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ABSTRACT

As interest in nanosatellites grows within the university community, the de-

mand for inexpensive, space-grade hardware grows as well. Star trackers can be a

luxury item for some spacecraft and therefore are often not considered due to their

cost. Ideally, a star tracker could be built using inexpensive parts so long as the

software is available. Unlike many other attitude determination instruments, star

trackers are renowned for their high accuracy, yielding accurate and precise attitude

estimates. However, development of this software can be overwhelming for the univer-

sity settling, especially when multiple missions are on hand. If these instruments were

readily available for more spacecraft, university-sponsored missions could expand to

higher orbits and possibly deep space applications.

Keeping in mind the cost and time constraints most university missions run

into, the difficulty of developing an inexpensive star tracker stems from the integrated

software. Hardware can be commercial off-the-shelf products, but the software is the

more expensive of the two, and it is this software that is often lacking at the uni-

versity level. With this, the proposed algorithm shows promise for the development,

implementation, and testing of free star tracker software. The presented algorithm

allows for a variety of interchangeable hardware, making it ideal for the academic

community.



iv

ACKNOWLEDGEMENTS

First, I would like to thank my advisor and mentor Dr. Kyle DeMars. Your

guidance and knowledge paved the path which allowed me to grow in my studies.

Thanks to you, I have learned more and become interested in a field I never would

have considered. The high standards you hold yourself, and all of your students, to

has given me a strong work ethic which I look forward to bringing to my career.

Secondly, I would like to thank my committee members Dr. Hank Pernicka and

Dr. Randy Moss. Your enthusiasm for what you do is nothing short of inspirational.

The knowledge you passed along has greatly influenced my research and enjoyment

in what I do.

Next, I would like to thank my lab mates. I think every day how I could have

ended up in any lab, but I landed here. We are all one big family, and it’s truly

a group of friends I never thought I’d have. Without your support, your technical

knowledge, and most importantly your advice, I would not have come as far as I have.

James, Christine, Matt, Kari, Cameron, Kenny, Gunner, Sasha, and even Bruce, you

all bring something unique to the lab, and without it, the lab would not be the same.

I wish you all the best in your studies and future.

Lastly I want to thank my family and girlfriend. Without the love and un-

conditional support from my family I would not have been here, or made it this far.

I wouldn’t be the person I am today without you. To Hunter, words cannot express

how important you are to me, and I sincerely would not have made it through grad

school without you.



v

TABLE OF CONTENTS

Page

ABSTRACT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

SECTION

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 IMAGE CREATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 PIXEL LOCATION DETERMINATION . . . . . . . . . . . . . . . . 8

2.1.1 Checking the Field of View . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 The Camera Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2.1 Intrinsic parameters . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2.2 Pinhole camera model . . . . . . . . . . . . . . . . . . . . . 11

2.1.2.3 Pixel coordinates . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2.4 Extrinsic parameters . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2.5 The formalized camera matrix . . . . . . . . . . . . . . . . 15

2.1.3 Star Magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3.1 Converting to electrons . . . . . . . . . . . . . . . . . . . . 18

2.1.3.2 Determining pixel spread . . . . . . . . . . . . . . . . . . . 19



vi

2.2 STAR TRACKER NOISE CHARACTERIZATION . . . . . . . . . . 23

2.2.1 Background and Motivation. . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Noise Addition Process . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Photon Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Electron Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.4.1 Dark current . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.4.2 Pixel response non-uniformity . . . . . . . . . . . . . . . . 27

2.2.4.3 Shot noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.4.4 Read noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.4.5 Amplifier noise . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.5 Analog-To-Digital Noise . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 FINAL IMAGE COMPARISON . . . . . . . . . . . . . . . . . . . . . 31

3 IMAGE PROCESSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 NOISE REDUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 THRESHOLDING AND STAR FINDING ALGORITHM . . . . . . 37

3.3 CENTROIDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Center of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Uniform Mixture Model Approximation . . . . . . . . . . . . . . 41

4 CATALOG FORMATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 TROUBLES FOR CURRENT CATALOGS . . . . . . . . . . . . . . 54

4.2 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 BUILDING THE CATALOG . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Reference Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . 57



vii

4.3.2 Catalog Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.3 Catalog Generation. . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 PROPERTY STATISTICS . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 MONTE CARLO ANALYSIS. . . . . . . . . . . . . . . . . . . . . . . 64

4.6 MONTE CARLO ANALYSIS RESULTS . . . . . . . . . . . . . . . . 67

5 ATTITUDE DETERMINATION. . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 BACKGROUND AND OVERVIEW . . . . . . . . . . . . . . . . . . . 73

5.2 ATTITUDE DETERMINATION SURVEY. . . . . . . . . . . . . . . 75

5.2.1 Davenport’s q-Method . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.2 Quaternion Estimator (QUEST) . . . . . . . . . . . . . . . . . . 77

5.2.3 Estimator of the Optimal Quaternion (ESOQ) . . . . . . . . . . 77

5.2.4 Singular Value Decomposition (SVD) . . . . . . . . . . . . . . . 79

5.2.5 Fast Optimal Attitude Matrix (FOAM) . . . . . . . . . . . . . . 81

5.3 THE QUATERNION ESTIMATOR . . . . . . . . . . . . . . . . . . . 82

5.3.1 The Quaternion Eigenvalue Problem. . . . . . . . . . . . . . . . 82

5.3.2 QUEST Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 ANALYSIS OF SURVEY . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 SIMULATION AND RESULTS. . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 SIMULATION CONFIGURATION . . . . . . . . . . . . . . . . . . . 96

6.1.1 Simulation Time Analysis . . . . . . . . . . . . . . . . . . . . . . 98

6.1.2 Simulation Centroiding Analysis . . . . . . . . . . . . . . . . . . 100

6.1.3 Simulation Catalog Matching Analysis. . . . . . . . . . . . . . . 100

6.1.4 Simulation Attitude Determination Analysis . . . . . . . . . . . 101



viii

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



ix

LIST OF ILLUSTRATIONS

Figure Page

2.1 An illustration depicting the geometry of a 3D pinhole camera model.2 . . 8

2.2 Every star seen inside of the 25˝ field of view plotted on a unit sphere.. . . 10

2.3 The results from the camera matrix, Eq. 2.14, for a 25˝ FOV.. . . . . . . . 16

2.4 A block diagram showing the conversion process from flux density to the
associated number of electrons.. . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 The pixel spread for the brightest star in Figure 2.6. . . . . . . . . . . . . . 22

2.6 Illustrated here are each of the Gaussian functions that form the pixel
spreads for each star in the FOV. . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 An illustration of the result from quantization error applied to Figure 2.5.. 32

2.8 Final image comparison.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 A comparison between image values, the blue line being the signal from
Figure 2.8a and the red being the signal from Figure 2.8b. . . . . . . . . . . 34

3.1 A histogram of Figure 2.8b.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 An illustration of the star detection method. . . . . . . . . . . . . . . . . . . 38

3.3 Illustrating the region of interest via the red boxes. . . . . . . . . . . . . . . 40

3.4 Zoomed in region of interest on the image’s brightest star. . . . . . . . . . . 40

3.5 Examples of non-negative, univariate, uniform mixture model pdfs.. . . . . 41

3.6 An uncorrelated Gaussian pdf without noise.. . . . . . . . . . . . . . . . . . 50

3.7 The Gaussian pdf with minimal noise added.. . . . . . . . . . . . . . . . . . 50

3.8 The centroids found by the uniform mixture model and center of mass
methods are shown, along with the true centroid at p5, 5q. . . . . . . . . . . 52

3.9 The centroids found by the uniform mixture model and center of mass
methods are shown, blue and green, respectively, for Figure 3.3.. . . . . . . 53



x

4.1 The 500 brightest stars of the Tycho-2 Catalog, in the visual spectrum,
mapped onto a unit sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 The icosahedron sphere used to change positions over the sky, ensuring
complete coverage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Field of view for q̄, blue dots indicating all the stars seen in the image,
and the green dot represents the pointing vector. . . . . . . . . . . . . . . . 69

4.4 Catalog matching example image. . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 The average computation time for each attitude estimation algorithm. . . . 94

5.2 The relative average computation time which relates how the methods
perform when given more measurements. . . . . . . . . . . . . . . . . . . . . 95

6.1 A histogram of the Monte Carlo trial times. . . . . . . . . . . . . . . . . . . 99

6.2 A histogram of the number of iterations needed to converge.. . . . . . . . . 103

6.3 One example of unsuccessful thresholding. . . . . . . . . . . . . . . . . . . . 103

6.4 A second example of unsuccessful thresholding. . . . . . . . . . . . . . . . . 104

6.5 The attitude errors from the complete algorithm Monte Carlo simulation. . 105



xi

LIST OF TABLES

Table Page

4.1 Tycho-2 Star Catalog Format. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Star-Set Triangle Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Property Catalog Format, Page One – Perimeter. . . . . . . . . . . . . . . . 68

4.4 Monte Carlo Example – Perimeter. . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Monte Carlo Example – Area. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Monte Carlo Example – Polar Moment. . . . . . . . . . . . . . . . . . . . . . 72

4.7 Monte Carlo Example – Side-Length Ratio. . . . . . . . . . . . . . . . . . . 72

4.8 Monte Carlo Example – Normal Coefficient. . . . . . . . . . . . . . . . . . . 72

5.1 Mean Attitude Errors in Arcseconds. . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Computer Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Image Creation Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Computer Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



1. INTRODUCTION

Star trackers have become one of the most accurate attitude measurement

instruments on spacecraft over the past decades, providing accuracies on the order of

arcseconds. Early star trackers were broken up into several categories, consisting of

star scanners, gimbaled star trackers, and fixed-head star trackers [1]. Current star

trackers are based off these fundamental models, and starting around the early 1990s,

the current solid state star trackers began replacing the older models. Current star

trackers provide the same level of accuracy, but are much smaller, less expensive, and

require less power [2]. When operating, star trackers work in two different modes:

a “lost-in-space” mode and a tracking mode. The former mode occurs when the

spacecraft has no a priori information about its current attitude, forcing the device

to back out the attitude with greater uncertainty and is often more computationally

expensive than the latter. Tracking mode starts once the stars in an image are known,

and the system then tracks them in an image based on the current attitude dynamics

[3]. The focus of this study is the more computationally expensive, lost-in-space

mode, which can be a harder problem to solve than the tracking mode due to the

lack of any a priori information.

With satellites becoming smaller and more compact, the need for inexpensive,

reliable hardware is evident. Star trackers are one of the higher-priced satellite instru-

ments, but arguably one of the most useful. Implementing one on-board a spacecraft

can provide valuable measurements that are more accurate than several other types

of sensors, such as inertial measurement units, magnetometers, sun sensors, etc. The

aim is to develop a star tracker algorithm with inexpensive hardware considerations

that will allow budget-constrained satellite projects to use a robust attitude deter-

mination procedure. Industry and researchers can conduct a wider range of tests

with several smaller, low-cost satellites instead of a single, more complex satellite.
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University interest has steadily increased over the past decades in developing these

smaller satellites. Developing a customizable, inexpensive star tracker can greatly

reduce costs for future university missions.

An issue any star tracker developer will inherently encounter is finding a means

of testing. Even if quality imaging equipment is available, finding a location with

limited light interference can be troublesome. Star field simulator software has been

developed, but is not always freely available. Samaan et al. utilize the free simulator

software dSPACE1 and develop a star simulation package called Optical Sky field

sImulator (OSI) [4]; however, this requires specific hardware to work. Instead, one

would like to be able to digitally simulate an image based purely on a known star

catalog and a chosen sensor and lens. The problem with this path is that image sensor

errors are often overlooked, and random white noise is often added instead of focusing

on the true errors common to image sensors [5–7]. Knutson provides an in-depth look

at the common sensor errors, and Houtz provides a means of accounting for zodiacal

light noise in their simulated images [3, 8]. By combining the works, and offering

a comprehensive way of adding noise to the image, an accurate image is simulated

using only a reference star catalog and commercial off-the-shelf hardware properties.

Image processing techniques for star identification are often simplified to center

of mass calculations, as this is not a main focus for most. The center of mass method is

the most widely used algorithm and can be seen in many works [7, 9, 10]. This method

is often the basis for others, which utilize its simplicity and combine it with spacecraft

dynamics to provide faster solutions [3]. Work done by Padgett and Delgado uses a

grid search technique to locate stars in an image [6]. Two-dimensional Gaussian fitting

have provided more precise centroiding than the standard center of mass method, and

through iterations, it becomes increasingly accurate [11, 12]. The method developed

here utilizes work done by Darling, from his dissertation, which facilitates a uniform

1https://www.dspace.com/en/inc/home.cfm
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mixture model, such as an image array, to be approximated by the parameters of

a Gaussian that minimize the Kullback-Leibler (KL) divergence between the two

without iteration [13]. This method determines the mean and covariance of a Gaussian

distribution best fits an image acquired of a star, with respect to the KL-divergence.

If an alternative solution is sought, such as a maximum likelihood solution, the mean

and covariance obtained from the KL divergence minimization process can be used

to initialize iterative improvement of a secondary cost function. Along with the

uniform mixture model centroiding technique, an autonomous thresholding technique

is developed that allows the star tracker to select the correct number of centroids from

an image with zero user input.

An accurate and fast star identification technique is the core of what makes

a star tracker unique. What most methods boil down to is a pattern matching algo-

rithm. The traditional method involves matching angles between stars in an image

with the angles between those stored in the star catalog [14, 15]. Mortari has devel-

oped a few different star identification schemes [16–18]. One method Mortari provides

is the pyramid star identification technique that takes four stars in an image and com-

pares the resulting pyramid with his catalog [19]. An alternative is to leverage the

spherical area and polar moment of inertia of a spherical triangle formed by a star

triad in an image [20]. The method was quickly expanded to the planar triangle,

and although the authors made no direct comparison between the two methods, their

results show better performance from the planar case [21]. The method of star iden-

tification presented here follows closely to that provided by Houtz and Frueh, who

expand on the triangle properties. Their star identification is based on comparing

four different properties in order to provide higher accuracy [8]. By comparing five

planar triangle properties, the aim of this work is to decrease false star identification

and provide a robust process that connects the star identification process with the

custom star catalog formation.
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Every system is a sum of its parts, and therefore no piece of the system can be

lacking in order to provide the best performance. Intelligently integrating the system

parts together can allow for a streamlined algorithm that makes intuitive sense. The

major link of the presented star tracker algorithm lies between the image processing

scheme and the star catalog matching process. The catalog formation process, based

on star-set triangle properties, is linked to the autonomous thresholding technique

that obtains exactly three sets of centroid coordinates in an image. This set of

centroids act as the vertices of a triangle, whose properties are determined and are

subsequently compared to those in the custom built star catalog. The star catalog

contains statistics for every possible star-set triangle for any given field of view, and

using the Mahalanobis distance, properties are measured against one another. The

star-set that most closely represents these properties is chosen as the corresponding

stars in the image.

1.1. OVERVIEW

The thesis is broken up into four main sections, each section focusing on the

separate operations a star tracker undergoes once capturing an image. However,

without a realistic image to test on, the rest of the steps become impractical. Section

2 addresses this problem. In order to form an image, a specific sensor is needed in

order to use its properties to replicate how it would see an image. As well, selecting

a specific sensor allows for practical representations of the various errors that occur

in star tracker images. The stars in the images are formed from a reference catalog

and selected based on specified criteria discussed later.

With that, Section 3 discusses the image processing procedures. Star trackers

are not known for well-developed image processing, since the goal is obtaining an

attitude measurement. However, powerful image processing techniques are critical

for detecting the correct objects in a noisy image. This study focuses on a simple
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noise reduction technique that subtracts off a static background noise from the image

as a whole. From there, two methods of centroiding are implemented. The first is

a basic center of mass calculation, which uses the weights and positions of pixels to

determine the center. The second centroiding algorithm utilizes a minimization of

the Kullback-Leibler divergence between a uniform mixture model and a Gaussian

distribution. By treating the pixel array as a multivariate uniform mixture model,

the algorithm determines a best fit, with respect to the minimization of the KL-

divergence, of a Gaussian over the array.

Section 4 focuses on determining which star triad the identified centroids be-

long to. The method here is based off comparing triangle properties of a star triad

from an image to those values stored in a custom star catalog. To build the custom

star catalog, a Monte Carlo simulation is performed to characterize the statistics of

each star triad’s properties. The five planar properties are triangular perimeter, area,

polar moment, the ratio of shortest to longest side length, and finally what is called

the “normal coefficient.” Once the triangle properties’ means and standard deviations

are found from the Monte Carlo simulation, a test of the Mahalanobis distance is used

to compare a triad of stars in an image to those in the customized star catalog.

Included in Section 5 is a survey of the various attitude determination tech-

niques available. The survey studies two types of attitude determination techniques:

quaternion-based and attitude-matrix-based methods. These methods studied are

Davenport’s q-method, QUaternion ESTimator (QUEST), EStimator of the Opti-

mal Quaternion (ESOQ), Singular Value Decomposition (SVD), and Fast Optimal

Attitude Matrix (FOAM). A comprehensive derivation of the QUEST method is

provided, along with a detailed analysis of the covariance matrix produced by this

method. The QUEST algorithm is chosen due to the vast acceptance and use of the

quaternion-based method. The section ends with a characterization of the error and

computational efficiency of each method.
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The final core section of the thesis, Section 6, provides a full simulation of the

star tracker algorithm. The simulation encompasses rigorous analysis of the image for-

mation, image processing, catalog matching, and attitude determination algorithms

to test the limits of these components. To follow the analysis, concluding remarks

and future work considerations are provided in Section 7.
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2. IMAGE CREATION

Obtaining an image is the first step of any star tracker. From this image,

objects (stars) and their centroids are found. The next step includes further processing

of the images to enable the star camera to determine the stars observed and ultimately

the spacecraft’s attitude. Single images taken by telescopes on Earth’s surface only

capture a fraction of the stars a spacecraft star tracker is capable of seeing above

the atmosphere. The stars a telescope are able to capture would appear dimmer or

distorted compared to those a spacecraft sees during flight due to Earth’s atmosphere,

which absorbs and scatters the light that passes through it. In order to test the star

tracker’s attitude determination software prior to launch, images must be simulated.

To create these virtual images, a reference star catalog is needed. The Tycho-2

star catalog is used in this work due to the number of stars as well as the accuracy

of their characteristics. In order to have a realistic image, a magnitude cap is set

and other less favorable stars are eliminated. A deeper discussion of this is found in

Section 3.

A circular field of view (FOV) is selected, defined by a half angle, along with

a pointing vector directed out the bore-sight of the camera. Stars within the chosen

FOV are projected onto an image plane, where their magnitudes are converted to

a corresponding electron count. The magnitudes are expressed as two-dimensional

Gaussian functions in order to account for the pu, vq image directions, and are assumed

to be circular. The standard deviation of each Gaussian is determined by the sensor

and optics of the system and defined in units of pixel width. The “volume” under the

Gaussian is proportional to the number of electrons the CCD sensor would receive

for each star.

Along with the stars, the noise associated with CCD sensors and that due to

the environment of space are added into the image in order to better capture what is
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seen during flight. These consist of photon, electron, and analog-to-digital conversion

errors. Once the image is formed with the stars in place, the three types of noise are

added to the image as a whole.

2.1. PIXEL LOCATION DETERMINATION

2.1.1. Checking the Field of View. The field of view is defined here with

only one angle, making it circular. This angle is defined by the angle from the center

of the lens to the outer edge of the field of view, making it half of the entire FOV.

Next, the camera’s pointing direction must be determined in order to obtain the stars

in its FOV. The camera frame is defined with the z-axis pointing out the bore-sight,

the y-axis out of the top of the camera, and the x-axis completes the right-hand

frame. Illustrated in Figure 2.1, the camera is centered at the origin O. With the

x̂

ŷ

ẑ
O

Pc “ pX,Y, Zq

û

v̂

x̂

ŷ

z “ f

px, yq
pu, vq

image
origin

Figure 2.1. An illustration depicting the geometry of a 3D pinhole camera model.2

2Figure adapted from: https://tex.stackexchange.com/questions/96074/more-
elegant-way-to-achieve-this-same-camera-perspective-projection-model
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frame and FOV defined, next is the camera’s attitude, or orientation with respect to

another reference frame. Here, stars are in the inertial frame that is the J2000 Earth

centered inertial (ECI) frame. J2000 is defined with the Earth’s mean equator and

equinox at 12:00 U.T. on January 1, 2000. For the camera frame, a random attitude

is formed and expressed in the form of a complex four-component quaternion. To

generate a random attitude, two random angles are obtained such that θ P r0, 2πq
and φ P r0, πs, and are then formed into an axis

e “

»
————–

cospφq cospθq
cospφq sinpθq

sinpφq

fi
ffiffiffiffifl
. (2.1)

The axis can then be rotated by any angle ω P r0, πq, however since the FOV is

circular, the pointing vector e is all that is utilized. Finally, the axis is added to the

vector portion of an identity quaternion such that

q̃ “

»
—–
e

1

fi
ffifl (2.2)

The newly formed vector is normalized to form the attitude quaternion, q̄. This

process allows for an intuitive approach to defining a random attitude for the camera

frame since the two angles pθ, φq relate to right-ascension and declination.

From here, the entire catalog is searched to find all stars within the camera’s

FOV by determining the angle between the camera’s z-axis and each star’s ECI unit

vector. This angle is then checked to see if it is equal to or less than half the field of

view angle. To give a visual idea of how much of the sky a star tracker with a 20˝

FOV could view is shown in Figure 2.2.
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Figure 2.2. Every star seen inside of the 25˝ field of view plotted on a unit sphere.
The blue dots represent stars and the green dot represents the camera bore-sight
pointing vector.

2.1.2. The Camera Matrix. The next step to creating an image is to take

the three-dimensional points representing the unit vectors of each star and project

them onto a two-dimensional image plane. To do so, there are two sets of camera pa-

rameters to consider: the intrinsic parameters, which take into account the properties

of the sensor; and the extrinsic parameters, which include the location and attitude

of the camera with respect to the inertial frame. These parameters come together to

form the camera matrix.

2.1.2.1. Intrinsic parameters. The sensor and lens chosen are crucial to

determining the intrinsic parameters. These parameters are what characterize the

optical, geometric, and digital characteristics of a camera. Two portions make up the

complete intrinsic parameters matrix. The first half is defined by the focal length, f ,
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with the second half describing the relationship between real world coordinates and

pixel coordinates. This matrix can take into consideration the geometric distortion

introduced by the lens. Unfortunately, geometric distortions are not easily character-

ized and are best determined from testing physical hardware. In order to understand

the basis of the intrinsic parameters, it is necessary to understand a simple camera

model and its geometry.

2.1.2.2. Pinhole camera model. The pinhole camera model allows for a

simple way to describe the relationship between the 3D coordinates of a point and

its projection onto an image plane through an ideal pinhole camera. It is assumed

that the camera aperture is a point with no lens to focus the light, which gives

an approximation to the projective transformation. The validity of this approach

rests with the quality of the sensor and lenses used. Fortunately, typical star trackers

require very high specifications for the camera sensor and lenses used; therefore, these

assumptions hold.

Using basic geometry, the 2D image coordinates of a 3D point can be found,

as illustrated in Figure 2.1. If the point Pc “ pX, Y, Zq is a distance Z away from

the origin in the camera frame, it is shown that the point will be projected onto an

image plane of distance f away from the origin.

Through the similar triangles formed, it can be found that the 2D image

coordinates, p “ px, yq, are formed by

x “ f
X

Z
and y “ f

Y

Z
, (2.3)

which is known as a perspective projection. Given Eq. (2.3), the point Pc is now

projected onto the 2D image plane a distance f from the origin. In order to simplify

this process, a new point p1 “ px1, y1, z1q is introduced as the projective coordinates

of the 3D point. The use of projective coordinates allows for all of the scaling,
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translation, and rotation of Pc to be represented by a single matrix. The image

coordinates for p are found using the projective coordinates, similarly to Eq. (2.3),

x “ x1

z1
and y “ y1

z1
. (2.4)

Therefore, p “ px, yq will now be the projective set of homogeneous coordinates

px, y, 1q “ pkx, ky, kq for any nonzero k, positive or negative. Here, only the scaling

of the focal length is taken into account, yielding

»
————–

x1

y1

z1

fi
ffiffiffiffifl
“

»
————–

f 0 0 0

0 f 0 0

0 0 1 0

fi
ffiffiffiffifl

»
———————–

X

Y

Z

1

fi
ffiffiffiffiffiffiffifl
, (2.5)

where the center matrix is called the projection matrix Mproj which makes up the

first half of the intrinsic matrix.

2.1.2.3. Pixel coordinates. After reducing dimensions, the pixel coordi-

nates of p must be found. The image plane is digitized and forms the pu, vq pixel

array. As a result of this process, lens and sensor characteristics dictate how the

image plane coordinates transform to the pu, vq pixel coordinates. Utilizing the pixel

size and image plane origin, the other half of the intrinsic matrix is formed.

Due to the nature of CCD sensors, the pixel origin lies in the top left corner of

the image at pixel p1, 1q. From there, u is positive along the traditional x-axis and v

is positive along the negative y-axis. In the image plane, the x-axis and y-axis are the

standard, positive to the right and positive up, respectively, as shown in Figure 2.1.

Knowing this, and taking into account the pixel size of the sensor, pixel coordinates
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pu, vq are calculated as

u “ 1

ρu
f
X

Z
` u0 and v “ ´ 1

ρv
f
Y

Z
` v0 (2.6)

where pu0, v0q is the pixel location of the origin of the image plane, and ρu and ρv are

the sizes of each pixel in meters. Putting Eq. 2.6 into the similar matrix form as Eq.

(2.5) yields »
————–

u1

v1

w1

fi
ffiffiffiffifl
“

»
————–

1{ρu 0 u0

0 ´1{ρv v0

0 0 1

fi
ffiffiffiffifl

»
————–

x1

y1

z1

fi
ffiffiffiffifl
. (2.7)

The matrix in Eq. (2.7) is known as the affine matrix Maff. An affine matrix, in

general, preserves points and straight lines by utilizing methods of translation, scaling,

and rotations. Here, scaling is done by the pixel size and translation is handled with

the origin shift. Again, using the same process for the image coordinate px, yq, the

point pu, vq is found by scaling with the w1 component by

u “ u1

w1
and v “ v1

w1
. (2.8)

2.1.2.4. Extrinsic parameters. The extrinsic parameters of the camera

consider how the camera’s attitude as well as its location relate to the stars’ iner-

tial coordinate system. The location of the camera is kept constant at the origin

of the inertial coordinate system, and the camera’s attitude, which mostly depends

on its bore-sight pointing vector, is determined at random for these simulated im-

ages. With this, the two components that make up the extrinsic camera matrix are

a transformation matrix,

R “

»
————–

R11 R12 R13

R21 R22 R23

R31 R32 R33

fi
ffiffiffiffifl

(2.9)
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and a column vector t “ rtx ty tzsT . These parameters are put together to form the

following extrinsic parameters matrix,

Mext “

»
—–
R t

0 1

fi
ffifl “

»
———————–

R11 R12 R13 tx

R21 R22 R23 ty

R31 R32 R33 tz

0 0 0 1

fi
ffiffiffiffiffiffiffifl

(2.10)

It is important to note that R and t do not directly correspond to the cam-

era’s attitude and location. That is, the extrinsic matrix describes how the inertial

coordinate system is transformed relative to the camera frame. That relationship

is often less intuitive since it is more natural to express the camera’s position and

attitude in the inertial space, rather than specifying how the reference coordinate

system transforms to the camera’s. To do so, the camera’s attitude and location are

specified in the inertial frame, with tC being the location of the camera center and

RC representing the attitude of the camera. These are then put into a square matrix

and inverted, which yields

Mext “

»
—–
R t

0 1

fi
ffifl “

»
—–
RC tC

0 1

fi
ffifl

´1

“

»
—–
RT
C ´RT

CtC

0 1

fi
ffifl . (2.11)

The inversion is due to the fact that RC describes the attitude of the camera with

respect to the inertial coordinate frame, however the stars must be rotated into the

camera frame. Transformation matrices have the convenient property where their

inverse is the opposite transformation. If a transformation matrix T describes the

rotation from frame A to frame B, then the matrix can be inverted to form T 1 which

describes the rotation between frame B to frame A. Thus, the relationships R “ RT
C

and t “ ´RT
CtC “ ´RtC allow for the extrinsic parameters matrix to be formed

using information about the camera. With the extrinsic matrix defined, the camera
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frame point Pc can be calculated as

»
———————–

X

Y

Z

1

fi
ffiffiffiffiffiffiffifl
“

»
———————–

R11 R12 R13 tx

R21 R22 R23 ty

R31 R32 R33 tz

0 0 0 1

fi
ffiffiffiffiffiffiffifl

»
———————–

U

V

W

1

fi
ffiffiffiffiffiffiffifl

(2.12)

where Pw “ pU, V,W q is the location of a star in the inertial frame before it is

transformed into the camera frame.

2.1.2.5. The formalized camera matrix. The goal of the camera matrix is

to encapsulate all the projective transformations that occur when capturing an image

into a single matrix equation. Merging both the intrinsic and extrinsic parameter

matrices forms the complete camera matrix M , such that

M “MintMext “MaffMprojMext. (2.13)

The matrices are combined into a single relationship that shows how the projec-

tive transformation changes the three-dimensional inertial point Pw into the two-

dimensional pixel coordinates,

»
————–

u

v

1

fi
ffiffiffiffifl
„

»
————–

1{ρu 0 u0

0 ´1{ρv v0

0 0 1

fi
ffiffiffiffifl

»
————–

f 0 0 0

0 f 0 0

0 0 1 0

fi
ffiffiffiffifl

»
———————–

R11 R12 R13 tx

R21 R22 R23 ty

R31 R32 R33 tz

0 0 0 1

fi
ffiffiffiffiffiffiffifl

»
———————–

U

V

W

1

fi
ffiffiffiffiffiffiffifl

(2.14)

The order in which the matrices are arranged is key, noticing that the extrinsic ma-

trix is on the right. This allows for the transforming of point Pc from the inertial

coordinate frame to the camera coordinate frame. Once in the camera frame, the

intrinsic matrices is multiplied, allowing for a reduction of dimensions. The tilde
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in Eq. (2.14) implies that it is not the direct equation, but instead, the equation

produces pu1, v1, w1q from Eq. (2.7). In order to obtain the pixel coordinate pu, vq,
the relationship shown in Eq. (2.8) is applied. The final product is a plot of pixel

locations shown in Figure 2.3.

Figure 2.3. The results from the camera matrix, Eq. 2.14, for a 25˝ FOV. Each white
dot is a pu, vq coordinate for its corresponding star seen in this FOV.

2.1.3. Star Magnitude. The previous section developed the method for

determining the pixel location for a star in the FOV. The next step in producing a

simulated image is to calculate its corresponding brightness, or magnitude. To cal-

culate a star’s magnitude it is important to understand astronomical magnitudes. In

astronomy, the brightness, or magnitude, of a celestial body is defined in a logarith-
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mic scale and is often measured in a specific wavelength, spectrum, or photometric

band. Typically, magnitudes are measured in the visual or near-infrared spectrum,

wavelengths from hundreds of nanometers up to micrometers. There are two main

methods for categorizing an object’s magnitude: apparent magnitude and absolute

magnitude. Apparent magnitude corresponds to the brightness of an object an ob-

server would see at Earth, whereas the absolute magnitude describes the inherent

brightness of an object if it were placed 10 parsecs from Earth. One parsec is ap-

proximately 3.26 light-years in length. Since the scale is logarithmic, the brightest

stars are close to zero in the absolute scale, and go negative depending on the zero

point star used. Absolute magnitudes tell the most about a star, since the absolute

magnitude captures the true nature of the star by equally comparing them. For this

reason, the absolute magnitude is used to determine the corresponding pixel value in

an image.

There are several types of magnitude systems which in turn use different types

of wavelengths to obtain magnitude data. The most widely used magnitude system

is the Johnson system that was developed by Harold L. Johnson in 1955. The work

presented by Johnson set the standards for stellar photometry and defined a fun-

damental system of magnitudes and wavelength spectrums, mostly concentrating on

the ultra-violet, blue, and visual (UBV) filters. UBV wavelength filters are commonly

used for all magnitude systems, and the Johnson system has since been extended to

the near-infrared filters.

The Tycho-2 star catalog gives the magnitudes BT and VT , where the subscript

T distinguishes between the Johnson system and the Tycho-2 catalog system. Note

that these blue and visual spectrum values are not the same as the Johnson system’s.

The Tycho-2 magnitudes are, in general, more accurate than those of the Johnson

system. On average, the Tycho-2 catalog has 130 measurements per star. Therefore,

when linearly transforming from the Tycho-2 BT and VT to the Johnson B and V
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values, residuals of up to 0.1 magnitudes may occur [22]. As well, the Tycho-2 catalog

includes more stars that than Johnson could have recorded. In the limited cases where

the Johnson magnitudes are more accurate than those of the Tycho-2 catalog, the

Johnson values are kept.

2.1.3.1. Converting to electrons. To simulate images for testing, the mag-

nitudes of stars in the FOV must be converted to a corresponding number of electrons

through a series of steps. The first step is to convert a star’s absolute magnitude to

an irradiance value. Solar irradiance is the power per unit area emitted by a star,

and it is directly related to the magnitude of the star. Star magnitudes work by re-

lating all stars to one specific star, called the zero point star. Every star in a specific

photometric band share a relationship with the zero point star which is

m˚ “ m˚,0 ´ 2.5 log10

ˆ
F˚
F˚,0

˙

where m˚ is the magnitude of a star in a given photometric band, F˚ is that star’s

flux in the same photometric band, and F˚,0 is the zero point star in the photometric

band used. Traditionally, the zero point star is used, but any reference star can be

used as long as each star in the band is compared to the same reference star. The

2.5 is due to the effect of using a logarithmic scale. A difference of 2.5 magnitudes

corresponds to a decrease in flux by a factor of 10. From this relation, the magnitude

of one star can be found by comparing it with another star’s magnitude within its

photometric band. This goes for the irradiance value of stars as well. Here, stars are

compared to the Sun due to the abundant information known about it. Knowing the

solar irradiance and magnitude of the Sun, as well as the magnitude of another star,

allows for the irradiance of that star to be determined by using

m˚ “ m@ ´ 2.5 log10

ˆ
I˚
I@

˙
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where m@ and I@ are the magnitude and irradiance of the Sun respectfully, and m˚

is the magnitude of the star and I˚ is the corresponding irradiance.

From here, I˚ is multiplied by the square of the exposure time of the sensor.

Next, it is converted into energy by multiplying by the pixel area taken up by the

spread of the star. The energy is then divided by Planck’s constant, h “ 6.626070041ˆ
10´34 Js, which is a proportionality constant between energy and photons. The final

step is to adjust for the quantum efficiency of the sensor, which is the ratio of the

number of electrons produced per photon. Accounting for the quantum efficiency

is done by simply multiplying by this ratio. A block diagram in Figure 2.4 shows

the transition and steps, as well as the progression of units from magnitude to the

number of associated electrons. As well, Eq. 2.15 summarizes all of the steps into

one computation

e “ 1

h
I@t

2
intσxσyρxρyQpλq ˆ 10´pm˚´m@q{2.5 (2.15)

where tint is the integration time, σx and σy represent the pixel spread of each star,

ρx and ρy are the pixel sizes, and Qpλq is the quantum efficiency of the sensor for a

given wavelength λ. Once the electron count for every star is found, the image is

scaled to ensure that the maximum pixel value corresponding to the brightest star is

set to the saturation limit the sensor can hold. This allows for the image to appear

as bright as possible, without oversaturation of the pixels.

2.1.3.2. Determining pixel spread. Now that the number of electrons has

been calculated, the area of pixels taken up by a star in the FOV can be determined.

The electron count can be considered the “volume” under a two-dimensional Gaussian

function, which provides a more intuitive way of determining the spread of a star.
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Figure 2.4. A block diagram showing the conversion process from flux density to the
associated number of electrons.

The uncorrelated Gaussian function is given as

fpx, yq “ A exp

ˆ
´
ˆpx´ uq2

2σ2
x

` py ´ vq
2

2σ2
y

˙˙
, (2.16)

where A is the amplitude, or height, of the Gaussian function, u and v are the pixel

locations found from Eq. (2.14), and σ2
x and σ2

y are the variance of the Gaussian in the

x and y directions, respectively. What is intuitive about the uncorrelated Gaussian

is the variances. Changing them allows for a more unique “shape” to the Gaussian,

and in this case to the spread of pixels for a star. In this application the variances σ2
x

and σ2
y are kept equal, producing circular spreads for each star.

Normally, when discussing Gaussian functions, one is expressing the proba-

bility density function (pdf) of a normally distributed variable. However, here the

function is not assumed to be a pdf. The total “volume” under the function could

be considered the total probability of a pdf if it equaled one, but here, it is found to

equal the total number of electrons for a specific star. With this, the amplitude A of

the Gaussian function can be found if the volume is explicitly solved for. To do so,
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the volume must be calculated via

V “
ż 8

´8

ż 8

´8
fpx, yq dx dy. (2.17)

Turning attention to what is known as the Gaussian integral,

ż 8

´8
e´x

2

dx “ ?π,

it can be shown that

ż 8

´8
ae
´
px´ bq2

2c2 dx “ ac
?

2π.

Therefore, V can be solved by

V “
ż 8

´8

ż 8

´8
A exp

ˆ
´
ˆpx´ x0q2

2σ2
x

` py ´ y0q2
2σ2

y

˙˙
dx dy

“ A

ż 8

´8

ż 8

´8
exp

ˆ
´px´ x0q2

2σ2
x

˙
exp

ˆ
´py ´ y0q2

2σ2
y

˙
dx dy

“ ?2πAσx

ż 8

´8
exp

ˆ
´py ´ y0q2

2σ2
y

˙
dy

“ 2πAσxσy.

Finally, solving for A gives

A “ V

2πσxσy
. (2.18)

The stars are all kept to have a circular spread thus σx “ σy “ σ. Since the number

of electrons for each star is assumed to be the total volume under their Gaussian

function, V is different for each star. The standard deviation of the Gaussian is de-

termined by sensor and optic parameters and is kept constant for each star regardless
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of brightness. Each star’s distribution is calculated in an 8 ˆ 8 buffer matrix, which

is then added to the image as a whole, with its center placed the pu, vq pixel found by

Eq. (2.14). Due to the nature of Gaussian functions, which asymptotically approach

zero, the buffer was chosen to be this size in order to encompass as much of the

star’s pixel spread as possible without having to evaluate the function over the entire

image. Utilizing Eqs. (2.16) and (2.18), the buffer matrix for this star is calculated

and illustrated in Figure 2.5. Here, in Figure 2.6, the brightest star, Figure 2.5, is

located at the point p113.01, 332.46q and thus the buffer matrix’s center is placed at

that location.

Figure 2.5. The pixel spread for the brightest star in Figure 2.6.
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Figure 2.6. Illustrated here are each of the Gaussian functions that form the pixel
spreads for each star in the FOV.

2.2. STAR TRACKER NOISE CHARACTERIZATION

2.2.1. Background and Motivation. Every image taken by any camera

will have some inherent errors due to the nature of charge coupled devices (CCDs).

These sensors work by exposing the photodetectors for a duration of time, called the

exposure time, which allows photons to be collected and subsequently converted to

an electrical charge. Once compiled, the accumulated charge is sequentially trans-

ferred into the two-dimensional CCD arrays and finally sent to the chip level output

amplifier, where it is then converted into a voltage signal. With several steps between

initial exposure to a voltage output, noise will arise from every aspect of the process.

Accurately quantifying the noise a star tracker might encounter in space, and sub-

sequently reproducing it, allows for any ground application of the image processing

to be more representative of what is expected to occur during flight. Typical CCD

noise can be broken up into three broad categories with their overall noise category
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being general detector noise. The three basic groups of CCD errors come from photon

noise, electron noise, and analog-to-digital (A/D) noise.

2.2.2. Noise Addition Process. Seeing noise in images and photos is quite

common. Typically, noise isn’t noticed by the human eye unless it is extreme and

makes the image unrecognizable. However, to image processing software, subtle noise

can cause issues with the specific processing the image is undergoing. Humans can

easily see and read an image even with a high noise level, but common issues arise

when there is blurring or an unwanted defocussing of the lens, which allows for images

to become distorted. More subtle noise can affect image processing, which causes

misreading of words, mis-detection of features, and in most star tracker applications,

inaccurate centroiding.

Starting with a blank image, I0, adding noise is straightforward. The image

starts as an image of solid black where every pixel is at zero electrons. Noise is then

formed one at a time. First the zodiacal light is added to a blank image to form Izod.

From here, dark current, pixel response non-uniformity, shot noise, and read noise

form their own separate noise image. These images are then summed together and

added to the original noiseless image, I, by

If “ I ` Izod ` IDC ` IPRNU ` ISN ` IRN, (2.19)

where If is the final image. To account for saturation, the image is leveled out at

the pixel well saturation level; therefore, any pixel value greater than this value is

truncated and assigned the max value. The image is finally converted to a digital

resolution of µ “ 64 bits, which accounts for the (A/D) noise.

2.2.3. Photon Noise. Charged coupled devices work by exposing a sensor

to light for a limited amount of time, and during that time, photons are collected

on the capacitor array. These capacitor cells act like a reservoir, with each photon
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striking the sensor and producing an electron. Over the exposure time, the sensor

collects the electrons produced. During this process, photon noise is generated from

the exposure length, line scan aberrations, lens vignetting loss and throughput, as

well as stray light.

The exposure, or integration, length is the amount of time the CCD sensor

is exposed to light, similar to a camera’s shutter speed. A longer exposure time

will result in more photons hitting the sensor and thus a brighter image, with the

caveat of possibly over-saturating the pixels. Certain detectors have what is called

rolling shutter, meaning that the image is read out one row of pixels at a time. This

time delay between the first and last rows can have a negative effect if an imaged

scene is moving quickly, which is referred to as line scan aberration. Lens vignetting

and throughput refers to noise produced when light travels through the thinner and

thicker, edges and center, parts of the camera lens. Stray light is simply the light

that is reflected off other bodies in space such as the Earth, the Moon, parts of the

spacecraft, or even other spacecraft in orbit.

For this work, the goal is to develop the software for a slow spinning spacecraft.

Therefore, line scan aberration errors are not considered. As well, lens vignetting and

throughput noise can be modeled in the calculations for the total number of photons

collected in a pixel. However, they are closely related to optical errors and are not

considered in this work.

Stray light is categorized as all unwanted light that strikes the sensor when it

is exposed. A main source of stray light in space originates from the zodiacal dust

cloud. Zodiac light is sunlight that has been diffused by small interplanetary dust

particles. When attempting to measure and detect extremely faint stars, magnitude

15 and higher, accurate knowledge of the zodiacal background noise is imperative.

A major component of the expected noise from stellar photometry comes from this

zodiacal light. Fortunately, to a first-order approximation, the zodiacal cloud is uni-
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form and consistent and only changes with a spacecraft’s pose rather than with time

or the measured spectral wavelength [23]. Levasseur-Regourd and Dumont have done

extensive research into accurately mapping the zodiacal light and have produced ta-

bles that give brightness values for varying helioecliptic positions [24]. Zodiacal light

is still quite faint when compared to most stars seen by typical star trackers; however,

when pointing close towards the Sun, this noise increases. Assigning the value for the

zodiacal light magnitude as Jzodpλ, βq [8], the corresponding error is found to be

nzod “ 5s2Jzodpλ, βq ˆ 10´15,

where s2 is the angular area of each pixel. The values given by Levasseur-Regourd

and Dumont are in S10pV q, or number of 10th visual magnitude stars of solar type per

square degree, hence the changing in the order of magnitude. This error is different

than the subsequent errors in the following sections because this noise is a magnitude

value. It undergoes the same process to convert it to electrons and is then added to

a blank image I0 to form

Izod “ I0 ` nzod1mˆn,

where 1mˆn is an mˆ n matrix of ones used to add the noise to the entire image.

2.2.4. Electron Noise. By far, the most noise comes from electron noise.

In the ideal case, one photon striking the sensor would result in exactly one electron

being formed, giving way to the precise brightness of a pixel. Unfortunately, the

one-to-one conversion does not happen due to the governing laws of physics as well

as several other factors. The other sources of errors come from dark noise, pixel

non-uniformity, shot noise, thermal noise, and read noise. Some of these sources can

be modeled as a Poisson processes that depend on some rate, which is intuitive since

cameras expose the sensor and experience a rate of arrival of the photons [25]. A
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more convenient method is to use a Gaussian distribution for each of these making

them relatively simple to combine. Given a Poisson distributed random variable, its

distribution can be approximated as a Gaussian distribution if enough samples of the

random variable’s pdf are present. These noise values change depending on the sensor

chosen, and a majority of the information regarding the noise values can be found off

the sensors data sheet.

2.2.4.1. Dark current. Space grade cameras and telescope sensors frequently

run into problems with thermal control. Having a “hot” camera can cause what is

known as dark current, where, as the sensor heats up, thermally generated electrons

build up and begin to saturate the pixels. Saturated pixels can quickly ruin cen-

troiding of stars due to a star being too bright or even misshapen, and as the sensor

heats up, the error increases accordingly. Integration time has a large effect on dark

current. Lengthening integration time causes the sensor to increase in temperature

by keeping it exposed to light longer. With this, the dark current noise is quantified

as

IDC “ I0 ` nDCτ1mˆn `?nDCτWDC ,

where IDC is the noise image for the dark current, nDC is the mean noise of the dark

current taken from the sensor data sheet, τ is the exposure time, and WDC is an

mˆ n matrix of random samples of the normal distribution whose mean is zero and

standard deviation is one, N p0, 1q, with m ˆ n being the size of the image I. The

1mˆn is an mˆ n matrix of ones used to add an overall bias to the image due to the

dark current. Adding the third term ensures a more accurate representation of how

dark current actually works since each pixel is independently affected by this noise.

2.2.4.2. Pixel response non-uniformity. As in any manufacturing pro-

cess, items are constructed within an accepted machine tolerance. These manufac-
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turing variations, when it comes to CCD sensors, can cause pixel geometries to vary

from one another in the substrate material and microlens. Since pixel response non-

uniformity (PRNU) occurs due to the physical characteristics of a sensor, it is im-

possible to completely eliminate and therefore is considered a standard property of

sensors. PRNU is modeled as [26]

IPRNU “ I0 ` nPRNUWPRNU,

where IPRNU is the noise image for pixel response non-uniformity, WPRNU is a matrix

of random samples of the normal distribution N p0, 1q, and nPRNU is the noise due to

pixel response non-uniformity, which is found on the sensor data sheet.

2.2.4.3. Shot noise. Due to the underlying nature of photons, each photon

that arrives to the sensor is its own event and cannot be precisely predicted. The

fluctuating arrival of photons to the sensor is called shot noise and is fundamentally

a Poisson distribution given as [27]

pSNpNq “
`
N̄
˘N

e´N̄

N !
,

where N is the total number of photons collected and N̄ is the average of those values

across the image. Conveniently, the mean, µSN, and the variance, σ2
SN, for a Poisson

distribution are the same values. Using this along with the central limit theorem,

a sum of independent and identically distributed random variables tend to become

Gaussian as the number of samples increases. Therefore the shot noise is modeled as

ISN “ I0 ` nSNWSN,

where ISN is the noise image for shot noise, WSN is a matrix of random samples of the

normal distribution N p0, 1q, and nSN is the shot noise at each pixel since shot noise
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affects each pixel individually. Shot noise is determined to be the standard deviation

of photons per pixel and equals the square-root of the pixel value at each pixel giving

nSN “
?
I,

where I is the image. It should be noted that dark current, shot noise, and read noise

allow for the possibility of a negative noise value. A negative noise value indicates

that a pixels value would be decreased and corresponds to a noise source causing the

sensor to absorb less electrons.

2.2.4.4. Read noise. Once the sensor is exposed to light, photons start col-

lecting in the sensor wells, producing electrons. Afterwards, these electrons are con-

verted to a voltage that is proportional to the number of electrons in a well. This

voltage is multiplied by the sensor amplifier gain, then digitized by an analog-to-

digital converter. The digital number represents the number of photons/electrons

from the sensor pixel, and the number of analog-to-digital units (ADUs) is often re-

ferred to as the raw units or data numbers (DN). The proportionality between raw

data and photon/electron count is called the gain. The signal processing chain, in

which read noise corrupts the data, starts with sensor read out then goes to the ampli-

fier gain and is finally digitized to produce the raw data. During this process, voltage

fluctuations are the source of read noise. Certain forms of read noise are frequency

and process dependent, but manufacturers generally provide a mean read noise for a

product. With this value, the read noise is added to the image by

IRN “ I0 ` nRN1mˆn,

where IRN is the noise image for read noise and nRN is the mean read noise. This

noise is uniform across all pixels in an image [26], thus the noise is multiplied by

1mˆn.
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2.2.4.5. Amplifier noise. In order to convert the photons/electrons of a

pixel into a voltage measurement, the sensor uses a capacitor and amplifier. Before

measuring the pixel’s charge, the capacitor must be reset to a base or reference level.

Reset noise, or kTC noise, is induced during this process in the thermal variations of

the reset transistor. The charge of the noise is given by

qn “
?
kTC,

where k “ 1.38064852ˆ 10´23 J/K is Boltzmann’s constant, T is the operating tem-

perature, and C is the capacitance. Manufacturers often report noise values as a

number of electrons root mean square (rms), meaning that a number of rms electrons

is the standard deviation around the mean pixel value. Reset noise can be quite large,

such as 50 rms electrons, whereas typical read noise is on the order of 9 rms electrons

[25].

A second source of amplifier noise can arise in the form of flicker noise, or 1{f
(one-over-f) noise, which appears from the pixel sampling rate of the amplifier. Lower

frequencies cause more flicker noise, but at high frequencies of pixel read out, around

10 MHz, the read noise floor can be determined by just the 1{f noise. The reason

for flicker noise is due to the time constants of the interlaced circuitry in the image

sensor silicon that turn on and off during read out, effectively trapping electrons in

the sensor [28].

Due to the consistent nature of amplifier noise across all current imaging de-

vices, removing it has become part of the device itself. Typical sensors employ what

is called correlated double sampling, or CDS. To remove this noise, the pixel read out

process is done twice. The first time while the pixel is still in the reset state, and the

second once the charge has been transfered to the amplifier. Comparing the separate

outputs allows the sensor to produce a less noisy output.
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2.2.5. Analog-To-Digital Noise. When raw data is being converted to dig-

ital units, the raw data must be rounded to the nearest integer. This integer relies

on the digital resolution of the system. Quantization error and saturation error are

what primarily make up analog-to-digital (A/D) noise. Saturation error is when the

brightest pixel, the pixel with the highest electron count, is converted to the highest

level of digital resolution. The lowest electron count would be designated as 0, leaving

the highest equal to

maximum pixel value “ 2µ ´ 1,

where µ is the digital resolution, which can be anywhere from 8 bit to 64 bit for typical

star tracker cameras. Next, quantization noise is taken into account when rounding

to the nearest integer. To better understand and visualize quantization error, recall

Figure 2.5. In that figure, the star’s distribution is continuous and allows for a more

precise value at each pixel. Due to quantization, Figure 2.5 transforms into Figure

2.7, where the values of each pixel is rounded to the nearest integer.

2.3. FINAL IMAGE COMPARISON

The method used to form a virtual image of what a star tracker may encounter

in space is presented. The process starts with a reference star catalog and a chosen

sensor. From here, the pixel locations are determined for the given attitude and

FOV of the camera with respect to the inertial frame used in the star catalog. Once

the pixel locations are known, the corresponding pixel spread is found for each star,

which depends on the star’s magnitude as well as sensor properties. Lastly, the

image is sent through the error addition process to produce the final image. The

image without errors will appear to be the same as the final image to the human eye,

however the overall signal of these images will be quite different. Examining Figure
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Figure 2.7. An illustration of the result from quantization error applied to Figure 2.5.

2.8a and Figure 2.8b shows that the differences in images before and after errors are

introduced is near impossible to see from the naked eye. However, when looking at

their respective signals in Figure 2.9, it is clear that in both the rows and columns

of the image, the overall signal, and thus the overall image brightness, in Figure 2.8b

is larger than that of Figure 2.8a. The comparison here is to show that the second

image has a high level of noise present, despite it visually looking the same as the

figure without noise.
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(a) An example of a final image where no errors are
present.

(b) The same image as in Figure 2.8a, except the errors
determined in Section 2.2, are present.

Figure 2.8. Final image comparison.
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Figure 2.9. A comparison between image values, the blue line being the signal from 
Figure 2.8a and the red being the signal from Figure 2.8b.



35

3. IMAGE PROCESSING

A single image captured by the star camera can contain enough information

to accurately determine the spacecraft’s attitude. Therefore, these images must be

handled appropriately to insure as much data are available for the centroiding al-

gorithm. These images can be vastly different depending on the current mission

parameters. Certain spacecraft require they spin in order to acquire data or even

for stability, such as the latter Pioneer missions by NASA [2]. These spacecraft will

require slightly different processing of the images than a non-spinning, or slow spin-

ning spacecraft. Image processing techniques have improved over the years to allow

for precise noise reduction and feature extraction. The methods used in this work

are straightforward and do not concern themselves with producing real-time measure-

ments required by spinning spacecraft. Instead, a robust algorithm is implemented

with the understanding that they would be utilized for slow spinning spacecraft.

All images captured have some form of noise in them. Reducing the noise level

without reducing the quality of the features in an image is key. Certain techniques

work better depending on the scenario and what type of noise is expected. In general,

the types of noise experienced for a star tracker image can be treated as uniform or

Gaussian distributed due to the nature of CCD sensors. Straightforward methods of

reducing image noise include smoothing filters, which typically set each pixel to an

average value depending on the surrounding pixel values, and nonlinear filters, which

can utilize the median pixel value instead of the average [29]. This approach works

well to reduce salt-and-pepper noise and causes relatively little blurring. Since the

noise is approximately uniform, a simple approach is applied here to determine the

background noise for the images.

Centroiding techniques are of great importance and range anywhere from a

simple center of mass calculation, Newton-Gauss linearization methods, and two-



36

dimensional Gaussian estimation [3, 8, 30]. In this work, a different technique is im-

plemented to obtain the necessary centroids. The approach minimizes the Kullback-

Leibler divergence between a Gaussian model and a uniform mixture model. If an

array of pixels is assumed to be a two-dimensional uniform mixture, then it is shown

that the mean and covariance of the mixture is the same mean and covariance of a

Gaussian which minimizes the KL-divergence [13]. This method is favorable to the

standard center of mass technique since it non-iteratively provides an optimal solution

for the centroid.

3.1. NOISE REDUCTION

Since the method for matching stars to the catalog depends only on the relative

brightness of the stars in the image, subtracting a constant from the image will not

distort the pixel values individually, but rather as a whole. Other methods may cause

inconsistent reduction of parts of the image. Allowing irregular noise reduction over

an image may cause the image processing technique to select an incorrect star.

To find the background noise, a histogram is used to find where the grey

level cut-off is. As one might expect, the majority of values are towards zero due

to the nature of the images captured. The plot in Figure 3.1 utilizes a log scale to

show the large number of lower grey levels, but cuts off the higher grey levels due to

their infrequency and in order to emphasize the amount of background noise. This

background noise level is determined to be two times the grey level of the last bin

with more than 100 counts. For example, if the last bin with less than 100 counts is

at a grey level of 500, then the background is determined to be a grey level of 1000.

The background noise level is subtracted from the image as a whole and then passed

to the centroiding algorithm.
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Figure 3.1. A histogram of Figure 2.8b.

3.2. THRESHOLDING AND STAR FINDING ALGORITHM

To reiterate, the output of the image processing scheme is a set of three cen-

troids that correspond to the three brightest stars in an image. The thresholding 

algorithm is the first distinguishing feature of the star tracker algorithm. Finding 

three stars allows for the star-set triangle to be formed, taking the stars’ pixel loca-

tions as the vertices. It is common that star trackers will attempt to find the brighter 

stars in an image, since they are easier to separate from the background. Due to 

this approach, only the relative brightness of stars within the image are necessary to 

determine, and not the actual brightness of the stars found.

To start, the threshold is set to 75% of the maximum pixel value in an image. 

Next, the centroiding algorithm attempts to find the center of every star above that 

threshold. If the algorithm detects a pixel above the threshold, such as the pixel 

denoted by a the green “`” in Figure 3.2, the pixel is considered part of a candidate
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Figure 3.2. An illustration of the star detection method. The green “`” signifies the
pixel above the threshold value. The blue is the 3 ˆ 3 search template, and the red
indicates the border of the region of interest.

star. Then, a 3ˆ3 search template is then formed around this pixel, outlined in blue.

The mean value of this grid is calculated, and if this value is above the threshold as

well, the algorithm assumes it has found a star. Since the image is searched from left

to right, top to bottom, it is assumed that the search template will locate a star from

the top left. Using this information, the region of interest (ROI), shown in red in
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Figure 3.2, around the star is formed such that it encompasses all of the star, adding

more space to the bottom right of the ROI.

With the region containing one star known, the algorithm subtracts off the

average ROI border pixel value to further reduce any noise from neighboring stars

that may skew the centroiding process. With the region of interest finalized, it is

then passed to the centroiding algorithm. After finding the centroids of stars above

the threshold, the algorithm performs a check to see if there are three sets of centroid

coordinates. If there are fewer than three, or even zero, it then iteratively lowers

the threshold by 5% until only three stars are found. In the case where lowering the

threshold allows for four stars to be found instead of three, the algorithm fine tunes

the threshold value by 0.1% until there are the correct number of stars.

3.3. CENTROIDING

3.3.1. Center of Mass. Calculating the center of mass for the region of

interest is simple and fast. To find the center mCOM, the average position of the

pixels are found, each weighted by their specific brightnesses

mCOM “

nř
i“1

Jixi

nř
i“1

Ji

` 0.5, (3.1)

where i is the index of each pixel, n is the total number of pixels in the ROI, xi is the

pixel coordinate, and Ji is the intensity at each pixel. The 0.5 that is added allows

for transforming the coordinate system from the pixel coordinates to the Cartesian

x and y values. The difference in coordinates is due to CCD arrays starting at an

origin of p0, 0q, but the star camera software starts indexing at p1, 1q. The resulting

centroid of the brightest star in Figure 3.3 is shown in Figures 3.4a and 3.4b.
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Figure 3.3. Illustrating the region of interest via the red boxes.

(a) 3D image of the Gaussian function
over the brightest star. (b) Centroid of ROI.

Figure 3.4. Zoomed in region of interest on the image’s brightest star. The red box
is the ROI boundary, and the blue cross signifies the centroid.
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3.3.2. Uniform Mixture Model Approximation. An alternative method

of calculating the centroid is considered here and derived for the one-dimensional case.

The method developed allows for non-iteratively determining a Gaussian mean and

covariance that best fit, with respect to the Kullback-Leibler divergence, a uniform

mixture model pdf. Consider the non-negative functions that may look like

Figure 3.5. Examples of non-negative, univariate, uniform mixture model pdfs.

and have the form

ppxq “
Lÿ

i“1

wiUpai, biq s.t. wi ě 0 and
Lÿ

i“1

wi “ 1

with Upai, biq denoting the uniform distribution, which is given by

Upai, biq “

$
’’&
’’%

1

bi ´ ai ai ď x ď bi

0 otherwise.

If the weights wi should not sum to unity, which may occur when dealing with an

arbitrary positive function, they must be normalized first. Ultimately, there will exist

a specific weight for each component of the mixture. Additionally, the support for
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each component is known via the parameters ai and bi. Both ai and bi are natural

representations of the ith component, but it is sometimes more convenient to express

Upai, biq using its mean and variances, given by

mi “ ai ` bi
2

(3.2)

vi “ 1

12
pbi ´ aiq2. (3.3)

Now, in order to find the Gaussian parameters that best describe this pdf,

without iteration, consider the Kullback-Leibler divergence given by

DKLrp||qs “
ż
ppxq ln

ppxq
qpxq dx,

where

ppxq “
Lÿ

i“1

wiUpai, biq

qpxq “ N pm,P q “ 1?
2πP

exp

"
´1

2

px´mq2
P

*
.

First, the KL divergence is computed for this case. Note that the divergence can be

written as

DKLrp||qs “
ż
ppxq ln ppxq dx´

ż
ppxq ln qpxq dx.

Next, ppxq and qpxq are substituted, yielding

DKLrp||qs “
ż Lÿ

i“1

wiUpai, biq ln
Lÿ

i“1

wiUpai, biq dx´
ż Lÿ

i“1

wiUpai, biq lnN pm,P q dx.
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Taking a look at the first term, there is no dependency on the mean or variance of

the Gaussian; therefore, this integral is denoted by ´H, giving

DKLrp||qs “ ´H ´
ż Lÿ

i“1

wiUpai, biq lnN pm,P q dx.

Moving the summation out of the integral, and substituting in the pdfs

“ ´H ´
Lÿ

i“1

wi

ż
Upai, biq lnN pm,P q dx

“ ´H ´
Lÿ

i“1

wi
bi ´ ai

ż bi

ai

„
´1

2
lnp2πP q ´ 1

2

1

P
px´mq2


dx.

With this, the next step is to evaluate the integral, giving

DKLrp||qs “ ´H `
Lÿ

i“1

wi
bi ´ ai

"
1

2
pbi ´ aiq lnp2πP q

` 1

6

1

P

”
pb3
i ´ a3

i q ´ 3pb2
i ´ a2

i qm` 3pbi ´ aiqm2
ı*
. (3.4)

With this, Eq. (3.4) calculates the KL-divergence between the uniform mixture model

and a Gaussian distribution. The divergence holds for any Gaussian, and the diver-

gence is zero if and only if ppxq “ qpxq. As well, since DKL ě 0, it makes sense to

choose the mean and covariance of the Gaussian that minimizes DKL. If the input

parameters of the mixture are known, ai and bi, then the cost function is chosen as

Jpm,P q “ DKLrp||qs. (3.5)

In order to find a candidate minimum, the first-order conditions for optimality [13],

BJ
Bm “ 0 and

BJ
BP “ 0
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must be solved. However, finding a solution does not guarantee a minimizing solution.

To show that the candidate minimum is in fact a minimum, the matrix of second

derivatives must be positive definite [13], or more concisely,

»
————–

B2J

Bm2

B2J

BmBP

B2J

BmBP
B2J

BP 2

fi
ffiffiffiffifl
ą 0.

Considering the first-order conditions, and recalling that H is not dependent on m

or P , the first derivative with respect to m is found to be

BJ
Bm “ B

Bm

#
´H `

Lÿ

i“1

wi
bi ´ ai

"
1

2
pbi ´ aiq lnp2πP q

` 1

6

1

P

”
pb3
i ´ a3

i q ´ 3pb2
i ´ a2

i qm` 3pbi ´ aiqm2
ı*+

“ 1

P

Lÿ

i“1

wi

„
m´ 1

2
pai ` biq


.

After finding the derivative, it must be set equal to zero

0 “ 1

P

Lÿ

i“1

wi

„
m´ 1

2
pai ` biq


,

and, while keeping in mind that the variance must be positive, the terms are shifted

around to produce

Lÿ

i“1

wim “
Lÿ

i“1

wi
ai ` bi

2
.
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Recall that the weights ai, for i “ 1, . . . , n, are formed such that they sum to one,

which allows for the mean to be solved such that

m “
Lÿ

i“1

wi
ai ` bi

2
.

Looking back at Eq. (3.2), the definition of the uniform mixture model pdf mean,

m “
Lÿ

i“1

wimi, (3.6)

it is clear that the sum of the individual means of the uniform mixture is that which

allows for the first derivative with respect to m to be zero. Now, looking at the second

first-order condition

BJ
BP “ B

BP

#
´H `

Lÿ

i“1

wi
bi ´ ai

"
1

2
pbi ´ aiq lnp2πP q`

1

6

1

P

”
pb3
i ´ a3

i q ´ 3pb2
i ´ a2

i qm` 3pbi ´ aiqm2
ı*+

“
Lÿ

i“1

wi
bi ´ ai

"
1

2

1

P
pbi ´ aiq ´ 1

6

1

P 2

”
pb3
i ´ a3

i q ´ 3pb2
i ´ a2

i qm` 3pbi ´ aiqm2
ı*

.

Setting this derivative to zero yields

0 “
Lÿ

i“1

wi
bi ´ ai

"
1

2

1

P
pbi ´ aiq ´ 1

6

1

P 2

”
pb3
i ´ a3

i q ´ 3pb2
i ´ a2

i qm` 3pbi ´ aiqm2
ı*

Lÿ

i“1

3wiP “
Lÿ

i“1

wi
bi ´ ai

“pb3
i ´ a3

i q ´ 3pb2
i ´ a2

i qm` 3pbi ´ aiqm2
‰

“
Lÿ

i“1

wi
b3
i ´ a3

i

bi ´ ai ´ 3m2.
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Utilizing the requirements that the weights must sum to one, it is found that

P “ 1

3

Lÿ

i“1

wi
b3
i ´ a3

i

bi ´ ai ´m
2. (3.7)

Working the fraction into a more convenient form gives

pbi ´ aiq3 “ b3
i ´ 3b2

i ai ` 3bia
2
i ´ a3

i

such that

pb3
i ´ a3

i q “ pbi ´ aiq3 ` 3b2
i ai ´ 3bia

2
i (3.8)

pb3
i ´ a3

i q “ pbi ´ aiq3 ` 3biaipbi ´ aiq. (3.9)

Inserting Eq. (3.8) into Eq. (3.7) and simplifying gives way to

P “
Lÿ

i“1

wi

„
1

12
pbi ´ aiq2 `

ˆ
ai ` bi

2

˙
´m2.

Finally, recalling the definitions of the component means and variances for a uniform

mixture model, Eqs. (3.2) and (3.3), it shows that

P “
Lÿ

i“1

wipvi `m2
i q ´m2

or in another form

P “
Lÿ

i“1

wi
“
vi ` pmi ´mq2

‰
. (3.10)

Currently, the forms of m and P in Eqs. (3.6) and (3.10), respectively, are the forms

that satisfy the first-order optimality conditions. However, it is unknown whether

they will minimize the KL-divergence between the uniform mixture model and the



47

Gaussian distribution. Therefore, moving to the second derivatives, it can be shown

that

B2J

Bm2
“ 1

P
, (3.11)

B2J

BmBP “ 0, (3.12)

B2J

BP 2
“ ´1

2

1

P 2
` 1

3

1

P 3

«
Lÿ

i“1

b3
i ´ a3

i

bi ´ ai ´ 3m2

ff
. (3.13)

The term in square brackets is 3P from Equation 3.7, and therefore

B2J

BP 2
“ ´1

2

1

P 2
` 1

3

1

P 3
3P

“ ´1

2

1

P 2
` 1

P 2

“ 1

2

1

P 2
.

Thus, the matrix of second derivatives is found to be

»
————–

B2J

Bm2

B2J

BmBP

B2J

BmBP
B2J

BP 2

fi
ffiffiffiffifl
“

»
————–

1

P
0

0
1

2

1

P 2

fi
ffiffiffiffifl

(3.14)

which is positive definite as long as P ą 0. Now it is clear that

m “
Lÿ

i“1

wimi (3.15)

P “
Lÿ

i“1

wi
“
vi ` pmi ´mq2

‰
(3.16)

are the mean and covariance of the Gaussian distribution that minimizes the KL-

divergence between a uniform mixture model and a Gaussian distribution, provided

that P ą 0. Conveniently, these parameters which minimize the KL-divergence here
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are the mean and covariance of the uniform mixture model. The mean of ppxq is

m “
ż 8

´8
xppxq dx

“
ż bi

ai

x
Lÿ

i“1

wi
1

bi ´ ai dx

“
Lÿ

i“1

wi
pai ` biq

2

“
Lÿ

i“1

wimi

Similarly, the variance of ppxq is

Π “
ż 8

´8
px´mq2ppxq dx

“
ż bi

ai

x2
Lÿ

i“1

ai ` bi
2

dx´m2

“ 1

3

Lÿ

i“1

wi
b3
i ´ a3

i

bi ´ ai ´m
2

“ 1

3

Lÿ

i“1

wi
b3
i ´ a3

i

bi ´ ai ´
«

Lÿ

i“1

wimi

ff2

.

This equation can be manipulated into a similar form shown previously in Equation

3.10. Thus, it has been proven that the mean and covariance of the Gaussian distri-

bution which minimize the KL-divergence are exactly the mean and covariance of the

uniform mixture model. However, the results have only been proven for the univariate

case.

A similar derivation can be done for the multivariate case as the univariate;

however, with five parameters to minimize instead of two, it is felt that there will

be little information gained by this. Instead, to demonstrate the multivariate case,
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consider the two-dimensional uniform mixture model

Upai, bi, ci, diq “

$
’’&
’’%

1

bi ´ ai
1

di ´ ci ai ď x ď bi, ci ď y ď di

0 otherwise.

The parameters pai, biq are the parameters associated to the “columns” of the pdf, and

pci, diq are those associated with the “rows.” Utilizing the Kullback-Leibler divergence,

ppxq and qpxq are found to be

ppxq “
Lÿ

i“1

wiUpai, bi, ci, diq

qpxq “ N pm,P q “ 1a
2π|P | exp

"
´1

2
px´mqTP´1px´mq

*
.

To built the pixel array, and allowing for an intuitive approach, a Gaussian

pdf is formed with mean and covariance

m “

»
—–

5

5

fi
ffifl and P “

»
—–

9 0

0 9

fi
ffifl .

shown in Figure 3.6. Next, a small amount of uniform noise, v “ 0.005ˆUp0, 1, 0, 1q,
is added to each pixel individually to form Figure 3.7.

First, the multivariate uniform mixture parameters

a “ ra1, . . . , aLs, b “ rb1, . . . , bLs,

c “ rc1, . . . , cLs,T d “ rd1, . . . , dLs,T

must be determined. The parameters c and d are transposed to indicate they are the

vertical parameters of the pdf. If the pdf is considered to be an array of pixels, then
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Figure 3.6. An uncorrelated Gaussian pdf without noise.

Figure 3.7. The Gaussian pdf with minimal noise added.
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the uniform mixture parameters are the bounds of each pixel. These are found to be

a “ r1, 2, 3, 4, 5, 6, 7, 8, 9s b “ r2, 3, 4, 5, 6, 7, 8, 9, 10s

c “ r1, 2, 3, 4, 5, 6, 7, 8, 9sT d “ r2, 3, 4, 5, 6, 7, 8, 9, 10sT

The weights, wi,j, for the pixels correspond to the pixel’s brightness, or the grey value,

where solid black is zero and solid white is one. After normalizing the weights such

that they sum to one, the mean is found by

mUM “
«

9ÿ

i“1

9ÿ

j“1

wi,j
ai ` bi

2

9ÿ

i“1

9ÿ

j“1

wi,j
cj ` dj

2

ffT
.

Comparing the uniform mixture (UM) method to the center of mass (COM)

method, the centroid from each method is to be

mUM “

»
—–

4.7736

4.7902

fi
ffifl and mCOM “

»
—–

5.4812

5.5178

fi
ffifl .

These are shown in Figure 3.8, along with the true mean centered at p5, 5q. Along

with the mean of the uniform mixture model, the covariance can also be obtained,

unlike in the center of mass centroiding method. For this application, the goal is to

develop a non-iterative way of determining the centroid of a star, but not its spread,

and because of this only the mean is of importance. Further steps can be taken

that use the covariance matrix for calculating the optimum Gaussian parameters,

with respect to the KL-divergence. Doing so invokes iterations as it determines these

parameters. Others have used this iterative process to further predict a Gaussian fit

over a two-dimensional pixel array [8] with a different cost function.

Now, turning back to the image used for the center of mass algorithm, Figure

3.3, the centroids of the stars can be calculated using the uniform mixture model
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Figure 3.8. The centroids found by the uniform mixture model and center of mass
methods are shown, along with the true centroid at p5, 5q.

algorithm. Following the same process used in the multivariate example, Figure 3.9

shows the centroid of the three brightest stars using both the center of mass and

uniform mixture model methods. The centroids calculated are exactly the same for

both methods, unlike in Figure 3.8. They produce near exact solutions, but this is

due to the low level of noise in the image, as well as the symmetric shape of the

Gaussian used to produce the image. This indicates that in images with high levels

of noise, the uniform mixture model method provides a more reliable centroid. Again,

the advantage to the uniform mixture model method lies in the non-iterative way of

determining the centroid, as well as the possibility of iteratively determining a more

precise calculation.
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Figure 3.9. The centroids found by the uniform mixture model and center of mass 
methods are shown, blue and green, respectively, for Figure 3.3.
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4. CATALOG FORMATION

4.1. TROUBLES FOR CURRENT CATALOGS

The difficulty arises due to the fact that a generic magnitude cut-off cannot be

determined. Some works have a star magnitude limit of 6.0, whereas others have their

limit set at magnitude 7.5 or even 8.0 [6, 31]. There are two problems with having

a limit on the magnitude of stars in the catalog. As previously stated, hardware

degrades over time and sensors may no longer be able to detect dimmer stars. The

other issue is that with any level of cut-off, there will be less information for the

star tracker to use in order to produce an accurate measurement. The goal in the

presented works is to have a minimum disk space capacity with the maximum amount

of information.

The main concern with any reduction of the reference star catalog is a lack of

stars in the field of view. Ideally, the star catalog would be have a uniform distribution

over the entire sphere, allowing for a consistent number of stars to always be present

in the field of view. Unfortunately, stars are far from uniform, with most concentrated

in the Galactic Plane and a lack of stars in the North Galactic Pole [32]. Figure 4.1

provides a visual of the absence of uniformity by the brightest stars in the catalog.

The issue of non-uniformity has been addressed a handful of times. The first

attempt at building a nearly uniform catalog was done by Vedder in 1993 [33]. Ved-

der’s technique uses the geometric distribution of stars in order to build an optimal

star catalog based on global and local uniformity criteria. The global criterion mea-

sures the uniformity of the sphere of stars as a whole, whereas the local criteria

measures the variation in the number of stars in a smaller region of constant shape.

Essentially, Vedder’s technique makes sure that the catalog as a whole is as uniform

as possible and that within every image taken, the stars detected that are also in the

catalog are as uniform as possible. Vedder does not take into account the brightness
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of the stars in the field of view, however. Bauer includes brightness into the weighting

of stars while using statistical measurements to generate uniformity [34]. Samaan et

al. employ a different technique involving uniform points or patches (small areas)

about a sphere to try and keep five stars within every image [35]. A newer method

of catalog generation has been put forth by Saifudin et al. who use a clustering al-

gorithm that stores fewer stars located in high density regions and stores more stars

in low density regions [36]. A problem with these methods is that the star catalog

is designed and built differently from the way a star tracker might detect stars and

match their patterns with the catalog.

´1

´0.5
0

0.5
1

´1

´0.5

0

0.5

1

´1

´0.5

0

0.5

1
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z

Figure 4.1. The 500 brightest stars of the Tycho-2 Catalog, in the visual spectrum,
mapped onto a unit sphere.
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4.2. MOTIVATION

The traditional star identification approach uses an angle calculation for de-

termining the stars within the FOV, which calculates the angle between two stars and

matches them to the catalog by checking that angle against every star in the catalog.

This approach is tedious and can consume computational time to achieve a possible

solution. Even then, it will, on average, require more than three stars to produce an

accurate measurement [21].

The separation between catalog generation and star identification can force

the catalog search algorithm to spend more time searching for the correct pattern

and corresponding stars. This being said, the main objective of the aforementioned

techniques is to save on memory allocation, minimizing the disk space taken up by

the star catalog, not the time efficiency of the star tracker itself. The motivation for

the catalog structure and design presented here is to formally connect the process by

which the star tracker processes images and the way the catalog is utilized. Linking

these processes should, in turn, decrease the search time between matches, utilize

only the brightest stars, and provide a dependable star camera algorithm from start

to finish.

To recall, stars are found in the images by first doing a template search. Once

a star has been found, a bounding box is constructed around the star and the center of

the star is calculated. After three stars are detected, the triangle is formed, and using

the planar triangle technique is used to build the custom star catalog. The downside

to this method is that it cannot utilize any sort of uniform distribution to the stars

in the catalog since it depends on the brightest stars in any given field of view. One

significant advantage, however, that this technique has is that it is invariant of the

absolute brightness of a star; only the relative star magnitude matters. The algorithm

selects the three brightest stars in an image, which means that it must only compare

the stars within the image to one another in order to form the planar triangle.
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Table 4.1. Tycho-2 Star Catalog Format.

Col. Property Meaning Units

1 Ra Right Ascension radian

2 Dec Declination radian

3 pmRa Proper Motion of the Right Ascension milliarcsec per year

4 pmDec Proper Motion of the Declination milliarcsec per year

5 ErrRa Error in Right Ascension milliarcsec

6 ErrDec Error in the Declination milliarcsec

7 ErrpmRa Error in the P.M. of the Ra milliarcsec per year

8 ErrpmDec Error in the P.M. of the Dec milliarcsec per year

9 BT Magnitude of a star (blue spectrum) magnitude

10 ErrBT Error in the Mag. of a star (blue spectrum) magnitude

11 VT Magnitude of a star (visual spectrum) magnitude

12 ErrVT Error in the Mag. of a star (visual spectrum) magnitude

13 prox Proximity indicator arcsecond

4.3. BUILDING THE CATALOG

4.3.1. Reference Catalog. In order to built a customized star catalog, a

reference catalog is needed as a base to build off of. Ideally, the reference will contain

a high number of stars, and provide the necessary photometric band that the imaging

sensor operates in. For these reasons, the Tycho-2 star catalog is chosen for this

work. The Tycho-2 catalog is the largest collection of stars available, with over 2.5

million stars recorded from the European Space Agency’s Hipparcos satellite [22].

Along with the vast number of stars available, the Tycho-2 catalog is used due to the

Hipparcos satellite’s ability to measure changes in a star’s position on the order of

milliarcseconds per year. The format of this catalog can be found in Table 4.1. Many

of these qualities are explained in the Tycho-2 guide [37]. The Tycho-2 catalogue has

a large amount of extremely faint stars (fainter than BT « 13 and VT « 12), and

most star trackers cannot detect these stars. Here, the maximum magnitude is kept

6.5 to allow for comparisons between other works, which encompasses only 0.32% of
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the entire catalog. Along with the magnitude cut-off, stars with similar brightness

that were too close to distinguish between were not considered.

4.3.2. Catalog Outline. The catalog utilizes triangular properties outlined

in both Houtz’s and Cole’s works, but Houtz uses spherical triangles [8, 21]. Cole

provides proof that planar triangles can provide better performance, which is the

method used here. There is no maximum for disk space or number of stars, but

instead the focus is on a more reliable system that utilizes only the brightest stars.

The properties calculated for each star should be as uncorrelated as possible in the

interest of providing the most amount of unique information for a triangle. Triangles

have the convenience of having multiple measurable properties, whereas the standard

angle measurements only have the one quantity and rely mostly on pivoting techniques

[21]. From basic geometry, any triangle needs at least three pieces of information to

be identified, such as two sides and the inner angle, or simply all three sides or all

three internal angles. These simpler characteristics, more often than not, cannot

provide enough data to differentiate between two similar triangles. Therefore, more

complex properties are considered. These include perimeter, area, polar moment, the

ratio between the shortest and longest side, and the normal coefficient.

4.3.3. Catalog Generation. A systematic approach to the formation of the

catalog will allow for every possible combination of three stars in the sky to be found

for a given field of view. Therefore, if different hardware is used, this step must be

replicated to accommodate for the different specifications. The process takes time,

but it is only necessary to execute once before flight. To ensure that no portion

of the sky is missed, points are equally distributed over a sphere with a minimum

distance between points being δ ď 1˝. Each point dictates the bore-sight, or z-axis,

of the star tracker. To produce this uniform sphere of points, an icosahedron sphere

is formed with enough positions equidistant from one another to produce the required

δ value, as shown in Figure 4.2. Utilizing the axis-angle attitude representation, the
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(a) An icosahedron sphere with points
distributed such that δ ď 1˝.

(b) A zoomed in view of the sphere show-
ing the individual points.

Figure 4.2. The icosahedron sphere used to change positions over the sky, ensuring
complete coverage.

quaternion representing the attitude of the star tracker is formed via Eq. (2.2), where

e is the pointing vector of each point on the sphere. At each ei an image is generated

and passed through the image processing chain to produce the three centroids. These

centroids form the vertices of the triangle, whose properties are then calculated.

4.4. PROPERTY STATISTICS

The five properties of planar triangles used here that distinguish one triangle

from another are the perimeter, area, polar moment, the ratio of the shortest to

longest triangle side, and the normal coefficient. These were taken from a paper by

Houtz [8], who use the latter four properties. However, the goal for this star camera

is accuracy and precision, whereas Houtz focuses on conserving hardware memory[8].

Thus, determining more properties, such as the perimeter, will allow for a higher

chance of producing a correct triangle match, and hence a correct measurement.

Unfortunately, image sensors are not perfect instruments, and any image taken will
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have noise associated to it, descriptions of which are found in Section 2.2. In order

to account for the noise, the statistics of the measured triangle properties are needed.

Knowing the distribution for the parameters will enable a systematic approach in

the star identification process. This proves challenging since the noise is added, not

in the property calculation, but in the pixel extraction from the images. The pixel

location p “ pi, jq of a star centroid is corrupt by some amount of noise v such that

p˚ “ pi`v, j`vq “ pi˚, j˚q. Since i and j compose the same pixel, it is assumed that

they receive the same amount of noise.

Taking x to be the set of centroid locations

x “
«
i1 i2 i3

j1 j2 j3

ffT

and v to be the noise added to each pixel

v “
«
v1 v2 v3

v1 v2 v3

ffT
,

the noise corrupted pixels that are extracted from the image are

x˚ “ x` v “

»
——–

i1 ` v1 j1 ` v1

i2 ` v2 j2 ` v2

i3 ` v3 j3 ` v3

fi
ffiffifl “

»
——–

i1̊ j1̊

i2̊ j2̊

i3̊ j3̊

fi
ffiffifl .

Using this, the sides of a triangle whose vertices are the star centroids are calculated

as

a “
”`
i˚1 ´ i˚2

˘2 ` `
j˚1 ´ j˚2

˘2
ı1{2

b “
”`
i˚1 ´ i˚3

˘2 ` `
j˚1 ´ j˚3

˘2
ı1{2

c “
”`
i˚2 ´ i˚3

˘2 ` `
j˚2 ´ j˚3

˘2
ı1{2

.
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From here, the perimeter, which is the sum of the sides, is calculated as

P “ a` b` c. (4.1)

The next property, area, utilizes the semi-perimeter s “ P{2 and is found to be

A “ `
sps´ aqps´ bqps´ cq˘1{2

, (4.2)

and similarly, the polar moment for a planar triangle is found as

J “ Apa
2 ` b2 ` c2q

36
. (4.3)

The side length ratio is the relationship between the shortest to longest sides of the

triangle, given as

S “ Ss
Sl
“

$
’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’%

a
b

if a ă c ă b

a
c

if a ă b ă c

b
a

if b ă c ă a

b
c

if b ă a ă c

c
a

if c ă b ă a

c
b

if c ă a ă b

, (4.4)

where Ss is the shortest side Sl is the longest side. Finally, the normal coefficient is

the magnitude of the cross product of the shortest and longest sides. Since a, b and c

are all magnitudes, they cannot be used to calculate this property. Here, the vectors
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kn, for n “ 1, 2, 3, are formed by

k1 “

»
——–

i1̊

j1̊

f

fi
ffiffifl , k2 “

»
——–

i2̊

j2̊

f

fi
ffiffifl , and k3 “

»
——–

i3̊

j3̊

f

fi
ffiffifl ,

where f is the focal length of the camera. To the shortest and longest sides, the

variables

ã “ k1 ´ k2 ã “ ||ã||

b̃ “ k1 ´ k3 and b̃ “ ||b̃||

c̃ “ k2 ´ k3 c̃ “ ||c̃||

are defined. The normal coefficient is found by

N “ γ||Ss ˆ Sl|| “ γ

$
’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’%

||ãˆ b̃|| if ã ă c̃ ă b̃

||ãˆ c̃|| if ã ă b̃ ă c̃

||b̃ˆ ã|| if b̃ ă c̃ ă ã

||b̃ˆ c̃|| if b̃ ă ã ă ã

||c̃ˆ ã|| if c̃ ă b̃ ă ã

||c̃ˆ b̃|| if c̃ ă ã ă b̃

, (4.5)

where γ “ ˘1 depending on the orientation of the triangle. If the long side is oriented

counter-clockwise from the short side, γ “ ´1, otherwise γ “ 1. With the normal

coefficient being a piece-wise function, it is beneficial to look at it element by element.
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Taking a look at the first element of Eq. (4.5), function gives

ãˆ b̃ “
”
pi˚1 ´ i˚3qpj˚1 ´ j˚2 q ´ pi˚1 ´ i˚2qpj˚1 ´ j˚3 q

ı
î` 0ĵ ` 0k̂

“
”
i˚1pj˚2 ´ j˚3 q ` i˚2pj˚1 ´ j˚3 q ` i˚3pj˚1 ´ j˚2 q

ı
î` 0ĵ ` 0k̂,

and taking the magnitude produces

||ãˆ b̃|| “ i˚1pj˚2 ´ j˚3 q ` i˚2pj˚3 ´ j˚1 q ` i˚3pj˚1 ´ j˚2 q.

Looking at the second element

ãˆ c̃ “
”
pi˚1 ´ i˚3qpj˚2 ´ j˚3 q ´ pi˚2 ´ i˚3qpj˚1 ´ j˚3 q

ı
î` 0ĵ ` 0k̂

“
”
i˚1pj˚2 ´ j˚3 q ` i˚2pj˚3 ´ j˚1 q ` i˚3pj˚1 ´ j˚2 q

ı
î` 0ĵ ` 0k̂,

it can be shown that all of the elements of the normal coefficient function produce

the same magnitude, such that

||ãˆ b̃|| “ i˚1pj˚2 ´ j˚3 q ` i˚2pj˚3 ´ j˚1 q ` i˚3pj˚1 ´ j˚2 q

“ ||ãˆ c̃||

“ ||b̃ˆ c̃||

and

||b̃ˆ ã|| “ ||c̃ˆ ã|| “ ||c̃ˆ b̃||.

The star-set triangle properties are summarized in Table 4.2.
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Table 4.2. Star-Set Triangle Properties.

Property Equation Comment

P a` b` c

A
`
sps´ aqps´ bqps´ cq˘1{2

J Apa2 ` b2 ` c2q
36

S Ss
Sl

Cases can be found in
Eq. (4.4)

N γ
´
i1̊pj2̊ ´ j3̊ q ` i2̊pj3̊ ´ j1̊ q ` i3̊pj1̊ ´ j2̊ q

¯
Orientation dictates

γ “ ˘1

4.5. MONTE CARLO ANALYSIS

With the properties explicitly defined, the goal is to quantify the mean and

variance of these properties for each star set. Monte Carlo simulation techniques

provide a probabilistic analysis of functions whose pdf is difficult to analytically solve.

The approach utilizes a numerical experimentation technique to obtain the statistics

of the output for a system given the statistics of the input [38]. Here, the output

consists of the five triangle properties. The input variables are the errors associated to

the image, which alter the centroiding process, giving rise to variations in the property

calculations. By running the entire image formation and image processing scheme N

number of times, the mean and variance of the properties can be approximated for

each star set.
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Unlike typical circumstances where the noise is added to the fpxq,

gpxq “ fpxq ` v,

the noise is now part of the pdf,

gpxq “ fpxq ` v Ñ gpxq “ fpx,vq.

For example, the area of a planar triangle is given as

A “ fApx,vq “
`
sps´ aqps´ bqps´ cq˘1{2

,

where the noise v is found in the centroid which alter the values of a, b, and c.

Taking a step back, the mean and covariance for an arbitrary pdf ppxq are

given by

m “ Etxu and P “ Etpx´mqpx´mqT u

and expanding the terms within the expectation operator gives

P “ EtxxT ´mxT ´ xmT `mmT u “ EtxxT u ´mmT .

Switching to the integral form, the first moment (mean) and raw second moment,

M , are defined as

m “
ż
xppxq dx and M “

ż
xxTppxq dx. (4.6)
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Thus, the covariance is computed from Eq. (4.6) by

P “M ´mmT .

If there exists a function such that

p̃pxq “ πpxqppxq

then it can be substituted into Eq. (4.6) which yields

m̃ “
ż
xπpxqppxq dx and M̃ “

ż
xxTπpxqppxq dx.

Knowing this, Monte Carlo integration [39] methods can be employed to ap-

proximate the mean and raw second moment by

m̃ “ 1

N

nÿ

k“1

π
`
xpkq

˘
xpkq and M̃ “ 1

n

Nÿ

k“1

π
`
xpkq

˘
xpkqxpkq

T

.

A couple of reasons for this approach are that first, the noise is assumed independent

from the property calculation and therefore their joint distribution can be found by

fApx,vq “ fApxqfpvq “ ppxqπpxq,

which directly ties into p̃pxq. The second reason being that the pdf πpxq does not

have to have the same distribution as p̃pxq even though the mean and covariance of

πpxq are obtained from it. This means that if the distribution of p̃pxq and ppxq is

known, and it is a joint distribution made up of two independent pdfs, then one can

determine the distribution of πpxq, which in this case is the distribution of errors in

an image. Here, finding πpxq is not the focus. Instead, it is sought to accurately

determine p̃pxq “ fApx, vq, as well as the other triangle properties.
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The simulation used here to determine how the errors in an image can affect

the star-set properties is straightforward. The algorithm for approximating the mean

and variance for this process is summarized in Algorithm 1.

Algorithm 1 Monte Carlo Simulation on Star-Set Properties.

1: Generate an image with errors at position ri, based on the icosahedron sphere.
2: Determine the centroid of the three brightest stars using the UMM method.
3: Calculate the triangle properties from Table 4.2.
4: Repeat steps two and three N number of times.
5: Determine the mean and uncertainty of the set of N runs.
6: Generate an image with errors at position ri`1.
7: Repeat the process until the entire icosahedron sphere is covered.

4.6. MONTE CARLO ANALYSIS RESULTS

Recall the icosahedron sphere used to provide the pointing vectors that have a

less than one degree change between positions. The sphere generates a total of 31,362

pointing vectors. Each pointing vector, ri, has 1,000 images simulated, and the steps

carried forth continue as such in algorithm 1. Once the mean and variance for all five

properties are determined from the 1,000 samples, at every pointing vector, the new

catalog is built such that each page of the catalog is a property. Along with this new

catalog, which will hence forth be called the Property Catalog, a second catalog is

formed, the Star-Set Catalog that contains the stars associated to the corresponding

row in the Property Catalog. The Property Catalog is formed such that each page

is formatted like Table 4.3. The first column is simply indexing to show which

pointing vector the row is associated to, and will be associated as the zeroth column.

The first column of the catalog is the mean, then the standard deviation (square-root

of variance), and the third is used to score stars that are being compared to the

Property Catalog. In order to find a match, the Mahalanobis distance is found for a
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Table 4.3. Property Catalog Format, Page One – Perimeter.

In
d
ex

Mean Std Test

1 µ
p1q
P σ

p1q
P D

p1q
M

2 µ
p2q
P σ

p2q
P D

p2q
M

3 µ
p3q
P σ

p3q
P D

p3q
M

...
...

...
...

current image’s star-set properties, whose general form is given by

DM “
a
px´ µqTP´1px´ µq,

where x is the measured properties, µ is the vector of means, and P is the covariance

matrix.

To demonstrate this process, assume the star tracker bore-sight is rotated such

that

α “ 215.16˝ and δ “ 36.19˝.

These angles form the axis

e “

»
————–

´0.65986

´0.46471

0.59046

fi
ffiffiffiffifl
.
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With an angle of rotation of 90˝, the attitude, of the body frame with respect to the

inertial frame, is

q̄ “

»
———————–

´0.55663

´0.39201

0.49809

0.53703

fi
ffiffiffiffiffiffiffifl
,

shown in Figure 4.3. This attitude produces the image found in Figure 4.4. The

Figure 4.3. Field of view for q̄, blue dots indicating all the stars seen in the image,
and the green dot represents the pointing vector.
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Figure 4.4. Catalog matching example image.

centroids of the three brightest stars produce the properties

»
——————————–

P

A

J

S

N

fi
ffiffiffiffiffiffiffiffiffiffifl

“

»
——————————–

379.69

6621.2

8.9583ˆ 106

0.76572

´13242

fi
ffiffiffiffiffiffiffiffiffiffifl

(4.7)

with units of pixels, pixels2, pixels4, unitless, and pixels2. Next, these properties are

compared to the Property Catalog values and the Mahalanobis distance is calculated.
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A glimpse of how the catalog looks like when comparing the properties is shown

page by page in Tables 4.4 – 4.8. Looking at indices 176 and 177, they seem to

provide similar scores for each property test. However, when summing up the scores

for all pages, and then determining the minimum total DM value over all pages, the

star-set associated with index 177 provides the minimum summed DM , making it a

match to the three brightest stars in the image! This method shows that, though the

Mahalanobis distance calculated might not always be the smallest for each property,

the total score of an index is what matters. Now that the stars in an image are known,

the next step is to back out the attitude of the spacecraft.

Table 4.4. Monte Carlo Example – Perimeter.

Mean Std Test

In
d
ex

...
...

...
...

176 378.758 0.04986 0.20712

177 379.760 0.05347 0.01721

178 621.080 0.07051 64.0996
...

...
...

...

Table 4.5. Monte Carlo Example – Area.

Mean Std Test

In
d
ex

...
...

...
...

176 6587.135 1.8976 46.986

177 6616.053 2.0030 7.346

178 6456.041 3.0050 286.385
...

...
...

...
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Table 4.6. Monte Carlo Example – Polar Moment.

Mean Std Test

In
d
ex

...
...

...
...

176 8.8697ˆ 106 4798.4 6.138ˆ 106

177 8.9581ˆ 106 5146.6 15287

178 2.6366ˆ 107 15300 2.1533ˆ 109

...
...

...
...

Table 4.7. Monte Carlo Example – Side-Length Ratio.

Mean Std Test

In
d
ex

...
...

...
...

176 0.7634 1.7302ˆ 10´4 3.0131ˆ 10´5

177 0.7612 1.9300ˆ 10´4 6.3418ˆ 10´5

178 0.3687 6.6077ˆ 10´5 3.2280ˆ 10´3

...
...

...
...

Table 4.8. Monte Carlo Example – Normal Coefficient.

Mean Std Test

In
d
ex

...
...

...
...

176 21588 6.2323 86954

177 21690 6.5682 89528

178 -17400 5.5255 9771.9
...

...
...

...
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5. ATTITUDE DETERMINATION

Attitude determination, in the context of this work, refers to determining the

spacecraft attitude based on two or more line-of-sight measurements from an image.

The attitude of a body is quantified by some rotation away from a reference coordinate

frame to the body coordinate frame. The attitude can be represented using several

different parameter sets [2, 13, 40], and are usually taken to have three, four, or

nine parameters. Since attitude only has three degrees of freedom, the four and

nine parameter representations have one and six constraints, respectively. The most

common three parameter set are Euler angles. Four-parameter sets include angle-axis

and quaternion representations, and the nine-parameter representation is the attitude

matrix.

The attitude determination techniques examined in this section are all consid-

ered “point” methods, versus those that take spacecraft dynamics into consideration.

A point method is considered to be any method which uses unit vector measurements

taken at a single time. This means that the methods do not use prior knowledge of

the spacecraft’s dynamics or location to determine an attitude, therefore providing

a “lost in space” scenario. The section starts with a survey of the more common

attitude determination methods.

5.1. BACKGROUND AND OVERVIEW

Almost all point method algorithms are based on a problem presented in 1965

by Grace Wahba. Wahba’s problem finds the orthogonal matrix that minimizes the

least-squares estimate of satellite attitude by the loss function [41]

LpAq “ 1

2

nÿ

i“1

ai||bi ´Ari||2, (5.1)
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where ai are optional positive weights that depend on the confidence of a measure-

ment, bi are unit vector observations, ri are the reference unit vectors, A is the

attitude matrix which transforms the reference vectors into the body frame, and the

bars imply the Euclidean norm of the error inside. An example would be: let b1 be

a star’s unit vector obtained from an image which is expressed in the spacecraft’s

body frame, and let r1 be the reference unit vector from Earth to that star, which

is expressed in the ECI J2000 frame. Using the loss function, the attitude matrix A

that maps the reference vector to the body frame observation can be determined, and

in turn determines the current attitude of the body frame with respect to the ECI

J2000 frame. The reference vectors are considered true, and due to noise the attitude

matrix found will not perfectly map b1 and r1, however it is considered the optimal

solution by this loss function.

The purpose of using Wahba’s problem is to attempt to find the square attitude

matrix A that will yield the minimum value for the loss function. Davenport’s q-

method is the basis of most current, applicable methods, where the optimal quaternion

representation of the attitude matrix is found [42–45].

It should be noted that several methods use a Newton-Raphson iteration

scheme to solve their corresponding characteristic equation, and it is beneficial to

set the initial value as

λ0 “
nÿ

i“1

ai. (5.2)

As well, all the methods discussed use the B matrix, which is defined as

B “
nÿ

i“1

aibir
T
i . (5.3)
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Another useful definition is given by the skew symmetric matrix given as

reˆs “

»
————–

0 ´e3 e2

e3 0 ´e1

´e2 e1 0

fi
ffiffiffiffifl
. (5.4)

Finally, it is also important to note that matrix norms used here are the

Euclidean (or Frobenius, or Schur, or Hilbert-Schmidt) norm[44], such that

||F ||2 ”
nÿ

i“1

nÿ

j“1

Fi,j “ trpFF T q, (5.5)

where tr is the trace of a matrix.

The following sections of this section give a brief description of the various so-

lutions to Wahba’s problem. The Quaternion Estimator (QUEST), Estimator of the

Optimal Quaternion (ESOQ), and Fast Optimal Attitude Matrix (FOAM) are the

more common solutions used currently in space flight. Davenport’s q-method and the

Singular Value Decomposition, despite their principled robustness, are not actively

implemented due to computational inefficiencies. As well, an in-depth derivation of

the QUEST method and its covariance matrix are provided. The Quaternion Esti-

mator is the most commonly used method due to the straightforward implementation

and covariance [2]. To conclude the section, each method’s accuracy and computa-

tional efficiency are analysed and compared against one another.

5.2. ATTITUDE DETERMINATION SURVEY

5.2.1. Davenport’s q-Method. Paul Davenport provided the first usable

solution to the least-squares estimate of attitude posed by Wahba during his time

on the High Energy Astronomy Observation (HEAO-B) in 1978 [46]. While on the

team, he developed a more robust way of finding the attitude. Davenport took the
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loss function, a function of an orthogonal attitude matrix, and made it a function

which depends on a quaternion attitude representation, where

q̄ “

»
—–
q

q

fi
ffifl “

»
—–
e sinpφ{2q
cospφ{2q

fi
ffifl . (5.6)

where q is the 3 ˆ 1 vector part of the quaternion, and q is the scalar. The variable

e defines an axis which the angle φ rotates about. When converting the loss function

into one dependent on the attitude quaternion, he concluded that Eq. (5.1) could be

rewritten as

LpApq̄qq “ λ0 ´
nÿ

i“1

aib
T
i Apq̄qri

“ λ0 ´ tr
`
Apq̄qBT

˘
, (5.7)

where he shows that [46]

tr
`
Apq̄qBT

˘ “ q̄TKq̄. (5.8)

Here, the K matrix is defined as

K “

»
—–
S ´ σI3 z

zT σ

fi
ffifl , (5.9)

with

z “
nÿ

i“1

aipbi ˆ riq (5.10)

S “ B `BT (5.11)

σ “ trB. (5.12)
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From Eqs. (5.7) and (5.8), it can be shown that the optimal quaternion, q̄opt, is the

eigenvector, λmax, corresponding to the largest eigenvalue of the K matrix, which

implies that

Kq̄opt “ λmaxq̄opt. (5.13)

It should be noted that there is no unique solution if the two largest eigenvalues

are equal, but this is not due to the algorithm. If this is the case, it means that there is

an insufficient amount of data in order to determine a unique attitude solution. The

four eigenvalues and the three other eigenvectors are not required for this method

since simply knowing which vector is associated to the largest eigenvalue provides

the necessary solution. There are many ways to solving the eigenvalue problem. In

a paper by Keat, he provides a detailed approach for using the power method, or

matrix iteration approach, in solving the eigenvalue problem for the q-method [46].

As mentioned before, the q-method is sound in principle, but is no longer implemented

due to the difficulty in solving the eigenvalue/eigenvector problem.

5.2.2. Quaternion Estimator (QUEST). Due to the computational bur-

den of solving for eigenvalues and eigenvectors, a more efficient and faster attitude

determination algorithm was needed. First applied in 1979 on the MAGSAT mission,

QUEST is one of the most widely used methods for solving Wahba’s problem [44, 47].

The Quaternion Estimator gains its computational efficiency from replacing the eigen-

value and eigenvector calculations with a solution of the characteristic equation of K.

Solving this 4th-order equation calls for a root finding algorithm, the most common of

which is the Newton-Raphson method. A detailed derivation of QUEST is provided

in Section 5.3.

5.2.3. Estimator of the Optimal Quaternion (ESOQ). The Estimator

of the Optimal Quaternion (ESOQ) was developed by Mortari in hopes of further
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deceasing the computation time for providing an attitude estimate [45]. He com-

ments that any of the methods produced previously only differ in their computa-

tional efficiency, but still achieve the same accuracy. Mortari developed ESOQ to be

a singularity-free algorithm and provide a closed-form solution for λmax and q̄opt.

Davenport’s eigenvalue equation, Eq. (5.13), can be rewritten as

pK ´ λmaxI4qq̄opt “Hq̄opt “ 0. (5.14)

This implies that q̄opt must be orthogonal to the four-row column vectors hi of H ,

where H “HT “ rh1 h2 h3 h4s such that hTi q̄opt “ 0 for i “ 1, . . . , 4. In order for a

unique solution to be determined, these four vectors must form a three-dimensional

hyperplane. If they are all part of the same hyperplane, they are linearly correlated,

meaning that the determinant ofH is zero, i.e. detH “ 0. From this, it is determined

that q̄opt is the vector perpendicular to this hyperplane if rankH = 3.

Mortari proves that the optimal quaternion can be computed by the gener-

alized four-dimensional cross product of the three columns of H [45]. To better

understand this process, consider the adjoint of H , for any value of λ,

adjH “ adj

«
4ÿ

k“1

pλk ´ λqq̄kq̄Tk
ff

“
4ÿ

k“1

pλ2 ´ λqpλ3 ´ λqpλ4 ´ λqq̄kq̄Tk ,

where K is represented by its eigenvalues and eigenvectors, λ1´4 and q̄k. By setting

λ “ λmax, the sum vanishes except for k “ 1, and gives the result

adjH “ pλ2 ´ λmaxqpλ3 ´ λmaxqpλ4 ´ λmaxqq̄optq̄
T
opt. (5.15)
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From Eq. (5.15), it is determined that q̄opt can be calculated by normalizing any

non-zero column of adjH , denoted with index k.

Denote ξ to be the kth element of the kth column of H and ξr and ξc be

the corresponding kth row and kth column. Let f be the three-dimensional column

vector achieved when ξ is deleted from ξc, and let F to be the square matrix left when

ξr and ξb are deleted from H . From here the kth element of the optimal quaternion

is calculated as [44]

pq̄optqk “ ´c detF , (5.16)

and the rest of the elements are

pq̄optq1,...,k´1,k`1,...,4 “ cpadjF qf , (5.17)

where c is a constant found by normalizing the quaternion. Typically c is not cal-

culated, and is there to represent the normality constraint for the quaternion. It

is ideal to choose the column with the maximum Euclidean norm, which in turn is

the column containing the maximum value in the diagonal of adjH due to H being

symmetric. It should be noted that the matrix F depends on λmax, which is found

by solving the same characteristic equation as QUEST. Originally, ESOQ used the

analytic solution of eigenvalues [45], but unfortunately this often gives complex roots,

which is impossible for real, symmetric matrices [44].

5.2.4. Singular Value Decomposition (SVD). One of the first solutions

to Wahba’s problem leverages the singular value decomposition of the B matrix [42].

This method was key in many early solutions of Wahba’s problem; however, it is

no longer a method used in practice due to the computational expense. Taking the

singular value decomposition, while less expensive than finding the eigenvalues and
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eigenvectors of K, can still be costly. One advantage is that a robust method for

determining the optimal attitude matrix can be formulated.

The singular value decomposition of the B matrix is defined by

B “ USV T “ Udiagprs1 s2 s3sqV T ,

where the U and V matrices are orthogonal, and with s1 ě s2 ě s3. Since U and

V do not necessarily have a determinant of +1, a new pair of rotation matrices are

defined as

U` ” Udiagpr1 1 detU sq and V` ” V diagpr1 1 detV sq, (5.18)

which ensures that U` and V ` are proper orthogonal matrices. The diagonal matrix

S can be redefined by S1 “ diagprs1 s2 ds3sq, where d “ pdetUqpdetV q “ ˘1. From

here, B can be defined as

B “ U`S1V`. (5.19)

Now, define a rotation matrix, and its angle-axis representation, where

W “ UT
`AV` (5.20)

“ pcosφqI3 ´ sinφreˆs ` p1´ cosφqeeT , (5.21)

where reˆs is the skew symmetric matrix, Eq. (5.4), of the axis, and φ is the angle

of rotation about that axis. Looking at Eq. (5.7), the trace can be rewritten using
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the rotation matrix W , such that [2]

tr
`
ABT

˘ “ trpS1W q

“ eTS1e` cosφrs2 ` ds3 ` ps1 ´ s2qe2
2 ` ps1 ´ ds3qe2

3s.

It is clear than this the trace is as a maximum when φ “ 0, which provides W “ I3

and therefore the optimal attitude matrix is

Aopt “ U`V T
` “ U rdiagp1 1 dqsV T . (5.22)

5.2.5. Fast Optimal Attitude Matrix (FOAM). Similar to QUEST, the

Fast Optimal Attitude Matrix (FOAM) method determines the maximum eigenvalue

from a characteristic equation, and as q-method is to QUEST, SVD is to FOAM. This

is to say, SVD is a precursor to FOAM, and because of the SVD method’s cumbersome

computation time, FOAM was developed in order to provide a more efficient attitude

matrix estimate [43].

It should be noted that FOAM does not require the SVD of B, which was the

goal of Markley introducing this method [43]. He shows that Aopt can be computed

using the S matrix provided from the SVD method, but uses some algebra to give,

Aopt “ rpκ` ||B||2qB ` λmaxpadjpBT qq ´BBTBs{ζ, (5.23)

where

κ “ 1

2
pλ2

max ´ ||B||2q,

ζ “ κλmax ´ detB,
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thereby providing an attitude matrix solution to Wahba’s problem that does not

depend on the singular value decomposition of B. The maximum eigenvalue λmax,

can be found from rearranging Eq. (5.7) to give [43]

λmax “ λ0 ´ L
`
Aopt

˘ “ tr
`
AoptB

T
˘

(5.24)

“ pκλmax ´ detBq´1
”`
κ` ||B||2˘ ||B||2 ` 3λmax detB ´ tr

`
BBTBBT

˘ı

(5.25)

Equation (5.25) is rather inconvenient and can be reduced using matrix algebra to

form the characteristic equation

0 “ φpλmaxq ” pλ2
max ´ ||B||2q2 ´ 8λmax detB ´ 4||adjB||2. (5.26)

As with some of the previous methods, FOAM uses an iterative root-finding process

to find λmax. Markley does provide an analytic solution along with the numeric, but

comments that the five transcendental function evaluations required result in a slower

algorithm with no additional accuracy [43].

5.3. THE QUATERNION ESTIMATOR

The following section, based off of work by Shuster, gives a complete derivation

of the QUEST attitude determination scheme [48].

5.3.1. The Quaternion Eigenvalue Problem. Recall Wahba’s loss func-

tion in Eq. 5.1, where the goal is to find an orthogonal matrix Aopt that minimizes

this function. Again recall that the weights ai, i “ 1, . . . , n are a set of non-negative

weights which sum to unity. Consider the gain function

GpAq “ 1´ LpAq “ 1

2

nÿ

i“1

aib
T
i Ari (5.27)
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which is formed from the loss function. Now, GpAq is at a maximum when LpAq is

at a minimum. Moving forward, the focus is on finding an optimal matrix Aopt that

maximizes GpAq.
Maximizing the gain function is complicated due to the nine components of

the attitude matrix, as well as the six constraints of this matrix. With this, it is

advantageous to express the attitude by a quaternion. Since the quaternion is a four-

component representation of attitude, there is only one constraint, which is that the

quaternion must be unit-norm; i.e.,

q̄T q̄ “ ||q||2 ` q2 “ 1. (5.28)

In order to determine the attitude matrix that maximizes GpAq using the quaternion,

the attitude matrix dependence needs to be replaced by a quaternion dependence.

The attitude matrix is given in terms of the quaternion as

Apq̄q “ pq2 ´ q ¨ qqI3 ` 2qqT ´ 2qrqˆsT (5.29)

Substituting Eq. (5.29) into Eq. (5.27) yields

Gpq̄q “ tr
“`pq2 ´ q ¨ qqI3 ` 2qqT ´ 2qrqˆsT ˘BT

‰

“ pq2 ´ q ¨ qq trB ` 2 trrqqTBT s ` 2q tr
`rqˆsTBT

˘
. (5.30)

Equation (5.30) defines the gain function as a function of a quaternion and the previ-

ously defined B matrix. Next, each of the three terms in Eq. 5.30 can be simplified

using previously established definitions and relationships. The first term is trivial,

since it has previously been shown that trB “ σ. Taking a look at the second term
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in Eq. (5.30), it follows that

2 trrqqTBT s “ 2 trrqTBTqs “ 2qTBTq “ qTSq (5.31)

where S is defined in Eq. (5.11). Turning to the third term, it is explicitly written as

2q tr
`rqˆsTBT

˘ “ 2q tr

$
’’’’&
’’’’%

»
————–

0 q3 ´q2

´q3 0 q1

q2 ´q1 0

fi
ffiffiffiffifl

»
————–

B11 B12 B13

B21 B22 B23

B31 B32 B33

fi
ffiffiffiffifl

,
////.
////-

“ 2q tr

$
’’’’&
’’’’%

»
————–

B21q3 ´B31q2 B22q3 ´B32q2 B23q3 ´B33q2

B31q1 ´B11q3 B32q1 ´B12q3 B33q1 ´B13q3

B11q2 ´B21q1 B12q2 ´B22q1 B13q2 ´B23q1

fi
ffiffiffiffifl

,
////.
////-
.

Applying the trace and collecting terms gives

2q tr
`rqˆsTBT

˘ “ 2q rq1pB32 ´B23q ` q2pB13 ´B31q ` q3pB21 ´B12qs ,

and therefore, the right-hand side can be rewritten using Eq. (5.10) as

2q tr
`rqˆsTBT

˘ “ 2qp´q ¨ zq. (5.32)

The gain function is therefore simplified to

Gpq̄q “ pq2 ´ q ¨ qqσ ` qTSq ` 2qpq ¨ zq.

Rearranging terms gives the bilinear form

Gpq̄q “ q̄TKq̄, (5.33)
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where K is defined in Eq. (5.9). The problem of finding the optimal attitude that

maximizes the gain function has now been replaced by finding the optimal quaternion

that maximizes the gain function. Unfortunately, Eq. (5.33) does not consider the

unit norm constraint of the quaternion. By using Lagrange multipliers, the constraint

is handled via a new function G1pq̄q,

G1pq̄q “ q̄TKq̄ ´ λ `q̄T q̄ ´ 1
˘

(5.34)

where λ is chosen such that the constraint is satisfied. To find a candidate optimum,

Eq. (5.34) is differentiated with respect to q̄, giving

B
Bq̄ rG

1pq̄qs “ B
Bq̄

“
q̄TKq̄ ´ λq̄T q̄‰

“ 2q̄TK ´ 2λq̄,

and setting this equal to zero, and knowing that K is symmetric, it is found that

Kq̄  “ λq̄.

Examination of this equation shows that the optimal quaternion, q̄opt must be an 

eigenvector of K. Knowing this, λ must be an eigenvalue of K, and thus for each 

eigenvalue of K is

G1pq̄q “ q̄T Kq̄  “ λq̄T q̄  “ λ.

With this, the gain function will be at a maximum if λ is chosen to be the maximum 

eigenvalue of K, which gives q̄opt as the corresponding eigenvector of λmax. To clearly
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express this,

Kq̄opt “ λmaxq̄opt. (5.35)

5.3.2. QUEST Derivation. A common representation of attitude takes the

form of the Rodrigues parameters, developed by Rodrigues in 1840 [49]. Later, J.

William Gibbs, inventor of modern vector notation, represented the Rodrigues pa-

rameters as the “vector semi-tangent of version,” thus giving it the name of the Gibbs

vector [2, 50]. The vector, y, is related to the quaternion and axis-angle representa-

tions via

y “ q

q
“ ê tan

ˆ
θ

2

˙
. (5.36)

The inverse of the Gibbs vectors allows the quaternion to be found, such that

q̄ “ 1a
1` |y|2

»
—–
y

1

fi
ffifl .

Rearrangement of Eq. (5.35) for any eigenvalue λ gives [48]

y “ rpλ` σqI3 ´ Ss´1z (5.37)

λ “ σ ` z ¨ y, (5.38)

where y is the Gibbs vector defined by Eq. (5.36). It can be seen that when the

eigenvalue λ is equal to the maximum eigenvalue λmax, both y and q̄ are representative

of the optimal attitude solution for the gain function. Substituting Eq. (5.37) into

(5.38) gives

λ “ σ ` zT rpλ` σqI3 ´ Ss´1z, (5.39)
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which is equal to the implicit characteristic equation for the K matrix in Eq. (5.9).

The goal of developing QUEST is to avoid solving the K matrix’s eigenvalues explic-

itly. Note that

λmax “ 1´ 1

2

nÿ

i“1

ai||bi ´Aoptri||2

will be close to unity. Knowing this Shuster realized if λmax « 1, then substituting

λ “ 1 into Eq. (5.37) provides a solution for the attitude which is second-order

accurate in measurement errors, assuming that the denominator in the middle term of

Eq. (5.39) is non-singular. Since Gibbs vectors are three-parameters representations

of attitude, there is a singularity when the angle of rotation is 180˝. Therefore,

approximating the maximum eigenvalue by one is no longer useful when the angle

of rotation is near 180˝. The goal now is to develop a method that removes this

singularity.

It should be noted that characteristic equation of any nˆ n square matrix S,

det |S ´ ξIn| “ 0,

where ξ represents an eigenvalue of the matrix S, takes the form, for n “ 3,

´ξ3 ` 2σξ2 ´ κξ `∆ “ 0,

where

σ “ 1

2
trS, κ “ trp adjSq, and ∆ “ detS.
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According to the Cayley-Hamilton theorem, which states that every square matrix

satisfies its own characteristic equation [51],

S3 “ 2σS2 ´ κS `∆I3. (5.40)

Shuster finds that Eq. (5.40) can be rewritten to express any meromorphic function

of S as a quadratic in S, specifically [48]

rpω ` σqI3 ´ Ss´1 “ γ´1
`
αI3 ` βS ` S2

˘
, (5.41)

where

α “ ω2 ´ σ2 ` κ, β “ ω ´ σ, and γ “ pω ` σqα ´∆.

With simple rearrangement of Eq. (5.41), and substitution for α, β, and γ, Eq.

(5.40). From Eq. (5.41), Shuster realized that if ω takes the value of λmax then

yopt “ x

γ
, (5.42)

where

x “ pαI3 ` βS ` S2qz. (5.43)

Recalling the quaternion form of Gibbs vector, Eq. (5.36), then Eq. (5.42) takes the

form

q̄opt “ 1a
γ2 ` |x|2

»
—–
x

γ

fi
ffifl . (5.44)
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Note that the Gibbs vector no longer plays a part in calculating the optimal attitude

quaternion. Keep in mind that the goal is to find the maximum eigenvalue λmax of

the K matrix, avoiding any singularities or explicit solutions for eigenvalues. If Eq.

(5.41) is substituted into Eq. (5.39), with some rearranging of variables, it can be

shown that the characteristic equation takes the form

λ4 ´ pa` bqλ2 ´ cλ` pab` cσ ´ dq “ 0 (5.45)

where

a “ σ2 ´ κ, b “ σ2 ` zTz, c “ ∆` zSz, and d “ zTS2z.

From here, finding λmax becomes a simple root finding process. In general, λmax

is close to unity in order to maximize the gain function. Knowing this, the Newton-

Raphson root finding method is ideal due to its rapid convergence with a strong

initial guess. In practice, only one iteration can yield a practical result [44]. Thus,

this analytic approach has a computational advantage when compared to the complete

solution of the eigenvalue problem. It should be noted that solving the characteristic

equation is, in principle, less reliable, and therefore, QUEST is less robust than

Davenport’s q-method. In practice however, solving the complete eigenvalue problem

is more computationally expensive and yields a result that is no more accurate than

QUEST [44].

5.4. ANALYSIS OF SURVEY

The following section provides an analysis of the accuracy and speed of the five

methods discussed. The comparison method is based off of work done by Markley and

Mortari [44]. It should be noted that the q-method and SVD both utilize the built in

Matlab functions eig and svd, respectively. All other methods apply the formulas
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given in this section. The methods are subjected to three line-of-sight measurements,

as this is the case for the developed star tracker algorithm. In each run, the reference

vectors, ri, are assumed to be normally distributed random unit vectors. These

vectors are then converted to angles via

»
—–
θi

φi

fi
ffifl “

»
———————–

tan´1

ˆ
ry,i
rx,i

˙

tan´1

¨
˝
b
pr2
x,i ` r2

y,iq
rz,i

˛
‚

fi
ffiffiffiffiffiffiffifl
.

Then the observation vectors, bi, are formed by

bi “

»
————–

cospθi ` νθiq sinpφi ` νφiq
sinpθi ` νθiq sinpφi ` νφiq

cospφi ` νφiq

fi
ffiffiffiffifl

where rνθi νφis are Gaussian random noises with a standard deviation of 50 arcseconds.

Weights are chosen such that they follow N p0, 1q, and are forced to sum to one. The

attitude is kept constant for all runs, since the only change is in the reference and

observation vectors. Finally, to obtain an accurate representation of the accuracy and

run time of each method, one million trials of three observations are given to each

method.

Attitude errors are most useful when expressed in the spacecraft’s body frame,

and typically are parameterized by the first-order rotation vector δθ. The vector δθ

defines the rotation from the estimated body frame B̂ and the true body frame B˚.
Attitude errors can be calculated in various ways [2, 44]. When using quaternions

to define the attitude, subtraction of two separate attitudes does not yield a useful
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result. For this reason, attitude error is defined in a multiplicative sense [52], by

»
—–

1
2
δθ

1

fi
ffifl “ q̄opt b q̄´˚ (5.46)

where δθ is a three-parameter representation of the attitude error and q̄´˚ is the 

inverse of the true attitude in the body frame with respect to the reference frame. 

These attitude errors are assumed to be small angles, and therefore, any singularities 

in the rotation vector representation are of no concern.

Each method’s error was calculated and averaged over one million runs where 

each was given the same reference vectors, observation vectors, and weights. To 

provide consistency between methods, any method using Newton-Raphson iteration 

was limited to three iterations to converge. The mean errors between the optimal 

quaternion and the true quaternion are presented in Table 5.1. The table also includes 

mean errors between each method and the q-method. The q-method and SVD are 

based on robust matrix analysis algorithms, and therefore should provide the truly 

optimal solution[44]. By comparing methods to the q-method, the errors prove the 

validity of the presented attitude determination alternatives. The comparison with

Table 5.1. Mean Attitude Errors in Arcseconds.

Algorithm
Mean (optimal-to-q) Mean (optimal-to-true)

δθx δθy δθz δθx δθy δθz

q-method - - - 33.4615 33.4372 32.5445

QUEST 5.85ˆ 10´10 5.98ˆ 10´10 2.63ˆ 10´10 33.4615 33.4372 32.5445

ESOQ 7.07ˆ 10´10 8.94ˆ 10´10 5.09ˆ 10´10 33.4615 33.4372 32.5445

SVD 7.97ˆ 10´11 8.30ˆ 10´11 8.16ˆ 10´11 33.4615 33.4372 32.5445

FOAM 2.00ˆ 10´10 2.47ˆ 10´10 2.01ˆ 10´10 33.4615 33.4372 32.5445
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the true optimal q-method solution provides an interesting look at how each method

compares. SVD yields the most accurate solution for this comparison, which is as

expected due to the robust matrix algorithm used. The FOAM method gives the

second most accurate solution to the optimal attitude; this is likely due to the fact

that the FOAM characteristic equation, Eq. 5.26, deals with B directly, while other

methods use the S matrix and z vector.

The mean optimal-to-true rotation vector for each method is approximately

the same, and has a magnitude of 57.376 arcseconds. Extending the significant figures

behind the decimal in Table 5.1 would show the slight variations in the solutions, but

these are left out to emphasize that the methods are equally close to the true attitude.

The better accuracy in the third rotation vector component is due to the way in which

noise is introduced into the system, being that the z component of the observation

vectors only has one added noise. It is reassuring that each of these methods produces

the same accuracy in each attitude error parameter, showing a consistency throughout

the methods. Due to this consistency, the standard deviation for each method is the

same for the optimal-to-true case, such that

σδθ “

»
——————–

29.818

29.507

27.358

fi
ffiffiffiffiffiffifl
,

where the units are in arcseconds. Considering the level of noise in the system, these

values provide a reasonable uncertainty in the estimate.

For each of the developed methods, their creators had the goal of providing a

faster attitude estimate, that required less operations to obtain. Of the investigated

methods, ESOQ is believed to provide the fastest solution [45]. The methods are

timed such that only the actual estimating algorithm computation time is measured,
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since the absolute time of calculating the basis variables used for multiple methods

is not critical for ground computations. These absolute times were more relevant in

the past when attitude solutions had to be performed by slower machines, which is

why QUEST was such a large turning point in attitude estimation [44].

All runs were on a Windows 7 machine with the specifications below. To collect

Table 5.2. Computer Specifications.

Windows 7 Enterprise

Processor: Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz (2x)

RAM: 192 GB

System Type: 64-bit Operating System

the measurements, the Matlab functions tic and toc are used to track the execution

time of each method. In the past, there existed a function in Matlab that counted

the number of floating point operations (FLOPS) and allowed a more in-depth look at

the number of computations for each method [44, 53]. Unfortunately, recent versions

of Matlab have removed this function. Each method was subjected to a million runs

with the same format as the accuracy test. The average and relative averages of these

runs are shown in Figures 5.1 and 5.2 for varying numbers of measurements. The

averages in Figure 5.1 give a confident look at what is expected by each method. As

Mortari claims, ESOQ provides the fastest speed of the coded algorithms, with the

QUEST computational time close to it. The claim that SVD and the q-method are

unfit for practical use, due to computation time, might seem incorrect based on these

plots. Their run times are significantly faster than the others, but this is primarily

due to the use of the built in functions of Matlab, which are no doubt optimized

by Mathworks to be extremely efficient. These trends follow those of Cheng and
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Figure 5.1. The average computation time for each attitude estimation algorithm.

Shuster’s work, who compare times and FLOPS for several types of file structures

[53], and show that even though computation times are unreliable, the number of

FLOPS for SVD and q-method show their cumbersome calculations. These results

are corroborated by the work done by Markley and Mortari, who also illustrate the

higher number of FLOPS for the more robust methods [44].

The relative times in Figure 5.2 illustrate how the methods operate as they

receive more measurements. The averages are made relative to the two measure-

ment runs to see how they perform in comparison. The methods see a consistent

decrease in computation times as they receive more measurements, which is possibly

due to the nature of Matlab function allocation which increases efficiency as func-

tions are called repeatedly. What’s interesting is the increase between five and six
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Figure 5.2. The relative average computation time which relates how the methods
perform when given more measurements.

measurements. Presumably, this indicates that five measurements provide the ideal

circumstance for the estimation algorithms to run efficiently, while also having an

increase in accuracy.
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6. SIMULATION AND RESULTS

6.1. SIMULATION CONFIGURATION

To demonstrate the complete star tracker algorithm, including the image for-

mation algorithm, a Monte Carlo simulation is performed. The simulation takes the

Tycho-2 star catalog, which has been broken down into a smaller catalog consisting

only of stars equal to, or below, the visual spectrum magnitude of 6.5. No other edit-

ing of the stars within the catalog was performed in order to produce a realistic image.

The image sensor whose properties the images are based on is the KAF-16803 CCD

sensor from ON Semiconductor(R)2. The relative information from this sensor, with

respect to image formation, is found in Table 6.1 along with additional parameter

values used. The f -number and integration time are chosen depending on hardware

characteristics, and the star radius and buffer size are chosen depending on image

resolution and determine spread of each star in an image.

To begin, a pointing vector is formed from two uniform random angles, θ and

φ, like those of Eq. (2.1), which relate to right-ascension and declination. From here,

the algorithm performs as described by this thesis, starting with image formation

and ending with an attitude estimate based on the unit vectors from an image. The

line-of-sight measurements in the body frame of the camera are determined from an

image by [54]

ui “ 1a
1` tan2 αi ` tan2 βi

»
——————–

tanαi

tan βi

1

fi
ffiffiffiffiffiffifl
, (6.1)

2http://www.onsemi.com/pub/Collateral/KAF-16803-D.PDF
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Table 6.1. Image Creation Parameters.

KAF16803 CCD Image Sensor

Parameter Min Typical Max Units

Number of Active Pixels - 4096ˆ 4096 - pixels

Pixel Size - 9.0 (H) ˆ 9.0 (V) - µm

Saturation Signal - 100,000 - e´

Quantum Efficiency - 60 - %

Read Noise - 9 15 e´

Dark Signal - 3 15 e´/pix/sec

Photoresponse Non-Uniformity - 1 - %

Misc. Parameters

Parameter Min Typical Max Units

Field of View (Circular) - 25 - degrees

f -number - f4 - -

Integration Time - 2.225 - sec

Star Radius - 1.6 - pixels

Buffer Size - 10 - pixels2

where the angles αi and βi are determined by [12]

tanαi “ 2pox ´ xiqtanpwx{2q
Nc

and tan βi “ 2poy ´ yiqtanpwy{2q
Nr

. (6.2)

Here, ox and oy are the pixel coordinates of the center of the image array, wx and wy

are the horizontal and vertical pixel dimensions of the FOV, and Nc and Nr are the

width and height of the image in pixels. To ensure that an accurate attitude solution

is provided, the three brightest stars in each image are recorded and set aside to

determine if the catalog matching scheme provides the correct solution. The reference

vectors of the correct star triad are later passed to the attitude determination scheme,

regardless of if the catalog matching algorithm provides the correct star triad. Based
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on the analysis of Section 5.4, QUEST is used as the attitude determination scheme

in the present analysis.

The entire process is subjected to a one million run Monte Carlo analysis to

evaluate the performance of this star tracker algorithm. To quantify the performance,

five characteristics are measured:

• time: the time the algorithm takes to run from receiving an image to providing

an attitude estimate,

• iterations: the total number of thresholding iterations needed to find only the

three brightest stars in an image,

• successful matches: the number of successful matches of triangles from an image

to the Property Catalog,

• attitude errors: the attitude error characterized by δθ, and

• attitude covariance: the covariance provided by the QUEST algorithm.

6.1.1. Simulation Time Analysis. All simulations are run on the following

computer setup: where parallel computing is utilized for this Monte Carlo simulation

Table 6.2. Computer Specifications.

Windows 7 Enterprise

Processor: Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz (2x)

RAM: 192 GB

System Type: 64-bit Operating System

with 12 local workers. Computational time is relative depending on the system used,

and due to the nature of Matlab, the time at which a solution is found is arguably
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frivolous. This being said, knowing the relative performance of the algorithm can

help allow for better efficiency in the future. A histogram of the times can be found

in Figure 6.1, where each bin is 1% of the one million trials. Runs that took longer

than 1.0 seconds are considered to be outliers and are therefore omitted from the

histogram. Times are based on the time the algorithm takes to provide an attitude

measurement, and do not incorporate the time needed to construct the image since

real-time image capturing is an extremely brief process for most current CCD sensors.

Figure 6.1. A histogram of the Monte Carlo trial times.

It seems that, when looking at the detailed time breakdown provided by

Matlab, the centroiding method, and specifically the iterative method used by the

thresholding technique, accounts for the vast majority of computation time, which
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is expected. The thresholding technique must evaluate the entire picture before it

determines if enough stars are found, and then adjusts accordingly. In the cases that

exactly three stars are not found, the thresholding scheme is flagged for that trial,

and another image is simulated.

6.1.2. Simulation Centroiding Analysis. When examining the centroid-

ing technique, two questions must be answered: did the process converge, and how

many iterations did it take to converge on a solution? There are two reasons as to

why the thresholding and centroiding processes would not converge. The first is due

a lack of bright stars in the image, which would cause the centroiding method to only

detect one or two bright stars, or one bright star and at least three dimmer stars,

that fell below the threshold. Examples of these phenomena are shown in Figures 6.3

and 6.4. During these cases, the thresholding hits the limit of maximum iteration

attempts, which is set at imax “ 100, and the current image is discarded and a new

image is simulated. These cases are classified as a failed thresholding attempt, and

occurred in 1.2% of the trials. On average, the number of iterations the thresholding

technique needed to converge was 11. A histogram of these values is shown in Figure

6.2, and it is clear that a large portion of the images only require one attempt at

thresholding to find a solution. The histogram shows that the maximum number of

iterations when convergence is achieved is 26, indicating that choosing imax “ 100

may be too high, but the selection of imax “ 100 does provide a suitable limit to

indicate any statistical outliers.

6.1.3. Simulation Catalog Matching Analysis. The key aspect of the

star tracker algorithm, the catalog matching scheme, successfully matched stars to the

catalog 12.56% of the time. With this success rate, there is evidence to suggest that

the matching algorithm can be improved. It can be concluded from the results that the

method does work, but that it is not entirely reliable. There are several places that are

potentially causing issues, one being the triangle properties themselves. Some values,
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such as the polar moment, possess significantly large values compared to others, such

as the side-length-ratio, which is bounded, i.e. S P p0, 1q. Additionally, the normal

coefficient calculation has proved to be troublesome. Due to the orientation of the

triangle, the normal coefficient can be positive or negative. If an incorrect value

of γ is assigned, the value that is determined from the orientation of the triangle,

then the value will be doubled. The normal coefficient phenomenon and the large

polar moment values cause the Mahalanobis distance to be too large, even if the

rest of the properties are correctly matched. Luckily, this is not always the case, as

shown in the example in Section 4.6. Another cause for an unsuccessful match is

potentially due to the underlying issue of creating a customized star catalog. The

process itself eliminates stars from consideration by the algorithm, therefore providing

fewer star triads for recognition. The last possible cause is the Mahalanobis distance

itself. The method uses only the standard deviation of each property, and therefore

the covariance matrices are simply diagonal. Without the full covariance matrix, any

correlations that may help to better estimate the minimum distance between the data

are lost. The consequence of using the correlations is that a 15 element symmetric

covariance and five-state mean would have to be saved for each and every star-set,

versus the five-state mean and five standard deviations.

6.1.4. Simulation Attitude Determination Analysis. Even if the cata-

log match is incorrect, the attitude is still estimated using the three brightest stars

with respect to the image. The reference vectors of the three brightest stars, i.e.

the line-of-sight vectors obtained from the reference catalog, are saved during image

formation and are used in QUEST instead of the star triad provided by the catalog

matching scheme. The observed vectors of the star triad are calculated using Eqs.

(6.1) and (6.2). QUEST is applied to the reference and observed line-of-sight vectors

and produces an estimate of the attitude via the quaternion, q̂. This estimate is

compared to the true attitude of the star tracker to produce an attitude error, given
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by Eq. (5.46). A histogram for each angle of the error is given in Figure 6.5, where

the red lines are the 3σ uncertainty intervals of the Monte Carlo data and the blue

lines are the average 3σ uncertainty intervals provided by QUEST. The intervals sug-

gest, under the assumption of Gaussian statistics, that approximately 99% of all data

should land between them. This assumption clearly does not hold for these results,

but the mean and the standard deviations across all trials are

mδθ “

»
——————–

0.01948

0.11866

´0.35524

fi
ffiffiffiffiffiffifl
, σMCS “

»
——————–

1.080

1.327

14.794

fi
ffiffiffiffiffiffifl
, and σQUEST “

»
——————–

1.1836

1.1919

8.6668

fi
ffiffiffiffiffiffifl
,

where the units are degrees, and where σMCS and σQUEST are the standard devia-

tions of the Monte Carlo data and the average standard deviation produced by the

QUEST algorithm, respectively. Though the mean is high for typical star trackers,

approximately 81% of the error magnitudes were less than 1˝ and 42% of the error

magnitudes were less than 50 arcseconds. University level star trackers usually have

an accuracy in the 20 – 50 arcsecond accuracy range [12]. The standard deviations

are large, and it seems that the QUEST algorithm provides overestimated measure-

ments. It is apparent that the highest inaccuracy and uncertainty is in mδθ3 , which is

the rotation about the z -axis. The high level of uncertainty is assumed to be due to

the circular FOV, which incorporates the same information regardless of any rotation

about the z -axis. Therefore, the suspected reason for these considerable errors lies

in the simulated images. Along with simulating a circular FOV, instead of a typi-

cal rectangular FOV, the images presented are also of very low quality, around 0.14

megapixels. Due to the low image quality, the centroiding algorithm cannot provide

an accurate enough centroid measurement to be used. It is believed that if higher

resolution images are used that the errors would drastically decrease.
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Figure 6.2. A histogram of the number of iterations needed to converge.

Figure 6.3. An example of unsuccessful thresholding. This case is when there are
not enough distinguished bright stars in an image to find a set of three. Instead,
the centroiding algorithm could only find the one brightest star in the image, and
assumed that all three stars were this one star.
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Figure 6.4. Another example of unsuccessful thresholding. Here, the method found
one bright star (top left) and three dimmer stars that were all of similar brightness,
and therefore the thresholding technique could not distinguish between the top three.
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Figure 6.5. The attitude errors from the complete algorithm Monte Carlo simulation.
The red lines indicate the 3σ uncertainty intervals of the Monte Carlo data and blue
lines indicate the average 3σ uncertainty intervals provided by QUEST.
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7. CONCLUSIONS

A star tracker algorithm has been developed and used to match the stars

within a simulated image using a planar triangle properties technique to a known

catalog. These images and algorithms were simulated without physical hardware

and only depended on a reference star catalog and information found on data sheets

of applicable hardware. The images incorporate straightforward star magnitude to

electron conversion, detailed CCD sensor errors, and apply the formalized camera

matrix in order to provide as realistic an image as possible. The implementation of

the uniform mixture model technique has allowed for fast and accurate centroiding,

and the planar triangle catalog matching scheme has shown that it can provide an

accurate match from an image to the reference star catalog. To obtain the star triad,

the Mahalanobis distance was used to score each star with the observed properties.

Using the QUEST algorithm, reference-catalog stars were compared against those

observed in the simulated images in order to produce a measurement. It is shown

that the algorithm has the capabilities to successfully match observed stars with those

in the Property Catalog and produce an accurate attitude measurement. The results

of the simulations shed light on the areas of improvement for the algorithm, none

of which degrade the validity of the approach taken for developing the star tracker

software.

Even though the success rate was lower than expected, it is important to keep

in mind that the developed algorithm still holds. It is possible to simulate a star

tracker image, successfully match the stars found in the image to a reference catalog,

and provide an accurate attitude estimate. These scenarios address the lost-in-space

operational mode of a star tracker, which is considered to be the more difficult mode

compared to the tracking mode. Although attitude errors are large and successful



107

matches are less frequent than desired, the path to improving these aspects is set

forth and clearly explained.

Simulating a higher resolution image can potentially allow the algorithm to

provide more accurate measurements. The only down-side with high resolution images

appears in computation time. Custom image processing in Matlab is non-efficient

when compared to other hardware-level languages. Forming high resolution images

will take longer to process, but since this is not an aspect of a star tracker, the

consequence is longer simulations for ground testing. The thresholding technique

can be sped up several ways, though. Certain calculations can be relocated outside

the threshold loop, and the maximum number of iterations to find a solution can

be reduced. Alternatively, the scheme can be designed to simply run once with a

stagnant threshold value, and only the three brightest stars can be kept, regardless

of the number of stars found. The catalog matching can be greatly improved with

incorporation of the correlations of the covariance matrix. This will help better relate

the observed properties with the pre-generated statistics of the properties. As well,

scaling the triangle properties’ values such that they are not as influential in the

Mahalanobis distance calculation may increase the success rate. Additionally, other

scoring techniques may be carried out to provide more comparative results. The

QUEST algorithm is widely used, and very little can be done to improve upon it or

any other attitude determination scheme available. However, a different form of, or

approach to, the covariance calculation might provide a more accurate estimate of

the attitude. With all of these improvements, it is highly probable that the outcome

will be a more realistic, efficient, and accurate star tracker algorithm.
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