as with semi-empirical modeling, are also only as 

accurate as the information that is entered into them. Also, many of the higher resolution 

models are built within software programs like ANSYS AutoDyn, or proprietary 

programs that require large amounts of computing power. In spite of these detriments, 

FEA simulations have been used to great effect. Ma used a homogenous AutoDyn model 

to predict a zone of plastic deformation and failure surrounding a blast hole. He found 

that faster strain rates caused smaller, more numerous cracks to form (Ma, 1998). Preece 

also used ANSYS AutoDyn to simulate the effects of timing between blast holes (Preece, 

2008). Tawadros used this type of simulation to estimate the production of fines 

immediately around the blasthole.  (Tawadrous, 2012) This method requires a large 

quantity of work to assemble, but is worthwhile in predicting results where means of 

measurement are infeasible in real world scenarios. 

Smaller operations, especially quarries, will typically not use computational 

models due to the amount of technical knowledge and training required. The complexity 

of these methods yields useful results, but is often too cumbersome to use. If modeling is 

employed in blasting operations, the more simplistic methods are preferred because their 

ease of use and simple analysis can still influence significant gains. Semi-emperical and 

most recently PPV modeling still remain popular means of blast modeling. 

2.4.2. Peak Particle Velocity (PPV) Modeling. Peak Particle Velocity (PPV) is  

one of the newest methods of computer modeling employed at large mines for 

fragmentation optimization and large optimization projects. For complexity, this type of 

modeling can be considered the bridge between semi-empirical and FEA modeling. 
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While not as complex as FEA methods, it still provides higher resolution results than the 

typical Kuz-Ram or Swebrec analysis.  

Current iterations of this model are proprietary, along with the large amounts of 

field observations required to operate the model. PPV modeling is a combination of field 

observation data and computerized analysis. The primary objective of this type of model 

is to use ground vibration data from multiple seismographs and estimate the peak particle 

velocity at different locations within the bench. Persson developed a rough method for 

estimating the peak particle velocity generated from a blast by relating rock strength and 

characteristics of the strain wave (Persson, 1997). Prior to the main bench blast, a 

"signature hole" is fired as a representative to provide a clean seismic signal for the 

seismographs to record. The remainder of the bench is then shot and the seismic data 

recorded. Once data is entered into the computer, the vibration data observed by multiple 

seismographs is trianglulated back to the blastholes once data is entered into the 

computer (Yang R. a., 2011). 

This model cannot accurately account for discontinuities in the rock such as 

vertical jointing and bedding planes. Discontinuities are not discretely modeled as in 

finite element models, but areas with a delayed or reduced seismic signal are identified as 

having a lower integrity. With multiple seismograph recordings from different blasts 

throughout the rock mass, the understanding of the rock behavior becomes more accurate. 

By extension, it is possible that PPV modeling cannot explicitly account for thick layers 

of rock in the upper region of the bench. Due diligence is required when measuring the 

exact interactions of the blast vibrations in the upper rock layers.  



30 

 

2.4.3. From Theory to Practice.  There are many ways to estimate run-of-mine  

blast fragmentation. For fines, a higher resolution model is required to account for the 

small particles. When oversize fragments represent a larger portion of the rock mass, 

making refined resolutions become unnecessary. After examining multiple methods, the 

semi-empirical modeling methods remain the most viable for assessing the laboratory 

work in this dissertation. The next section describes fragmentation measurement and 

acquisition of field data.  

 

2.5. EVALUATING FRAGMENTATION 

There are currently two main methods for measuring fragmentation, sieving and 

photogrammetric analysis. The first is sieving the entire sample of blasted rock, which 

produces the most accurate results. By obtaining the entire size distribution for all 

fragments, regardless of their location in the muck pile, the most accurate representation 

of the size distribution is acquired. Singh describes assessing fragmentation in this 

manner;  

 

“Quantitative assessment of fragmentation at a larger scale is a most difficult task. 

The only fully quantitative method of assessing fragmentation is to screen the 

entire mass of fragmented material. This, however, is impractical at the 

production scale. Next to screening there is no known reliable method of 

evaluating fragmentation quantitatively in a production environment.”  (Singh, 

1993)  
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This is the more expensive method of measurement, as it is not only time 

consuming but also requires all of the muck pile to be re-handled.  

The second and for many years the predominant measurement method is by 

taking optical measurements of the muck pile. This method is much quicker and less 

costly than sieving, but requires more consideration to ensure that the photographs and 

methods used for analysis produce reliable and useful results.  

2.5.1. Measuring Fragmentation Using Standard Photographs. Before the 

second installation of the Kuz-Ram model, Cunningham discussed an easier method for 

measuring the muck pile fragmentation. The analysis of a properly scaled photograph 

allows for a more accurate estimation of muck pile fragmentation. To provide scale and 

account for distortion, the photograph must have objects of known size placed staggered 

in a staggered order throughout the muck pile. To provide scale and account for 

distortion, the photograph is also important to ensure accurate representation of the muck 

pile. This method can be performed much quicker than sieving a shot, and at a lower cost, 

as the re-handle costs are not present (Aswegen H.V, 1986). 

In his publication, “Methods of Evaluating and Predicting Fragmentation”, 

Cunningham discusses many of the advantages and disadvantages of using sieving and 

photographic measurements. There is a deceptive nature to using optical methods because 

a large volume of the shot is not visible. Oversize fragments that appear on top of a shot 

cause analysis of photographic measurements to underestimate the amount of fines 

produced in the shot. The less uniform the blast, the less accuracy using optical methods. 

A reliable means of estimating oversize is by measuring the approximate dimensions of 

produced boulders and comparing them to the total volume of rock blasted, producing an 
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oversize index (Singh, 1993). By estimating the oversize portion in this manner, the 

remainder of the blast can better align with predicted values. Cunningham wrote about 

these issues twenty years ago, but they still are present whenever photographic 

measurements are taken (Cunningham, 1995). There have been efforts to try to reduce the 

influence of these problems, as discussed in the next section. 

2.5.2. Digital Image Analysis. There are computerized optical analysis programs 

that take photographs and, as described in Section 2.5.1, estimate muckpile 

fragmentation. The most commonly utilized programs are Split Engineering, and 

Wipfrag. These programs are able to delineate between the different fragments within a 

scaled photograph. Some assistance from an operator is needed to make sure the 

computer is accounting for all visible fragments. The computer can then infer content to 

account for what is not visible; this is still an inference and not completely representative 

of the actual distribution. However, with proper calibration, these methods can produce 

consistent, reliable results. 

Siddiqui, Shah, and Behan describe how to use digital image processing, more 

specifically split engineering, to measure size distribution in a muck pile (Siddiqui F.I., 

2009). A benefit to using these digital processing programs is the speed at which 

processing occurs far outpaces measuring and scaling photographs manually. 

Computerization also allows multiple photographs to be taken of the same shot from 

different angles and cross-sections of the muck pile and analyzed simultaneously. The 

produced estimations can then be averaged to provide a more accurate representation of 

the fragmentation on top of the muck. This method has been used to measure results from 

blasting and compared to the Kuz-Ram prediction (Engin, 2010). It has also been used for 
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the calibration of the Swebrec function to ensure accurate prediction of rock breakage.  

(Ouchterlony, 2006) 

2.5.3. Additional Fragmentation Measuring. New technology has been created 

for measuring muck piles and improving muck pile data using three-dimensional laser 

scanners to measure the bench face pre-blast. Onederra used lasers scanners to measure 

fragmentation in 3D which provided a better perspective than estimating fragment size 

from a two-dimensional photographs. Blindspots are minimized by having a three-

dimensional rendering of the rock mass which makes distinguishing the boundaries 

between fragments easier.  (Onederra, 2015) 

Sections 2.3 through 2.5 address the acquisition, calculation, and dispensation of 

muckpile fragmentation. Differing techniques were discussed and common practices for 

fragmentation estimation have been established. In spite of this wealth of knowledge, 

there is still a lack of information on how to account for excessive oversize caused by 

caprock. Section 2.6 examines the basic sciences of breaking rock with explosives 

explaining specific instances when oversize can occur from bench blasting in caprock. 

 

2.6. BLASTING USED FOR ROCK BREAKAGE 

It was difficult to find a fragmentation model that could specifically account for 

uncharacteristic oversize generated from the blasting of caprock laden rock benches. The 

Kuz-Ram model was chosen for fragmentation comparison not because of its ability to 

describe caprock but because of its simplicity and adaptability. Kuz-Ram’s description of 

oversize is not necessarily an accurate depiction of the oversize generated during bench 

blasting. This section is an examination of the distribution of stresses and fractures, 
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within a rock mass, that could cause oversize to occur near the top of a blast hole. This 

examination will provide a more definitive perspective on bench fragmentation that the 

approximating nature of modeling and estimation cannot encompass.   

The current understanding of rock blasting explains the breakage of rock 

surrounding the blast hole as a two-stage process. First the rock is crushed in the 

immediate few inches surrounding the blast hole. The rock mass, at the borehole wall and 

immediate vicinity, experiences a large degree of crushing due to the concentration and 

interaction of blast forces. Second stage in the process is development of random 

numerous, radial fractures that eventually taper down to a few primary fractures. These 

primary fractures will expand with the explosive gasses much later in the blast event 

(ISEE, 2011). Figure 2.4 illustrates a classic example of how an individual blast hole 

functions with continuous rock in all directions. Overall rock breakage can vary 

significantly from the example shown when this process is combined with blast geometry 

and the interaction of shockwaves with boundaries and discontinuities.  

 

 

 

Figure 2.4. Fracture Propagation from a Single Borehole (Donze F.V., 1997) 
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The two primary forces that cause rock breaking from blasting are shockwave 

interactions within the rock mass and the gas pressure that follows. There is speculation 

as to which has greater impact, the initial shock or the gas pressure. However, this is 

unproductive because both affect the breakage of rock in different ways. One 

commonality is that the degree to which each explosives property contributes to breakage 

is dependent on each application. These forces are explained in Section 2.6.1.  

When blasting is modeled, described, or evaluated, it is often conducted in 2-

dimensional planes; one normal to the blast hole axis and centered on the blast hole, the 

other running parallel with, and intersecting the axis of the blast hole. Viewing the blast 

in the normal plane displays the development of radial fractures produced from the blast 

hole per vertical unit. In a typical bench blast, this display would be the horizontal plane, 

giving the observer a top-down view of the blast similar to that in Figure 2.4. This type of 

illustration is not typically applied to an area of the blast hole that contains no explosives, 

such as the stemmed region of a blast hole. It is assumed that rock in the stemmed region 

does not to follow this radial breakage process as explosive energy comes from the tip of 

the explosives column below. In some cases, when stemming consists of one-fourth of 

the overall bench height, this comprises a large amount of the rock bench that does not 

receive any radial fracturing directly from the blast hole.  

The blast hole profile that is displayed parallel to the axis of the blast hole 

provides different information than its orthogonal counterpart, as shown in Figure 2.5. 

This side view shows more of the actual layout of the blast hole relative to the bench, but 

does not provide as much information as to the extent of radial fracturing. Instead, it does 
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provide information as to depth and explosives configuration. Both of these perspectives 

provide insight into the influence of effective blasthole design on rock breakage.  

 

 

Figure 2.5.  Axial Profile of Blasthole (Otterness Rolfe E., 1991) 

 

 

For metal mines, fine breakage and ore comminution is desirable. Brent proposed 

a method for improving the blasting of ore, increasing comminution. He proposed using a 

regular powder factor for the upper portion of a blast, but increasing the powder factor for 

rock in the lower portion of the blast by using extra holes drilled to full depth. These 

extra holes are not loaded as high as the main production holes, so that the lower portion 

of the blast is given a higher powder factor. This increases the amount of fines and 

comminution so that downstream crushing and refining processes can be accomplished 

more efficiently.  (Brent, 2013) 

While increasing the powder factor of explosives has a great effect for ore 

comminution, it is a significant drawback for aggregate quarries as it reduces the amount 

of salable tons that can be recovered from a blast. As discussed earlier, the objective for 
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limestone quarries is to minimize oversize without increasing the amount of fines 

generated. In an attempt to reduce persistent oversize in a bench blast, one method 

applies air decks to a bench that would typically not require them, thereby changing the 

application of blast energy. As previously discussed, blast energy is primarily distributed 

perpindicular to the blast hole, but by introducing more ends of the powder column into 

the blast hole, blast energy can have a larger effect vertically in other regions. Air 

decking also reduces pounds of explosive per delay, vibration, and throw (Jhanwar J. C., 

1999). Jhanwar also noted using air deck blasting on jointed rocks increases breakage 

because the repeated loading extends existing cracks left in damaged fragments (Jhanwar 

J. C., 2000). 

 For a single hole blast, it is easier to designate the volume of rock that will be 

effected by the blast. If multiple holes are blasted within a shot, the shape of the blast 

distribution changes as burden is removed from previous blastholes (Hjelmberg, 1983). 

This presents a significant difference between single and multiple hole blasts. This 

dissertation will primarily examine the effects of a single blast hole.  

2.6.1. Stress Distribution. When a confined explosive detonates, the gas products 

produced by the explosion rapidly pressurize their confines, and for a brief period, induce 

a stress on the surrounding area.  Explosives, located in a blast hole, induce stresses in the 

surrounding rock. Changing the quantity or geometry of explosives in a blast hole can be 

used to adjust the stresses so that the rock will break more favorably. There is an 

occasional attempt to increase fragmentation with higher-pressure explosives, but there is 

no practical advantage to this effort. Higher blast hole pressures dissipate too quickly into 

the rock mass to affect the main bulk of fragmentation. The primary result is additional 
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fines in the region surrounding the blast hole (Hagan, 1974). In addition, Nicholls and 

Duvall examined the effect of charge diameter on fragmentation and concluded that small 

diameter charges are less effective than larger diameter charges per respective volumes of 

rock at inducing stresses in rock (Nicholls, 1966). Siskind, Steckley, and Olson (1973) 

used rock cores to determine that larger holes have a larger degree of damage, along with 

a larger blast radius.  

2.6.2. Cratering and Scaled Depth of Burial. Livingston’s work with single  

blast hole tests was the beginning of cratering studies. It was the first use of what is now 

referred to Scaled Depth of Burial (SDOB), which is comprised of analyzing the 

breakage of rock in the upper region of a blast for shallow charges (Livingston, 1956). 

Explosive charges loaded above a particular height will crater and cause fragments to be 

projected from the blasting area. Livingston stated that the damage at the surface is the 

result of the tensile strain wave reflecting off the surface. Hino continued on Livingston’s 

cratering work to explain slabbing due to shockwave reflection from an explosion near a 

free face in the blasted medium (Hino, 1956). When Livingston’s Cratering Theory is 

applied, many aspects of cratering can be observed and measured. Crater volume, radius, 

height, flyrock, and airblast were all associated with burial properties (Bauer, 1961). This 

cratering theory has been used to anticipate the results of underground nuclear blasts as 

well, giving these methods a justification on a large scale (Cattermole, 1962). Starfield 

furthered this cratering theory by examining cratering conditions, scabbing, and extension 

of radial cracks. He examined the effects of the vertical strainwave in forming the upper 

portion of a crater. He also observed that if a slab is on top of the shot and no crater is 

formed, then the strain energy that would be trapped within that upper slab would be 
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essential in forming the upper portion of a crater (Starfield, 1966). This slab can be 

considered an allegorical caprock. 

With cratering, or the prevention thereof, it is reasonable to believe that the 

oversize generated from caprock primarily occurs in the upper strata. Once the blast 

concludes, this same oversize remains on the top of the muckpile and obscures visual 

analysis.  “Observations of a predicted muckpile using throw modelling indicate that the 

collar of the blast block may mask the fragmentation characteristics of the muckpile” 

(Katsabanis, 1996). Without mention of jointing or separation near the top of the blast, 

Katsabanis recognized a clear difference between the main muckpile and the fragments 

created near the top of the shot. 

 Scaled depth of burial has been used for a wide range of blast designs. Chiappetta 

used SDOB for flyrock control during the expansion of the Panama Canal.  By designing 

blasts that would not throw rock, the risk of large rocks finding rest in the shallow bottom 

of the already established canal was avoided this allowed continuous operation of the 

canal (Chiappetta, 1998). McKenzie designed from Chiappetta’s Scaled Depth of Burial 

and Roth’s flyrock estimations to predict crater volume and flyrock. He used this 

information to establish more accurate blasting design methods to keep operators and the 

public safe from the hazards of flyrock (McKenzie, 2009). Chiappetta and McKenzie’s 

designs are two different applications, but they show the efficacy of blast design not only 

based on powder factor, but the geometry and rock properties that are also present. 

Julius Roth constructed a means of comparing performance of blast holes 

regardless of their size for estimating flyrock by combining Scaled Depth of Burial with 

Scaled Crater Volume (Roth, 1979). By compensating for the geometry of a blast hole, as 
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well as explosive properties, a pound-for-pound comparison can be made between 

differing blasts with results that appropriately scale for each setup. Using this method, 

differences can be estimated between two different blasts, regardless of size or explosives 

configuration. Scaled depth of burial is shown in Equation 4 with its associated charge 

factor in Equation 5. 

SDOBU.S.= 
Is+0.042∗m∗d

0.305∗(m∗d3∗ρe)0.333
                                     (4) 

Where: 

SDOBU.S. = U.S. Scaled depth of burial (feet/pound3) 

Is = Stemming length (feet) 

d = Blast hole diameter (inches) 

m = Contributing charge length factor 

ρe = Explosive density (grams/centimeter3) (ISEE, 2011) 

m = 
12*Ic

d
                            (5) 

Where: 

m = Contributing (US) charge length factor 

Ic = Charge length (feet) 

d = Blast hole diameter (inches) (ISEE, 2011) 

This method can also be used to keep small scale tests consistent and 

representative of larger shots. In crater blasting, it can be fairly accurate in estimating the 

volume of a crater created by blasting. Scaled Depth of Burial can be paired with the 

Kuznetzov equation and Roth's estimation of flyrock velocity to give a comparable 

hazard rating. However, there are issues when pairing the Kuznetzov equation with 

Scaled Depth of Burial. When just paired together, the scaled depth of burial value must 
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be at the point with the highest scaled crater volume, otherwise the Kuznetsov equation 

assumes a higher effective powder factor than in reality. This produces smaller estimated 

mean fragment size and incredibly fast projection speeds, sometimes predicting speeds 

nearly as fast as the velocity of detonation. To practically pair the two equations, the 

calculated scaled depth of burial is used for the actual volume and mass of rock blasted. 

However, to use the Kuznetzov equation properly, the maximum scaled depth of burial 

must be used for the volume of rock blasted in the Kuznetzov equation. This contains the 

results within a reasonable range.  

Scaled Depth of Burial can describe the stemmed, upper portion of a bench that 

does not contain explosives during blasting. The lower portion of the bench is described 

as a cylindrical geometry that the Kuznetsov equation can be adjusted to estimate easily. 

Rock breakage in the upper portion of the shot can be estimated independently and 

described per scaled depth of burial. This description can be added to the Kuz-Ram of the 

lower portion of the bench for the overall size distribution.  

The most critical design a blaster can create is the borehole geometry. Bit size, 

hole depth, as well as stemming length and type all factor into the overall performance of 

a blast. Along with the proper selection of explosives product, the physical dimensions of 

a powder column also play a major role in the performance of a blast.  

In most applications, boreholes are divided into two sections where the powder 

column and the overlying stemming column meet. By examining this type of borehole 

profile, there is a clear difference between the upper and lower portions. The upper 

portion has no explosives is broken by excess explosives energy that is used to efficiently 

break the underlying section. While this configuration allows the lower rock to be broken 
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efficiently, the upper layers do not receive the same amount of energy and are often the 

source of oversize in a muckpile. This oversize is further exaggerated by the presence of 

bedding planes and adverse rock properties.  

Figure 2.6 illustrates blasting from this plane and demonstrates how explosive 

energy moves towards the top of the blast hole, almost like a bubble.  

 

 

 

Figure 2.6. Crater Progression (Atlas Powder Company, 1987) 
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As the explosion progresses, Figure 2.6 illustrates the reflection of blast waves at 

the surface, creating a cratering scenario. In the example above, the rock at the top of the 

shot is still cracked by shock, although slightly spread out, and those cracks expanded by 

the gasses. While this approach seems logical for use in massive rock formations, it is not 

intuitive for use in laminated rocks. For each additional layer of rock above the powder 

column, blast energy is reflected, transmitted, and dispersed at diverging angles. As a 

result, shock energy that does not meet with the next rock layer at a normal angle can be 

partially transmitted and partially reflected at an angle more parallel with the rock layer 

than how it entered. This is a possible explanation why cap rock is frequently referenced 

as the cause for oversize on top of shot rock. The fractures created by shockwaves 

interacting with the rock do not reach the upper layers. This leads them to break by way 

of a third mechanism, produced from the underlying rock heaving when the explosives 

gasses expand existing joints or fractures. This breakage process forms slabs out of the 

upper layers of laminated rock. 

With material creating slabs on top of the shot, a blaster would assume the shot to 

be too coarse and draw the pattern tighter. In reality is the blaster has reduced the size of 

the underlying rock, which was likely in the desirable region to begin with, and produced 

more fines in an attempt to decrease the size and amount of the oversize material. In 

aggregates, this will result in a higher unit cost per ton because of the amount of 

unsalable material, fines, created from blasting. It is possible that finding a viable 

solution to caprock will allow coarser breakage of underlying material and eliminate two 

problems at one time. 



44 

 

2.6.3. Fracture Behavior. When fractures are induced in rock, they continue to 

lengthen and expand as long as there is sufficient stress for development. Major fractures 

will intersect and produce fragments.  Oucheterlony proposed that it is possible to 

estimate a stress intensity factor for a given rock and compare the pressure load rate to 

estimate the number of primary fractures at the blasthole (Ouchterlony F. , 1974). This 

estimation is beneficial where blast geometery is more important than powder factor and 

may be used to estimate the generation large fragments generated during caprock 

blasting. Figure 2.7 shows one of Livingston’s blasts with an 8-pointed star pattern of 

fractures at the collar. If these primary fractures could be predicted for breakage in the 

upper strata, the configuration of caprock boulders could be anticipated. This possibilty is 

examined later in the analysis.  

 

 

 

Figure 2.7. Primary Fracturing at Blast Hole Collar (Livingston, 1956) 
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Rock that experiences slower strain rates, such as that not in contact with the 

explosives, tend to see fewer primary fractures while the comminution present near the 

explosives in the blasthole is practically non-existant. In Crichton’s hydraulic induced 

crack propogation testing, the effects of a slower strain rate are visible by the formation 

of single fractures within such a small medium (Crichton, 1980). 

In some areas of the rock, the blast energy is not strong enough to completely 

cleave a fragment, so it leaves a crack within the fragment. These existing cracks make 

the fragment more friable and prone to breakage with the introduction of subsequent 

stresses. Boulders with blast induced cracks are easier to break when dropped from a 

loader. The larger the fragment, the more likely it is to contain a significant crack (Jaeger, 

1986). Monte Carlo simulations of latices can be used to estimate crack densities and 

internal damage of fragments (Englman, 1984). Most of this type of fracture behavior is 

observed in ideal rock conditions, but does not account for the effect of discontinuities on 

blasting. 

2.6.4. Influence of Discontinuities on Rock Breakage. The behavior of fractures 

in ideal conditions is fairly straightforward. However, when discontinuities are 

introduced, joints and bedding planes tend to take precedence and create boundaries that 

blasting forces often cannot overcome. When expanding mode-I fractures approach a 

rock interface, one of three things will occur. The fractures can reach the interface and  

divert in a direction that follows the interface, the fractures can continue through the 

interface unhindered, or the separation of the rock material at the interface can precede 

the arrival of the fracture and the fracture can be stopped dead at the separated interface. 

This is known as the Cook-Gordon mechanism (Wang and Xu).  
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The Cook-Gordon mechanism would be difficult, if not impossible to observe in 

the field. However, the behavior of the mechanism as described by Wang can be used to 

speculate how a cap layer would break with varying bedding plane conditions. The 

conditions where separation of interfaces occur are dependent on the angle of incident 

fracture, the intensity of that fracture, and the shear strength of the interface. In a caprock 

situation, there is often infill material such as clay, and mud. With these conditions, 

especially when wet, the shear strength at the bedding plane can be considered minimal. 

This would indicate that an infilled bedding plane would likely not transmit any sort of 

fracture, eliminating one of the three possible outcomes. From here an incident fracture 

can either kink off and split the bedding plane, or just stop completely. The cessation of 

fracture extension would result in poor breakage of any material on the other side of the 

bedding plane. 

2.6.5. Distribution of Energy Within a Bench Blast.   While the previous  

Sections 2.6.1-2.6.3 focused on individual aspects of rock blasting, and the interactions of 

singular elements within the blast, a macroscopic view of the blast needs to be examined 

as well.  

 When loading a standard bench blast, drilled holes are filled from the bottom up 

and stemmed to contain blast energies. This means the majority of the explosives sit 

toward the bottom of the blast, and associated explosive energies are distributed 

proportionately. Since the upper portion of the blastholes are filled with stemming 

material, they have a powder factor that is significantly lower than that of the lower 

regions of the blast. In the case of caprock-laden bench blasts, a division can be made at 

the bedding plane to mark a division of the upper and lower sections of the blast. As 
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described in the previous section, there is a possibility that blast energies are prevented 

from passing this boundary. In this configuration, the lower section of the blast has 

explosives along its entire height. The cap portion which contains the stemming will have 

little to no explosives in that layer. This a disproportionate distribution of explosive 

energy. In this configuration, the cap material is almost entirely dependent on energy that 

is confined to the lower rock layers of the blast that may or may not transmit through the 

bedding plane. A common reaction to oversize on top of a blast is to tighten the blast 

pattern. If blast energies are only available from underneath the bedding plane, the cap is 

still dependent on outside energy for breakage and will still break poorly.  

 In addition to disproportionate loading of explosives, the way explosives energy is 

portioned into work during a blast must be taken into account. In Joshua Calnan’s 

dissertation, he was able to account for approximately 71% of explosive energy, with 

rotational and translational kinetic energy comprising 30% of this accounted energy. The 

energy used in fragmentation was approximately 1% of the accounted energy (Calnan). 

Calnan indicated that less than half of the energy used in blasting is used in the actual 

breakage and movement of the rock. In the case of caprock, this energy distribution may 

be skewed          , with most of the work of the explosives being performed beneath the 

cap layer.  

2.6.6. Estimating the Presence of Oversize. There are methods of loosely  

accounting for and improving the results of blasting around discontinuities. Drilling the 

lines of blastholes parallel to major joint sets provide the best breakage (Larson, 1974). 

Ghosh used natural joints, bedding planes, and other discontinuities to account for larger 

sized fragments. The spacing of these discontinuities are used as a topsize limit for 
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fragmentation curves as typical Rosin-Rammler type curves.  This allows the curves to 

have a distinct cutoff size (Ghosh, 1990). The concept of maximum block size bounded 

by discontinuities is also used with fluid penetrating and underground stowing methods. 

Fluids will separate blocks or layers of rock at their contacts first, opening and filling 

exposed discontinuities (Gil, 1991). 

An oversize coefficient is used as a practical field method for adjusting for 

oversize due to blasting. It uses the maximum block size and associates a volume of 

oversize produced by a particular blast pattern. This is a broad, reactive method as it is 

measured by overall estimated rock tonnage versus crusher throughput. The transferrence 

of energy, or similar transition model, uses an idealized version of the rock mass to show 

how energy is transferred to a highly-jointed rock mass. This model provides a 

coefficient to compare the effects of different powder factors on the rock mass (Lu, 

1998). This model is more appropriate for Armourstone blasts because it was specifically 

created for estimating the oversize fragments (Latham, 2006).  It is also essential for 

estimating armourstone, as increasing the amount of explosives will not necessarily net a 

significant gain in fragmentation (Wang, 1991). Armourstone, or very large rip-rap, is 

used in sea defense structures and can be considered a byproduct of normal quarrying 

operations, constituting 3-5% of the bench. In blasting operations, some of these blocks 

are broken, but some are just moved and incur no damage; this lack of damage is due to a 

loose joint and bedding plane spacing. A low powder factor is used to ensure poor 

breakage of the armourstone blocks and ensure that fewer blocks are intersected by blast 

holes. The overall block size is limited by the predominant discontinuities with the larger 

sections forming a tabular or slab shape (Wang, 1992). 



49 

 

 If the amounts of caprock can be estimated, steps could be taken to account for 

the costs associated with blasting with caprock conditions. In chapter 8 of his 

dissertation, Joshua Calnan laid out a simple linear program used for optimizing blasting 

operations. It is used to minimize the total cost with respect to drilling, blasting, 

transportation and processing of material. This program functions based on the blast 

design and explosive input into the rock mass. Transport and processing unit costs are 

associated with processed material tonnages (Calnan). This program can be easily 

constructed in spreadsheets and is fairly intuitive to use. It is a way that engineers and 

supervisors can budget for costs and try to improve the efficiency of their operation.  

 For the above optimization to work for caprock benches, the means of breakage 

for the caprock needs to be better understood. As geologic conditions in the field vary 

widely, even across a single blast pattern, the mechanisms that govern caprock breakage 

will vary accordingly. A repeatable method of examining these mechanisms is through 

small-scale model testing. 

 

2.7. SCALED MODEL TESTING 

Scaled model testing is a widely-used technique for understanding the behavior of 

blasting. Extrapolation of laboratory tests can be used to anticipate results of full-scale 

blasts, but cannot be directly correlated due to the methods of assessment between the 

two types of blasts. These tests are primarily designed to examine the blast mechanics 

that would not be easily observed in a mining situation. 

 Scaled model testing can be performed in a variety of materials, and with a range 

of sizes. The often-cited work performed by Stagg used the rock bench at the University 
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of Missouri – Rolla’s experimental mine to conduct miniature-scaled testing determining 

the optimum delay timing between blast holes for optimized fragmentation. This testing 

was performed in the Jefferson City limestone formation (Stagg, 1987). In this case real 

rock material was used in a reduced shot design to determine a delay coefficient for full 

scale blasting. Further testing at this site has been correlated to optimal burden and 

spacing ratios (Otterness, 1991).  

Small rock benches are not the only medium useful in determining rock breakage 

on a small scale. Concrete blocks and benches have been very effective in determining 

numerous aspects for both experimental and practical shot design.  

Work conducted by Tariq and Worsey small scale blocks have shown some 

aspects that should be considered in shot design. They observed that at wider joint 

spacing increases the cratering angle available for the blasthole to break out to the face.  

(Tariq, 1995). They also noted that joints greater than 0.012 inches are open and 

considered a free face for wave reflection (Tariq, 1996). Both of these observations are 

important for designing an experiment to exibit the breakage of caprock. They establish 

which boundaries in the experiment will work as free faces, and influence the 

fragmentation of the experimental blast. As determined in Kutter’s small scale testing, a 

zone of reflective breakage is present at a certain distance from the surface, after the 

shockwave reflects.  (Kutter H.K., 1971). 

Ouctherlony, has also done many tests in concrete blocks at model scale, and has 

observed that when estimating fragmentation profiles, the model scale tests are typically 

described using a larger coefficient of uniformity compared to full scale blasts 

(Ouchterlony, 2006). This means that at a smaller scale, the distribution of particles 
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across the entire fragmentation profile is spread out across the entire profile, whereas a 

full-scale blast would have a fairly tight distribution concentrated around the 50% passing 

size. 

Johansson and Ouchterlony furthered testing in concrete blocks with a series of 

small scale experiments to determine the effect of delays between holes. Holes were 

loaded in a row, and timed with detonating cord, initiating from the top-down. The 

sample block was grouted to the test bench to reduce the influence of edge effects. This 

scaled model project established a better estimation of optimal timing than Stagg 

(Johansson D, 2013). 

While observations of these small-scale tests yield results specific to their 

respective designs, they can also be useful for validating estimation and analysis tools 

that are used on a regular basis in the mining and quarrying industry on a regular basis. 

Katsabanis used a variety of fragmentation estimations, including Kuz-Ram and Swebrec, 

along with small scale tests in an attempt to estimate optimal timing between 

consecutively blasted holes. He observed an optimal timing of approximately 10 

milliseconds per meter of rock between holes which agrees with many of the previous 

investigations (Katsabanis P. e., 2014). 

Caprock is a unique geologic feature of specific rock formations. Without 

extensive blasting data on the formation, simulation and general estimation are difficult 

to perform with a reasonable degree of accuracy. When coupled with the fact that 

breakage still has not been accounted for, small scale modeling has been determined to be 

the most viable tool in reproducing caprock blasting results. This section has examined 

caprock geology, current blast modeling methods, mechanics of rock blasting, and scaled 
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model testing. All of these aspects are required to perform an assessment of caprock 

blasting that is useful with modern blasting techniques. The next section addresses the 

experimental design for the small scale caprock tests.  
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3. EXPERIMENTAL DESIGN 

Section 3 describes the design process for small-scale caprock blasting tests. Test 

specimens were designed to represent quarry blasting situations, but still be adaptable to 

simulate a variety of geologic conditions. Testing in this manner eliminated aspects of 

variability by giving the author direct control of the geologic conditions, such as jointing 

and bedding plane geometry, and uniformity that would not be possible in a quarry 

setting. The blast pattern and hole design were customized to for examining aspects of 

the blast that would have interfered with normal blasting operations in a quarry. The 

testing environment was constructed to be modular and repeatable, eliminating need for 

small rock benches as used during Stagg’s small-scale blasting tests. The general test 

bench design is suitable to differing scenarios, and easily modified for additional 

applications and investigations. The beginning of this section establishes the design 

parameters for the test specimens as they relate to quarry blasting in caprock. This is 

followed by the small-scale test bench design and accommodations. 

 

3.1. TEST SPECIMEN DESIGN 

The scaled-model caprock test specimens were designed to represent geologic 

conditions that would be encountered during quarry blasting, specifically those involving 

caprock. Small-scale representations allow for finer observations of the behavior of 

caprock relative to the blast hole. This type of representation works well since there is no 

overburden, or other obfuscation. The blast material can be relatively contained and 

dissected post-blast to observe the fracture patterns and other phenomena. This method is 
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distinctly more homogenous than actual rock, eliminating the influence of holes, voids, 

mud pockets, and joints. Scale model testing has the advantage of allowing the user to 

control previously uncontrolled variables, such as geology, material strength and 

properties, discontinuities, weather, etc. (Atlas Powder Company).  

The design of these tests was initially representative of a generic bench with other 

features added later. The specimen design was divided into three phases: dimensions for 

test specimens, initial strength, blasting configuration, and design of caprock layers. 

3.1.1. Specimen Sizing and Strength. For the scaled model test specimens to be 

practical, they needed to be a size that was not only representative of a bench blast, but 

also transportable during casting and testing. The objective design for these blocks was to 

design a test block that could be blasted and produce a measurable fragmentation. The 

end goal for these tests is not to have a direct comparison to a specific full-scale bench, 

but to provide a small-scale bench that can show some of the caprock breakage 

phenomena without interference from variables out of the author’s control. 

 Test specimens were sized so that they could be practically cast and moved. A 

block size of 1.5ft x 1.5ft width and length, and 1ft height was selected. This design made 

a block that was longer in each horizontal direction than it was tall. The 1ft in height was 

scaled to represent a 16ft tall rock bench, similar to benches the Winterset rock 

formation. When blasting in the Winterset formation, a burden and spacing of 12ft is 

common. At a 1:16 scale, this would be 9in for burden and spacing. From here, borehole 

size was selected based on available masonry bits and their flexibility. A 3/8in diameter 

hole was selected because the a 3/8in masonry drill of the required 18in length was much 

less flexible and by extension less prone to wander during drilling of specimens. At scale, 
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this equates to a 6in borehole at full scale. A 6in. hole on a Winterset bench is larger than 

usual.  4in is usually the largest bit used, but the explosive selection for the scale-model 

tests justifies this increase due to the decoupling of the explosive charge. The test 

specimen dimensions can be seen in Figure 3.1.  

 

 

 

Figure 3.1. Block Dimensions (in) – Top View (Top Left) and Side View (Bottom Left) 

 

 

 The mix design for the blocks was selected by first examining the type of material 

needed for simulating limestone. The material needed to be fairly homogenous. High 

strength concrete mixes were out of the question because of the large aggregate within 

the material. For this reason, a low strength, type S, mortar mix was selected. Mortar mix 
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does have sand as an aggregate, but it is at a much smaller scale, so it is less likely to 

affect the creation of oversize fragments. As previously discussed, the compressive 

strength range for weaker members of Missouri limestones is approximately 7000-

13000psi. As the scale of the test decreased, the strength of the material comprising the 

test specimens had to decrease as well. Keeping with the 1:16 scale, this meant a strength 

range of approximately 440-800psi. A type S mortar mix was selected to use as the 

specimen material, with a mix strength of 1800psi compressive strength. It was unknown 

if an extremely weak mortar mix would stay intact during transportation and handling, so 

this was the initial value for the solid block test specimens explained later in Section 4.5. 

The mix was later adjusted to approximately 600psi after initial tests were performed.  

 Explosive selection at this scale was limited. Blasting agents and most other 

explosives would not function at a 3/8in diameter. Detonating cord was selected for this 

reason. It functions at small diameters and could be easily loaded and used in this 

situation but suffers from decoupling. The detonating cord selected was Dyno Nobel’s 

FireLine 8/40 HMX LS. This is a 40grain/ft detonating cord. A doubled strand of this 

detonating cord was found to fit snuggly in the 3/8in borehole. This provided a charge of 

approximately 60 grains of explosive within the specimen for a 9in powder column. The 

approxmiate associated powder factor for the test specimen was 1.6lb/cyd for the 9in 

burden and spacing.  

This test specimen was blocked on two sides by bumper blocks, as displayed in 

Figure 3.2. These bumper blocks were intended to provide mass for the back sides of the  

test specimens to push against, and function as an extended part of the rock bench. They  

allowed for easy and repeatable placement of the test specimens.  
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Figure 3.2. Test Bench Block Arrangement Top View (Upper Left), Side View (Lower 

Left), Isometric View (Right) – Drilled Specimen (with thru-hole) and 3 Bumper Blocks 

 

 

3.1.2. Caprock Simulation. In the previous subsection, the dimensions and mix  

design of the test blocks were established. The last phase of caprock simulation is the 

introduction of the caprock discontinuity into the block design. Pouring the lower portion 

of the test specimen, waiting a day for it to harden, then pouring the upper portion of the 

block, created a cold joint in the block and provided a plane of weakness. In caprock 

laden benches, there is often an infilling of material between the upper layers and the rest 

of the bench. As mentioned in Section 2.2, this infilled material can consist of clay, shale, 

mud, or other interstitial media. For the purposes of this testing, infill material was 

omitted from the joint to maximize the influence of the blast on the caprock layer. A 

clean cold joint has a small amount of adhesion that would not be present using a filled 

joint. Adding a dye top section of the block during the pouring process allowed the origin 
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of a fragment to be distinguished after blasting. The construction of these test specimens 

and description of caprock test series are discussed in the next section.  

 

3.2. CAPROCK MODEL SCENARIOS   

Once the block design was established, the focus shifted to establishing which 

caprock scenarios would be tested. The test series were conducted in three main stages 

with key additional tests performed as warranted. 

The first set of scaled-model test blocks were poured solid to determine the 

behavior of the material in the stemmed area of the block without the influence of 

discontinuities. These tests were designed to be a shakedown and show faults or areas of 

improvement before the caprock test specimens were poured. These blocks had explosive 

column heights of three inches. Although they were intended for a different purpose, the 

design for these tests could be compared to those performed by Tariq for his pre-splitting 

research, although they were intended for a different purpose (Tariq S. M., 1996). These 

tests also provided a baseline fragmentation profile for comparison with the remaining 

tests.  

The second set of test blocks was designed to examine the effect of a bedding 

plane in the stemmed horizon of a blast. This series of test blocks were poured so that a 

concrete cold-joint, at the top of block, simulated a bedding plane commonly found in 

cap rock laden rock benches. These blocks were poured so that only the upper layer of 

the block contained the dye. The thickness of these top sections was poured to 1.5 in, 

2.25 in, and 3 in, respective of a 2-foot, 3-foot, and 4-foot thick layer of caprock on a 

rock bench. They were designed so that the top of the explosives column is below the 
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bedding plane, level with the bedding plane, and above that level during blasting. For the 

purposes of this thesis, the height of the powder column is defined by the depth from the 

top of the test specimen. That is the region nearest the cap layer and the tested powder 

column heights are based off of the thickness of the cap layer. The varying thicknesses of 

the simulated cap rock layers and the top of the explosives columns are shown in Figure 

3.3. This series of tests examined the effect of cap rock thickness and position of the top 

of the explosive column relative to the “bedding plane” at the bottom of the cap rock. The 

results provided insight into the effect of a single blast hole on caprock layers with 

similar material properties. The next series of tests was designed to examine the effect of 

harder caprock overlaying a standard bench.  

The results from the Series 2 tests provided information that guided the selection 

of the Series 3 testing parameters, which were designed similar to those in Series 2. Rock 

strength can vary between layers. This was confirmed by the collected rock samples in 

Section 3.1.2, which represents one of the more extreme cases of strength differences. 

The third series of tests were poured so that the caprock section was harder than the block 

underneath. These layers were comprised of two different hardness degrees and were 

poured at a set thickness to reduce the number of variables. In addition, a two-layer 

caprock composite was poured with increasing hardness to determine if this line of 

testing merited continuation. To conclude the design portion, the test bench and overall 

blasting configuration were established. 
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Figure 3.3. Varying Layer Thickness and Explosives Height for Caprock Series 1 Testing 

 

 

3.3. BLASTING CONFIGURATION 

Once the test block was prepared, it was arranged with three other blocks. The 

blocks surrounding the test block acted as a mass of continuous rock in a bench, allowing 

only two exposed faces for blasting as shown in Figure 3.2. This block arrangement was 

assembled on a flat surface that was elevated slightly to allow loading from beneath. 

Detonating cord was inserted into the drilled hole from beneath the block to the desired 

explosive column height. Sand was packed into the top of the hole to act as stemming 

material and confine the explosives energy below. This was assembled to represent a 

typical blast hole as would be seen in industry, with no explosives in the stemmed region 

of the blast hole and bottom initiation. 
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Once the block was fragmented from the blast, it was exposed, beginning at the 

top. The fragments were examined layer-by-layer for size and position and photographed 

at each layer of examination for optical analysis. After the fragments had been examined, 

they were separated and sieved to determine the fragmentation profile of the concrete in 

the stemmed region of the block as well as the concrete adjacent to the explosive column. 

This test configuration was used in each of the different test series and was the primary 

design of the experiments. Alterations and procedure from the described method are 

explained in Section 4.  
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4. EXPERIMENTAL PROCEDURE 

After the extensive planning performed in the previous section, the actual 

assembly and execution of the tests was fairly straightforward. Small adjustments were 

made from the design, as complications were encountered and are described 

chronologically with the procedure. Section 4 explains test bench construction, the 

casting and handling of test specimens and bumper blocks, blasting, and data collection. 

 

4.1. CONSTRUCTING THE TEST BENCH 

The test bench was constructed for scaled-model testing of caprock with 

simplicity and utility at the forefront. This bench was constructed to be quickly 

assembled and disassembled, but still be robust enough to withstand blast forces. It was 

also constructed to facilitate the loading of explosives as designated in Section 3. The test 

bench consisted of a flat layer of railroad ties laid tightly together. These ties provided 

adequate elevation of the test specimens and a heavy, rigid structure for resisting the 

energy during a blast.  The tie placed second from the front of the bench was 2’ shorter 

than the rest and all ties were set even with each other at the left-hand side of the bench, 

as shown in Figure 4.1. This created a small area on the underneath side where the 

experiments could be loaded and primed for blasting. Next, two 4x8 foot sheets of ¾ in 

plywood were placed on top of the ties so that they covered the ties evenly, but still left 

the priming pocket created by the short tie accessible. The sheets were then fastened to 

the ties and the floor for the test bench was completed. 
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Figure 4.1. Test Bench Railroad Tie Configuration  

(Note difference in length on second tie) 

 

 

4.2. MOVING BLOCKS  

This test bench was assembled on a level concrete pad using an overhead crane to 

load test specimens onto the blasting bench. This experiment followed a modular design 

so that the specimens and barrier blocks could be exchanged once they were no longer 

needed for testing. The barrier blocks were poured with rebar loops extending from their 

tops. These loops facilitated easily movement around the test bench with the overhead 

crane. The specimen blocks, however, had no handles or lifting aids cast into their 

features. The test specimens varied by strength and features, but the outer dimensions of 

the untested specimens (1.5ft long, 1.5ft wide, 1ft tall) remained constant for the entirety 

of the scaled testing.  

A set of lifting tongs were created, to work in conjunction with the crane, to 

transport the test specimens from the forms to their respective location on the test bench. 

These tongs were similar to logging tongs, with the difference that the set created for 

these tests had long flat feet consisting of small angle iron instead of the sharp spikes or 
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barbs that would be present in their logging counterparts. These long feet were positioned 

underneath opposing edges of the test specimens, providing strong, stable and strong 

lifting capabilities without risking damage to the specimens. They could then be moved 

quickly and efficiently and placed near their final location for testing.  

The crib was the last piece of extra bench equipment that was constructed. A 

method of containment was needed to prevent particles, created by blasting, from leaving 

the test bench. A crib was constructed of 2x12 in planks that surrounded the perimeter of 

the test block and bumper blocks. This perimeter was reinforced at the corners with 

2x4in. wooden blocks to provide additional strength at the joints and eliminate the 

drawbacks of screwing into end-grain. The inside dimensions of the crib measured 42 in 

square. This was to accommodate for the horizontal movement and swell of the test 

material from blasting.  

This test was designed to be conducted with a minimal number of steps, and an 

emphasis on repeatability. As equipment became damaged with testing, it was replaced 

with minimal disruption to the testing schedule. The following section describes the 

method in which the tests were arranged and operated. 

 

4.3. TEST OPERATION 

The scaled model tests were executed in steps which aided in ensuring test 

consistency for each of the varying scenarios. This procedure began by inspecting the 

bumper blocks. Those that were heavily damaged were exchanged, and the three blocks 

were positioned on the test bench in their respective places. The specimen block was then 
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placed on the bench so that it was even with the bumper blocks on two sides. This 

placement was examined to make sure the drilling location on the test specimen was  

positioned above the small loading pocket at the bottom of the testing bench.  

Once the specimen was positioned, the crib was set in place surrounding the 

specimen and bumpers, so there would be no movement of the test block following 

drilling. The specimen was drilled through its entirety from a marked location on the top 

of the specimen. The drilled hole was started by first collaring the hole using a pilot 

block. The pilot block was a machined block of aluminum with a perpendicular thru-hole 

to accommodate the drill bit and orient the starter bit true with the top surface of the test 

specimen. Once the starter bit had completed, the long bit was used to drill through the 

remainder of the block and underlying plywood. This created a straight through hole that 

could be loaded from below.  

Following the drilling procedure, the test specimens were loaded with FireLine 

8/40 HMX detonating cord from the underside of the bench with a specific loading height 

required for each specimen. A length of used blasting cap wire was folded to create a 

loop and then used to set the distance from the top of the desired powder column to the 

top of the test specimen. This distance was marked by wrapping electrical tape around the 

wire to not only hold the loop together, but delineate a stopping point for loading. The 

wire loop was then inserted into the top of the drilled hole in the test specimen and 

pushed through the hole to the underneath side of the block.  

After loop installation, a measured length of doubled detonating cord was loaded 

into the block by threading the cord through the wire loop, and drawing the loop upward 

until the tape mark on the wire was even with the surface. At this point, the detonating 
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cord was at the proper height and prepared for priming. The upper portion of the hole was 

stemmed slowly with Missouri River sand, same as used in the block construction, to 

prevent obstructions and eliminate a change in confinement during the test. A drilled, 

loaded, and stemmed test specimen can be seen in Figure 4.2. 

 

 

 

Figure 4.2. Loaded and Stemmed Specimen, 5/5/16 

 

 

After stemming, the specimen was covered with additional plywood and concrete 

blocks to confine the particles generated from the blast. The detonating cord was cut from 

the spool with additional length so that the ends extended below the test specimen and 

into the loading pocket. A detonator was then connected to both extensions, leaving an 

even length of detonating cord to the test specimen. At this point, the site was cleared, a 

blasting line attached, and the explosives were initiated.  
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4.4. ANALYSIS OF BLASTED SPECIMENS 

Once blasting concluded and the range was designated safe, results were recorded 

for each test. A general visual inspection was conducted, ensuring that test particles were 

contained, and if not, which piece of equipment failed for that test. If the equipment 

performed as expended, the top cover was removed and a top down perspective of the 

specimen was photographed with a speed-square for scale. This view displayed the major 

fracture patterns in the upper region of the specimen where caprock would be an issue. In 

the case of layered specimens, caprock fragments that could be identified as oversize 

were removed for weighing and measuring at a later time. The remaining substrate was 

then photographed to compare fractures and fragmentation from the top-down 

perspective. Crib removal allowed muckpile photographs to be taken using two 1 ¼ in 

steel ball bearings, placed in the muckpile, as objects of reference. The ball bearings 

provided two spherical reference points that can be used if the data is correlated with 

computer fragmentation analysis programs such as Split Desktop or Wipfrag. Once these 

photographs were taken, the remaining fragments were collected for sieving at a separate 

location. The bench was cleaned to ensure there was no contamination from previous 

tests and the procedure was repeated. Small adjustments were made to the testing 

procedure as testing progressed, and they are documented along with their respective 

series of results. 

 

4.5. BUMPER BLOCK AND TEST SPECIMEN CONSTRUCTION 

For this experiment, the bumper blocks and test specimens were constructed to be 

modular and more efficient for test setup. When compared to very large, solid blocks, 
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these specimens were easily moved around the test site, allowing for changing blast 

conditions.  

Concrete formwork was constructed on top of wooden pallets using ½ in plywood 

and 2x4 in bracing. The blocks would remain in the formwork to cure, then moved to the 

test site without risk of damaging the specimens. The forms were also designed to be 

easily removed from the pallet, while leaving the blocks intact. This allowed the blocks to 

be moved with a Bobcat and allow the lifting tongs to fit under the sides of the blocks for 

repositioning. Using this modular design, four blocks could be poured per pallet, each 

measuring 1.5-foot square and 1-foot in depth as shown in Figure 4.3. 

 

 

 

Figure 4.3. Cast Test Specimens in Constructed Forms 

 

 

Since bumper blocks were required to withstand the forces acting on the specimen 

block, they were poured first, using an already designed standard high strength concrete 

mix with a ¾-1 in aggregate.  Once they were poured, rebar jacks were inserted into the 
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blocks, leaving a lifting loop extending from the top of the blocks. After the blocks cured, 

the loops were used in conjunction with the overhead crane to place these blocks in their 

final position for testing. Test specimens were poured using the same forms, but the 

process for mixing and pouring them differed completely. 

Instead of material strengths equivalent to values observed in the field, the scale 

model tests required a material strength far lower than that of the real-world counterparts. 

Therefore, the test specimens were poured in a different manner from the bumper blocks. 

Due to the low volume of concrete mix needed, a bag mix was more cost effective than 

an order delivered by truck, narrowing the selection considerably. The next criterion was 

homogeneity of the concrete materials. Most bagged concrete mixes contained aggregate 

that, on a small scale, would represent a larger grain size bordering on a conglomerate 

rock type. Since this test was designed to mimic limestone and other small grained 

sedimentary rocks, the aggregate in the mix had to be similar in size to that of the cement 

in the mix. With this in mind, the options were further reduced to a small selection of 

readily available mortar mixes. Type S mortar was selected because the manufacturer 

rated the compressive strength of the mix at a minimum of 2400 psi. This compressive 

strength was significantly lower than that of the rock specimens tested and could be 

easily prepared. This bag mix was used as the base for the entirety of the testing series 

and the mix was modified to fit the needs of each test, as indicated in the next section. 

 

4.6. SOLID TEST BLOCK I 

Several blocks were poured for use as shake-down tests to determine the 

appropriate mortar mix that would yield the best results. Blocks were poured using the 
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type S bag mixture and 11-12lbs of water per bag to wet the mixture, making a workable 

but still highly saturated mix. For curing purposes, Glenium water displacer was added to 

the mix to help the blocks dry at faster a faster rate. The blocks were then leveled and 

smoothed with a trowel and left to firm up for 2 days. Once the blocks had solidified, 

they were transported to the MST Experimental Mine to finish curing. Cube samples of 

the mix were also poured and set aside to test the strength of the mix for a 28-day 

compressive strength. This series of blocks, with the added Glenium, reached a 

compressive strength of approximately 4000 psi, much higher than the strength 

advertised on the mix. These blocks were tested using the method described in section 

5.3. They did not break in a manner that was useful for this project, which was in part due 

to strength and excessive burden and spacing of the shot.  

 

4.7. SOLID TEST BLOCK II 

Information from the first test indicated that the strength of the material was too 

great for the explosives used creating only four fractures in two planes of orientation; the 

desired outcome required a large amount of fragmentation that could be sieved. This mix 

of material had to be improved to continue, thus the next series of specimens were varied 

by strength. The Glenium water displacer was not used for any of the remaining tests, to 

ensure the strength of the mix relied only on the mortar mix. Eliminating the Glenium 

also reduced the cost of each test specimen.  

Three different mix configurations were used in the next test series: 100% mortar 

(no additives), 75/25 mortar to Missouri River sand mix, and a 50/50 mortar to Missouri 

River sand mix. The compressive strength of the mixes was altered by replacing a portion 
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of mortar mix with Missouri River sand, while keeping the same required amount of 

water as if they were completely mortar. This provided material that could be readily 

mixed and worked in the forms. 

Eliminating the Glenium water displacer increased the cure time of the blocks to 

require a full 28-day cure. Following this cure time, the new blocks were tested using the 

procedure described in Section 5.3. Unlike the previous tests, the burden and spacing for 

this block series was changed to 7x7 in from the outside corner of the test specimen. The 

results showed that the fragmentation generated by the explosives increased with each 

decrease in strength. The fragmentation within the immediate vicinity the blast hole, 

using the 50/50 mix, was visually similar to that expected on a full-scale blast. This mix 

was selected as the mix design used as the basis for the remainder of testing. The strength 

data for the various mortar mixes, as well as the initial rock core values, can be found in 

Appendix A. 

With the mix selected, the burden and spacing variable needed to be adjusted, 

since the 7x7 in pattern continued to create overly large fragments at the perimeter of the 

test specimen. The next test series advanced the burden and spacing towards the outside 

corner of the specimen, along a 45-degree line. The configuration used 5x5 in, which 

fragmented that section of the block more thoroughly than the 7x7 in configuration, but 

still had some excessively large blocks of material remaining in the muck pile. The final 

configuration tested was 4x4 in from the corner. This adequately fragmented the material 

surrounding the blast hole, with fracturing to the edges of the block. This burden and 

spacing parameter was used for the remaining tests in this project. 
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4.8. CAPROCK SIMULATION TESTING 

After finalizing the mortar mix and burden and spacing parameters, the majority 

of the remaining tests were to ascertain the behavior of caprock relative to the blast hole 

configuration. The solid 50/50 mix blocks were tested at this configuration for future 

comparisons to the capped tests. The fragmentation on these tests was easily sieved and 

covered a broad spectrum of sizes. Following solid block testing, layered blocks were 

poured to simulate caprock laden rock benches. 

To simulate the bedding plane that separates a caprock layer from the underlying 

rock, different configurations were considered to comprise a representative cap layer. In 

nature, rock joints are classified into three categories; closed, infilled, and open. Closed 

rock joints are tightly pressed together with no material in between. An infilled joint has 

material like mud, shale, or some other media filling the slightly separated rock layers. 

An open joint is mostly void with the rock structures touching in only a few places if any. 

Out of these, only closed, tightly-cemented joints were considered. The reason for 

selecting this joint condition is that, based on the information provided in the literature, 

this condition would have the least impedance to blast energies. If caprock problems are 

present at a tight bedding plane, then further infill material would only exacerbate the 

issue. The next variable to address was determining whether the material could be weakly 

bonded with a cold joint poured in the mortar, or whether a fill medium such as putty or 

paper was required to prevent the layers from completely bonding together. A concrete 

test cylinder was poured with a layer of mortar, left for a day to become firm, and 

finished with another layer of mortar. This process was completed during the pouring of 

the previous series of solid blocks to save time. The cold joint in the cylinder was 
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examined after removal from the cylinder and found to be tight, but weak enough that it 

broke free when struck with a small, light mallet. This formation was determined to be 

adequate for use in the layered test specimens and no infill material was used. 

 For the remainder of this thesis, the scaled model tests will have a specific 

nomenclature when labeling each series of tests. Up to this point, all of the testing was 

performed on solid test specimens. These are referred to as the solid series tests. For the 

caprock tests, they are counted starting with Caprock Series 1, sometimes referred to just 

as Series 1. There were three caprock series tests performed, and they are numbered 

consecutively.  

4.8.1. First Series of Layered Specimens. The first series of layered blocks were 

poured with the cold joint at varying heights; three blocks were poured with a 3 in layer 

on the top, three with a 2.25 in layer, and three with a 1.5 in layer. The cap layers were 

dyed to aid in the identification of fragments after blasting. (The type and amount of 

dying agent used was changed throughout the remaining testing, as the first dyes used  

were mostly ineffective.) The layered specimens were then tested against three varying 

powder column depths, which were changed respective to the thickness of the caprock 

layer. In individual blocks, powder column depths were set even with the seam, half the 

distance into the caprock layer, and that same distance below the seam.  

4.8.2. Second Series of Layered Specimens. Once the first series of layered tests  

was complete the next set of test specimens, Caprock Series 2, were poured. These 

specimens were to see the influence of caprock strength on the fragmentation. Often with 

sedimentary rocks, the upper layers are exposed to weathering which results in the 

removal of weak layers down to a more solid and strong layer. This can often result in a 
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remaining top layer that is harder than the rock below, sometimes up to twice as strong. It 

can be difficult to drill and even more difficult to blast. This series of tests examined the 

change in fragmentation by varying the compressive strength of the top layers. 

The lower sections of these test specimens used the 50/50 mix as established 

earlier. The mix on the upper layers was adjusted with cap layers consisting of the 75/25 

mortar to sand mix, and the 100% mortar mix. These layers were set at 2.25 in thickness, 

but the powder column was tested at differing heights as in the previous series.  

4.8.3. Third Series of Layered Specimens. Caprock Series 2 and 3 specimens 

were constructed simultaneously.  The third series specimens were formed to examine the 

effect of two layers of cap rock instead of a single massive layer. The lower portions of 

the specimens were poured using the 50/50 mortar to sand mix to a height of 9 in. The 

middle layer was poured using the 75/25 mortar to sand mix for a layer height of 1.5 in. 

The blocks were capped off by a top layer of 100% mortar mix, giving the top layer a 

height of 1.5 in as well as shown in Figure 4.4. These blocks were tested with powder 

column heights at 3 in, 2.25 in, and 1.5 in. Based on the ineffectiveness shown in the first 

series of artificial caprock tests, tests loaded below the lower cap layer were deemed 

unnecessary.  

4.8.4. Multiple-Hole Tests. For the final series of tests, extra specimen blocks  

poured from previous series were blasted using two loaded holes instead of the single-

hole setup previously used. This series was designed to determine if there were 

significant changes in fragmentation and breakage of caprock, from multiple blast holes, 

as opposed to single-hole scenarios. The tests were performed in the same manner as 

described in Section 4.3 with only two differences which are described as follows.  
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Figure 4.4. Two-Layer Cap Test Specimen 

 

 

4.8.4.1. Drilling and loading multiple-hole blocks. The blocks were drilled at 

the 4x4 in location as determined in Section 4.7, with the second hole located at 4x8 in, 

or one more hole spacing. To properly blast two holes, they both needed to be adequately 

timed to be representative of the sequential timing employed in mines and quarries. The 

first hole, nearest the corner of the test specimen, could be initiated in the same manner as 

in previous tests. However, the second hole needed special consideration to ensure that it 

was initiated with an appropriate delay.  

4.8.4.2. Timing additional scaled holes. The first element addressed in firing the 

second hole was the amount of time required to initiate the second hole at the correct 

time. The scale of the test specimen was such that 1’=16’ on a full-sized bench. On a full-

scale limestone bench, the use of nonelectric detonators is one of the preferred initiation 

methods for cost savings and ease of use. Commonly used delays for nonelectric 

detonators are either 17ms or 25ms between hole initiations. At a 1/16th scale, this meant 
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that an approximately 1.06-1.56 ms delay is needed between two holes at this smaller 

scale. Once this required delay range was established, the difficulty arose of how to 

properly initiate this second hole with a miniscule amount of time elapsed from the 

initiation of the first hole.  

There were no commercially available blasting caps with this delay built into 

them, so an external timing method was required. This left a couple options; the first 

option used a delay box for electric caps and fire zero delay blasting caps at 2 ms apart, 

or the second option, use additional detonating cord as a delay. The electric cap delay box 

method would have been adequate, but zero delay blasting caps did not have the required 

fidelity to initiate both caps in the proper order after they had been energized from the 

delay box. This lack of dependability left the detonating cord delay method as the most 

reliable method for blasting this test series. 

A detonating cord delay is made by measuring a required additional amount of 

detonating cord and using it as a passfire between charges. Air blast was a concern at the 

test site, as the additional length of detonating cord was exposed during blasting. For this 

reason, the delay of 1.06ms was selected as the required delay. For this application, the 

manufacturer’s data sheet for FireLine 8/40 was consulted for the detonating velocity the 

detonating cord. This speed, 22304 ft/s, was then multiplied by the required delay of 

1.06ms to obtain the appropriate length of detonating cord required for the delay of 23ft 7 

3/4in. This calculated delay length was added to the amount of detonating cord already 

required for blasting a single hole, for a total length of 26ft 7 3/4in. This total calculated 

length was the length required for both loading and timing the second hole.  
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The second hole was loaded first, as it was furthest to the back of the loading 

pocket underneath the test bench. It was loaded similar to the single hole setup, but 

instead of the center location used on the 3-foot sections of detonating cord, the fold in 

the detonating cord for the wire loop was marked 1.5 foot from the end of the long 

section. This section was guided through the loop and pulled to the appropriate powder 

column height, as described in Section 5.3. Once the appropriate height was achieved, a 

section of board was inserted into the loading pocket acting as a divider between the two 

blast holes, preventing the detonating cord from short circuiting and eliminating the 

required delay (by sympathetic detonation). The extra length of detonating cord was then 

partially looped around a section of rubber tractor tread to eliminate small loops, kinks, 

and cross-overs that could introduce a cutoff or improper timing. The end of this length 

was routed back to the loading pocket to be tied in with the first hole to be initiated. The 

first hole was loaded in the usual manner.  

A bunch-block was used to connect the blasting cap to both sections of detonating 

cord leading to each separate hole. Bunch blocks are used to bind multiple strands of 

detonating cord or nonelectric shot line to a detonator. The ends of both lengths of 

detonating cord were seated in the bunch block within 6 in of their matched respective 

ends. This eliminated the need to measure a specific location on each end to match to the 

detonator, as the timing would stay consistent regardless of position near the end of the 

detonating cord. These blocks were covered and initiated using the single detonator in the 

same manner as described in Section 4.3. 

4.8.4.3. Improved crib construction.The second element that required 

adjustment was the manner in which the crib was constructed. Immediately following the 
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firing of the first two-hole test, the crib was decimated from the additional force of the 

extra explosives, requiring a more robust solution. A new crib was fashioned out of 2x12 

in boards with the same inner dimensions as the previous crib, but a much more resilient 

construction. Instead of a single layer of 2x12 in boards, three layers were used to 

construct each of the four sides. With the addition of each layer, a steel corner bracket 

was screwed to the boards, reinforcing the corners. The screws used to fasten the corner 

brackets to the boards were long enough to penetrate the board layer behind them as well, 

binding two layers together at a corner instead of a single layer and a bracket. Doing this 

for the three layers eliminated most of the flex that was present with the first crib design. 

Long screws were also used to fasten the boards to each other through their faces at each 

quarter of their length. This prevented the boards from sliding against each other and 

flexing independently, reducing the amount of force transferred to a single steel corner 

bracket that would be susceptible to bending. The finished construction was a more 

resilient crib shown in Figure 4.5. 

This crib survived all of the subsequent two-hole tests with no visible damage to 

the crib. After test results were collected, the two-hole test was determined as the upper 

limit of what the test bench could accommodate. The additional detonating cord 

destroyed the plywood at the bottom of the bench significantly faster than the single hole 

tests and the plywood had to be replaced multiple times to obtain an intact corner for the 

test specimens to rest on.  
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Figure 4.5. Reinforced Crib Construction 

 

 

4.9. DATA COLLECTION 

Following blasting, specimens were measured and collected for sieve analysis. 

Care was taken when uncovering and collecting the specimens, limiting further agitation 

of the fragments to prevent unintended breakage of the larger fragments. 

4.9.1. Sieving Broken Specimens. After completion of blasting for each series of 

tests and insitu photography, samples were transported off-site for measurement of 

fragmentation. The specimens were taken to the Civil Engineering Lab in Butler Carlton 

hall on the Missouri University of Science and Technology campus for sieving and 

weighing. Machines in this lab were large enough to accommodate most test specimens 

without the need to split the broken material and recombine results. Only the two-hole 

tests produced enough broken material to warrant a division of material. The division on 
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these tests was necessary to prevent a sieve from becoming full and blinding, which was 

not an issue for the single hole samples.  

The samples were sieved using 12 different increments. The lower range 

consisted of the pan, #30, #16, #8, #4, ½ in, and 1 in sizes. These were to provide an 

exponential distribution of the material when analyzed. The upper size region was given 

more scrutiny because the behavior of oversize fragments was the subject of this thesis 

and each large fragment represented a larger percentage of the overall fragmentation than 

the mean size or fines region. These sizes consisted of 1 ¼ in, 1 ½ in, 2 in, 3 in, and 4 in 

sieves. Fragments in the upper size range were sorted by hand through larger screens 

because the larger fragments were more friable and susceptible to breakage from shaker 

agitation. The two smallest increments, the pan and #30 sieve, were collected separately 

but should be considered combined because the sand that constituted the 50/50 mortar to 

sand mixture could not pass the #30 sieve.  The cement mixture, however, was able to 

fall through to the pan. Many of the caprock pieces were at the 4 in limit (representing 5ft 

4in at a full scale), or could slip sideways to the 3in limit (representing 4ft at a full scale), 

but most remained near the top of these sieve sizes. The samples were weighted at each 

of these sieve sizes, the results recombined when split, and that data was entered into an 

Excel spreadsheet for analysis.  

4.9.2. Picture Analysis. Photographs were taken during the field analysis portion  

of the experiment to assess the fracture patterns in the caprock layers and determine the 

mechanisms present during the blast causing specific patterns that were observed in the 

field.  
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Primary fractures were the first items identified in the photo. They extended in 

rays radiating away from the blast hole. In most of the tests, counterpart fractures 

extended in opposite directions from the hole. For the purpose of this project, these 

fractures were counted as individual fractures instead of pairing them together. The 

rational was that some fractures extended until they terminated into the faces of the 

block. These were often short fractures leading directly from the hole to the face. 

Opposite these were long fractures that extended out, sometimes terminating into the side 

of the block, but also ending within the material. These fractures lead in opposite 

directions, but were of differing lengths and the mechanics causing their creation was not 

necessarily the same. This is described in Section 6.2.1. While the short fractures were 

likely the result of compressive stresses, there is a possibility that a large portion of the 

rearward fractures developed due to the reflection of tensile stress waves from the faces.  

Following the identification of the primary fractures, secondary features were 

identified, when present. Craters were measured for their depth, beginning at the surface 

of the specimens to the start of the intact blast hole collar. The craters were measured for 

their breadth from the center of the blast hole to the radial fracture. The craters were 

assumed to have a conical shape for estimation purposes. The calculated crater volume 

was compared to scaled depth of burial calculations to determine any correlation between 

the rise of the powder column height into the caprock layer and crater size. This 

information was used to compare any significant decrease in the volume of oversize 

caprock material relative to the extra use of explosives.  

The results of the caprock testing are described in Section 5. This section 

describes the general behavior and characteristics of the small-scale caprock 
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fragmentation tests, primarily focused on the observations at the test site, with an 

emphasis on the types of occurring caprock fractures. Further analysis is discussed in 

Section 6. 
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5. RESULTS 

Data collected from each small-scale test consisted of photographs and 

measurements taken at the blast site, and size data obtained from sieving the blasted 

fragments. As stated in the previous section, the results from each series of tests 

determined the criteria for the subsequent series. Tables containing test configurations 

and sieve data can be found in Appendix A. Photographs not shown in this section can be 

found in the Appendix B. In the photographs found in this section, and the following 

sections, the captioned test number refers to the test number listed in the first column of 

Table 1 in Appendix A. This thesis refers to the tests by the captioned number, and not 

the number written on the blocks.  

 

5.1. SOLID BLOCK RESULTS 

Solid block tests were used to determine the appropriate burden and spacing, as 

well as the appropriate mortar mixture for the small-scale caprock tests. A successful test 

setup produced results with a respective amount of fragmentation without excessive 

chunks or fines. Indicators for test adjustment were the amount of pulverized material 

around the blast hole and distribution of the breakage. A blast was expected to have more 

finely pulverized material adjacent to the blast, leading to larger fragments toward the 

perimeter of the blocks. In addition, the blast was expected to produce a clean, mostly 

straight face in the remaining section of the block.  

The first test was conducted on a test block comprising of 100% mortar and 

Glenium mix with the blast hole centered in the block. This burden and spacing was 
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based on initial powder factor calculations and the assumption that the overall test bench 

geometry would cause this block to fracture diagonally and throw fragments to the 

overall corner of the bench. This was not the case, as this blast configuration caused the 

test specimen to break into four equal quarters.  

This orthogonal splitting indicated that the burden and spacing should be adjusted 

for the blast to break towards the outside corner, as would occur during a standard bench 

blast. Almost absolute minimal fragmentation was present in the test specimen, making 

particle sizing easy to measure at four approximately 90lb fragments. Both orthogonal 

fractures were clean breaks with no pulverized material surrounding the blast hole. Low 

amounts of fragmentation would have been indicative of excessive burden and spacing, 

but the complete lack of fragmentation indicated that the material strength of the test 

specimen was too strong for this type of application.  

The solid specimens that followed were poured with a mortar mix of 75% 

mortar/25% sand and a 50%/50% mortar to sand mix. The specimens were blasted using 

the same blast hole design, but with the burden and spacing reduced equally toward the 

outside corner. The 50%/50% mortar mix was found to provide the best degree of 

fragmentation, with the burden and spacing of 4 in from the outside faces of the block 

providing the most breakage.  

At the determined optimal mix and spacing, the test specimens displayed 

fragmentation that could easily be analyzed, and breakage modes assessed. Figure 5.1 

shows the extent of this breakage.  

The blasts cleaved a mostly straight face with only the outside corner of material 

fragmented. The material immediately surrounding the blast hole was reduced to the 
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smallest constituent particles, with fragments increasing in size with respect to horizontal 

distance from the blast hole. The majority of larger fragments were produced by 

diverging radial fractures originating from the blast hole. From the top of the powder 

column to the surface of the block, the breakage pattern became a cratering scenario. 

Some fractures radiating from the hole arced toward the top surface of the block, leaving 

a crater similar to those discussed in Livingston’s work. Figure 5.2 shows the top of one 

of the 5”x5” burden solid block tests, post-blast, without any fragments removed. The 

approximate radius of the crater at the surface is outlined in black. 

 

 

 

Figure 5.1. Solid Block Test Breakage at 4" x 4" Spacing, Test 5 8/17/16 

 

 

Separation at the crater radius reveals cleavage of some larger fragments that were 

initially the result of the radial fracturing process. In Figure 5.2, the displayed crater 
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outline is limited to a half crater, facing the outside corner of the test bench. The half-

crater result was present in most of the later tests where cratering occurred. Full-circle 

craters were only present with tests from later series where depths of burial were small.  

 

 

 

Figure 5.2. Surface Radius of Crater in Solid Block, Test 1 6/7/16 

 

 

The distribution of fragments at the surface can easily be counted. Approximately 

15 distinct fragments that once comprised the surface of the block can be identified in 

Figure 5.2. Most of the fractures observed in this fashion were radial, originating at the 

blast hole and orienting toward a free face, with the exception of the long fracture seen 
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extending diagonally back from the blast hole. Coarser reduced fragmentation in upper 

portion of the block is to be expected due to the absence of explosives in the stemmed 

portion of the blast hole. 

Material toward the top of the block was less fragmented and more organized than 

the material underneath. The presence of cratering in these solid blocks indicated a 

transitional region in massive formation blasting where explosive energy converts to a 

horizontal release to a vertical cone near the top surface. This presence corresponded with 

the theory that the upper portions of the blast should be considered separate from the 

lower portion of the blast, but not displaying a distinct delineation between the two 

regions. The main blast feature present was the surface crater that extended down to the 

top of the powder column. No other significant features were present in the solid block 

tests.  

Thorough fragmentation of the block in front of the blast hole was present at 

every level. The remaining block that represented the in-situ, post-blast bench maintained 

a fairly uniform face once the fragments were removed. The profile of the face and spent 

blast hole is shown in Figure 5.3, with the breakage of the face at a 45-degree angle from 

the rest of the block. The newly formed face was broken cleanly, with visible damage to 

the bench limited to the large fracture extending toward the back of the block.  

The remainder of the solid block tests produced similar results; the photographs of 

each test not presented in this section are shown in Appendix B. After completing visual 

observations, the fragments of each test were sieved to obtain the breakage profile of 

each test so they could be compared to their caprock counterparts.  
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Figure 5.3. Clean-blasted Block Face, Test 1 6/7/16 

 

 

5.2. CAPROCK SERIES 1 RESULTS 

The first series of caprock tests was the largest series in this project. This series 

was configured to test both the influence of the height of the caprock layer on cap 

breakage, as well as the influence of the powder column height on cap breakage. The 

construction of these caprock blocks is explained previously in Section 4. Three caprock 

heights and three powder configurations were tested respectively. The thicknesses of the 

caprock sections tested were 3 in, 2.25 in, and 1.5 in. The powder column heights tested 

were halfway into the caprock, at the caprock seam, and then 1.5 times the caprock 

thickness. In this series, both layers of the blocks used the same 50%/50% mortar mix 

design.  

 For most of this test series, the breakage at the surface of the blocks was 

significantly less than that of the solid block tests. Figure 5.4 shows the surface breakage 

of a caprock layer of similar material when explosives are loaded to the bedding plane, 

and the caprock layer stemmed. The amount of radial fracturing present in this 
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photograph is significantly less than that shown in Figure 5.1, or any of the other solid 

block tests with approximately half of the same radial fractures present in the cap layer. 

In Figure 5.4, four radial fractures can be counted, two perpendicular with the outside 

faces, one angled 45 degrees to the free face, and the long fracture extending toward the 

back of the block. In other tests of this series, there were typically two 45-degree 

fractures extending radially from the hole. Two other features can be seen in this 

photograph. An arcing, annular fracture can be seen in the square fragment of cap in the 

lower left corner of the picture. This arc is broken at a distance from the blast hole 

approximately the same as the caprock thickness. Another annular fracture lays 

perpendicular to the blast hole at a distance of 5-6” back from the blast hole. This fracture 

is present in a number of other tests as well, although the extent of this fracturing varied. 

This mode of fracturing is discussed further in Section 6. 

 

 

 

Figure 5.4. Surface Breakage of Caprock Layer, Test 7 8/18/16 
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The breakage of this cap varied greatly from the surface breakage of the solid 

block tests, but the material that comprised the substrate layer fragmented in the same 

fashion as its solid counterpart. Substrate breakage can be seen in Figure 5.5 as well as 

with the other tests in the appendices. The substrate layer broke consistently with each 

test, with crushing and fragmentation closest to the blast, and larger fragments toward the 

outer edge of the block. The lower portions fractured to a clean face similar to that seen 

with the solid block tests.  

 

 

 

Figure 5.5. Breakage of Substrate, Test 7 8/18/16 
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Caprock layer fragments had a maximum thickness equal to the thickness of the 

original caprock, while the particles frequently broke away from the fragments of the 

lower layer at the artificial bedding plane. Breakage along this plane proved to be a 

distinct separation point that terminated the vertical breakage of both the cap and 

substrate layer. Three regions of breakage could be observed from these tests. The first 

region is the substrate layer that comprised the majority of the block and was in direct 

contact with the explosives. The second region of the blast was the blast crater, where 

cratering was present. The third region of breakage was the portion of the cap layer that 

was not part of the crater. There were additional fractures that extended into the block as 

seen in the solid block tests. The long fractures extended towards the back sides of the 

block in both the cap and lower layers. While these cracks followed a similar direction in 

both layers, they did not necessarily follow the same path.  

Post-blast conditions of the caprock test blocks were similar to that of the solid 

block tests with a 45-degree clean-blasted free face. The only variances were areas where 

the fractures of the top layer and substrate diverged along the general 45-degree direction. 

In some instances, this left an overhang, and in others a section was removed from what 

would be a relatively smooth vertical face.  

The first series of caprock tests showed the influence of cap thickness versus 

loading height in similar, cemented layers. Breakage was varied across the spread of 

tests, with general trends consisting of minimal caprock breakage for thicker layers and 

lower powder column heights, and thinner layered, high powder column test obtaining 

the most breakage, as listed in Table 6 in Appendix B. This information enabled the 

implementation of the Series 2 tests.  
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5.3. CAPROCK SERIES 2 RESULTS 

The second series of small scale caprock tests assessed the influence of additional 

material strength on the same representative cap layer as in the previous tests. Series 2 

caps were poured using two different mortar mixes. As with previous mixtures from the 

solid block tests, a 75% mortar/25% sand mix and a 100% mortar mix were used to 

comprise the artificial caprock layer. The purpose of this series was to demonstrate the 

results of blasting a weak substrate layer beneath a competent, or exceedingly strong cap. 

For the two-layer blocks in this series, the bedding plane remained at a depth of 2.25 in, 

which provided the most meaningful results in the previous series. Along with the single 

cap layer hardness tests, a second configuration was poured to simulate layers of 

increasing hardness. For this, the substrate layer was limited to 9 in height, with two 

additional cap layers poured at 1.5 in height each. The bottom layer remained the 50% 

mortar/50% sand mix, while the central layer was comprised of 75% mortar/25% sand 

mix, and the top with 100% mortar mix. The purpose for the top two layers occupying the 

top 3 in of the block, rather than the 2.25 inches used for the first part of this series, was 

due to the difficulty of working with the thin layers of mortar and maintaining the desired 

consistency and integrity of the test specimen. The middle layer was dyed in these multi-

layer specimens to aid in the distinguishing and sorting of fragments. The configuration 

of the three-layer blocks can be seen in Figure 5.6. 

The breakage of the harder, upper layers in both the single-layer cap and two-

layer cap specimens in this series was blocky, with minimal or no cratering present. 

Individual caprock fragments and fractures were easily counted and characteristic 

features were readily identified. There were very few fine caprock fragments remaining 
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near the blast hole, and most caprock fragments were generated from radial fracturing. 

Some of the fractures that were present in the similar strength caprock tests were no 

longer present, or were less pronounced. The breakage of the softer, lower strata was 

characteristic with the remaining breakage from the previous series.  

 

 

 

Figure 5.6. 3-Layer Test Block Post-Blast, Test 21 11/15/16 

 

The principle aspects of this blasting method were tested by changing powder 

column height in varying strata thicknesses, hardness, and layer counts. This led to the 

final aspect that was tested; a sequential blast of a characteristic blast hole configuration 

within varying test blocks.  
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5.4. SCALED SEQUENTIAL HOLE RESULTS 

The third series of small-scale caprock blasting tests determined the influence of 

two sequential blast holes on the breakage of artificial caprock. Until now, all of the 

testing had examined how the breakage of caprock performed with a single blast hole. 

From the results of previous series, the fracturing of material on top of the remaining 

bench extended beyond the point where a subsequent hole in the blast would have been 

located. Caprock Series 3 tests employed a second blast hole shot in sequence with the 

first to ascertain if the pre-conditioning of the remainder of the bench was a product of 

the test design, or remained present with additional blasting. Two holes were drilled in 

each test block at the 4”x4” spacing, then timed and loaded with detonating cord. 

The blasting results from this series revealed more of the same characteristics that 

were present for the outer hole in the previous series. However, the addition of the second 

hole altered some of the remaining features that were present as a result of the first hole. 

The larger fragments that appeared at the edges of the block in the soft substrate layer 

were broken more than in the single blasthole tests. Also, the material that would have 

comprised one side of the 45-degree face was fractured and the face extending between 

the two holes was more parallel with the original face of the block. The long fractures in 

the cap that extended back into the block from the first blast hole were more open and 

exacerbated as shown in Figure 5.7. The corresponding substrate photo is shown in 

Figure 5.8 as well. In addition, comparing the two photographs shows that the annular 

fracture can be considered as an exclusive feature of the cap layer.  

This series completed the collection of data from the field. The results of Series 3 

were sieved in a similar fashion to the previous series. The results of all collected sieve 
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data are discussed in the next section along with an analysis of the characteristics that 

appear in the cap breakage throughout the caprock tests.  

 

 

 

Figure 5.7. Caprock Breakage 2-Hole, Test 30 11/22/16 

 

 

 

Figure 5.8. Substrate Block Fractures 2-Hole, Test 30 11/22/16 
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6. ANALYSIS 

There are many different inferences that can be deduced regarding the data 

collected for the scale model tests. The purpose of these was to determine if the 

mechanics produced adverse breakage that could not necessarily be observed in the field 

due to soil, mud, water, or some other environmental aspect that would obscure these 

features. Direct comparisons to the behavior of an in-situ rock mass are difficult due to 

lack of control over the same aspects within a full-scale rock bench, which makes 

physical model testing very useful. The analysis conducted on the test blocks, and the 

observed behavior trends are used to infer aspects of the behavior of a full-scale bench. 

This analysis is primarily divided into two parts; the first part covers the fragmentation of 

the test specimens as measured by sieve analysis, and the second part focuses on the 

photographic analysis of the blocks.  

 

6.1. FRAGMENATION OF TEST BLOCKS 

The first test aspect examined the fragmentation of the substrate layers of the 

caprock tests. All of the substrate layer fragments, as well as the solid block fragments, 

were classified using a set of rotary sieves. The larger fragments, above 1 in, had cracks 

and fractures permeating throughout. This fracturing caused the fragments to be friable 

with additional breakage probable as described in Section 2.6.3. Due to the fragile nature 

of the larger fragments, fragments above 1” were sorted separately by hand using a 

stationary set of sieves. The substrate layer was classified separately from the cap 
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material and examined per individual factors to approximate the effects of the varying 

cap and loading configurations on the fragmentation of the lower bench.  

 The cap material was sorted in the same manner as the larger fragments of 

substrate. As shown in the previous section, the fragmentation of the cap layers was 

coarse compared with the underlying material, often breaking into only a few fragments. 

The larger cap fragments often had distinct shapes, as radial fracturing was the primary 

mode of breakage.  

6.1.1. Plotting Test Fragmentation.  For this thesis, the sieve data obtained from 

the test specimens was plotted on a series of line graphs. The y axis of these line graphs 

shows the cumulative percentage of the test specimens retained per sieve size, beginning 

with the smallest sieve.  

The percentages for the pan material were excluded from the plots as they should 

be considered together with the #30 sieve. The pan weights and percentages are listed in 

the tables in Appendix A. The individual grains of sand in the mortar mix were retained 

on the #30 sieve, so as one of the smallest possible elements of the mortar, this was 

determined as the lowest size considered for this study. The sand did cause the blocks to 

break along grain boundaries, but it did effectively reduce the block strength uniformly.  

The plotted fragmentation ranged across the entire combined size range, including 

both the smaller, machine sieved particles, and the larger hand-screened fragments. Due 

to the large discrepancy in scale between the largest and the smallest screen sizes, the x-

axis of the fragmentation plots is logarithmic. This allows the plot to represent each 

screen interval accurately, without requiring an overly large plot area. Each series 

represented in the plots is depicted by a separate color. Where two different aspects of the 
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same series are represented, such as in Figure 6.3 and 6.4 in Section 6.1.2, the series are 

still divided by color, and then subdivided by line type.  

 In addition to displaying cumulative percentages, these plots are also able to show 

how the rapidly the large counts of the larger fragments affect the graphs. Regions of the 

graph where the plotted series remain relatively flat represent screen sizes that retained 

small amounts of the test specimen. Conversely, graph regions that have sharply rising 

plots represent a large portion of the test specimen retained on the respective screen. The 

following subsections describe the behavior of the plotted fragmentation from the 

graphed data and how it compares to common fragmentation prediction models.  

6.1.2. Fragmentation Profiles of the Caprock Model Lower Layers.  The  

fragmentation profiles of the lower layers of the scaled-model tests were all relatively 

consistent in fragmentation regardless of configuration. A majority of the fragmentation 

profiles trended in an almost straight-line progression across the examined sieve sizes, 

with slight variations. This subsection examines the fragmentation of the substrate layers 

of the small-scale caprock test blocks, the overall fragmentation of the small-scale 

caprock test blocks, and the comparison between the two. In addition, the results from the 

sequential-hole tests are discussed.  

General results showed a slightly coarser breakage through the mid-sized 

fragments on the solid blocks than the substrate of the capped blocks, as shown in Figure 

6.1. This coarse shift in fragmentation can be attributed to the inclusion of large 

fragments from the stemmed region of the blast.  Figure 6.1 shows that the breakage 

profiles of material in the lower layers of the capped specimens have consistent trends 

and typically produced smaller mean fragment sizes than that of their solid counterparts. 
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In the larger size region of the graph, each series takes a large jump in cumulative 

percentage around the 1.25-1.5in. range. For the displayed caprock series, the slopes of 

these series increase moderately in this range. However, the solid series has the 

shallowest rise across the lower and middle size ranges, and then produces the steepest 

ascension in the 1-2in. range. This difference in breakage shows that instead of a steady 

rise in breakage, the middle range of sizes is almost absent. Blast energies in the solid 

blocks were dispersed, providing a more thorough breakage of the upper block instead. In 

addition, Figure 6.1 displays that the substrate fragmentation profiles of each average 

series do not significantly change depending on the cap scenario. In the majority of these 

scenarios, the capped blocks were loaded so that all, or nearly all, of the substrate 

blasthole lengths were in contact with the explosives.  

 

 

 

Figure 6.1. Average Substrate Fragmentation Cumulative Percent Retained 
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In the above figure, the average trends of substrate fragmentation for each 

significant set of tests are compared. They are divided by cap layer mix to show the 

influence of the cap layer on the breakage of the substrate. With the exception of the 2-

layer cap tests, the substrate broke consistently, and were indistinguishable in 

fragmentation at sieve sizes above 1.5in. 

 While the lower layers of the caprock test blocks generated fragments finer than 

those from the solid blocks, the combined fragmentation profiles of the capped test 

blocks indicated a much different result. With the broken cap data added to the substrate 

data, the complete fragmentation profiles for each test block are shown in Figure 6.2. 

With the fragmentation of the whole test specimen compared to the solid block breakage, 

it is difficult to distinguish any significant difference in the coarseness of breakage. 

Contrary to anticipated results, the data shown in Figure 6.2 illustrates that while there 

were cap fragments caught on the 4in. screens, the profiles do not indicate a large 

deviation in fragmentation from that of the solid block tests. The intermingling of the 

different plotted curves between the 1-2in. screen sizes of both the solid and capped 

block series make breakage in the large size region of the graph indistinguishable from 

one to the next. A potential cause of this is the lack of lamination of the lower layers of 

the test specimens that would be present in limestone formations such as the Bethany 

Falls or Winterset. This caused the large vertical fragments at the extents of the 45-degree 

fractures to remain intact. If a lack of laminations is the explanation for the large vertical 

fragments at the extents, it follows that even though the explosive column detonates from 

end to end, the forces imparted to the rock are primarily exerted radially from the column 

with little to no noticeable vertical component. Another potential reason for these large 
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vertical fragments is the nature of the single-hole test design. The large vertical fragments 

could be eliminated either by dividing the substrate into more layers, or using additional 

blastholes to increase the amount of breakage.  

 

 

 

Figure 6.2. Complete Sample Fragmentation Per Series 
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the reduction of large particle sizes, the broken cap material shifts the fragmentation 

curve to the coarse side, and makes the curves less uniform. The most notable change in 

fragmentation in Figure 6.3 can be seen at the 1in. screen size. At this size, each cap 

series has a discrepancy in cumulative fragmentation ranging from approximately 7-15 

percent reduction in breakage. This coarse breakage is made up in the 2-4in. size range, 

indicating that the mid-range fragments (0.25-1in.) are not as influential as their larger 

counterparts. 

 

 

 

Figure 6.3. Comparison of Single Hole Cap Fragmentation Profiles with Substrate 

Profiles (Solid Lines) and Combined Cap and Substrate Profiles (Dashed Lines) 
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The solid colored lines in Figure 6.3 represent the substrate fragmentation of the 

respective test series similar to the previous charts. The dashed lines represent the 

combined fragmentation profile of both the substrate and cap for their respective series. 

The gap between the solid and dashed lines of the same color represents the change in 

fragmentation that the caprock breakage produced. In each case, the fragmentation of the 

fines to mid-range fragments, in both the substrate and overall, were more prevalent than 

in the solid block tests. However, from about the 1/2in. to 1in. range, the caprock test 

curves flatten out. The lack of slope in this region indicates that there were little to no 

additional fragments in this size range. Following this section, the curves steepen and arc 

until they reach the 100% mark. The curves in this upper section all tend to coalesce, as is 

the nature of this type of analysis. The distinguishing feature of the upper portion of the 

plotted fragmentation, above 1.5in, is that the substrates trended to have smaller breakage 

than the solid block series, but the majority of combined series had coarser breakage 

above this size range. The practical explanation for this is that the caprock tests had more 

fines and larger oversize fragments compared to the solid tests, but in the mid-range of 

approximately 1/4in. to 1in. was nearly absent. This indicates that the caprock layer has a 

significant influence on not only the overall breakage profile, but the breakage of the 

substrate as well.  

 The results of the two-hole sequential tests show similar results in Figure 6.4, 

with the lower substrate having a finer fragmentation profile compared to the total 

counterparts. This confirms the hypothesis that the upper part of the blast should be 

considered separately from the lower portion. It should be noted that the breakage of the 

lower layers in the two-hole tests was not as course as the single hole counterparts. This 



104 

 

can be attributed to a lack of large corner fragments that were seen along the 45-degree 

break in lower layers of the single hole tests. Similar to the results in Figure 6.3, the 

overall breakage profiles of the sequential hole blasts still shift to the coarse side 

confirming, that the cap material does influence the overall fragmentation profile. 

 

 

 

Figure 6.4. 2-Hole Fragmentation Total vs. Substrate with Test Substrate Profiles (Solid) 

and Combined Cap and Substrate Profiles (Dashed) 
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fines generated in the 2-hole caprock tests compared to the 2-hole solid test, with an 

inflection around the 1.5in. size, where there is a larger presence of oversize compared to 

the solid test. This validates the results of the single hole tests, because similar behavior 

was displayed in both cases.  

The last general fragmentation comparison needed is the comparison of the 

single-hole series fragmentation with the sequential-hole series fragmentation to see how 

the addition of the second hole affected the breakage of the test blocks. Figure 6.5 is in 

similar form to Figure 6.4 in that it shows the breakage profiles of the sequential-hole 

tests relative to their single-hole series counterparts.  

 

 

 

Figure 6.5. Single-hole Vs. Sequential-hole Fragmentation Illustrating Finer 

Fragmentation of 2-hole Tests Compared to Single-hole Tests 
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 Figure 6.5 compares the solid block test average, as well as the single-hole 

averages, and the sequential hole tests plotted side by side. The single-hole tests are 

denoted by the solid colored lines. The sequential hole tests are represented by the dashed 

lines, and are colored respective of their single-hole counterparts. The general trend of 

the sequential-hole test breakage profiles is similar in shape to the single-hole tests. 

However, the sequential hole tests indicate that the additional hole produces a 

significantly smaller breakage profile compared to the single-hole tests, as indicated by 

the larger percentage of fines and mid-range fragments. This is most likely a result of the 

explosives in the second blasthole acting upon a normal amount of rock, nearly equal to 

the burden and spacing, as opposed to the initial hole which is removing rock at twice its 

designed volume.  

 With the general breakage of the small-scale caprock tests described, the results 

need to be compared to existing models to verify the results of the models. The following 

subsection examines the behaviors of three fragmentation prediction models and 

compares them to the results found in this subsection. 

6.1.3. Comparison of Single Blasthole Substrate to Fragmentation Models.   

The data collected from the single hole, scaled-model tests was compared to the 

estimations generated from the Kuz-Ram and Swebrec fragmentation models. Factors 

within these models used to describe rock mass and explosives application were set as 

close as possible to the criteria used to describe the test blocks in Table 1 in Appendix A. 

This exercise was to see if the models can be adapted to fit some of the data obtained 

from the scale-model tests, as that application is a significant departure from the intended 

use of the prediction models.  



107 

 

The first part of this subsection examines how the models behave when 

configured using the final design values for the solid 50/50 mix scaled test blocks. Two 

versions of the Kuz-Ram as well as the Swebrec model were entered into a spreadsheet 

for ease of operation. Initial input values for these models were taken directly from the 

solid block test configurations. Explosive inputs were set at a 4in burden and spacing, and 

a 9in powder column height. Properties of the detonating cord were entered as well. The 

concrete properties of 600psi compressive strength, 160lbs/cu. ft. density, massive 

formation designation, and no jointing were entered as well. These conditions represented 

the solid block scale model tests.                                                                                                                                   

Figure 6.6 shows the models were evaluated at the same sieve apertures as used in 

the scaled model tests. The models assessed the topsize, and smaller fines regions close to 

the obtained sieve values. However, the slope of the curve at the 50% mark is far steeper 

than that seen in the laboratory tests, and the 50% failing value is much lower than the 

scaled model tests. This indicates a couple of things about the model. The fragmentation 

of the solid test blocks had a larger 50% failing sieve size than the models predicted, 

around 1.25in instead of 0.5in. In addition, the slope of the prediction curves at the 50% 

mark is much steeper than the slope that that of the scale-model tests.  

Examining the formulas for each of the models, these discrepancies can be closely 

described as a difference in the value of the mean (50%) fragment size as well as the 

exponent used with the Rosin-Rammler curve. The mean size is a function of the 

effective powder factor, the amount of explosives per volume of rock. The exponent is 

calculated using criteria from Lilly’s method of rock mass assessment, as well as blast 

geometry. 
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Figure 6.6. Kuz-Ram and Swebrec Estimation of Test Blocks 

   

After close examination, the models could be adjusted to better accommodate this 

inappropriate application. Both the mean size and exponent of uniformity, shown in 

Equations 1 and 2 in Section 2.3, are dependent on the burden and spacing of the blast to 

calculate useful values. To adapt the estimation calculated in the semi-empirical models, 

the 4x4 in burden and spacing of the blasthole was adjusted to reflect the actual geometry 

of blasted material. The corners of the test blocks fractured to an approximate 45-degree 

angle, which exceeded the extents of the 4x4 in burden and spacing of the original 

blasthole. The 16 square inches of surface area used to calculate the effective volume of 

rock was doubled to 32 square inches because of the actual 45-degree breakage angle. 

This is due to the fact that these single-hole blasts were made on the corner of the test 

blocks. To adjust the models for this additional material volume, the root of 32 square 

inches, approximately 5 5/8 in, was used as the value for the burden and spacing for these 
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models. The result in doing so is much different as shown in Figure 6.7. The curves 

shown in Figure 6.7 are more representative of the general breakage profiles of the 

scaled-model tests and is only valid for this specific geometric configuration. Subsequent 

blastholes provide a different blast geometry than the first hole in these tests. This is 

because the rock mass has different boundaries than those encountered by the first hole. 

The first blasthole in these tests broke to two orthogonal faces because the block starts 

out square. The second hole broke to two oblique faces as a result of the angled face left 

from the first hole. Because the geometries for the first and second blastholes are 

different, each scenario needs to be assessed separately and then combined afterwards 

instead of evaluated in a single estimation.  

 

 

 

Figure 6.7. Burden and Spacing Adjusted Kuz-Ram and Swebrec Estimations 
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 Figure 6.7 shows the adjusted Kuz-Ram and Swebrec models converge better in 

the upper size region, but the estimated mean size (50% retained) is smaller and the fines 

are underestimated. These estimations can be made closer to the solid block test average 

by substituting the calculated mean size in the models with the observed mean size of the 

tests, as shown in Figure 6.8. To do this, the A factor was then adjusted until the 50% 

passing values were nearest each other. This still left some regions of discrepancy 

between the estimation curves, but the mean size, and extents are close to what the test 

data displays.  

 

 

Figure 6.8. Plots of the Kuz-Ram and Swebrec Models, with Mean Size, Burden, and 

Spacing Adjusted to Fit 
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models required major adjustment to fit the solid block tests. These models are also 

effected by the change in explosives from TNT (Kuz-Ram 1983), ANFO (Kuz-Ram 2005 

and Swebrec 2005) to detonating cord, although to a small degree. The calculations 

performed in these models are based on the relative weight strength (RWS) of the 

explosives used in relation to a reference value. Velocity of detonation is not considered 

in these equations, so high brisance, lower gas volume explosives like detonating cord are 

treated similar to TNT or blasting agents. There is no distinguishing between their 

differences in explosive properties but simply a difference in strengths.  

However, the largest influence is still the difference in the amount of rock blasted 

instead of the burden and spacing of the blast hole. This is a geometrically dependent 

portion of the model. It was intended to provide average values from a full-scale, multiple 

blasthole shot. By restricting it to a single hole that has a much different volume output of 

fragments, the biggest concern is making sure the model is calculating the appropriate 

amount of blasted material. This modification to these models may be applicable for 

other geometric configurations. They were originally intended as an approximation for a 

complete bench blast.  

 

6.2. OBSERVED CAPROCK FRACTURE PATTERNS 

Along with the plotted fragmentation data, the photographic data provided a large 

amount of information into the origin of large fragment production. Many observations 

can be made from this information regarding the conditions that cause the unique 

breakage patterns of the cap layers. These observations include the radial breakage 

patterns of the tests which are directly related to the explosive column, the transient 
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fracturing occurrences, and the overall surface breakage estimation and comparison of the 

scaled depth of burial for individual tests. Lastly, this section will discuss issues with the 

collection of cap data.  

6.2.1. Radial Fracture Patterns.  Specific fracture patterns occurred in the cap  

layer, surrounding the blastholes in the scaled-model tests. These fracture patterns had 

distinct characteristics similar to those found by Livingston and others. The primary 

fractures initially extended radially from the blasthole until other blast conditions, such as 

approaching a free face could affect their directions. Radial fractures were counted as 

originating at the blasthole and extending outward. The radial fractures extending 

towards a free face often had a counterpart that extended from the blasthole in the 

opposite direction. These fractures, although counted separately, were treated as a pair 

with their partner fracture opposite the blasthole. On average, six major radial fractures 

were a common occurrence in the simulated cap rock. Two of these fractures developed 

orthogonal to the faces, maintaining a 90-degree angle of breakage from the blasthole.  

These radial fractures were often accompanied by fractures that extended backwards past 

the blasthole. These partner fractures became thinner as they progressed towards the back 

faces of the test block, terminating at, or most of the distance to the face. They are similar 

to fractures that appeared in scale model testing performed by Tariq (Tariq S. , 1995). 

The remaining two of the 6 fractures extended from the blasthole and oriented 45 degrees 

from either of the original block faces defining the extent of fragmentation. Depending on 

the situation, these fractures either fractured in a straight line or feathered out to the face. 

Figure 6.9 is a good example of the two short fractures that extended from the blasthole 

to the two original block faces and the 45-degree fractures that formed the newly blasted 



113 

 

face. Also shown in this picture is one of the partner fractures that extended towards the 

back of the block. This thin fracture is considered the partner to the orthogonal fracture 

that developed opposite the blasthole. On this test, only one of these fractures presented 

itself in the cap strata. In the substrate material, there were 2 of these fractures that 

extended to the back of the block, indicating that the mechanisms of breakage between 

the substrate and caprock are different. One of the lower fractures formed trending a 

similar direction with the thin fracture above, but broke independent from the caprock 

strata as shown in Figure 6.10. Although the breakage shown in Figure 6.9 is an excellent 

example of some of the individual types of fractures encountered in the cap strata, it was 

also one of the poorest cap breakages with only three fragments produced.  

The last two typical fractures in the cap opposed each other and formed the 45-

degree breakage angle. In certain instances, an additional two radial fractures developed 

perpendicular to the 45-degree break, extending diagonally to the front corner of the 

specimen and extending back toward the center of the block at the same angle. The 

inconsistent appearance of this diagonal break contributed little to the overall 

fragmentation, only splitting the square corner fragment a few times.  

Of these described radial fractures within the cap, five are considered as 

contributing to the fragmentation of the blast. These fractures are classified as such due to 

their relatively straight paths from the blasthole, and the fact that they develop toward the 

open faces of the block. The two short orthogonal fractures, the two 45-degree fractures 

that form the new face, and the inconsistent 45-degree fracture that forms from the 

blasthole to the outside corner of the block fall within the bounds of the fragmented 

section of the test specimen. The additional fractures that extend towards the back sides 
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of the block, or through the middle, are considered to be a result of the face-bound 

fractures reaching the face and expanding. The expanding outer fractures provide the 

leverage needed to force the extension of fractures to the back of the block.  

 

 

 

Figure 6.9. Test 18 Basic Cap Fractures, with Cap Material Repositioned (Center) for 

Comparison to the Breakage of Substrate (Bottom Left) 

 

 

The long, backwards fractures are similar to those discovered by Tariq and 
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result of the momentum of expanding material furthering crack elongation. From a 

single-hole perspective, like the majority of tests in this work, it is difficult to predict the 

effects these fractures would have on fragmentation. If there was enough time delay 

between holes in a sequentially timed blast for these fractures to develop within a rock 
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bench, they would likely behave as a predominant vertical joint set for the subsequent 

rows of the blast.  

 

 

 

Figure 6.10. Test 18 Diverging Cap and Substrate Fractures 
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caprock problems. This is due to the fractures dividing the caprock into large chunks that 
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are not likely to fragment. If we were able to orient these fractures so that they intersect 

the adjacent blastholes, it would increase the uniformity on the breakage of the cap.  

This describes the primary occurrences of radial fractures that developed in the 

cap layers of the block. The amount, length, and direction of fractures varied as 

conditions changed throughout the cap. In some instances, fractures combined or 

coalesced instead of maintaining their own path. However, these radial fractures all 

originated from the blasthole and were present in some form throughout the entirety of 

the tests. These commonplace fractures were sometimes accompanied by inconsistent, 

transient fracturing.  

6.2.2. Transient Fracture Patterns and Characteristics.  In addition to the  

regularly occurring fractures in the cap, as discussed in the previous section, there were 

two types of transient fractures that appeared, but were either formed as an indirect result 

of the blast, or not regularly occurring. These patterns of breakage are described as 

transient because their presence was inconsistent and not tied to a specific test series. One 

of these features, the annular fracture, appeared behind the blasthole, just past the point of 

an additional burden and is shown in Figure 6.11. This fracture was a result of flexure of 

plates formed within the caprock.  Flexure of the cap layer was indicated by the 

separation of the large plates from the substrate that formed backwards from the 

blasthole. The remainder of the cap layers were still adhered to the intact substrate and 

had to be loosened with a rubber mallet to inspect the remaining substrate for tensile 

fractures. These flexural plates tended to form in pie slice shapes centered on the 

blasthole, and as previously stated, the length of these plates exceeded the burden or 

spacing of the blasthole.  
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Figure 6.11. Annular Fracture and Large Plates 
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fracture to fully form between holes needs to be performed. Aside from that, the distance 

of the annular fracture toward the back of the block from the first blasthole extended 

across for the second blasthole as well. Even though it is difficult to determine the 
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formation of the annular breakage between holes, the presence of the annular fracture 

behind both sequential holes indicates that trying to eliminate this oversize by changing 

blast timing would likely not show a significant increase in cap breakage. This is due to 

the long delay time between rows of a full-scale blast.  

The annular fracture scenario alludes to the possibility that overly large boulders, 

on top of a conventional bench blast, can be created as a result of preconditioning of the 

rock strata by previous holes in the blast. In the field, large caprock fragments can be 

found with blasthole collars still present, and not fractured from its respective blasthole. 

This preconditioning could potentially cause the large oversize by opening up the 

aperture of the bedding plane, preventing sufficient blast energies from subsequent 

blastholes from penetrating the strata. Following this premise, any infilling, or foreign 

material in the bedding plain, such as a clay or wet shale seam, could potentially prevent 

direct fracturing of the cap layer as well. In testing, these large fragments were the only 

source of overly large breakage, and likely a result of a heaving mechanism.  

The scaled-model tests showed that a degree fracturing was always present in the 

cap layer surrounding the blasthole collar, regardless of setup. The degree of cap 

fracturing for the first hole in the multiple-hole tests was similar to the fracturing of the 

single-hole tests. There was less cap fracturing surrounding the second blasthole in the 

multiple-hole tests than the first blasthole. This is a similar result to Livingston’s work, 

shown in Figure 2.8 in Section 2.6.3. When this logic is applied to full-scale caprock 

blasting, large slabs with intact blasthole collars remaining can be considered a result of 

the preconditioning of the caprock from a previous blasthole.  
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Cratering was the second transient fracture pattern present in the caprock test 

specimens. Cratering occurred in the caprock layer in some of the tests. These craters 

formed an approximate 45-degree angle with the top of the block, with cratering 

extending upward from the approximate location of the top of the powder column, or the 

artificial bedding plane, whichever was higher. The fragmented material contained within 

the crater is of no concern to this study because the fragments within the craters were 

small enough that they became difficult to separate from the substrate breakage and were 

not relevant to the examination of oversize for this project. The importance of cratering 

within the cap layer is more related to the volume of the crater relative to the volume of 

the cap layer for a uniform single blasthole test. When cratering is present in caprock, a 

small portion of the volume is removed from the cap. Instead of that rock being used to 

create large surface fragments, it is broken to a finer fragmentation in keeping with the 

substrate material. Cratering was only observed for the single-hole caprock tests. The 

breakage generated during the multiple-hole tests made it difficult to observe in-situ post-

blast conditions. 

Calculating the volume and mean size of the crater for a full-scale blast can be 

performed for breakage or flyrock estimation purposes as described by Roth and 

performed in the author’s master’s thesis (Coy, 2014). The breakage of the crater is 

dependent on the scaled depth of burial as discussed in detail in Section 2.6.2.1. Since the 

caprock tests were covered, the crater fragments were either easy to identify, or were 

pulverized to a point where they were indistinguishable from the substrate material. This 

cratered material provides no risk of oversize.  
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6.2.3. Caprock Test Surface Breakage and Scaled Depth of Burial.  The  

breakage of fragments on the surface was too coarse to obtain a usable fragmentation 

profile. The only meaningful display of this data is in the cumulative fragmentation 

profiles in Figures 6.2, 6.3, and 6.4. For the analysis of the cap layer itself, a count of the 

fragments was conducted to associate the amount of breakage with the blasting scenario. 

Figures 6.12 and 6.13 depict the difference in surface breakage between a solid block test 

and an equivalent caprock test.  

The individual fragments on the surface were totaled as could be distinguished 

from the surface. Only fragments that were distinguishable from the substrate material 

were included in the count. This was the intended purpose for the dye the cap layers. This 

method did not account for fragments that were small enough to become lost in the 

substrate material. Those small fragments presented no risk of oversize and were still 

included in the overall fragmentation profiles, as shown in Section 6.1. 

 

 

Figure 6.12. Test 5 Solid Block Surface Breakage 
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Figure 6.13. Test 13 3” 50%/50% Mix Cap Surface Breakage 

 

 

The cap fragment counts were compared for differing cap configurations and 

scaled depths of burial. Scaled depth of burial calculations were performed using the U.S. 

unit scaled depth of burial equation found in the ISEE Blasters’ Handbook and shown in 

Section 2.6.2.1. The assumption made for these calculations was that the length 

contributing factor for the SDOB equation was limited to a value of 8 as recommended in 

the Blasters’ Handbook (ISEE, 2011). The explanation for this assumption was that due 

to the distinct difference in breakage caused by the artificial bedding plane, the effective 

length of the explosive charge was relatively short. Calculated SDOBs ranged from 0.69-

1.83 ft/(lb^3), which placed all blast configurations within the range where a complete 

crater should form on each blast, and when unrestricted, eject most or all of the cratered 

material (ISEE, 2011). As shown in the photographs, and represented by the data, 

cratering did not necessarily occur in each scenario. However, the amount of explosives 
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changed only slightly. All of the tests measured within the SDOB range should have 

provided a complete crater, and should have broken the upper strata. Despite this, 

cratering was not a consistent phenomenon across the test spectrum.  

In general, the count of cap fragments decreased as both the seam thickness and 

scaled depth of burial increased. Most of the test results showed that lower SDOB values 

produced higher cap fragment totals. This was the usual result for all tests except the 1.5 

in cap thickness tests, where the cap fragment count decreased as SDOB decreased. 

Differing results at the 1.5in cap thickness could be attributed to failing stemming 

material, or the lack of overlying burden confining the blast. Even through fragment 

count decreased as SDOB decreased in the 1.5in cap tests, this thin cap layer had the 

highest amount of breakage of any cap configuration, comparable with the surface 

breakage of the solid block tests, as shown in Figures 6.14, 6.15, and 6.16. If cap 

breakage was problematic, thin caprock layers would not be the primary cause. Aside 

from the 1.5 in cap layers, the remaining cap tests broke into low, single digit fragment 

counts.  

 

 

Figure 6.14. Test 9 1.5 in Cap 50%/50% Mix Surface Breakage 
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Figure 6.15. Test 10 1.5 in 50%/50% Mix Cap Surface Breakage 

 

 

 

Figure 6.16. Test 11 1.5 in 50%/50% Mix Cap Surface Breakage 
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Test specimens constructed with the same seam thickness and using scaled depth 

of burial were compared to determine if the different mortar mixes comprising the 

various cap layers had an effect on the cap breakage. The fragment count results were 

nearly identical for each state, or differed only by one or two fragments. Even though the 

difference in strength between the cap layers mixes in these tests was approximately 

double, or even 4 times that of the weak 50% mortar/ 50% sand cap mix, it did not have 

as much effect on the tests as the thickness of the cap layer did. The lack of fracturing 

and transience of cratering made a comparison of surface fragment count unusable for 

assessment. The count of surface fractures and fragments can be found in Table 6 in 

Appendix A. 

As shown in both Figure 6.17 and 6.18, only four primary fractures could be 

counted, generating two free cap fragments, while in Figure 6.8, five primary fractures 

can be seen. Each of these three tests generated a square fragment with orthogonal sides 

equal to the burden and spacing of the shot. In addition, they each generated at least one 

angled fragment, with Test 18 having two angled fragments. All three show a single 

fracture extending towards the back. In Figure 6.17, two transient fractures appeared in 

the form of hoop fractures, indicating flexure of the cap layer at their locations. With the 

difference in breakage from the blasthole limited to a single fracture, there is no 

definitive evidence that the strength of the cap material had a substantial difference on the 

breakage of the cap layer for these tests. 

The two-layer tests fractured poorly as well. While the substrate fragmentation 

was comparable with the rest of the tests, the middle cap and top layers broke poorly. In 

the two-layer tests, the middle layers typically generated more fragments than the upper 
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layers. This is effectually similar to the single layer results, where there are one or two 

fractures different so that analyzing by fragment count is unproductive. 

Figures 6.19 through 6.21 are taken from Test 21. Figure 6.19 displays the surface 

layer, where there was a 45-degree break straight across with an additional orthogonal 

fracture. In Figure 6.20, the middle layer breakage is shown with the two orthogonal 

fractures, a 45-degree fracture for the new face, and an additional diagonal fracture that 

split the 4x4 in square. There were additional tailing fractures that extended towards the 

back of the block in the middle layer as well. Figure 6.21 shows the final profile of the 

block after blasting. 

 

 

Figure 6.17. Test 7 2.25 in 50%/50% Mix Cap Surface Breakage 

 

Primary 

Fractures 

Annular 

Fracture 



126 

 

 

Figure 6.18. Test 15 2.25 in 100% Mix Cap Surface Breakage 

 

 

 

Figure 6.19. Test 21 2-Layer Cap Test Top Layer 

 

 

Primary 

Fractures 



127 

 

 

Figure 6.20. Test 21 2-Layer Cap Test Middle Layer 

 

 

Figure 6.21. Test 21 2-Layer Cap Side Profile 

 

 

This test, when compared to the solid block and 3in loaded single layer tests 

(shown in Figures 6.12 and 6.13), demonstrates that the additional bedding plane between 
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the two cap layers further reduced the surface fracturing when loaded even with the lower 

bedding plane. The cap fragments were limited vertically by their adjacent bedding 

planes. The fragments broke to these adjacent bedding planes, giving the fragments a 

thinner vertical dimension than that of the single-layer cap tests. However, the overall 

breakage of these thin cap layers remained poor and plate-like because radial fracturing 

played a role similar to the single-layer cap tests. The middle cap layer (dyed black in 

Figure 6.21) had fracture patterns similar to the single layer cap tests, while fracturing in 

the top cap layer (top, white layer in Figure 6.21) was minimal. At lower loading heights, 

the fracturing of the middle cap layer became poorer and broke similar to the top cap 

layer. 

Neither the surface nor middle caprock layer in this test received the degree of 

fragmentation experienced by the 1.5 in single cap layer, even though both of the thinner 

seams were 1.5 in thickness, and the top layer was loaded the same as in Test 9. Their 

breakage was more consistent with the coarse breakage of the thicker layered tests. This 

would indicate that in some circumstances, the upper layers of a bench, while fracturing 

independently, may have an overall combined behavior similar to that of thicker cap 

strata.  

One additional point to make on the surface breakage of these tests is that the 

detonating cord that was used has a very high velocity of detonation, and produces a 

shattering effect on brittle materials. This shattering effect creates the fractures in the cap. 

A different explosive would likely have a lower velocity of detonation. If a blasting agent 

were used in this configuration, the degree of fracturing in the cap could be even less.   
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This concludes the analysis of the photographic data. Many observations were 

made regarding the nature of the fracturing process in the test blocks, some more useful 

than others. It is clear that the means of photographic data collection and analysis used in 

this study is not yet a straightforward process. The known issues with data collection are 

discussed in the following subsection. 

 

6.3. ISSUES WITH CAP DATA COLLECTION AND ANALYSIS 

Many observations and calculations of the data produced by the scaled-model 

tests provided insight into the blast phenomena present when blasting with caprock. 

However, there were issues that arose when collecting and processing the data. These 

issues should be remedied for future work. The following subsections discuss the lack of 

population when measuring test data, classification of caprock fractures, and crater 

assessment. 

6.3.1. Lack of Population in Data.  A single break can make a large percentage  

difference in data collection and analysis. The breakage count of the tested cap fragments 

was, in some cases, as low as two fragments. This made graphical representations of the 

data unusable, because changes in the low fragment count caused large percentage 

differences for each respective series of inquiry. The lack of resolution for these tests 

obscures any sort of reasonable comparison using typical fragmentation or statistical 

analysis methods due to extremely low population.  

6.3.2. Classification of Caprock Fractures.  In addition to problems with  

resolution, there were also issues regarding the classification of fractures and free 

fragments. Utilizing a simple fracture or fragment count can give a general idea of the 
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level of breakage of a cap strata, if the degree and orientation of fractures match those 

present in the comparative test. However, a test with a number of prominent radial 

fractures might not have the same fracture pattern as another test with the same number 

of prominent fractures. This method does not take into account the length and orientation 

of fractures. From a quantitative standpoint, this method needs more development before 

more observational data and conclusions can be garnered from it. 

6.3.3. Crater Assessment.  The third issue with cap data collection was the  

accurate measuring of crater volume and crater fragmentation. In the author’s master’s 

thesis, crater volumes and mean fragmentation were predicted and measured. The tests 

were designed for trenching purposes, and in those tests, the scaled depth of burial was 

set to produce the strongest intensity flyrock conditions for the blasthole and explosives 

used. There were no free faces other than the surface of the ground. With those 

conditions, craters were round and had a distinguishable depth, making identification, and 

estimation a relatively straightforward process. In comparison, the testing method in this 

thesis was designed to represent excavation in quarries which uses an entirely different 

geometry. 

These scaled model tests in comparison had two free faces, thin upper cap layers, 

and SDOBs smaller than those utilized in the cratering studies, making the craters appear 

irregular and misshapen. Craters that formed at higher SDOBs were often a semicircular 

crater profile projecting out to the blasted corner. While the craters tended to extend to 

the open corner, there was little breakage directed toward the back of the block. This 

occasionally produced an eccentric profile for the craters.  
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With the thinner cap layers, such as the 1.5” series, the formed craters were wide 

and shallow, with an irregular bottom, making measurement and estimation of their 

contribution to the overall fragmentation more difficult. A gross approximation was the 

best measurement that could be performed in this circumstance, and even then, the 

approximation would not provide useable information for Roth’s estimation method 

(Roth). Estimating fragment size is based on an accurate estimation of the volume of rock 

blasted, as previously discussed. Approximation of the mean fragment size for the crater 

would be inaccurate in this case because of the irregularity in the size and shapes of the 

craters produced in the cap. Estimations aside, actual data for fragmentation within the 

crater could not be obtained as the majority of particles were small enough to be mixed 

with the breakage of the substrate, and were not significant to the study of oversize.  

 

6.4. RECLASSIFICATION OF OVERSIZE 

In quarry operations, rock that cannot pass through the crusher is considered 

oversize. This material is removed from the primary crusher feed material and stockpiled 

for secondary breakage, most commonly at the face. The breakage of the cap in the 

scaled-model tests would represent massive slabs in a quarry setting. Few, if any quarries 

would have a crusher that could be fed such slabs. In most of these tests, the entire cap 

breakage could be considered oversize. Even in the two-layer cap tests, where the vertical 

dimension of fragments is limited, still produced slabs that would be unacceptable as 

crusher feed in a full-scale setting. Though the results of breakage in the cap layers varied 

by a handful of fragments, they still all produced breakage that would necessitate 

secondary breakage. 
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While the information provided from this study was mostly qualitative in nature, 

it allowed for some reasonable conclusions and numerous opportunities to further this 

research. This analysis provides information for better understanding of caprock breakage 

under certain situations, and displays many aspects that would have gone unnoticed or 

ignored in a production setting. The sections that follow provide the conclusions obtained 

from this analysis, as well as possible future undertakings to further this work. 

 

6.5. SMALL SCALE MODELING ISSUES AND CLARIFICATIONS 

The small-scale modeling used in this dissertation is not a direct representation of 

a full-scale bench blast. It was intended as a means to examine and identify possible 

sources of oversize as a result of caprock blasting. The tests performed in this dissertation 

were intended to bring to light the existence of massive caprock breakage phenomena 

without interference from additional geologic features. There are additional 

configurations that need to be examined.  

There are configurations of single-hole tests that still need to be examined. These 

configurations include blasting from a straight face, from an included corner, and from an 

angled face that would represent the end of a previous blast. Each of these conditions 

should be examined to see if there are any changes from the outside corner configuration. 

The outside corner blast design used in this dissertation allowed for tests to be performed 

in succession with relative ease. However, it is just one possible configuration. An 

outside corner is usually used for the first hole in a blast, and a square corner such as this 

is usually not the case for subsequent bench blasts. Along with the change in 
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configuration, the use of any modeling techniques, such as those in Section 6.1.3, will 

require major adjustment to fit the situation as well.  

These configurations still only represent a single point region of a blast. Once the 

cap blasting effects of the different configurations have been identified, the scale model 

testing will have run its course. The two-hole tests in this dissertation were almost too 

much for the test bench. Once the requisite single hole configurations have been tested, 

full-scale field testing will become a more viable option. Scaled-models are used to 

identify regions or phenomena that require further scrutiny in a controlled situation. 

However, the next step in testing is to examine a bench blast. The prediction models 

discussed in this work were made for a full-scale bench blast. Also, the additional holes 

at full scale would likely smooth out some of the inconsistencies in the fragmentation 

data.  With more of the blasted material generated in the center of a blast pattern, odd 

fragmentation near the edges of the blast becomes less relevant.  
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7. CONCLUSIONS 

The examination of caprock requires much consideration for rock extraction by 

blasting in quarries. Aspects of caprock phenomena were examined using model blasting 

and the following conclusions are made. 

 

7.1. ESTABLISHMENT OF A SCALE-MODEL FOR CAPROCK 

Though only a few scenarios were tested, the scaled-model caprock tests were 

productive, and provided new information and opened numerous possibilities for future 

testing. Once the targets were poured to the desired configuration, performing the actual 

test was a straightforward, iterative process. This test can be modified to fit many 

scenarios and potentially uncover more blast phenomena not readily observed by other 

means. The first characteristic was the discrepancy between the cap and the substrate 

rock.  

 

7.2. CAPROCK HAS A SEPARATE FRAGMENTATION FROM SUBSTRATE 

Breakage of the caprock must be assessed separately from the substrate. Data 

obtained from the scale-model test clearly indicated that there was a difference in 

breakage between a uniform rock bench and one with a thick upper layer of caprock. The 

data supports the proposition that a single bedding plane near the top of a powder column 

not only produces coarser breakage than that of a solid block, but also produces a distinct 

difference in breakage between the cap layer and the underlying strata. While the primary 

fractures can form in similar directions in both strata, they do so independently, even with 
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a relatively strong and cemented joint comprising the artificial bedding plane. The 

primary factors found to influence caprock breakage are the thickness of the cap layer, 

location of the bedding plane, and depth to the top of the powder column. The strength of 

the cap material did not produce large changes in cap fragmentation in this study. In 

addition to these factors, there is also the influence of inconsistent phenomena such as 

cratering and annular fracturing on the caprock breakage. 

7.2.1. Influence of Cratering on Caprock Breakage. The presence of cratering 

has a small effect on caprock breakage. When cratering was present, the degree of 

loading into the cap layer determined the volume of the crater and the fragmentation of 

the crushed material. When cratering was not present, the cap layer fractured in a coarse  

manner, with a minimal amount of radial fractures present at the collar. While a cratering 

scenario does slightly improve the fragmentation of the cap layer, it is not necessarily the 

desired scenario for actual quarry blasting. Slabs that would be present without cratering 

are still present, but with a corner section removed. Using small enough scaled depths of 

burial to make full craters would result in large amounts of flyrock and not reduce the 

effective size of slabs or boulders. From a blast energy perspective, cratering represents 

explosive energy that is not being spread throughout the cap layer, but focused on a small 

volume of the cap layer.  

7.2.2. Preconditioned Bench as a Potential Source for Uncharacteristic 

Oversize. Caprock slabs larger than the burden and spacing of the blast pattern are a 

result of cap preconditioning from previous blastholes. While the breakage immediately 

surrounding the collar of the blasthole can be easily controlled by adjusting the burden 

and spacing, the presence of some prominent, inconsistent fracturing formed during 
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blasting with caprock can cause problems. In some tests, a large annular fracture formed 

beyond where the next row and column of blastholes would be located in the blast 

pattern. This circular fracture created large, chevron shaped slabs when combined with 

radial fractures extending from the blasthole. These are similar in shape to fragments that 

appeared during the author’s master’s research and seen after bench blasting at a full 

scale. These plates are likely the largest oversize generated during caprock operations. 

This is due to their dimensions extending beyond the burden and spacing of the adjacent 

holes, and is a possible explanation why caprock slabs, observed in quarries, can still 

retain the collars of blastholes instead of breaking properly.  

 

7.3. CAPROCK MITIGATION 

As stated in the previous section, preconditioning of the cap layer by annular 

fracturing can produce uncharacteristically large oversize, beyond that of the typical blast 

pattern. If these fractures can be prevented, the worst of the oversize will be mitigated. 

The cap layer would need to be preconditioned in such a way to preclude the formation of 

annular fractures to accomplish this. A blasting configuration that fractures the cap 

without heaving must be shot before the main blast, so that the cap only fractures 

radially. When the cap layer heaves as a result from the main blast, the cap fragments will 

separate at the established fractures, rather than allow the annular fracture to form. This 

will prevent the occurrence of uncharacteristic oversize from annular fracturing before it 

can occur.  

Based on the data of this study, the recommendation of author is to load powder 

high enough in to the caprock to crack it but not necessarily high enough to produce 
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flyrock problems. For the purpose of reducing the oversize, without causing additional 

flyrock, the burden and spacing of the explosives near the cap must thereby be reduced 

accordingly. This can be practically accomplished by drilling and loading shallow 

satellite holes between the normal production holes and shooting them prior to the rest of 

the blast before annular fractures can develop, preventing their formation. By increasing 

the amount of explosives in the cap layer, breakage of the cap layer should increase as 

well. 

Drilling the satellite holes in the cap layer should be performed with careful 

consideration. No additional breakage is needed in the lower layers, so blast energies 

need to be confined to the cap as much as possible. For this reason, satellite hole depths 

should be limited to the cap layer without penetrating into the substrate. Doing so should 

also reduce or prevent the heaving mechanism that causes the annular fracture. This 

would likely limit cap fragment size to within the burden and spacing of the satellite hole 

pattern. Breakage in the caprock layers of the small-scale tests was minimal, even around 

the blasthole collar. The fragments within the burden and spacing of the small-scale 

caprock tests often had a large dimension equal to the burden and spacing. To reduce or 

eliminate the need for this material to be re-handled and broken again before the crusher, 

burden and spacing of the satellite holes should be limited to the size of material desired 

for crusher feed. 

 

7.4. BLAST INITIATION WHEN CAPROCK IS PRESENT 

Fully activated sequential timing is required when caprock is present to eliminate 

the risk of disconnects and cutoffs during blasting. When a blast is connected to a firing 
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system, there exist connections that extend from the main firing line down into the 

blastholes to the detonator. Slack in these connections is often removed so that excess 

connecting materials on the surface do not whip and interfere with the shot timing. This 

eliminates loops and accidental crossovers in the blasting lines. If a slab of rock heaves 

before the respective blastholes are energized, blasting lines could be stretched taught and 

possibly snapped or severed, leading to a cutoff situation. Cutoffs in blasting are a hazard 

as they must to be reconnected and initiated or removed from the muckpile and disposed 

of to reduce danger to operators. They also result in reduced breakage of the substrate 

layers of the rock bench. 

 

7.5. BUDGETING FOR OVERSIZE  

Almost the entire caprock layer must be considered separately when trying to 

budget for oversize material. As previously stated, the breakage of the caprock must be 

considered as a separate element from that of the substrate. When attempting to optimize 

the revenue at a particular quarry, the operator would use an optimization program 

similar to that proposed by Calnan, but with two separate iterations. The substrate layers 

would go through a normal iteration of his model, while the caprock layers would go 

through a separate iteration. The caprock iteration would have an additional cost factor to 

represent the additional breakage required for the material to go back into the processing 

stream. By evaluating these two sections of the bench separately, the operator can 

determine if the cap material is a profitable, salable product. For budgetary purposes, 

both optimizations can be combined to yield the best overall cost minimization for the 

quarry. 
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7.6. USING SEMI-EMPIRICAL MODELS TO ESTIMATE FRAGMENTATION 

WITH CAPROCK 

 

Semi-empirical models such as Kuz-Ram and Swebrec can be used to estimate the 

fragmentation of quarry blasts to a high degree of success. They could be made to 

estimate the breakage of the substrate layers in the small-scale tests. However, when 

caprock conditions were introduced, the mathematical models severely underestimated 

the mean size, and volume of fines generated. They were adjusted to match the actual 

data, but after all the work to adjust them, the solution was too contrived to be feasible 

for implementation in a caprock-heavy blasting operation. The models cannot be 

considered predictive when they would require constant adjustment to fit blasting in-situ 

caprock formations. 

In addition, the general use of these estimation techniques is overshadowed by the 

fact that a large portion of the caprock layer will need to be set aside for secondary 

breakage before being taken to the crusher. As discussed in Section 2.3.1.3, the Rosin-

Rammler curve is used to describe an aggregate of material that has undergone the same 

breakage process. The conclusion in Section 7.2 states that the breakage mechanism for 

the cap layers is different from the substrate layer. In addition, boulders produced by 

caprock are classified as oversize. Oversize is typically broken by a hydraulic impactor, 

which is an entirely different mechanism of breakage. The combination of these different 

mechanisms makes using a single descriptive curve inappropriate for caprock scenarios.  

 

7.7. FINAL CONCLUSION 

Along with these conclusions there is the potential for the further development 

and expansion of the scaled-model caprock tests. The work performed for this 
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dissertation produced many observations and conclusions that would not have been easily 

observed in the field. The future of this potential work is described in the following 

section. 
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8. FUTURE WORK 

The testing described in this dissertation established a solid base for examining 

the breakage of caprock-laden benches. The data provided gave some insight into the 

conditions that cause poor cap breakage. However, there is room for improvement, not 

only with the testing methods, but also with the collection and processing of information. 

This proposed future work is beyond the scope of this thesis. 

 

8.1. IMPROVEMENTS TO TEST BENCH 

While the test setup used in this dissertation was fairly straightforward, it was not 

without flaws. The bench was near its durability limit with the single-hole blast, requiring 

the crib to be repaired multiple times. Blasting for the sequential hole tests required an 

entire redesign of the crib, but still damaged the bench significantly. Reinforcement to the 

test bench would improve durability and reduce the amount of maintenance needed to 

operate the tests. An improvement in durability would allow more sequential holes to be 

tested, allowing for multiple sequential holes, perhaps even multiple rows, and varying 

initiation patterns to be tested.   

The first improvement to test bench durability would be to place ½” steel plate 

underneath the plywood that the test block and bumper blocks rest on. This would reduce 

the amount of wood that is removed from consecutive blasts, conserving resources and 

minimizing the downtime needed to change it out. The other piece of bench equipment 

that could use reinforcement is the crib used to contain the horizontal throw of fragments. 
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Steel banding could be used to reinforce the wood crib and keep the corners from pulling 

apart.  

 

8.2. ADDITIONAL TEST SCENARIOS 

A limited variety of caprock scenarios were tested in this dissertation. The success 

of this testing has opened p many potential avenues to investigate further. There are a 

myriad of geologic scenarios involving caprock that can be encountered, and to better 

understand the behavior of the caprock, additional testing will need to be conducted with 

respect to additional bedding and jointing. The substrate, for instance, could be thinly 

layered to mimic a thinly bedded limestone with a large cap. This would limit the 

maximum vertical dimension of fragments from the substrate, making the blast 

fragmentation results much finer. The current drawback to constructing these specimens 

is the one day wait between pours. It could potentially require up to a month of pouring 

mortar daily to construct a target, then another month to test the finished product. The 

method of constructing targets requires further investigation.  

Another possible scenario includes vertical joint sets at various spacings and 

angles relative to the blasthole. This could show how the amount of damage to in-situ 

blocks is further limited by blast geometry and vertical geology. In addition, the 

conditions of the bedding planes could be examined. Clay-infilled bedding planes could 

be simulated to represent the mud and clay seams below the cap in formations like the 

Winterset limestone to test the supposition that these features increase the dominance of 

caprock.  
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Changes in blast geometry are needed for future testing. The scaled-model tests 

need to be altered so that an oblique diagonal, repeatable face is produced as would be 

seen in quarry blasting. This would ensure the shape of the face post blast is the same 

shape as the starting face. The square shape of the blocks made the tests easily poured 

and repeated, but the natural tendency of benches to have an angled face after blasting 

must be better represented. 

 

8.3. MODELING IMPROVEMENTS 

Lastly, a regression model to analyze additional data more accurately could be 

constructed. All of the data, once placed in numerical form must be analyzed for 

interrelated properties and influences. In the case of the testing performed for this 

dissertation, this means a multivariable, non-linear regression model. The basic concept 

would take sieve data, and other size data from a spreadsheet or database, and construct 

the constraints based on the statistics mentioned previously to approximate the behavior 

of the variables. Once this regression method is constructed, this scaled model testing 

will be better enabled to bridge the gap between field blasting and simulation of caprock. 
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APPENDIX A. 

SCALED MODEL TEST DATA 
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Table 1 Scaled Model Test Configurations 
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Table 2 Scaled Model Test Substrate Sieve Data (lbs) 
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Table 3 Scaled Model Tests Cap Sieve Data (lbs) 
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Table 4 Scaled Model Test Total Sieve Data (lbs) 
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Table 5 Compressive Strength Data for Rock Cores and Mortar Mixes 
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Table 6 Caprock Breakage Fracture and Fragment Count 

 



151 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B. 

SCALED MODEL TEST PHOTOGRAPHS 
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This appendix contains additional photographs, covering each of the tests. These 

photographs are not used in the main text. Caprock tests, as well as relevant solid block 

tests are shown in order, listed by the test number used in Table 1 in Appendix A. 

Pictures shown include surface breakage for each test. Substrate breakage is shown for 

the first few tests to demonstrate breakage below the cap, then the remaining photos are 

of surface breakage. 

 

 

Test 1 

 

Figure 1 Surface Breakage Test 1 
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Figure 2 Side Breakage Test 1 

 

 

Test 2 

 

Figure 3 Surface Breakage Test 2 
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Figure 4 Side Breakage Test 2 

 

Test 3 

 

Figure 5 Surface Breakage Test 3 
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Figure 6 Side Breakage Test 3 

 

Test 4 

 

Figure 7 Surface Breakage Test 4 
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Figure 8 Broken Face Profile Test 4 

 

Test 5 

 

Figure 9 Surface Breakage Test 5 
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Figure 10 Side Breakage Test 5 

 

Test 6 

 

Figure 11 Surface Breakage Test 6 
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Figure 12 Side Breakage Test 6 

 

Test 7 

 

Figure 13 Surface Breakage Test 7 
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Figure 14 Substrate Breakage Test 7 

 

 

 

Figure 15 Broken Face Test 7 
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Test 8 

 

Figure 16 Surface Breakage Test 8 

 

Test 9 

 

Figure 17 Surface Breakage Test 9 
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Test 10 

 

Figure 18 Surface Breakage Test 10 

 

Test 11 

 

Figure 19 Surface Breakage Test 11 
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Test 12 

 

Figure 20 Surface Breakage Test 12 

 

Test 13 

 

Figure 21 Surface Breakage Test 13 
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Test 14 

 

Figure 22 Cap Fragments and Blasted Face Test 14 

 

Test 15 

 

Figure 23 Surface Breakage Test 15 
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Test 16 

 

Figure 24 Surface Breakage Test 16 

 

Test 17 

 

Figure 25 Surface Breakage Test 17 
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Test 18 

 

Figure 26 Surface Breakage Test 18 

 

Test 19 

 

Figure 27 Surface Breakage Test 19 
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Test 20 

 

Figure 28 Surface Breakage Test 20 

 

Test 21 

 

Figure 29 Top Layer Breakage Test 21 
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Figure 30 Middle Layer Breakage Test 21 

 

Test 22 

 

Figure 31 Top Layer Breakage Test 22 
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Figure 32 Middle Layer Breakage Test 22 

 

Test 23 

 

Figure 33 Top Layer Breakage Test 23 
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Figure 34 Middle Layer Breakage Test 23 

 

Test 24 

 

Figure 35 Block Breakage Test 24 
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Test 25 

 

Figure 36 Block Breakage Test 25 

 

Test 26 

 

Figure 37 Block Breakage Test 26 
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Test 27 

 

Figure 38 Block Breakage Test 27 

 

Test 28 

 

Figure 39 Surface Breakage and Annular Fracture Test 28 
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Figure 40 Block Damage Test 28 

 

Test 29 

 

Figure 41 Surface breakage Test 29 
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Test 30 

 

Figure 42 Top Layer Breakage Test 30 

 

 

 

 

Figure 43 Middle Layer and Block Breakage Test 30 
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