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ABSTRACT 

This research improves the precision of information extraction from free-form text via 

the use of cognitive-based approaches to natural language processing (NLP).  Cognitive-

based approaches are an important, and relatively new, area of research in NLP and 

search, as well as linguistics.  Cognitive approaches enable significant improvements in 

both the breadth and depth of knowledge extracted from text.  This research has made 

contributions in the areas of a cognitive approach to automated concept recognition in. 

Cognitive approaches to search, also called concept-based search, have been shown to 

improve search precision.  Given the tremendous amount of electronic text generated in 

our digital and connected world, cognitive approaches enable substantial opportunities in 

knowledge discovery.  The generation and storage of electronic text is ubiquitous, hence 

opportunities for improved knowledge discovery span virtually all knowledge domains. 

While cognition-based search offers superior approaches, challenges exist due to the 

need to mimic, even in the most rudimentary way, the extraordinary powers of human 

cognition.  This research addresses these challenges in the key area of a cognition-based 

approach to automated concept recognition.  In addition it resulted in a semantic 

processing system framework for use in applications in any knowledge domain. 

Confabulation theory was applied to the problem of automated concept recognition.  

This is a relatively new theory of cognition using a non-Bayesian measure, called 

cogency, for predicting the results of human cognition.  An innovative distance measure 

derived from cogent confabulation and called inverse cogency, to rank order candidate 

concepts during the recognition process.  When used with a multilayer perceptron, it 

improved the precision of concept recognition by 5% over published benchmarks.  

Additional precision improvements are anticipated. 

These research steps build a foundation for cognition-based, high-precision text 

mining.  Long-term it is anticipated that this foundation enables a cognitive-based 

approach to automated ontology learning.  Such automated ontology learning will mimic 

human language cognition, and will, in turn, enable the practical use of cognitive-based 

approaches in virtually any knowledge domain. 
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1. INTRODUCTION 

1.1. ORGANIZATION 

The papers included in this dissertation are as follows: 

1. Discovering objective functions for tagging medical text concepts, conference 

paper (Appendix A).  

2. Inverse ontology cogency, submitted to Neural Networks journal (Appendix 

B), currently under review. 

3. Cognitive relevance, draft of journal paper for submission to the IEEE 

Transactions on Biomedical Engineering (Appendix C).  Status: pending final 

review by authors. 

Other relevant documents include: 

1. Cognitive Search Test Plan (Appendix D) – this document outlines the details 

of testing to be accomplished, with a physician, over the next month.  This 

testing will finish the work necessary to submit the third paper listed above, 

“Cognitive relevance.” 

2. Biography for James Levett, M.D., CMO of Physicians’ Clinic of Iowa 

(Appendix E).  Dr. Levett has agreed to perform the final testing for the 

cognitive relevance measure, the third paper listed above. 

3. Architecture for Semantic Processing System (SPS) (Appendix F) – this 

document contains the architecture definition, analysis, and SysML model 

developed as the guiding framework for the research discussed in this 

dissertation.  It was developed very early in the research and formed the basis 

to successfully using a systems perspective to planning and solving problems 

in natural language processing. 

1.2. OBJECTIVES 

This research has developed cognitive-based approaches that improve precision of 

concept recognition.  This is required for high-precision extraction of knowledge from 

text by providing a cognition-based approach to natural language processing (NLP) and 
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information extraction.  This includes a completely natural language interface that 

enables a highly intuitive approach to search. 

Furthermore, this research included use of a systems engineering approach.  The 

systems approach identified key algorithmic and technology enablers necessary for high-

precision search.  The system architecture for cognitive-based approaches, called the 

Semantic Processing System, or SPS, is provided in Appendix F. 

A key finding from the system architecture was the identification of automated 

ontology learning as the primary enabler for the use of cognitive-based approaches across 

knowledge domains.  The Semantic Processing System framework provided the tool for 

this assessment.  Automated ontology learning, in combination with cognitive approaches 

to NLP, enables disruptive search and natural language processing technologies that 

deliver significant improvements in search precision and ease-of-use.  And furthermore, 

this reduces the expense of these approaches such that they are cost-effective across 

knowledge domains. 

1.3. COGNITION-BASED SEARCH AND ONTOLOGY 

The objective of this research is high-precision text mining via the use of cognition-

based methods.  The systems perspective identified an architecture that integrates 

functions and components important to successfully realize these approaches in real-

world products. 

As a result of the systems approach to research, confabulation theory [1-4] was 

identified as the theoretical basis for developing an integrated architecture that delivers 

high levels of precision.  Of key distinction is the use of conceptual and contextual 

information, extracted from ontologies, to improve the precision of search.  The term 

“cognition-based search” refers to the method of search employing both conceptual and 

contextual information.  An example of the use of confabulation for contextual choices 

and behavior is provided in [5].  

Concept-based and context-based search approaches have been shown to improve 

precision [6].  These relate as follows: 
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 Concept refers to an entity that represents a mental notion, stored in the human 

brain by a neural code, i.e., a collection of neurons. 

 Context refers to the cognitive frame of reference, that is, the relations between 

two or more concepts.  Each relation is stored in the brain as one or more 

neural paths between the neural codes for the related concepts.  These neural 

paths are energized during the cognitive process, which may in turn energize 

other related paths that, in turn, energize other related concepts, ad infinitum. 

This dissertation combines both concept and context-based search into a single notion 

entitled “cognition-based search.”  Mental notions stored in the brain, i.e., concept, are 

represented by a group of neurons.  Relationships between concepts, i.e., context, are 

stored in the cerebral cortex as both the axonal/dendritic links between concepts.  These 

links include a relationship type, where a relationship type is itself a concept.   

This dissertation proposes a relationship between confabulation theory, which is a 

theory of human cognition, and the ontology.  Confabulation theory purports that 

concepts and relations, in combination, form the knowledge base stored in the human 

cerebral cortex [1-4].  The ontology, which originated with the discipline of philosophy 

and documents a domain of knowledge [7], likewise consists of concepts and relations 

between concepts.  When combining these two perspectives the ontology can be viewed 

as an emergent property of confabulation, where the ontology is the human-readable, 

physical artifact representing the knowledge base stored in the cerebral cortex.  

Moreover, confabulation theory postulates a process for human cognition that can be 

reduced to a measure used for the objective optimization of the cognitive process.  The 

potential also exists for mimicking human cognition via the development of an artificial 

neural architecture that executes the human language cognitive process.  For these 

reasons confabulation was chosen for this research as the cognitive theory to apply to the 

problems of high-precision search and automated concept recognition. 

1.4. RESEARCH CHRONOLOGY 

The sequence of research discussed in this dissertation is provided in Figure 1.1, and is 

provided to link and logically develop multiple topics discussed in this dissertation.   
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Figure 1.1: Research Chronology: research task sequence, linked by the common goal of 

developing a cognition-based approach for high-precision search. 

 

 

 

Prior to beginning PhD studies at MST, the author led the startup of a small 

technology company, Raphael Analytics.  The targeted product market niche required the 

ability to provide high-precision search using complex query criteria.   

Raphael Analytics, Inc. was a small technology startup that pursued a medical text 

search product to support clinical processes. This included the development of a 

prototype of a search tool, medText, which retrieves clinical information from medical 

text.  During this development a number of questions were identified about search, most 

notably regarding the potential benefits of a cognitive-based approach and the lack of 

available mature, proven algorithms and software libraries that used cognitive 

approaches.   
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During this startup, questions arose regarding the choice of search methods and 

technologies that deliver high-precision search.  These questions were motivated by the 

need for a new product with profit-generating economic and engineering benefits.  But, 

when it became apparent that the required algorithms and tools did not yet exist that met 

the need for high precision, this motivation evolved into pursuit of a PhD with the 

purpose of research in cognitive-based methods capable of high-precision search.  While 

the research discussed in this dissertation focuses on technology innovation, this 

motivation remains linked to the potential for commercial products capable of wealth 

creation and how this research can enable these products. 

1.5. AUTOMATED ONTOLOGTY LEARNING, COST-BENEFIT THRESHOLD 

FOR FEASIBILITY 

During the development of the SPS architecture in this research, it became apparent 

that medicine is, arguably, the only domain where large, complicated ontologies are 

readily available.  Ontologies developed outside of healthcare are limited to smaller, 

grossly simplified ontologies.  These are in form of topic taxonomies, typically used in 

knowledge management tools to organize the corpus and improve the user interface.   

Furthermore, high-precision search is not intended to compete with general purpose 

search engines such as Google or Bing.  High-precision search has a different role than a 

general purpose search engine.  High-precision search is likely to be a niche product play 

in a specific knowledge domain that has a recognized need for: a) a higher level of 

precision not available from Google or Bing, and, b) the ability to define complex query 

criteria in natural language.  Medicine is a good example of this. 

For cognitive search products targeting a niche domain and high-precision search, a 

large and complicated ontology is likely required.  Large, complicated ontologies, such as 

medicine, are expensive to develop since no automated approach is currently available.  

Lacking such an automated method means that the ontologies must be hand-built; this is 

typically laborious and expensive.  The fact that many, large ontologies exist in the 

medical domain, but not in other domains, suggests the existence of a need unique to 

medicine that justifies the expense of developing these ontologies.   



 

 

6 

Therefore, successful adoption of cognitive-based NLP and search capabilities outside 

of medicine, i.e., areas which requires the development of new ontologies, must meet two 

criteria as follows: 

1. The identification of one or more significant market niches for products that 

use cognitive NLP and search outside of medicine, along with the value-add 

benefits these products provide. 

2. Achieve a significant reduction in the labor and cost of ontology development 

such that new products identified in #1 above are economically feasible. 

The question is what level of cost reduction for ontology development is necessary for 

the cost-benefit threshold to be reached such that cognition-based approaches become 

economically feasible.  This is an unknown because the cognition-based approaches are 

so new, and enable so many different, highly innovative products that traditional market 

survey methods to ascertain cost versus benefit become almost useless.  It becomes a sort 

of “blue ocean” strategy question (see https://www.blueoceanstrategy.com) since it is 

highly unlikely that similar products will exist in the market.  Consumers may have little 

or no idea on how to use these products, especially the most innovative ones, and hence 

will likely have difficulty ascertaining value.  Thus a dearth of data makes it difficult to 

ascertain the cost-benefit threshold.   

From an intuitive viewpoint, it appears reasonable to assume that a very aggressive 

amount of cost reduction is required for developing ontology data.  This viewpoint is 

driven by the current state of the technology market.  The current market can, in part, be 

characterized by the availability of free information, e.g., search, and free applications via 

open-source products.  Hence, consumers tend to have an implicit need or expectation for 

very low or no cost data or products.  This requirement extends to metadata, such as 

ontologies, due to the requirement for a very low cost-benefit threshold.   

An alternative scenario can be posited that cognition-based NLP and search become 

monetized and offered as a low cost service for free.  This could eventually create a 

commodity market for ontology data.  But, since under this scenario ontologies become 

commodities, the market can be characterized by cost-based competition.  Hence, even if 

the ontology has a monetized value, it exists as a commodity with price differentiation, 

https://www.blueoceanstrategy.com/
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and hence, experiences downward price pressures.  Therefore, the labor required to 

develop ontologies must be quite low to successfully compete on the commodity market. 

Hence, for the purposes of identifying a rough-order-of-magnitude goal for cost 

reduction, it is assumed that the cost reduction for ontology development needs to be in 

the 80%-90% range, or better.  It appears reasonable that this level of cost reduction is 

needed before cognitive approaches are economically practical for widespread use.   

The automated ontology learning was included in the SPS system architecture since it 

appears reasonable to assume that a major cost reduction is required for the development 

of new ontologies before cognition-based approaches can be economically feasible.  The 

functionality, components, and interfaces for automated ontology learning are part of the 

system architecture.  This ensures that these needs are taken into consideration as part of 

the research discussed in this dissertation.  

1.6. RESEARCH STEPS 

The research discussed in this dissertation began with the development of a SysML 

model for a fictitious semantic processing system, and was based, in part, on the 

knowledge gained from developing the medText prototype.  The purpose was to 

prioritize PhD research activities via the identification of key search functions and 

components.  A summary of the model is provided in Section 2.1.  

The cognitive relevance measure was developed next.  It is used as the distance 

measure for rank ordering documents returned by the search and identifying the most 

relevant.  The cognitive relevance measure uses a topology-based algorithm that extracts 

neighborhoods from the ontology.  These neighborhoods provide cognitive information 

from both a conceptual and contextual standpoint, and for this reason, are referred to as 

cognitive neighborhoods.   

The source of ontology data is the Unified Medical Language System [8] available 

from the National Library of Medicine (NLM), which contains a large number of medical 

ontologies.  Without these data the feasibility of this research would be significantly 

curtailed.  The ontology used for this research is the SNOMED ontology, one of the 

medical ontologies in the Unified Medical Language System.  It was selected due to the 

simplicity of the SNOMED relationships such that the ontology can be represented as a 
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directed, acyclic graph, or DAG.  A DAG structure is necessary to compute cognitive 

relevance measure in a way that mimics the feedforward nature of the knowledge base 

stored in the cerebral cortex.  

These concept/context neighborhoods are extracted from both the search criteria and 

the corpora to be searched.  A simple relevance measure was developed to identify the 

size of the overlapping cognitive covering space between each document and the search 

criteria.  This relevance measure is discussed in Section 2.5.  The draft paper in Appendix 

B on this subject provides the current version of the cognitive relevance measure along 

with further discussion of how these topological covering spaces represent cognitive 

neighborhoods. 

Use of a concept/context-based approach for search, along with a completely natural 

language user interface, requires the ability to identify concepts in text.  The MetaMap 

concept recognition tool [9-13], available from the NLM, was initially used to perform 

this task.  The precision of concept recognition has a direct effect on search precision, 

and preliminary testing of the medText prototype indicated that the precision of MetaMap 

is insufficient for the extremely high level of search precision desired.  Hence, research 

was pursued for improving the precision of automated concept recognition, and is 

discussed in Section 2.6.   

Further details on the research in automated concept recognition and cognitive 

relevance measurement is described in the papers provided in Appendices B and C. 
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2. SUMMARY OF FINDINGS 

2.1. SEMANTIC PROCESSING SYSTEM FRAMEWORK 

The framework for a semantic processing system was developed to aid in the 

identification of key functions and components necessary for high-precision search.  

Documentation of this framework is in the form of a SysML model.  

A detailed description of the framework is provided in the Semantic Processing 

System (SPS) framework document, attached in Appendix F.  This includes identification 

of market needs, use cases, functions, components, and key interfaces, along with 

selected excerpts from the SysML model. 

Four key challenges were identified from this architecture, shown in Table 2.1.  These 

challenges appear to exist regardless of domain. 

 

 

 

Table 2.1: Key Challenges Identified from SPS Architecture Model 

Challenge Description 

1. Computation of semantic 

relevancy 

Quantify intersection of cognitive neighborhoods 

between search criteria and document retrieved from 

corpora  

2. High-speed processing For computing topological covering space by a 

computational method faster than graph walking 

3. Accuracy of automated 

concept recognition 

Limitations found in MetaMap that limits precision of 

cognition-based search 

4. Availability of low-cost 

ontologies 

From requirement to pursue markets outside of 

healthcare, this is needed to monetize cognition-based 

search 

 

 

 

This framework is applicable to any domain.  While this dissertation may provide 

examples from medicine, the framework is not unique to medicine and results from 

research in semantic tools for medicine are equally applicable to any domain.  Table 2.2 

provides a number of examples for different knowledge domains.  The value of a 
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cognitive approach to information retrieval appears ubiquitous across knowledge 

domains. 

Developing the SPS framework occurred at the beginning of this research, and was 

used to guide the research in terms of focus and requirements.  By using a systems 

approach, as research progressed, it became clear that the goal of a cognitive approach to 

search required selection of a small set of cognitive theories applicable across the system, 

i.e., in the design of each component and interface, so as to effect successful integration.  

This need exists regardless of the knowledge domain being searched.   

For example, the cognitive theory used for automated ontology learning likely 

influences the approach used to extract stated facts from text, where, in keeping with the 

use of a cognitive approach, a stated fact is a triple of concepts as follows: 

𝑓𝑎𝑐𝑡 = {𝑓𝑟𝑜𝑚, 𝑟𝑒𝑙, 𝑡𝑜}  (1) 

𝑤ℎ𝑒𝑟𝑒: 

𝑓𝑟𝑜𝑚 = 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 

𝑟𝑒𝑙 = 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒 𝑐𝑜𝑛𝑐𝑒𝑝𝑡(𝑒𝑞𝑢𝑖𝑣. 𝑡𝑜 𝑣𝑒𝑟𝑏, 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑟, 𝑎𝑑𝑗𝑒𝑐𝑡𝑖𝑣𝑒, 𝑒𝑡𝑐. ) 

𝑡𝑜 = 𝑜𝑏𝑗𝑒𝑐𝑡 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 

Moreover, since a cognitive approach is used for search, use of a cognitive grammar 

approach is preferred for analyzing sentence and phrase meaning to extract the stated 

facts.  The cognitive grammar approach is consistent with the triple shown in Equation 1.  

Note, however, that cognitive grammar is not a theory of cognition, but a relatively new 

approach in linguistics for grammatical analysis.  Hence, automated approaches to 

linguistic analysis, such as those currently in use for computational linguistics, are not yet 

available. 

In addition, text preprocessing is necessary to index the text with matching concepts 

found in the ontology.  Like automated ontology learning, it also requires a component 

for analyzing sentence and phrase meaning using cognitive grammar.  Since these 

components interface with utility component that performs text grammar analysis, a 

common theory of cognition is desired to ensure that the automated ontology learning 



 

 

11 

and automated concept recognition components work in a manner consistent with the 

following: 

 Grammar analysis  

 Stated facts extraction and analysis  

 Consistency in defining and using ontology concepts and relations.   

2.2. NEED FOR AUTOMATED ONTOLOGY LEARNING 

While the use of conceptual and contextual data has been shown to improve search 

precision [6], the availability of ontological data is a major stumbling block to the wide-

spread use of cognition-based search.  A large number of medical ontologies are freely 

available from the NLM [14], however, a dearth of ontologies exists for other domains.  

Moreover, developing ontologies is a manual process, and hence is expensive due to the 

large amount of labor required, typically involving high-dollar subject-matter experts.  In 

addition to cost, the manual process used to create ontologies can create accuracy 

problems in representing a knowledge domain.  This is mainly due to human error, for 

example, a subject matter expert neglect to include a concept and relationship. 

A number of markets were identified other than healthcare that have significant 

revenue potential if automated ontology learning were available.  The core performance 

requirement for automated ontology learning is 80% or better reduction in the cost of 

developing the ontology.  Examples of these markets and products are shown in Table 

2.2.  In aggregate these markets and products may have a revenue potential up to 

$200MM per year. 

 

 

 

Table 2.2: Example Products Enabled by Automated Ontology Learning 

Example 

Market 

Example Product 

Knowledge 

Management 

Application plugin or web service used by knowledge management 

application for automated taxonomy or ontology creation from 

corpora stored inside corporate firewall. 

Cognitive search tool for high-precision retrieval of documents inside 

the corporate firewall. 
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Table 2.2: Example Products Enabled by Automated Ontology Learning (cont’d) 

Example Market Example Product 

Domain Specific, 

High-Precision 

Search 

Web service, provided by a literature vendor (e.g., Amazon), to 

extract ontology from documents/books for a specific knowledge 

domain. 

Cognitive search of the knowledge domain, and in addition, an 

ontology-driven learning roadmap for self-learners.  This product is 

in addition to the purchase price of the product, and hence offers a 

new revenue stream. 

Product Literature 

Search 

Similar to domain-specific search above, but provided as part of the 

help literature for a specific product, e.g., search tool for retrieving 

answers on a software product. 

Systems 

Engineering 

Domain documentation for user needs analysis. 

Requirements analysis for system and components. 

 

 

 

Examples of the use of ontologies in systems and other engineering fields can be 

found in [15-37]. The market niche for these products can be summarized as follows:  

 High-precision search tailored to one or more specific knowledge domains 

 Automated ontology learning that provides a cost-effective approach to 

developing and maintaining the ontology for knowledge domains represented 

in a given corpora of text. 

The current competitors of these products are any public-facing, internet-based search 

engine.  None of the products in Table 2.2 can compete head-to-head with current 

internet-based search engines such as Google or Bing.  In other words, to find relative 

straight-forward information, such as restaurant in the area serving a specific dish, use 

Google or Bing.  If looking for specific information on a complicated topic, using 

complicated query criteria in the form of natural language, then a cognition-based 

approach would be preferred. 

2.3. CURRENT APPROACHES TO AUTOMATED ONTOLOGY LEARNING 

The major stumbling block to the products listed in Table 2.2 is the ability to develop 

low-cost ontologies.  Researchers have been pursuing automated ontology learning for a 

number of years, but with limited results.  None of the efforts: 1) were found to be 

effective enough to warrant wide-spread use, and, 2) are based upon a theory of cognition 



 

 

13 

that enables both concept and context-based search.  Ideally a method would be found in 

the literature using a general theory of cognition that is applied to the problem of 

mimicking human language cognition, for example confabulation theory.  However, none 

of the approaches found used any theory of cognition other than adaptive resonance 

theory.  A sampling of these efforts is shown in Table 2.3.  

 

 

 

Table 2.3: Examples of Current Approaches to Automated Ontology Learning 

Approach and References Limitations 

1. Recursive and non-recursive ART-based 

neural networks, in one case using a Bayesian 

network.  Used either entropy or legacy term 

frequency-inverse document frequency (tf-

idf) measures to optimize precision [38, 39] 

 Uses measures inconsistent with 

cogency measure from 

confabulation, the chosen 

cognition theory used for this 

research  

 Lacks ability to provide natural 

language interface 

 Bayesian approach is not based 

upon a theory of cognition, and 

hence will not achieve improved 

search precision provided by a 

concept-based approach.  

2. Extraction of smaller, focused ontology for a 

knowledge domain from larger ontologies 

[40] 

 Assumes existence of larger 

ontology, which is contrary to the 

objectives of this dissertation, 

i.e., extract any ontology from 

exemplar corpora. 

 Lacks ability to provide natural 

language interface 

3. OntoMiner, an application for creating 

ontologies from web pages [41]  
 Level of knowledge desired in 

ontology typically greater than 

that found in web pages  

 Lacks ability to provide natural 

language interface 

4. Extraction and tuning user input, where user 

input is set of common sense rules on a 

knowledge domain [42] 

 Requires existing database of 

common sense rules from those 

familiar with knowledge domain, 

rather than learning from 

exemplar corpora for domain 

 Lacks ability to provide natural 

language interface 
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Table 2.3: Examples of Current Approaches to Automated Ontology Learning (cont’d) 

Approach and References Limitations 

5. Use of Deep Neural Network, with 

architecture modified to use a convolutional 

layer.  Uses a modified version of existing 

method for word encoding to account for 

word sense ambiguity [43] 

 Appears to be much closer to the 

cognitive process described by 

confabulation theory, however, it 

was used for relation extraction 

only 

 Lacks ability to provide natural 

language interface 

6. Navigli, et al. [44-46], lattice-based entity 

identification approach using an iterative 

extraction method and a number of the Onto 

series of applications (these do not appear to 

be in common use) 

 Focuses on term extraction using 

a lattice structure, without 

extraction of relation types 

 Lacks ability to provide natural 

language interface 

 

 

 

Among the approaches listed in Table 2.3, the use of neural networks, item #6, 

appears to hold the greatest promise for mimicking the cognitive process described by 

confabulation theory.  The approach described by Chen, et al. [43] in item #6 includes 

layering and optimization typical of a deep neural architecture, which is similar to the 

multi-layer cognition described by confabulation theory.  

2.4. ONTOLOGY AS NEURAL NETWORK 

The current approach to store the ontology is typically a relational database.  A portion 

of the ontology is loaded into working memory when required for computational needs.  

In theory the ontology can be represented as a neural network.  Then, during text 

processing, the search tool accesses the required ontological directly from the neural 

network.  This, of course, includes invoking the required cognitive functions.  

This requires a neural architecture that has the ability to execute the confabulation 

cognition process as well as store the ontology in a structure suitable for use when 

executing cognitive processes.  As shown in Figure 2.1, this includes the ability to store 

concepts (as neural codes) and ontology relationships (as knowledge links), including the 

ability to store relationships by relationship type (where a relationship type is a concept).   
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Figure 2.1: Stated Fact Triple as Knowledge Link: fact triples extracted from text define 

knowledge links that exist in the cerebral cortex.  There is a 1:1 relationship between a 

knowledge link in the cerebral cortex, the stated fact triple extracted from text as shown 

in this figure, and the concept-relationship-concept triples in the ontology. 

 

 

 

A summary of requirements for this neural architecture is as follows: 

 The neural architecture provides long-term storage of the ontology, and it does 

this in a manner that mimics the cerebral cortex, i.e., concepts are stored as a 

group of neurons, and relations between neurons mimic the knowledge links of 

the cerebral cortex necessary for cognition.  Furthermore: 

o These knowledge links represent the stated fact triples (Equation 1) 

extracted from text during the learning process. 

o A knowledge link must have a type, and the type must be the same as 

that identified in the stated fact triple, i.e., a knowledge link type is a 

concept.  

 All concepts are single-word concepts.  Relationships are used to identify 

compound concepts to reduce concept recognition computational requirements, 

as follows:   

o For example, the compound concept “spinal fusion” will exist in the 

ontology as two explicitly separate concepts.  Knowledge links in the 

neural structure reflect that they are related, e.g., the knowledge link 

reflects the fact that a fusion can occur in the spinal region.  In the 

SNOMED ontology, for example, some concepts are combinations of 

separate concepts and as a result have multi-word names to reflect this.  

In some cases these are multi-phrase names.  This, in turn, requires 
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more sophisticated concept recognition approaches, which includes 

dealing with NP-hard combinatorics of word combinations (see 

Appendices A and B).  A single-word concept reduces the complexity 

of automated concept recognition. 

 The neural architecture and related system components provide the ability to 

calculate cognitive relevance, which includes:  

o The identification of cognitive neighborhoods for a set of concepts,  

o The identification of the intersection of two or more neighborhoods, 

and,  

o The calculation of the size of the neighborhoods and neighborhood 

intersections. 

o As a goal, ideally these are emergent properties of the neural 

architecture.  For example: 

 The identification of cognitive neighborhoods is determined by 

which concepts and knowledge links are energized 

 The cogency of a possible outcome is represented by the level 

that a concept is energized, and the optimum is determined via a 

winner-take-all approach (such as on-center-off-surround). 

 To enable text processing, long term storage must include the possible words 

and symbols encountered in text, and stored in a manner that enables cognitive 

processes. 

o That is, words should be stored as one or more neurons, along with one 

or more neurons for each character in the character set, and include 

relationships between the character set and each word.  Similarly, the 

word associated with a concept should be stored as a group of neurons, 

along with a knowledge link to the characters that represent it.   
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 The neural architecture must provide short-term memory of text along with 

short-term storage of recognized concepts used for cognitive processing, to 

enable the cognitive processes of: a) ontology learning, b) accessing the 

ontology for concept recognition in text, and, c) determining cognitive 

relevancy.   

o This must include a process for recognizing sequential tokens in text 

and a cognitive process that mimics the human reading process, which 

includes recognizing characters, words, and finally concepts in a 

sentence and resolving word sense ambiguity.   

o This also includes a recurrent process of concept recognition as each 

new token in the sentence is added to short-term memory.  This 

recurrent process includes recognizing the cognitive relation between 

new and prior concepts recognized.  Hence the process includes use of 

prior sentences to improve the precision of concept and relation 

recognition, as well as sense disambiguation when required. 

The scope of work necessary to perform research and to develop such a neural 

architecture, along with the associated software code and testing, is significant.  This may 

be offset if the neural architecture simplifies or removes altogether the components and 

data currently in use for basic natural language processing tasks.  A more important, and 

more general, benefit is that research in this area could make a significant contribution if 

it successfully mimics a significant portion of human language cognition. 

2.5. COGNITIVE RELEVANCE AND SEARCH PRECISION 

A topological covering space is defined for the ontology to identify cognitive 

neighborhoods.  The size of the cognitive neighborhood is defined as the number of 

concepts in the covering space.  The relevance of a document to the search criteria is 

defined as the intersection of the cognitive neighborhood for the search criteria and the 

cognitive neighborhood for the document.  This is referred to as cognitive relevance, and 

is quantified as the number of concepts in the intersection of these two neighborhoods.    

Topological covering spaces for the ontology are defined using the subsumptive 

property of the ontology, where the ontology is represented as an acyclic directed graph.  
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Subsumption is the “is a” relationship type in the ontology, that is, the parent-child 

relationship, and multiple “is a” inheritance is allowed, i.e., a concept can have multiple 

parents.  Types other than “is a” is allowed, with no known limitation as to type.  For 

example, if a medical procedure is performed on a certain organ or anatomy, then an 

anatomical concept is included in the cognitive neighborhood via a “located at” 

relationship.  This in turn includes all of the “is a” ancestors related to that anatomical 

concept, by inheritance.  Hence a concept can have a covering space related to its core 

cognitive meaning, and also have a covering space for related concepts not in its core 

cognitive ancestry. 

No publications have been found that describe the same or similar approach.  The 

closest approach is described in Schenker, et al. [47].  While the approaches in Schenker, 

et al., use graph-based measures, such as “maximum common subgraph” to quantify 

graph edit distances as a proxy for similarity, there is no direct relationship to cognitive 

approaches.  Given the initial success of the cognitive relevance measure, albeit based 

upon limited physician testing, and its consistency with cognition theory, the cognitive 

approach appears to be a superior method.  Moreover, the need for using a common 

theory of cognition across components to optimize component reuse and integration 

supports the use of the cognitive approach to relevancy.  The limiting factor, as discussed 

previously, is the availability of domain ontologies. 

Further discussion is provided in a draft paper that will be finalized upon completion 

of testing by a physician, James Levett, M.D.  Dr. Levett is a cardiothoracic surgeon and 

Chief Medical Officer for the Physicians’ Clinic of Iowa, Cedar Rapids, IA. 

2.6. AUTOMATED CONCEPT RECOGNITION 

The automated recognition of concepts in text is a requirement when using a 

cognition-based approach to search.   As noted in Section 1.6, an existing tool, MetaMap, 

did not provide the desired level of accuracy.  MetaMap was used as the baseline when 

researching alternative methods. 

MetaMap has two distinguishing methods/properties: 1) concept recognition occurs 

for phrases, and 2), it uses a linguistic heuristic for scoring candidate concepts and 

identifying the optimum match.  Ideally the concept recognition approach would include 
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inter and intra phrase relationships, however this level of sophistication is the subject of 

future research (i.e., author’s post-doctoral position at the NLM).   

A cognition-based approach that improved the precision of automated concept 

recognition was identified and validated using gold-standard data from the NLM.  This 

demonstrated the efficacy of cognition-based approaches as an alternative to the 

MetaMap linguistic heuristics for scoring candidate concepts.  The MetaMap linguistics 

heuristic limits concept recognition to the phrase level only. 

The first attempt to find an alternative to the MetaMap’s linguistic heuristics was a 

straight-forward approach of a simple polynomial.  This approach and results are 

provided in Appendix A.  Although a polynomial function was identified that produced 

acceptable results, the combinatorics challenge was enough of a roadblock to make this 

approach impractical.  Hence alternatives were sought. 

The cognitive theory of confabulation was investigated along with a multi-layer 

perceptron to approximate a function used to compute a distance measure for ranking 

candidate concepts.  The perceptron would be used to score each candidate concept found 

during the concept recognition process.  This score is used to rank candidate concepts and 

select the best available.  Training of the multi-layer perceptron was performed using 

gold standard data available from the NLM.   

This approach was successful, obtaining 81% precision, which is a 5% improvement 

over best available benchmarks (MetaMap).  Details of the approach and results are 

provided in the draft paper Inverse Cogency for Concept Recognition (Appendix B). 

The approach used for automated concept identification is conceptually straight-

forward, as follows: 

1. Identify noun phrases in a sentence using part-of-speech tagging. 

2. Develop list of candidate concepts for each phrase. 

3. Score each candidate, then rank candidates based upon this score to identify the 

best match. 

Concept recognition was done at the phrase level for consistency with the gold-

standard test data provided by the NLM.  However, analysis of these results indicated a 
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loss of fidelity of concept recognition.  Based upon these results it was determined that a 

cognitive-based approach is needed to identifying inter and intra-phrase relations that 

indicate how concepts can be combined in a way to identify candidate concepts of higher 

fidelity.  Combining phrases results in one or more concept triples, as defined in Equation 

1.  These triples are the cognitive artifact used to identify candidate concepts of higher 

fidelity.  They are also the cognitive artifacts used to build the ontology. 

Combining phrases and combining words within a phrase requires an analysis that 

identifies cognitive relations between words within and across phrases.  In traditional 

linguistics the role of a word can be identified via part-of-speech tags.  But these roles 

have no direct relationship with a cognitive approach to relation recognition necessary for 

an automated approach that improves concept recognition fidelity.   

As an example of what a cognitive relation may look like, consider certain parts-of-

speech, such as verbs, modifiers, and adjectives, which can imply a cognitive relation 

depending upon the context in or across phrases.  Take the simple phrase “lumbar 

surgery.”  Surgery is the noun, lumbar is the adjective.  From a cognitive viewpoint, 

lumbar is an anatomical location, which implies a relation, that is, a surgery located in the 

lumbar region, where in this case the relation is of type “located at.” 

However, an automated tool was not found that that provides this capability using a 

cognitive approach.  The theory of Cognitive Linguistics [48], and more specifically its 

subtopic, Cognitive Grammar [49], was identified as the theoretical basis for identifying 

cognitive relations between words and phrases.  However, an automated tool to perform 

this task, analogous to an automated part-of-speech tagger, is not available.  The theory 

of Cognitive Linguistics is relatively new and still lacks the explicit, formal specifications 

necessary for reducing it to an automated approach.  

Despite the relative lack of maturity of Cognitive Linguistics in comparison to legacy 

linguistics approaches, Cognitive Linguistics may offer promise due to its basis in 

cognition.  For example, although Cognitive Linguistics/Grammar is relatively new, it 

has been used successfully in research for the automated identification of semantic 

annotations for Wiki pages [50].   
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Extracting cognitive relations in a sentence is an important part of the Semantic 

Processing System.  Each cognitive relation identified in a sentence also identifies an 

ontological relationship between concepts.  Hence, identifying inter- and intra-phrase 

relations using a cognitive approach addresses not only the issue of improved concept 

recognition fidelity, but also addresses the need to extract stated facts as part of the 

automated ontology learning process.  Both cases result in identifying one or more stated 

facts in a sentence.  

However, a significant amount of work is required to design and develop an approach 

to relation extraction using Cognitive Grammar, for the following reasons: 

1. A standardized set of cognitive “tags” for the cognitive role of words does not yet 

exist in Cognitive Grammar.  While a set of grammatical roles, e.g., part-of-

speech, exist in existing linguistics theory, no such equivalent set exists for 

Cognitive Grammar. 

2. No automated tools exist for the analysis of phrases and sentences and the 

assignment of standardized cognitive roles to words. 

Correspondence with members of the International Cognitive Linguistics Association 

was conducted to validate the applicability of an automated approach to Cognitive 

Grammar, and to identify the approximate scale of research effort to develop them.  

Responses to queries validated that the cognitive approach to linguistics, in relation to 

ontologies, is applicable and valuable.  An email from Dr. John Barnden, University of 

Birmingham, Department of Computer Science stated “…a general concern with 

concepts and their relationships in cognitive linguistics as a whole fits with ontologies…” 

and that the research is “plausible.”  Dr. Andrew Gargett, also of the Department of 

Computer Science at Birmingham, suggested approaching the International Computer 

Science Institute at the University of California, Berkeley, also pursuing research in this 

area.  Dr. Gargett also provided input that such a research project has value, was 

“interesting,” and “sounds plausible.”  However, it is not something he would 

recommend to a PhD candidate, unless the person has a “deep background in formal 

linguistic methods.  And even with that background the project would be challenging.” 
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In summary, researchers in the field concurred that use of Cognitive Linguistics has 

significant potential in the automated identification of inter- and intra-phrase cognitive 

relations, but the scope is beyond that appropriate for a PhD candidate.  For these reasons 

research in the application of Cognitive Linguistics to the problem of identifying 

cognitive relations was not pursued further, and is deferred to future research.  Deferment 

to future research does not imply a lack of importance; rather, it reflects the lack of 

practicality in pursuing it as part of a PhD candidate’s research. 

2.7. SYSTEM SUMMARY – COGNITIVE SEARCH MATURITY AND 

PROBABLE TRENDS 

Results from research on concept and context-based search [6], even at a fairly 

rudimentary level, provides evidence that opportunities exist for significantly higher 

levels of precision.   

However, cognition-based methods are relatively immature in comparison to legacy 

approaches currently in use.  A systems view of cognition-based methods is necessary to 

mature the approach in a way that does not inflate development labor.  

Results of the research described in this dissertation indicated that striving to improve 

search precision using cognitive methods inexorably leads to the use of methods that 

mimic human cognition.  In the long run, mimicking human language cognition appears 

to provide the least-cost path to improved search precision across knowledge domains.  

Even though cognition-based methods are relatively immature at this time, their pursuit 

appears to provide significant opportunities in reducing net development labor by 

reducing the effort necessary to develop an integrated suite of natural language 

processing components. 

For example, the labor required to develop the straight-forward infrastructure 

components for basic text processing in a Semantic Processing System can be significant.  

None of the steps for basic text processing are vastly complicated, but there are a 

surprising number of these small actions that add up, and they are highly related.  In some 

cases surprisingly simple requirements, such as consistency in parsing text across 

components, can become problematic when components are open-source from different 

organizations that happen to use slightly different algorithms.   
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Consider the example of an open-source software library from Stanford for parsing 

text and performing part-of-speech tagging that was employed due to its ease of use.  

After integrating the Stanford tool into the research proof-of-concept application, gold-

standard text annotations for testing the precision of automated concept recognition was 

made available by the NLM.  These gold-standard data were developed using the NLM’s 

in-house tools, which had simple differences in the start and end position of a text 

annotations, in some cases by just one character.  It also had differences in assigning part-

of-speech tags, which created random errors in results during testing using the NLM 

gold-standard data.   

Hence, due to these problems it became necessary to re-write a number of components 

in the research proof-of-concept application (created to test the algorithms developed as 

part of this dissertation research).  This created significant delays in research progress.  

The scope of work necessary for this conversion included removing the Stanford tool, 

becoming familiar with the NLM open-source components, and then integrating the NLM 

open-source components into the application.  Due to the lack of documentation the 

integration of the NLM tool required significant trial-and-error (the reason for choosing 

the Stanford tool in the first place).  Hence, modifications to use the NLM components 

amounted to a significant amount of labor for debugging and coding.   

Therefore, the choice of open-source software to perform certain functions, as a tactic 

to reduce development cycle-time, can drive expensive changes to the system architecture 

simply due to integration.  Indeed, use of open-source software to avoid development of a 

sophisticated component becomes both a blessing and a curse when it comes to trading 

the benefits of reduced development cost and timeline against the risk of incompatible 

integration. 

The sensitivity of development labor versus improved precision also increases as the 

number of components increases, and the sophistication of these components increases.  

Examples include components and data for lexicons, ontologies, linguistic and grammar 

tools that identify morphological variants of words and determination of a common base, 

acronyms, abbreviations, part-of-speech taggers, and sentence boundary determiners.   
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Hence the return on investment question is posed when making system architecture 

decisions under constrained resources.  A case can be made that it may be a better use of 

resources to focus on developing computational intelligence approaches resulting in the 

highest level of cognition and do this in a way that reduces, instead of increases, the need 

for the plethora of text processing components. 

The research described in this dissertation tends to support this assertion – focus on 

computational intelligence methods that, for example, minimize dependence upon (or 

avoids altogether) the legacy linguistic analysis tools and data, such as lexicons and word 

variant databases and algorithms for word morphologies.   

The human brain has none of these artifacts per se.  Lexicons, linguistics, grammar, 

and other elements used in natural language processing are not separate structures in the 

brain.  Artifacts such as lexicons and word morphology data used in natural language 

processing are physical representations of the properties of the human neural structure 

and knowledge links. 

The concept of moving towards a purely cognitive approach is not new.  Language 

experiments conducted for confabulation theory support this.  Sentence completion 

experiments produced plausible and logical sentences without the need for a lexicon, 

ontology, or linguistic tools [1-3] .  Hecht-Nielsen takes this viewpoint in his research on 

cognition, stating that “linguistics is an emergent property of confabulation” [3].   

These language experiments, however, allow a random choice of topics and stated 

facts due to the random selection of words to complete a sentence.  Practical application 

of the theory is typically constrained by other, additional requirements, requirements that 

did not constrain these language experiments.  Hence, the avoidance of legacy tools and 

reference data, such as lexicons or part-of-speech tags, is a long-term goal to be achieved 

via mimicking human language cognition, and hence, likely not be achieved in the near 

future. 
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3. CONCLUSIONS 

3.1. AUTOMATED CONCEPT RECOGNITION 

The application of confabulation theory successfully improved the precision of 

automated concept recognition.  This demonstrated that the inverse cogency measure, a 

modified version of the confabulation cogency measure, provides a reasonable distance 

measure when rank ordering candidate concepts. 

Hence the rank ordering provided by inverse cogency, when used in combination with 

a multi-layer perceptron as function approximator, resulted in improved precision for 

concept recognition.  Its use resulted in a 5% improvement over the best known baseline 

(MetaMap). 

The algorithm for selecting candidate concepts and computing the inverse cogency has 

room for further improvement.  For example, it does not yet include the use of synonyms 

and acronyms.  This is fairly easily resolved and when fixed the precision of concept 

recognition is expected to improve further.  Over the long-term, the identification of 

relations between concepts will also improve the precision of automated concept 

recognition, discussed in Section 3.4. 

3.2. COGNITIVE RELEVANCE OF RETRIEVED DOCUMENTS 

Two cognitive-based distance measures were developed to both enable concept-based 

search and to improve the precision of search.  Neither measure achieved the desired 

results.   

The approach used a simple-first philosophy, that is, try the simplest approach first 

and if that doesn’t work then increase sophistication incrementally.  The poor 

performance of these two measures suggests that use of straight-forward ranking 

measures to improve search precision is inadequate.   

With simple measures being inadequate for high-precision concept-based search, a 

more sophisticated neural network approach appears to offer greater promise.  A neural 

network approach, if implemented correctly, may be more advantageous for reasons other 

than precision alone, principally in terms of maintenance labor. 
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Further details can be found in Appendix C. 

3.3. SEMANTIC PROCESSING SYSTEM ARCHITECTURE 

The system architecture for the Semantic Processing System provides a framework for 

identifying research direction and priorities that optimize the system as a whole.  Lacking 

such a framework increases the difficulty in decision-making when performing trade-offs 

between potential short-term tasks and technology selection versus long-term goals.  

Lacking this framework also increases the risk of making decisions in a vacuum with the 

potential downside being suboptimal performance or lack of ability to integrate 

components.   

Examples of the benefits experienced so far include: 

 The selection of confabulation theory and its successful use to improve concept 

recognition precision 

 The identification of cognitive linguistics as a potential approach to: 1) improve 

concept recognition, and, 2) extract stated facts from text as part of an automated 

ontology learning process. 

The Semantic Processing System Architecture provided valuable insight into how 

decisions on component functions and design impact the long-term effectiveness of an 

operational system.  It aids in the development of a long-term planning that, in effect, 

becomes a planning tool, roughly analogous to a sequenced research pipeline.  Short and 

long-term efforts are linked to a common, long-term objective. 

3.4. COGNITIVE LINGUISTICS 

Use of Cognitive Linguistics, in combination with the use of inverse cogency and 

confabulation theory, holds the most promise for extracting stated facts from free-form 

text.  Researchers in the field concurred with using Cognitive Linguistics, but cautioned 

that the scope of such research is outside that practical for a candidate PhD. Hence the 

application of Cognitive Linguistics is deferred, but as the recommended approach for 

future research to address the problem of extracting stated fact triples from text. 
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The extraction of stated fact triples is a key capability due to the requirement for this 

functionality to both improve the fidelity of concept recognition and to perform 

automated ontology learning. 

3.5. AUTOMATED ONTOLOGY LEARNING 

The financial success of cognitive-based search, with niche products in multiple 

markets, depends upon the ability of an automated ontology learning approach to reach 

an 80%+ reduction in the cost of ontology development.  While the ideal level of manual 

effort is 0%, it is assumed that some minimum amount of manual labor is required for 

practical reasons.  Hence, the objective is stated as an 80% or better reduction in labor. 

The automated ontology learning process is expected to use the following steps: 

1. Calculate cogency values required by confabulation theory, i.e., analyze a corpora 

of text representing the body of knowledge, perform word counts, and calculate 

the conditional probabilities of word combinations 

2. Use an iterative process to build the ontology – during each iteration of the 

process, in combination use Cognitive Grammar and inverse cogency to iteratively 

build the ontology.  The iteration occurs word by word in each phrase of a 

sentence, as follows: 

a. Extract stated facts from free-form text 

b. Analyze each stated fact to determine if it can be added to the ontology; 

it cannot be added if any of the following conditions exist: 

i. The triple is a duplicate, or a triple using the same two concepts 

already exists but using a different relation concept 

ii. Lexical analysis – word morphology, acronym, abbreviation, 

etc. using domain lexicon – indicate that the concept already 

exists using a different word form 

iii. The triple creates a cycle in the graph – it must be acyclic 

c. Add new stated fact triples to the ontology 

i. If at beginning or end of a cognitive neighborhood, add to 

extend neighborhood 
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ii. If in middle of neighborhood, insert into existing path as 

appropriate 

d. Continue to the next phrase 

It appears that the optimal architecture for the ontology and related cognitive 

processes is via a neural architecture discussed in Section 2.4.  The cognitive theories to 

use in this architecture most likely includes confabulation theory, although with further 

research additional theories may be found that are useful.  

The development of an automated ontology learning capability is deferred to future 

research for the following reasons:  

 The amount of effort to develop an automated ontology learning process is 

significant. 

 It is dependent upon the availability of recognizing stated fact triples in text, 

which is deferred to future research 

3.6. SUMMARY – CONTRIBUTIONS AND REMAINING CHALLENGES 

Results from research on concept and context-based search [6] provides evidence that 

opportunities exist for higher levels of precision using a cognition-based approach.   

The research described in this dissertation has developed two concrete approaches that 

advance the state-of-the art in cognitive-based search, as follows: 

1. The application of cogent confabulation to improve the precision of concept 

recognition in text.  Concept recognition is a necessary task for cognitive-

based search that impacts search precision.  The approach to automated 

concept recognition discussed in this dissertation includes the development of: 

a. A modified version of cogency for use with ontologies, called inverse 

ontology cogency, and, 

b. A multi-layer perceptron approach that approximates a function used to 

rank candidate concepts and identify the candidate of highest precision.   

To the author’s knowledge a measure like the inverse ontology cogency does 

not yet exist in the literature. 
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2. Development of an innovative topology-based approach to improve the 

precision and ease-of-use of cognitive search for complex queries.  The 

approaches discussed in this dissertation includes the development of: 

a. A cognitive neighborhood for a set of concepts, and, 

b. A cognitive relevance measure, which makes use of the intersection of 

these neighborhoods, used to rank candidate documents returned by the 

search and identify those having the highest cognitive relevance to the 

search criteria.   

To the author’s knowledge no covering space approach or measure defining 

cognitive relevance in this manner has been previously developed. 

The research described in this dissertation also identified challenges that must be 

overcome before cognitive-based search can be practical and adopted in wide-spread 

business use.  This analysis is from the perspective of a new or existing business 

determining the likelihood that such an approach can be successfully monetized.  These 

challenges include: 

1. Use Cognitive Linguistics/Grammar: An approach that automates the analysis 

of text to identify relations between concepts found in text, i.e., the extraction 

of stated facts.  The use of the theories of Cognitive Linguistics, possibly 

including Cognitive Grammar, was identified as the most promising for this 

task.  Extracting stated facts from text is needed to: 

a. Improve the fidelity of automated concept recognition, and 

b. Perform automated ontology learning. 

2. Use Single Word Ontology: This potentially minimizes the complexity of the 

concept recognition task. 

3. Increase Computational Intelligence Value-Add: As the complexity of NLP 

grows in the pursuit of improved precision, the resources expended may be 

driven by basic NLP infrastructure efforts, rather than developing value-add 

cognitive methods for improved search.   

Ideally this growth in labor can be addressed with cognitive methods that avoid 

the expense of traditional linguistic tools.  For example, analysis of corpora of 
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text, such as news articles, was all that was necessary for language completion 

experiments conducted for confabulation theory.  No lexicon or linguistic tools 

were required. 

4. Ontology as Emergent Property of Cognition: Another long-term alternative to 

consider is the development of a neural architecture that stores an ontology and 

performs concept recognition and search tasks described in this dissertation.  

This is a significant amount of work.  If successful, however, it may help avoid 

the use of the plethora of linguistic tools and databases typical of cognitive-

based search.  This approach appears to be consistent with the most recent 

findings in neurological research, notably confabulation, as discussed 

previously, and also the neural-word mapping found in the cerebral cortex 

[52].   

In addition to confabulation theory, other research supporting the notion that the 

ontology is an emergent property of cognition can be found in Huth, et al. [52].  This 

research identified the map between words and storage locations in the cerebral cortex for 

these words using fMRI linked temporally to a story read to the study participants.  Word 

locations in the cerebral cortex were similar across study participants.  In addition, 

evidence indicated that the conceptual meaning of a word was stored in the cerebral 

cortex.  Confirmation of storing the conceptual meaning of a word was obtained using 

words that had multiple meanings depending upon the contextual use (i.e., different word 

senses).  Different word senses for the same word had different storage locations.  In 

addition, words similar in semantic context are co-located in the cerebral cortex, 

presumably to minimize the latency of accessing semantically similar concepts.  A 

sample of word locations is provided in Figure 3.1.  The map for the entire cerebral 

cortex is provided in Figure 3.2.   

Storing concepts instead of words and the co-location of semantically similar concepts 

in the cerebral cortex appears to support the notion that the ontology is an emergent 

property of cognition.  The ontology consists of a set of concepts (not words), and the 

ontology has topologically co-located neighborhoods for concepts that are cognitively 

related.  The topological co-location of concepts is in regards to the cognitive 
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neighborhoods found in the ontology.  These neighborhoods are defined by the 

ontological relations between concepts.  Hence the storage and access of an ontology 

using biologic mimicry, i.e., neural networks, appears to be a reasonable approach (see 

draft paper Cognitive Relevancy in Appendix C for further discussion).   

 



 

 

 

Figure 3.1 Example of Cerebral Cortex Word-Concept Map:  This is an example mapping between words and location that the 

corresponding concept is stored in the cerebral cortex. Screenshot from YouTube https://youtu.be/k61nJkx5aDQ.  
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https://youtu.be/k61nJkx5aDQ


 

 

 

Figure 3.2 All Word-Concept Maps in One Hemisphere of Cerebral Cortex:  This displays all word-concept storage locations for one 

hemisphere of the cerebral cortex.  Screenshot from YouTube https://youtu.be/k61nJkx5aDQ. 
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Abstract—Bioinformatics can involve semantic 

information extraction to retrieve knowledge found in 

free-form text.  Examples of these sources can include 

research literature, textbooks, or clinical notes in 

electronic health records.  Performing semantic 

search, that is, searching for concepts instead of 

keywords, necessitates that the free-form text be 

tagged with the ontology concepts that best matches 

each word or phrase in the text that is linguistically 

meaningful.  For computational intelligence 

applications this employs a tagging process that 

automates this general approach, e.g., select 

candidate concepts, typically a large set of candidate 

concepts extracted from the medical ontology, and 

then rank the candidates using an objective function 

which quantifies tag accuracy.  Tag accuracy is 

defined as the accurate match between the ontology 

concept and the linguistically meaningful words and 

phrases found in the text being tagged.   

This research is a proof-of-concept on the use of 

genetic programming to derive the objective function 

which ranks the candidate concepts and selects the set 

of best matching concept for a sentence.  A short set 

of example primitive and linguistic variables are used 

as input to the GP process, and a set of manually 

tagged sentences extracted from the literature is used 

to derive different objective functions potentially 

suitable for tagging.  This proof-of-concept 

demonstrates the potential of this approach to 

simplify automated semantic tagging, and also to 

identify some of the challenges likely encountered 

when applying the GP approach to a complex 

linguistics problem of this nature. 

Keywords—semantic text tagging; genetic 

programming, natural language processing, 

computational intelligence 

I. INTRODUCTION 

This paper will present results for a proof-of-
concept for tagging text using a genetic 
programming (GP) approach.  It differs from prior 
approaches by making no a priori assumptions on 
the objective function used to score candidate 
concepts to rank and select the best matching 
concepts used to tag text. 

As a means to highlight the relevancy and 
importance of this research the paper will present 
results within the context of knowledge acquisition 

mailto:gjscnc@mst.edu
mailto:dwunsch@mst.edu
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as a typical task involving bioinformatics and 
computational intelligence.  We will present how 
the GP approach indicates that the potential exists 
for simplifying certain natural language processing 
(NLP) tasks typically found with text tagging.  
Differences between the new GP approach and an 
existing approach (MetaMap from the National 
Library of Medicine (NLM)) will be highlighted.  
Most notable is the tagging of text at the sentence 
instead of phrasal/part-of-speech level. 

This paper begins with an overview of the 
fundamental purpose of concept text tagging and its 
role in knowledge acquisition as it relates to 
bioinformatics.  While this can be a somewhat 
didactic step, it is included to communicate the 
motivation for the research, that is, that text tagging 
is a fundamental aspect of concept-based search 
since any shortcomings with text tagging flow 
through the semantic processes.  After this 
overview then the GP approach and results are 
presented.  This includes a review of the MetaMap 
existing approach whose basic linguistic heuristics 
were leveraged for use in the GP process.  Since GP 
is a legacy computational intelligence approach, this 
paper will not focus on the details of the GP to a 
great extent since GP is so well known and no 
particularly innovative approaches were taken with 
GP per se.  The main contribution is determining 
the feasibility of using GP to evolve an objective 
function that can accurately tags real-world medical 
text.  Proving, extending, or innovating the 
approach beyond the feasibility stage is left for 
future research. 

II. OVERVIEW AND BACKGROUND 

A. Motivation 

1) Concept-Based Search 

Fundamental to all research is the objective of 
concept-based search, which we refer to as semantic 
search synonymously.  One example of this is the 
“Bag of Concepts” search, in comparison to a 
traditional “Bag of Keywords” [1]. (The approach 
in [1 is provided as an example only.  It used a 
Support Vector Machine approach for mapping 
words to concepts, along with part-of-speech 
tagging.  We are striving to eliminate part-of-speed 
tagging to reduce complexity.) 

Concepts in medical domains are multi-word 
phrases and can be complex.  One concept can 
contain multiple words and compound concepts.  
As an example, take the concept “Dorsolumbar 
spinal fusion with Harrington rod” from the 
SNOMED-CT ontology (part of the Unified 
Medical Language System (UMLS) [2]).  From a 
keyword indexing perspective this adds complexity 
due to the requirement to process multiple 

keywords for what is a single concept, and then 
compile results based upon a vector of individual 
keywords likely to be returned by a traditional 
keyword search engine.  In comparison, a concept-
based search is looking for one concept, not 
multiple keywords.   

 

FIGURE 1: CONCEPT-BASED SEARCH EXAMPLE - a single 

concept can represent what is typically multiple 

keywords for a medical concept, potentially improving 

accuracy of information retrieval.  This figure from the 

UMLS Terminology Services web site [3]. 

As shown in Figure 1 concept-based search can 
enable the use of ontology context information to 
enhance the accuracy of results.  Prior work by one 
of the authors (unpublished) involved the creation 
of a prototype of a semantic search engine for 
medical text.  Covering space heuristics, based 
upon simple topology theory, was developed for 
this proof-of-concept; this approach appeared to 
significantly improve the accuracy of the search 
results (details are outside the scope of this article).   

However the use of concept-based search is not 
a panacea.  Part of the motivation for research in 
tagging approaches is that concept-based search 
obviously does not remove search complexity 
altogether. The complexity of using multi-keyword 
searches is not removed but in effect replaced by 
the complexity of NLP, one aspect of NLP being 
the need to tag text with corresponding concepts.  
To a large extent the motivation for the research we 
are conducting is to minimize this complexity. 

2) Extend/Simplify MetaMap 

One of the approaches to this research is to 
investigate opportunities to enhance the capabilities 
of an existing tool currently in use for semantic text 
tagging of medical literature.  The semantic search 
prototype used the MetaMap [4-6] tool from the 
National Library of Medicine for tagging literature 
and search criteria with concepts found in the 
UMLS.  This was chosen as the starting point for 
tagging due to the success of MetaMap. 

Experience gained from developing the 
aforementioned semantic search prototype 
suggested that opportunities may exist to enhance 
the accuracy, simplify processing, and reduce 
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complexity of text tagging performed by MetaMap.  
The process used by MetaMap can be summarized 
in Figure 2 as follows: 

 

FIGURE 2: BASIC METAMAP PROCESSING STEPS – note 

step 3 where concept tags are computed at the noun 

phrase level not the sentence, making it necessary to 

define a heuristic to compile concepts across phrases for 

a single sentence, which may add complexity not 

required for a particular semantic application. 

One area of interest is step #3 – parsing the 
sentence into part-of-speech elements and matching 
the concept tags to each noun phrase. To use 
MetaMap with the semantic search prototype it was 
necessary to assimilate the tags for a sentence from 
the tags for all the noun phrases, and in turn for a 
document assimilate tags for all sentences.  Since 
visibility down to the noun phrase level wasn’t 
needed an opportunity appeared to exist for 
developing an approach that tagged text at the 
sentence rather than at the noun phrase level. 

3) Reduce Tagging Computational Complexity 

Included in potential enhancements to the 
existing MetaMap process mentioned in the prior 
paragraph is the possibly of simplifying the tagging 
process, specifically by removing the requirement 
for part-of-speech tagging (POS).  If tagging is 
performed at the sentence rather than noun phrase 
level then it appeared that the need for POS may be 
circumvented completely along with its incumbent 
bandwidth load.   

Not only would removing the POS requirement 
potentially reduce bandwidth requirements and 
application complexity, it could enhance the 
flexibility of the approach.  This could occur since 
removing the requirement for POS may also 
remove uncertainties in tagging outcomes 
associated with tailoring or training a POS tool for a 
particular knowledge domain.  Hence a GP 
approach creates an objective function for tagging 
at the sentence level could circumvent any potential 
stumbling blocks associated with identifying a 
suitable existing POS tool, or building a new one, 

and training it for a use with a specific domain.  
Among the potential application areas are the 
Semantic Web [7-9], requirements analysis and 
architecture [10-16], ontology learning [8, 9, 17], 
and ontology/concept-based learning [5, 18-20] to 
cite a few examples.  

B. Context – Systems View of Knowledge 

Acquisition 

Viewing the need at a higher ‘systems’ level, 
bioinformatics can involve semantic information 
extraction to explore existing knowledge found in 
free-form text.  This may involve hypothesizing 
new knowledge from that gleaned from existing.  
Below is a potential knowledge acquisition process 
that conducts cycles of information extraction 
iteratively, hypothesizing new other 
knowledge/conclusions as new knowledge is gained 
from each successive cycle. 

 

FIGURE 3: POTENTIAL KNOWLEDGE ACQUISITION PROCESS 

– this highlights the importance of text tagging within 

the overall approach to bioinformatics, where the 

artifacts of new knowledge are new or revised domain 

ontologies. 

In the Figure 3 process, the ontology is the 
artifact that documents the acquisition of 
knowledge.  Revisions, additions, or completely 
new ontologies provide the artifacts of new 
knowledge used in computational intelligence.  
Semantic information extraction is part of the 
process that extracts new knowledge facts from 
literature.   

A semantic processing system, or SPS, for 
semantics-related functions for knowledge 
acquisition can be decomposed into a small number 
of basic components as shown in Figure 4.  This 
system is hypothesized to be the system 
infrastructure common to most semantic processing 
systems.  

1. Parse document into paragraphs and 

sentences. 

2. Parse each sentence using part-of-

speech tagging (POS) and retain 

noun phrases. 

3. For each noun phrase in sentence 

extract list of candidate concepts 

from the UMLS ontology. 

4. Score each candidate noun phrase 

using linguistic rules.  
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FIGURE 4: A SEMANTIC PROCESSING SYSTEM (SPS) 

FRAMEWORK - basic components of a semantic 

computational system common to most applications 

When conducting a literature search the SPS 
component functionality invoked includes NLP and 
semantic relevancy (relevancy component provides 
quantification of results and ranking results).  
Ranking results, specifically, quantifying how 
closely the search results match search criteria, 
requires the text being searched be tagged with 
matching concepts, i.e., words and phrases are 
matched to the appropriate concept found in the 
ontology. 

Further details on the role of ontologies and 
automated ontology learning to aid in semantic 
search is beyond the scope and focus on this paper 
(the role of ontologies to enhance semantic search 
was demonstrated by the prototype of the semantic 
search engine described earlier).   

However it is clear that concept tagging is a 
fundamental and important step for accurate 
information retrieval when using semantics, i.e., 
concepts, as the search criteria.  The basic context 
of knowledge acquisition was presented here to 
highlight the fundamental role of semantic 
information extraction and demonstrate that 
semantic tagging is an enabling technology.  The 
speed and accuracy of semantic tagging has an 
impact on the speed and accuracy of knowledge 
acquisition and computational intelligence 
activities.  

C. MetaMap ‘Objective Function’ and GP 

When MetaMap performs tagging functions it 
applies a set of linguistic heuristics [21] that scores 
each candidate concept.  The highest scoring 
concepts are considered the optimum tags for each 
noun phrase.  A summary of the MetaMap 
linguistic equations is as follows (see [21] for 
details and examples):   

𝑆𝑐𝑜𝑟𝑒 =  2(𝑐𝑒𝑛𝑟𝑎𝑙𝑖𝑡𝑦 + 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) +
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 + 𝑐𝑜ℎ𝑒𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠  (1) 

𝑤ℎ𝑒𝑟𝑒: 

𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦
= 1 𝑖𝑓  𝑠𝑡𝑟𝑖𝑛𝑔 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑠 ℎ𝑒𝑎𝑑 𝑜𝑓 𝑝ℎ𝑟𝑎𝑠𝑒, 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, (2) 

𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑣 = 4
(𝑑 + 2)⁄ ,  (3) 

𝑤ℎ𝑒𝑟𝑒 𝑑 = 𝑚𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑐 = 2
3⁄ (𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑠𝑝𝑎𝑛) +

1
3⁄ (𝑝ℎ𝑟𝑎𝑠𝑒 𝑠𝑝𝑎𝑛) (4) 

𝑤ℎ𝑒𝑟𝑒 𝑠𝑝𝑎𝑛 =
#𝑤𝑜𝑟𝑑𝑠 𝑚𝑎𝑡𝑐ℎ𝑒𝑑

# 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑠𝑡𝑟𝑖𝑛𝑔⁄  (5) 

𝑐𝑜ℎ𝑒𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑐𝑜ℎ =
∑ 𝑙𝑒𝑛𝑔𝑡ℎ𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑖

2
𝑖=#𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

𝑙𝑒𝑛𝑔𝑡ℎ𝑠𝑡𝑟𝑖𝑛𝑔
2⁄  (6) 

𝑐𝑜ℎ𝑡𝑜𝑡𝑎𝑙 = 2
3⁄ 𝑐𝑜ℎ𝑐𝑜𝑛𝑐𝑒𝑝𝑡 + 1

3⁄ 𝑐𝑜ℎ𝑝ℎ𝑟𝑎𝑠𝑒  (7) 

Coverage (4) is a measure of how many words 
in the concept are covered in comparison to words 
covered in the noun phrase and cohesiveness (6) is 
a measure of contiguous words.  When calculating 
cohesiveness, 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑖  refers to each 
contiguous segment of text, where the contiguous 
segment may be in the concept or in the noun 
phrase string being matched. 

These linguistic approaches were evaluated and 
certain aspects included in the GP approach to 
determine if a new objective function could be 
derived that does not require POS tagging such that 
tagging can occur at the sentence level.  A 
minimum set (i.e., Occam’s razor) approach was 
taken to strive for the least complex function. 

III. GP AND DERIVING OBJECTIVE 

FUNCTIONS 

The purpose of the GP approach is to explore 
tagging at the sentence level that reduces 
computational complexity while maintaining or 
improving tag accuracy.  This approach targets 
situations where visibility of concept tagging at the 
phrasal level is not required (i.e., when only 
needing the Bag of Concepts). 

Each ‘tag’ for a sentence is a set of candidate 
concepts having at least one word in the concept 
match one or more words in the sentence.   

𝑡𝑎𝑔𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = {𝐶1, 𝐶2, 𝐶3, … 𝐶𝑖}  (8) 

𝑤ℎ𝑒𝑟𝑒 𝐶𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜  
𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑤𝑜𝑟𝑑 𝑖   

Note that concepts can repeat, that is, each 
𝑡𝑎𝑔𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 is not a mathematical set in the formal 
set (intersection, union, etc. laws do not apply since 
a concept can appear multiple times in a sentence).  
However, the relationship between an individual 
word in the sentence and the tagged concept is one-
to-one, that is, each position in the sentence can be 
tagged with either 0 or 1 concept. 
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A match occurs when any linguistic base word 
is matched, i.e., the word in the sentence and word 
in the concept are morphological variants of the 
same base word.  These variants are available from 
the UMLS lexicon database [22].  Since this initial 
research is for a proof-of-concept only, experiments 
were limited to inflectional variants, however; 
future research can easily add other types of 
variants to the lexicon without changing approach 
(although of course this increases challenges that 
may exist with large numbers of tags to be scored 
due to large numbers of candidate concept 
combinations cause by combinatorial explosion).   

Given the large number of candidate concepts 
that can result (approximately 1,000 or more for 
training sentences) the number of potential tags that 
can result (i.e., different combinations of candidate 
concepts tagged for different sentence words) can 
be very large.  Only semantically meaningful words 
in the sentence are tagged with semantically 
meaningful words in the concept (i.e., ‘stop’ words 
like ‘the’, ‘or’, ‘and’, ‘with’, etc. are ignored). 

A map between each word in the candidate 
concept and matching word in the sentence is 
maintained but only for the purposes of 
bookkeeping to calculate the linguistic variables in 
the terminal set.  This map is not used directly in 
the GP function tree (see TABLE 1). 

A. GP Function Tree Evaluation and Training 

Data 

The GP process for evaluating each evolved 
function tree mimics the process used for tagging a 
sentence, similar to the MetaMap process where the 
candidate concept with the highest score is the best 
‘tag’ for a noun phrase.  However for this research 
the tag is a set of concepts that applies at the 
sentence level.  Each tag is scored, and the tag with 
the highest score provides the best set of concepts 
for that sentence.   

Candidate concepts were extracted for a set of 
five sentences taken from a NLM citation as 
follows: 

 

FIGURE 5: TEST SENTENCES FROM NLM CITATION – these 

are tagged with SNOMED-CT concepts for training. 

The MetaMap program was run for each 
sentence and the candidate concepts evaluated.  The 
correct concept tags were saved to an xml file that 
mapped each concept to the matching word(s) in the 
sentence.  This was used as the training data for the 
GP evaluation process.  Since this is a proof-of-
concept only, for simplicity only concepts from the 
SNOMED-CT ontology were used (this helped 
accelerate covering space calculations by avoiding 
uncertainties with whether or not UMLS 
relationships from other ontologies meet certain 
conditions necessary for covering space 
calculations). 

Training tags consisted of the correct tag as 
described above and then a random set of incorrect 
tags generated from combinations of candidate 
concepts.  Due to the very large number of potential 
tags (i.e., candidate concept combinations) that 
could result from each sentence, the tags used for 
training was limited to approximately 250.   

The fitness value used to evaluate each 
individual in the population is the rank of the 
correct tag in the list of tags returned by the 
function tree (ordered in decreasing value) totaled 
across all sentences. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓 =  ∑ 𝑟𝑎𝑛𝑘𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑖

5
𝑖=1  (9) 

The cases of three patients with a recent history 

of paralytic poliomyelitis in childhood who 

developed the flatback syndrome before or after 

spinal fusion for degenerative disease as adults were 

reviewed.  The flatback syndrome, a combination of 

an inability to stand erect because of forward flexion 

of the trunk and pain in the low back and/or legs, 

typically occurs in the setting of decreased lumbar 

lordosis as a result of distraction instrumentation of 

the spine for scoliosis, vertebral fracture, or 

degenerative disease.  Focus was placed on 

determining the factors responsible for the 

development and/or persistence of the flatback 

syndrome in these patients despite maintenance of, or 

partial operative restoration of, lumbar lordosis. 

Considering the essential role that the trunk extensor 

musculature plays in maintaining upright posture, it 

may be that a new onset of weakness (postpolio 

syndrome) in this musculature represents a major 

contributing factor to the flatback syndrome in these 

patients. Spine surgeons considering operative 

procedures in patients with a remote history of 

paralytic poliomyelitis should be aware of the 

possible increased risk of the flatback syndrome in 

this population of patients.  
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The 𝑟𝑎𝑛𝑘𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑖
 is the rank of the correct tag 

for 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑖 using a zero position list, that is, 
𝑟𝑎𝑛𝑘1 = 0.   

This is done because the fitness is zero-based, 
that is, when the correct tag is ranked first then its 
fitness for that sentence is zero, and consequently if 
the correct tag is ranked first for all sentences then 
the total fitness is zero (i.e., Koza style). 

B. GP Grammar – Linguistic Variables in 

Terminal Set 

Terminals chosen for the GP grammar that are 
based upon the MetaMap linguistic calculations 
include the following: 

TABLE 1: LINGUISTIC TERMINAL SET – linguistic variable 

derived from MetaMap linguistics approach for use in 

GP approach.  Each variable has a value for each tag 

(i.e., each combination of candidate concepts) 

Variable Definition Required 
Sentence 
semantic 
coverage 

Total number of 
semantically meaningful 
words in sentence that 
match words in candidate 
concepts. 

Yes 

Number of 
concepts in 
tag 

Size of the tag set, i.e., 
number of candidate 
concepts in tag. 

No 

Total 
concept 
semantic 
match 

Total number of 
linguistically meaningful 
words in the candidate 
concepts that match a word 
in the sentence. 

No 

Total 
concept 
semantic 
length 

Total number of 
linguistically meaningful 
words in all candidate 
concepts, regardless of 
whether a match exists in 
the sentence or not. 

Yes 

Total 
concept 
semantic gap 

Total number of 
linguistically meaningful 
words in candidate concept 
not found in sentence. 

No 

Concept 
semantic 
match 
fraction 

Fraction of semantically 
meaningful words matched 
in sentence, i.e., total 
concept semantic match 
divided by total semantic 
length. 

Yes 

Covering 
space 

Total number of concepts 
in the ontology for the 
candidate concepts and all 
ancestors. 

No 

 

‘Required’ Variables: In early GP iterations 
none of the linguistic variables were required, but 
results were of a form that did not appear to 
demonstrate the ability to derive fitness functions of 
a generic enough for to be used for any sentence 
other than the test sentences.  The functions 

appeared to happen to fit the test sentences by 
random chance rather than demonstrate the validity 
of an approach (for example, one GP run resulted in 
a simple constant divided by the covering space, 
which has no logical meaning insofar as tagging is 
concerned).  To address this, a minimum number of 
linguistic variables were identified, as indicated by 
the ‘Required’ column of Table 1. 

‘Covering space’: In the prototype of the 
semantic search engine the covering space size and 
intersections between the covering space sets for the 
documents being searched and the search criteria 
proved very useful for improving search precision.  
For this reason the covering space variable was 
included, but not required, in the GP function tree. 

C. GP Software Library  

GP evolutions were performed using ECJ Java 
library for evolutionary computing from George 
Mason University [23] with development using the 
Eclipse IDE and Java version 7. 

D. GP Configuration and Test Runs  

A fixed random number seed was used for each 
GP run to enable replication.   

TABLE 2: BASIC GP CONFIGURATION PARAMETERS – basic 

Koza-style GP parameter defaults used as indicated in 

ECJ documentation 

Item Value 

Maximum # 
generations 

5000 

Population size 1024 

Maximum tree 
size 

GP run for tree sizes 
between 4 to 12 in 
increments of 2 (i.e., 4, 6, 8, 
10 & 12) 

Tree 
initialization 

Ramp half-and-half (see 
section 2.2 of [24]) 

Elitism None 

Crossover 
probability 

90% 

Reproduction 
probability 

10% 

Random seed Fixed for each GP thread 
(two breeding threads and 
four evaluation threads used) 

 

A GP run was executed for each of the 
maximum tree sizes listed in Table 2, that is, there 
were five test runs, one for each of the five tree 
sizes.  Due to the numerous parameters available 
with ECJ not all are shown. 

IV. RESULTS 

In all cases a solution was found that ranked the 
correct tag first for all sentences, and in all cases, 
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within the first few generations (while the GP runs 
were configured for up to 5000 generations, at most 
three were required).   

Significant bloating occurred when the 
maximum tree size parameter was set above 
roughly 8 or higher.  These results where are not 
presented – the purpose of the research is to 
investigate the feasibility of the method.  Future 
research will investigate refinement of the approach 
including bloat control. 

For GP runs configured with smaller tree sizes 
the objective functions 𝑓 that result are as follows 
(function tree modified to a mathematical format 
suitable for presentation). 

A. GP Results for Max Tree Size = 4 

𝑓 =  
(𝑒𝑎 − 𝑏)

𝑒𝑐⁄  (10) 

𝑤ℎ𝑒𝑟𝑒 

𝑎 =
𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 +
𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (11) 

𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝐿𝑒𝑛𝑔𝑡ℎ
 (12) 

𝑏 =
𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝐿𝑒𝑛𝑔𝑡ℎ

𝑘
⁄  (13) 

𝑘 = 6 (14) 

𝑐 =
𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝐺𝑎𝑝

𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝐿𝑒𝑛𝑔𝑡ℎ
 (15) 

The concept coverage, sentence coverage, 
concept semantic length, and concept coverage gap 
variables are defined in Table 1. 

Analysis of the function form in (10) suggests 
that this can be a reasonable approach for ranking 
and selecting tags.  An accurate tag will result from 
smaller denominator values when the semantic gap 
for the concepts is minimized by a well fitting tag.  
This causes the fraction 𝑐 per (15) to be minimized 
and hence the denominator to get smaller, thereby 
of course causing a larger function value.  A 
superior tag will also cause the numerator of the 
function to increase since sentence coverage will 
grow, thereby increasing the value of 𝑎 per (11) and 
of course the exponential value in the numerator of 
equation (10), i.e, the value of (𝑒𝑎 − 𝑏), will 
increase significantly. 

Note the absence of the covering space size.  
While this variable provides information that 
enhances search accuracy, it apparently has not 
provided information that aids in tagging accuracy, 
at least insofar at the small number of sentences 
included in this research.  Of course future research, 
when additional sentences are included, may find 

different results.  For example, covering space may 
have a relationship when looking at all concepts in 
the document, i.e., when taking into account all 
prior tags in the document.  This can become an 
approach similar to confabulation theory (per 
sentence completion experiments in [25]) and hence 
mimic cognitive brain processes related to language 
and reading. 

B. GP Results for Max Tree Size = 6, 8, 10 and 12 

Results for tree sizes 6, 8, 10 and 12, due to 
bloat, is omitted for brevity. 

V. COMMENTS, DISCUSSION, FUTURE 

WORK 

While these results are preliminary, and the 
intent is to demonstrate a proof-of-concept only, the 
results appear positive.  An objective function was 
developed using GP for a set of tagged sentences 
with 100% tagging accuracy. 

While the size and diversity of the sentences 
used for training is limited, the GP process did 
produce a reasonable solution.  The variety of edge 
conditions will naturally be limited due to the 
nature of the sampling, but on a preliminary basis 
these results indicate that an opportunity may exist 
for sentence tagging using a relatively simple 
mathematical function. 

However, these results are obviously limited for 
a number of reasons. 

 The number of training sentences is 
limited 

 The diversity of the linguistic patterns 
in the training sentences is limited 

 Bloat became problematic as the size of 
the function tree grew 

Of these three limitations, the first two would 
appear to be approachable via increased sample size 
and design of the training set.  For example, the 
sampling is purely random but a more effective 
approach would be to identify a priori patterns in 
natural language that need to be addressed and 
ensure these are included in the training data. 

In regards to the third point, bloat, current plans 
are for future research to investigate the use of 
GramART [26].  GramART applies Adaptive 
Resonance Theory through the use of BNF 
grammars.  The purpose for using this approach is 
to leverage the plasticity and stability balance 
provided by ART-based neural netword designs.  
As new patterns are identified (in this case changes 
to the function tree) then the ART plasticity aspect 
of the neural network adds that pattern to the 
network, equivalent to adding to the GP function 
tree.  However, if an existing pattern is found it is 
ignored, which represents the stability benefit.  If 
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applied correctly the intended benefit is to remove 
or reduce the bloat.  The form that a tagging 
objective function will be realized is not yet 
determined – it may be in the form of a neural 
network or an interpretable math function.   

However, the form of the solution at this point is 
less important than achieving the overarching goal 
of simplifying the tagging process when a Bag of 
Concepts approach is sufficient.  
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Abstract — This paper introduces inverse ontology cogency, a novel measure used in selecting the correct 

mapping between concepts and words/phrases in free-form text, as encountered in the National Library of 

Medicine.  Inverse cogency is derived from confabulation theory, a non-Bayesian-based theory of cognition.  

Cogency values predict the cognitive outcome that results from accessing the knowledge base in the cerebral 

cortex.  Inverse cogency leverages this characteristic to identify the most plausible concept in the ontology that 

matches words or phrases in text.  This method is applied as distance measures in a multilayer perceptron 

neural network used to rank-order candidate concepts during the automated concept recognition process and 

identify the best match.  Hand-annotated text from the National Library of Medicine provides the training and 

test data.  When compared to MetaMap the inverse cogency measure was found to improve concept recognition 

precision by nearly 5% over the best published results.  Inverse cogency used in conjunction with a multilayer 

perceptron provides a new, effective approach for identifying medical concepts in text. 

Index terms — confabulation, cogency, ontology, semantics, natural language processing, semantic tag, 

concept recognition 

1. INTRODUCTION 

Based on the confabulation theory of cognition [3], the inverse ontology cogency measure described in 
this paper provides a new measure for text-concept mapping, an automated process we name concept 
recognition.  We are using concept-based search, a search method shown to improve precision [6].  In our 
research, concept-based search retrieves text associated with concepts found in ontologies for the domain of 
interest, and the search criteria consist of concepts rather than keywords.   

Ontologies consist of concepts, i.e., mental notions.  They also contain relationships between concepts, 
where a relationship is a concept.  In our research we perform concept recognition for medical text using the 
SNOMED medical ontology, a subset of the Unified Medical Language System from the National Library of 
Medicine [8].   

Concept-based search using ontologies is not possible unless a concept recognizer associates specific text 
in the corpus being searched with specific concepts in the domain ontologies of interest.  While concept-
based search is known to improve precision, the precision of concept-based search is only as good as the 
precision of the concept recognizer. 

We investigated the use of confabulation theory as a way to improve the precision of concept 
recognition.  Confabulation theory is described as a “a new model of vertebrate cognition” that identifies the 
most plausible conclusions instead of those having the “highest probability of being true,” a process named 
cogent confabulation [1].  It is a model based upon the theory that cognition evolved to maximize 
survivability within the demands of the environment.  According to confabulation theory, the cerebral cortex 
evolved to contain a fast, feedforward knowledge base that reached greedy (winner take all) conclusions 
based upon the plausibility of the answer.  Plausibility is based upon prior experience (e.g., Hebbian 
learning), not probability of truth.  Cogency is a measure using the product of non-Bayesian conditional 
probabilities to identify the most plausible outcome of the cognitive process, i.e., the outcome maximizing 
cogency is the most plausible.   
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Confabulation theory has an intuitive appeal since it is based upon finding the most plausible cognitive 
outcome.  This matches our objective of concept-based search.  Furthermore, confabulation was shown to 
work well with: sentence completion experiments demonstrated the ability of confabulation to generate 
logical sentences, without requiring lexicons or grammar.  In these experiments, words for sentence 
completion were selected based upon maximum cogency alone.  The frequencies of co-occurring words in 
English corpus are used to compute the cogency for candidate words based upon prior words in the sentence, 
and select the most plausible (maximum cogency) word sequence completing the sentence.  This resulted in 
logical, grammatically correct sentences without the use of linguistics or lexicon [1-4].  These capabilities, 
along with the simplicity of the cogency measure, made confabulation attractive as the theoretical basis for 
concept recognition.  While the problem of automated concept recognition for ontologies has been addressed 
using other methods, to our knowledge this paper is the first instance of using the theory of cogent 
confabulation to aid in recognizing concepts in text that are part of a particular  domain ontology. 

Inverse cogency is a modified form of cogent confabulation.   While cogent confabulation finds the most 
frequently used word combinations (i.e., from English corpus), inverse cogency identifies the least-likely 
combination of words that matches the name of a concept.  The conditional probabilities for inverse cogency 
are based upon co-occurring frequencies of words in concept names.  This results in cogency values that are 
limited to the lexicon of the ontology.   

When performing the concept recognition process to a group of words, a set of candidate concepts is first 
retrieved from the ontology.  Then, the best match is selected using a distance function to rank-order the 
candidates.  Six features were identified that influence the precision of concept recognition: 

1. Fraction of maximum possible inverse cogency for the candidate concept that is mapped to text 
2. Fraction of maximum possible inverse cogency for the text that is mapped to the candidate concept 
3. Fraction of words in candidate concept mapped to text. 
4. Fraction of words in text mapped to candidate concept 
5. Whether or not the name of the candidate concept is a single word 
6. Whether or not the text being analyzed is a single word 
A function to compute the ranking distance using these six features was not readily apparent, so a 

multilayer perceptron was used as a function approximator, with good results.   

Evaluation of the inverse-cogency-based approach was performed using precision.  Hand-annotated text 
from the National Library of Medicine (NLM) was obtained for training and test [51].  These data were 
manually annotated by NLM staff with the correct mapping between phrases and concepts in the medical 
ontology, and were used for training and testing the multi-layer perceptron.  In addition, we compared the 
precision of our approach against a popular medical concept recognizer, MetaMap [9-13] from the NLM.  
MetaMap uses a linguistics-based measure for ranking candidates.  Our inverse-cogency-based approach 
achieved superior performance in comparison with the MetaMap tool. 

The content of this paper is as follows: 

 Purpose and theoretical background of the inverse cogency measure. 

 Definition of the inverse cogency measure. 

 Experimental approach and results when using inverse cogency for scoring candidate concepts as 
part of the multi-layer perceptron. 

 Discussion of practical aspects of concept recognition.   

 Discussion of the longer-term potential of inverse cogency and confabulation related to search and 
learning. 

2. OVERVIEW AND BACKGROUND 

2.1 Concept Recognition 

We used MetaMap as our baseline for comparison.  MetaMap uses noun phrases as the basis for 
grouping words and performing concept recognition.  Hence, a linguistic analysis is performed for each 
sentence, and then part-of-speech tags are applied to phrases and words, which identify noun phrases for 
concept recognition.  MetaMap retrieves candidate concepts for each noun phrase, with these candidates 
being extracted from the NLM’s Unified Medical Language System.  The Unified Medical Language 
System is a large, public-domain database aggregating multiple medical ontologies [8].  In Step 4 MetaMap 
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scores each candidate using a linguistic heuristic based upon centrality, variation, coverage, and 
cohesiveness [12]. 

2.2 Cognitive Relations, Recognition Fidelity, and Recognition Combinatoric Challenges 

Word grouping for concept recognition is not constrained to the MetaMap approach of using noun 
phrases.  Cognitive relationships between noun phrases [49] can impact both the precision and fidelity of 
concept recognition.  Concept recognition precision refers to whether or not the words are mapped to the 
correct concept.  We define recognition fidelity as the level of abstractness of the concept mapped, that is, 
the less abstract, the greater the fidelity.   

More specifically, recognition fidelity is inversely related to the distance between a concept and the 
closest leaf in the ontology.  A leaf concept is defined as a concept that has no children.  The closer a concept 
exists to a leaf of the ontology, the less abstract it becomes and the higher its fidelity. 

𝜑 ∝ 1
(1 + 𝑑(𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥 , 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑙𝑒𝑎𝑓))⁄  

𝑤ℎ𝑒𝑟𝑒

𝜑 is fidelity, and,  

𝑑(𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥 , 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑙𝑒𝑎𝑓) isdistance, equal to the length of the shortest path between concept x and the 

closest ontology leaf  

Fidelity is maximized when the concept is a leaf of the ontology graph.   

Take, for example, the concept dorsolumbar spinal fusion with Harrington rod.  This concept is a leaf in 
the SNOMED ontology.  SNOMED is one of the medical ontologies included in the NLM’s Unified Medical 
Language System.  An example of using this concept in a sentence is shown in Figure 1 below, which displays 
the sentence after part-of-speech tagging.   
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Figure 1: CONCEPT-TEXT TAGGING AT THE PHRASE LEVEL – In this example the concept dorsolumbar spinal fusion with 
Harrington rod is split between noun phrases, causing a reduction in concept recognition fidelity.  Future research will investigate 
alternative approaches, such as the inclusion of cognitive relations found in the sentence to combine related concepts across noun-
phrases and thereby recognize higher fidelity concepts. 

The sentence splits the concept dorsolumbar spinal fusion with Harrington rod across two related 
phrases.  The linkage between the two phrases consists of a conceptual relation from two sentence elements: 
1) prepositional phrase “with spinal fixation,” and, 2) verb “using.”  Figure 2 shows the cognitive context of 
the concept dorsolumbar spinal fusion with Harrington rod in the SNOMED ontology.  Harrington rod also 
exists as a separate concept, and has a “uses” ontological relationship with dorsolumbar spinal fusion with 
Harrington rod (not shown in Figure 2 since the NLM Semantic Navigator [14] used to obtain these snippets 
does not provide that level of detail).  Since the ontological context matches the conceptual relationship 
found in the sentence, the two phrases “dorsolumbar spinal fusion” and “Harrington rod” can be combined 
and mapped to the single concept dorsolumbar spinal fusion with Harrington rod.  This maximizes fidelity 
since dorsolumbar spinal fusion with Harrington rod is a leaf in the ontology. 
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Figure 2: SPINAL FUSION EXAMPLE ONTOLOGY SNIPPET – ontology snippet shows cognitive context of the concept 
dorsolumbar spinal fusion with Harrington rod.  A more detailed view of the ontology subsumptive hierarchy will show a separate 
concept Harrington rod that has a “uses” relationship with concept dorsolumbar spinal fusion with Harrington rod (details not provided 
due to space limitations).  Ontology snippet from Semantic Navigator, NLM Terminology Services [14]. 

In real-world text, the cross-phrase cognitive relations are typically more sophisticated than that shown in 
Figure 1.  Figure 3 provides two examples where the concept recognition process used in human cognition 
implicitly makes use of cognitive relationships in the sentence in combination with relationships in the 
ontology.  For example, sentence 2 of Figure 3 implies anatomic location based upon ontological relationships 
between the concepts T6 and L3 (both vertebrae identifiers) and their respective more abstract anatomic 
locations thoracic and lumbar.  In this example, although counterintuitive, fidelity is improved by using the 
more abstract versions of the anatomic concepts thoracic and lumbar in combination with the procedure and 
device concepts fusion and Harrington rod respectively.  This example demonstrates how the human 
cognitive process moves up and down the ontology subsumptive hierarchy, while taking into account 
cognitive relationships in the sentence, until finding the combination of concepts with the highest fidelity 
possible.  
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Figure 3: TEXT-CONCEPT TAGGING EXAMPLE – Two examples of tagging sentence text.  Both refer to the concept dorsolumbar 
spinal fusion with Harrington rod from the SNOMED medical terminology.  This example demonstrates how a variety of facts can be 
used to identify the best match.  A domain expert may implicitly use sentence relationships to infer a concept not explicitly identified by 
name.  An example of this can be found in the second sentence that includes a location-related phrase “T6-L3.”  This phrase refers to 
vertebrae located in the thoracic and lumbar spine regions, respectively.  Hence this phrase maps to dorsolumbar spine since it refers to 
specific vertebrae in this same general region.   

These examples demonstrate maximizing recognition fidelity via the use of cognitive relations in a 
sentence and the ontology.  However, our research used MetaMap as the baseline for comparing concept 
recognition precision, and MetaMap performs concept recognition at the noun phrase only.  The cognitive 
relationship between noun phrases is not taken into account.   

Furthermore, the number of word map combinations associated with all possible candidate concepts is 
such that a brute force approach to concept recognition becomes an NP-hard problem.  For example, the 
estimated total number of candidate concepts totals 7.3 × 1015 for an example sentence in the medical 
domain (see results section for details).  Given the difficulty of the problem it is impressive how quickly 
humans can do this, especially when considering the inclusion of entities and relations in the sentence in 
combination with entities and relations in the ontology.   

Therefore, while we recognize the importance of fidelity in concept recognition, this paper does not take 
cognition relationships into account.  This is done to enable valid comparisons between our approach and 
MetaMap, which does not account for inter or intra-phrase relationships.  Clearly, there is a still-untapped 
opportunity to use cognitive relationships to improve concept recognition fidelity.  
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2.3 Confabulation Theory and Inverse Cogency for Concept Recognition 

 

Figure 4:  BRAIN ANATOMY, COGNITION, AND CONFABULATION THEORY – Confabulation theory predicts the outcomes of 
the fast, greedy, feed-forward neural network architecture composed of the cerebral cortex, thalamus, and cerebral cortex knowledge 
links which find the most plausible conclusion or action. Adapted from [1, 2]. 

Confabulation theory [1-4] is based upon evidence that cognitive processing exists via cooperation 
between approximately 4,000 paired zones in the thalamus and the cerebral cortex (summarized in Figure 4: ).  
Zones of neurons in the thalamus and cerebral cortex reflect attributes of a conceptual notion, where an 
attribute is stored as a set of neurons in a cortical patch (~ 60 neurons).  Each set of neurons defines the 
neural code for a particular attribute.  For example, a set of neurons in the patch for color attributes store the 
neural code for individual colors. 

Excitation of neurons in turn fires cascading signals to other groups via neuronal links.  The feed-forward 
neuronal firing continues until the most plausible ending group is fired (i.e., winner takes all).  The final 
neural group in this chain signals an action or conclusion.  For example, a group of neurons related to color, 
another group related to object shape, and other related to size may result in the final group being related to 
apples.  This final group is the most plausible as it is the group with maximum signal levels. 

This winner-take-all process in the context of confabulation theory refers to cognitive processes selecting 
the first conclusion that appears the most likely from among alternatives.  The most plausible conclusion is 
based upon which neuron group receives the highest signal levels. 

In simple terms, the brain makes assumptions about observed events.  When an event is observed the 
cognitive process does not assess the probability that the event actually occurred.  If perceived then it is 
assumed to be factual. 

Note that confabulation addresses neuronal processes at a macro level.  We use this theory in our study 
because it provides a simple approach to predicting the outcome of the cognitive process.  It does not involve 
computation of detailed neuronal processes such as neural spiking or timing [52, 53]. 

2.4 Cogent Confabulation 

Figure 5 below summarizes the cogent confabulation process.  Cogent confabulation [1] defines cogency 
as a conditional probability whereas for a set of assumed facts 𝜆 = {𝛼, 𝛽, 𝛾, 𝛿 }, the most plausible 
conclusion 휀 is the one maximizing the probability: 
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𝜖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝(𝛼𝛽𝛾𝛿|휀))  

When applied to language cognition, 𝛼𝛽𝛾𝛿 is a set of words in text (such as those grouped for concept 
recognition as discussed earlier) and 𝜖 is the next word that occurs after them in the left-to-right word 
sequence.  The word set 𝛼𝛽𝛾𝛿 is referred to as assumed facts because these words were identified as most 
plausible in prior confabulation steps. 

Hecht-Nielsen, et al. [2, 4] report results for sentence completion experiments that apply cogent 
confabulation via maximization of a proxy measure considered to be “approximate proportional” to cogency 
as follows: 

𝑝(𝛼𝛽𝛾𝛿|휀) ∝  𝑝(𝛼|휀)𝑝(𝛽|휀)𝑝(𝛾|휀)𝑝(𝛿|휀) 



휀 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝(𝛼|휀)𝑝(𝛽|휀)𝑝(𝛾|휀)𝑝(𝛿|휀)) 





Figure 5: CONFABULATION OUTCOME FROM ASSUMED FACTS – The confabulation process simplified consists of a greedy 
approach based upon the strength of the knowledge link (i.e., cogency).  Adapted from [3]. 

These experiments identified plausibly logical, linguistically correct words for sentence completion 
without the need for linguistic rules or dictionaries (e.g., no grammar, lexicon, or part-of-speech tags).  
Furthermore, the experiments demonstrated similar results when the set of assumed facts was extended to 
include one or more prior sentences.   

2.5 Relevance and Relationship between Confabulation, Automated Ontology Learning, and Concept 
Recognition 

Berners-Lee envisioned ontologies as the communication medium for the web, such as their use in the 
Semantic Web [54, 55].  Ontologies have been used for other purposes such as engineering requirements 
[16, 17, 20, 21, 24-29].  Ontologies, however, are typically built by hand, and thus are expensive.  As a result 
automated ontology learning has been the subject of much research [38, 40, 56-61]. 

2.6 Steps Toward Automated Ontology Learning 

The process for ontology learning likely involves an iterative learning cycle as follows, of which concept 
recognition is an important step:  

1. Process a logical “chunk’ of text, likely a sentence or phrase, and identify new concepts and 
relationships in text  

2. Add these new concepts and relationships to the ontology 

3. Perform concept recognition for all text using the new identified concepts 

4. Repeat steps 1-3, adding more concepts and relationships, until all text is processed 
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The ability to automate concept recognition is hence a step towards ontology learning.  Moreover, the 
choice of theoretical framework for concept recognition can influence the approach taken for ontology 
learning since concept recognition is part of the ontology learning process. 

2.7 Confabulation to Aid in Concept Recognition; Ontology as Emergent Property of Confabulation 

Our approach to ontology learning focuses on mimicking cognitive processes.  This approach is not new; 
Chen, et al. [38, 57] provides examples of automated ontology learning using ART neural networks.  In 
addition, we see entity and relationship recognition as part of the cognitive and ontology learning process.  
Again, this is not new – it is analogous to cognitive linguistics viewing grammars in terms of “cognitive 
entities and relations” [50].   

What is new in our research is the adaptation of confabulation theory to the problem of concept 
recognition.  Since in our research concept recognition is part of ontology learning, the use of confabulation 
theory for concept recognition is also part of ontology learning.   

What is hypothesized at this time is that the relationship between ontology learning and confabulation is 
in the interpretation of ontology as a product of confabulation.  The ontology can be interpreted as an 
emergent property of confabulation that represents a portion of the knowledge base stored in the cerebral 
cortex.  This is analogous to viewing grammar and syntax as emergent properties of confabulation theory 
[2].   

The interpretation of ontology as emergent property of confabulation is based upon the correlation 
between ontology and confabulation as follows: 

 An ontological concept correlates to one or more neural codes in the cerebral cortex.   

 Ontological relationships and paths correlate to one or more neuronal paths in the knowledge base of 
the cerebral cortex.   

For these reasons the cogency measure appears attractive for adaptation to concept recognition not only 
for use in concept recognition but also for ontology learning. 

2.8 Ontology and Cogency 

2.8.1 Reading and Human Concept Recognition in Text 

Consider how a possible confabulation cognitive process for concept recognition occurs when reading a 
sentence, as shown in Figure 6.   

 

Figure 6: CONJECTURE ON RECURRENT MENTAL PROCESS FOR TEXT-CONCEPT MAPPING – As each new word is read, 
the reader revises their mental map between word groups in the sentence and concepts in the ontology. 

When a new word is identified via the symbol-based cognitive process, prior recognized words are re-
grouped for optimum concept recognition.  This is an iterative approach.  Each time a new word is read, 
combinations of the new word with all prior words can result in a new set of best-fit concepts recognized in 
the text.  This iterative process continues until all words are read.  

The sentence reading and concept recognition process takes into account synonyms, punctuation, 
morphology, acronyms, semantically similar concepts, cognitive relations in the sentence, and so forth.  
Furthermore, the match between a concept name and phrase is typically not 1:1, yet the confabulation 
process determines the most plausible match given prior concepts recognized. 
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2.8.2 Ontology Concept-Name Uniqueness  

Concept-text map uniqueness refers to how a reader maps a single concept to a specific set of words in 
the text.  In a word-cerebral cortex mapping study by Huth et al., [62] fMRI scans of subjects listening to the 
same story demonstrated the following: 

 A map exist between an individual word and one or more locations in the cerebral cortex, 

 These maps were the same or similar across study subjects,  

 If a word has multiple meanings then a different word-location map exists in the cerebral cortex 
for each meaning, and  

 Words tend to map to locations that are co-located by semantic similarity. 

In our research we interpreted the Huth, et al. word mapping results to be consistent with cogent 
confabulation.  This supports the assumption of a bijective relationship between a group of words, within a 
particular context, and a unique concept in the ontology.  For example, if words have multiple meanings, the 
confabulation process ensures that the most plausible neural patch is energized, i.e., the neural code 
associated with the most plausible conceptual interpretation of the word is triggered based upon the context 
of word use.   

Although the Huth, et al., mapping study was for single words only, we assume that a similar process 
occurs for multi-word concepts while reading text, that is, multiple single-word concepts are energized as 
each word is recognized in text, and in aggregate this combination is associated with a unique concept.  
When the location in the cerebral cortex that is associated with a word is energized, the feed-forward paths 
emanating from this single-word concept are energized.  According to confabulation theory, these feed-
forward paths are the knowledge links in the knowledge base stored in the cerebral cortex.   

The result of energizing each single-word concept, therefore, is energizing paths that are functionally 
equivalent to energizing one concept associated with all of the single-word concepts.  We assume that this 
occurs such that knowledge links in the cerebral cortex are energized in a manner representing the multi-
word concept that exists in the ontology.   

To model this, we begin by defining the ontology as a directed acyclic graph as follows: 

𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦 ↦ 𝐷𝐴𝐺(𝐶, 𝑅),  (5) 

where C and R are the concept and relationship sets in the ontology, respectively 

𝐶 = {𝑐1, 𝑐2, … 𝑐𝑛}, and,  

𝑅 = {𝑟1, 𝑟2, … 𝑟𝑚}, where each relationship 𝑟𝑚 is a concept triple 

𝑟 = {𝑐𝑓𝑟𝑜𝑚, 𝑐𝑟𝑒𝑙𝑡𝑦𝑝𝑒 , 𝑐𝑡𝑜|𝑐𝑓𝑟𝑜𝑚 ∈ 𝐶, 𝑐𝑟𝑒𝑙𝑡𝑦𝑝𝑒 ∈ 𝐶, 𝑐𝑡𝑜 ∈ 𝐶}  

The name 𝑛𝑎𝑚𝑒𝑐 for concept 𝑐 consists of a set of words as follows: 

𝑛𝑎𝑚𝑒𝑐 = {𝑤1, 𝑤2, 𝑤3, … 𝑤𝑛}, where (6) 

𝑐 ∈ 𝐶, and  

𝑤1, 𝑤2, 𝑤3, … 𝑤𝑛 are words in the concept name 

The concept recognition process uses the concept name to determine the optimal map from text to 
concept, i.e., the map between words in the concept name and the words in the text being analyzed.  
Avoidance of ambiguous text-concept maps requires the concept name be unique in the ontology, i.e., the 
concept name is associated with one and only one concept: 

𝑛𝑎𝑚𝑒𝑐 = {𝑤1, 𝑤2, 𝑤3, … 𝑤𝑛} ⇒ 𝑐,  (7) 
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2.8.3 Cogency and Inverse Cogency Analogy 

Cogency for sentence completion experiments [1-3] identifies the most likely next word to follow one or 
more prior words based upon highest frequency of use.  Concept recognition deals with finding one concept 
that is cognitively unique to the word group, that is, the lowest frequency of use among ontology names.   

This is analogous to concept probability.  Take, for instance, the thought experiment of randomly 
selecting a concept from the ontology.  Equation (8) shows the probability of any one concept being 
randomly selected: 

𝑝𝑟𝑜𝑏(𝑐) = 1
|𝐶|⁄   

where 

𝐶 = {𝑐1, 𝑐2, … 𝑐𝑖} the set of all ontology concepts, and 

𝑐 ∈ 𝐶. 

For example, if the ontology contains 300,000 concepts, the random probability of selecting any one 
concept is 1:300,000.   

The confabulation process for concept recognition must identify a single best-match concept from among 
many.  For example, it selects the single best matching concept out of 300,000.  Ideally, one would want it to 
be implausible for any other concept to be a better match.  This analogy is appropriate with the constraint 
that all concept names are unique in the ontology lexicon and the name maps to a unique concept.  Thus 
cogency relating to concept recognition is referred to as “inverse cogency,” where inverse cogency is simply 

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑐𝑜𝑔𝑒𝑛𝑐𝑦 =  1
𝑐𝑜𝑔𝑒𝑛𝑐𝑦⁄ .  This approach is discussed in more detail in Section 3. 

3. APPROACH 

The purpose of this research is to identify a new measure for concept recognition and demonstrate its use 
and efficacy.   

Precision is used as the measure for comparing the efficacy of an approach when ground truth is 
available, in this case, our approach versus MetaMap[63]: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝⁄   

where 

𝑡𝑝 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠, and

𝑓𝑝 = 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

Inverse cogency is used in a MLP to determine whether a candidate concept is an optimum match for a 
word group. 

We also compare inverse-cogency results with results from a random forest [64].   

3.1 Sentence Text-Concept Maps 

Each word in a word grouping is associated with zero or more candidate concepts.  In this paper, a word 
group is a noun phrase for consistency with the approach used by MetaMap.  Candidates for each group are 
compiled by finding all concepts whose name contains a word in the group.  The objective of concept 
recognition is to select the optimal set of concepts from this aggregate list of candidates. 

The artifact that results is a simple concept-word map.  Each map provides a 1:1 relationship between a 
word in the word group and a word in the concept name.  Stop words are omitted. 

The concept-word map cardinality for word groups, and by association sentence, is shown in Error! 
Reference source not found.: 
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1. Each word in the sentence has a 1:1 relationship with one word in one concept. 

2. Multiple instances of a concept can exist in a word group, but no word can be associated with more 
than one concept. 

The text-concept relationship map is bijective between each word 𝑤𝑖  in a word group and each word 𝑤𝑦 

in the name of a concept, as follows: 

mapconceptx: wi
wgroup

↦ wy
conceptx 

where 

𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥 ∈ C, 

𝑤𝑦
𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥 is word 𝑦 in the name of 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥, and 

𝑤𝑖
𝑤𝑔𝑟𝑜𝑢𝑝

 is word 𝑖 in the word group 

Figure 7 summarizes concept to sentence word cardinality. 

 

Figure 7: TEXT-CONCEPT MAP OBJECTS – A collection of concept maps for each sentence tag.  Here, 𝑚𝑎𝑝𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥 for concept 𝑥 
defines a map between a word in a sentence and a word in a concept name (where the complete map for all concepts in the sentence is 
𝑚𝑎𝑝𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑥 = {𝑚𝑎𝑝𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥}∀𝑥).  A neural code in the cerebral cortex, i.e., a patch of neurons, maps to one concept.  In our research 
we assume that if a concept in the domain ontology is a multi-word concept, the concept can be associated with multiple neural codes, 
based upon results by Huth, et al. word mapping experiments. 

3.2 Inverse Ontology Cogency 

The inverse ontology cogency measure is the inverse of the cogency measure defined in confabulation 
theory. 

The cogency calculation (3) is simply inverted:  

 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑐𝑜𝑔𝑒𝑛𝑐𝑦 =  1
𝑝(𝛼|휀)𝑝(𝛽|휀)𝑝(𝛾|휀)𝑝(𝛿|휀)⁄  

The inverse cogency for one concept is the product of the inverted cogency values.  The inverse cogency 
form chosen is logarithmic as follows: 

𝐼𝑂𝐶(𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥|𝑤𝑝) = {
− ∑ 𝑙𝑛[𝑝(𝑤 𝑖|𝑤𝑝)]𝑛−1

𝑖=1  𝑓𝑜𝑟 𝑛 > 1

0 𝑓𝑜𝑟 𝑛 = 1
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where 

𝐼𝑂𝐶(𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥|𝑤𝑝) is the inverse ontology cogency for concept x using predicate word 𝑤𝑝 

𝑛 = |𝑁𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥
|, where 𝑁𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥

 is the ordered set of words for the concept’s name 

𝑤𝑖 ∈ 𝑁𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥
 is the assumed fact word where 𝑖 ≠ 𝑛, 

𝑤𝑝 ∈ 𝑁𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥
 is the predicate word, and 

𝑝(𝑤 𝑖|𝑤𝑝) is the conditional probability of assumed fact word 𝑤𝑖  and predicate word 𝑤𝑝 occurring in 

the same concept name.   

The inverse cogency values are computed for each concept in the terminology.  Since any word in the 
name can be the cogency predicate, an inverse cogency value is computed for each word in the concept 
name as predicate. 

The inverse cogency value for one-word concepts is indeterminate since inverse cogency is not relevant 
to single-word concepts.  To address one-word concepts and word groups, the neural network for scoring 
candidate concept tags includes inputs indicating whether the concept is a single word and text being tagged 
is a single word. 

4. TESTING AND RESULTS 

4.1 Inverse Cogency Sample 

 

Figure 8: EXAMPLE OF INVERSE COGENCY FOR CANDIDATE TAGS – The use of the maximum possible inverse cogency for a 
concept will push the mapping solution towards concepts with multiple words. This example demonstrates how inverse cogency for a 
concept is maximized for the multi-word concept dorsolumbar spinal fusion with Harrington rod. 

Figure 8 provides an example of the computing inverse cogency for the concept dorsolumbar spinal fusion 
with Harrington rod compared to an alternative tag set.  Inverse cogency favors tags consisting of multi-
word concepts over single-word concepts.  The alternative tag set is the parent concept dorsolumbar fusion, 
along with the Harrington rod tag.  Inverse cogency for the correct, higher fidelity tag is greater than the 
sum of inverse cogency for alternatives.  This indicates the potential efficacy of inverse cogency for 
selecting the optimum tag from candidates.  

4.2 Combinatorics, Need for MLP as Universal Approximator 

A total of one million sample tag combinations were generated by randomly picking a concept from the 
list of candidates for each word position in the sentence shown in Figure 8.  None of these randomly generated 
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tag sets had a total inverse cogency greater than the inverse cogency for the correct concept tags which 
provided an early indication that inverse cogency is useful in finding uniquely optimum tags. 

To investigate the potential size of the solution space the number of candidate concept combinations was 
calculated for a hypothetical sentence, as shown in Figure 8. This calculation resulted in 7.3 × 1015 
candidates.  A straight-forward dynamic programming approach was developed for the entire sentence, as 
shown in Figure 2.  This reduced the number of combinations to 6.8 × 106, about nine orders-of-magnitude 
smaller. 

 

Figure 2: EXAMPLE OF SEMANTIC TAGGING AND COMBINATORIC REDUCTION – In a hypothetical dynamic 
programming algorithm the analysis of words begins with the last word in the sentence.  Matching the words in the sentence to words in 
each candidate concept will progress from right to left.  Starting at the current position in the sentence, and progressing to the left, each 
word in the candidate is matched to one word in the sentence.  When the optimal concept is found, the map between the sentence and 
concept is frozen for these sentence words.  This demonstrates that use of a straight-forward dynamic programming approach has the 
potential to reduce the solution space significantly. 

Solely using dynamic programming, with a simple objective function maximizing the total inverse 
cogency and words mapped, is insufficient. Approximating the objective function with a neural network was 
necessary to achieve strong performance. We applied a 6:10:2 MLP. 

The input layer consists of the following: 

1. Fraction of words in concept name mapped to words in text. 

2. Fraction of words in text mapped to words in concept. 

3. Fraction of concept maximum possible inverse cogency that is mapped, using Equation 13. 

4. Fraction of text maximum possible inverse cogency that is mapped, using Equation 14. 

5. Whether or not the text consists of a single word (true = 1, false = 0). 

6. Whether or not the concept consists of a single word (true = 1, false = 0). 

For 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥, the fraction of mapped inverse cogency versus maximum possible is computed as 
follows: 

𝜌(mapconceptx , 𝑤𝑝) =
𝐼𝑂𝐶(mapconceptx|𝑤𝑝)

𝐼𝑂𝐶(𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥|𝑤𝑝)
⁄  (13) 

where 

𝜌 is the fraction mapped concept inverse cogency versus maximum possible, 

mapconceptx  is the bijective map between concept words and the text as shown in Equation 
(10), 

𝑤𝑝 ∈ mapconceptx  is the predicate word,  

𝐼𝑂𝐶(mapconceptx|𝑤𝑝) is inverse ontology cogency for words in the concept name that are 
mapped, and 

𝐼𝑂𝐶(𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑥|𝑤𝑝) is the concept inverse cogency calculated using Equation (12). 
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For 𝑤𝑔𝑟𝑜𝑢𝑝𝑥, that is, word group 𝑥, the fraction of mapped inverse cogency versus maximum possible 
is computed the same as Equation 10, except that the inverse cogency for the word group is used in the 
denominator instead of the inverse cogency for the concept name, as follows: 

𝜌(𝑤𝑔𝑟𝑜𝑢𝑝𝑥 , mapconceptx , 𝑤𝑝) =
𝐼𝑂𝐶(mapconceptx|𝑤𝑝)

𝐼𝑂𝐶(𝑤𝑔𝑟𝑜𝑢𝑝𝑥|𝑤𝑝)
⁄  

The output layer consists of two neurons: 

1. Score for correct match for this tag (range 0-1). 

2. Score for incorrect match for this tag (range 0-1). 

The neural network was developed using the Deeplearning4j library [65].  We used backpropagation 
with a learning rate of 0.01 and a momentum term of 0.09.  The hidden nodes used sigmoid activation 
functions and the output nodes used softmax.  A two-node output was chosen where Output 1 is the 
probability that the candidate is an optimum concept tag and Output 2 is the probability that the candidate is 
not optimum.   

4.3 Training Data: Hand-Annotated Text from NLM 

A set of hand-annotated text was made available by the NLM [51].  These were used to train and test the 
neural network, and to evaluate the precision of MetaMap in selecting the optimum concept.  Each 
annotation provided the correct map between individual words in a phrase and concept for a set of abstracts 
from the NLM.  The annotations were scattered throughout each abstract, that is, all text was not annotated, 
just a sampling.  A summary is in Table 2. 

Table 2: COUNT OF NLM HAND-ANNOTATED TEXT 

Number of abstracts 592 

Number of annotations 3,985 

 

The abstracts were parsed and then stored in a relational database.  Parsing of abstracts to extract 
sentences, phrases, and words was performed using MetaMap to ensure consistency with the manually 
annotated test data.  The parsed words were then matched to the base words in the UMLS lexicon.  Matching 
NLM annotated words to the base form enabled linking the NLM annotations to words in each concept.  In 
some cases new words and word variants were uncovered; these were added to the lexicon. 

The NLM annotations provided maps between text and the correct concept down to the word level, 
which enabled calculating word counts and inverse cogency required for the MLP inputs noted previously.  

Training and testing of the neural network was performed using the SNOMED ontology. 

NLM manual text-concept annotations typically did not include all words in a phrase.  Hence scoring 
occurred only for the subset of words mapped by the NLM manually annotated data instead of all words in 
the phrase. 

4.4 Neural Network Training and Test Results 

4.4.1 Training Data, Data Augmentation, and Training Approach 

Training data consisted of the following: 

1. NLM  manual annotations that map text to concepts in SNOMED 

2. For each correct annotation, an incorrect concept tag was drawn randomly from a list of candidates.   

In many cases the word set for a concept name was unique in the ontology, and hence a random incorrect 
concept candidate was not available for reinforcement learning.   

Training and validation was performed using a standard 10-k fold with cross-validation.  Folds occurred 
at the concept level, not the annotation level, to ensure random distribution of correct and incorrect concept 
tags across the folds.  Fold assignment for each concept was random. 
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4.4.2 Neural Network Results 

A precision of 80.8% resulted from using the multi-layer perceptron approach.  This is 5% better than the 
best available literature results for MetaMap. 

4.4.3 Comparison to Random Forests 

The random forest approach was implemented using the R language and the e1071 and caret packages 
[66, 67].  The random forest approach results in 78.1% precision, which is 2.8% less than the MLP precision 
result. 

4.4.4 Comparison to MetaMap 

Literature regarding the precision of MetaMap and Mgrep (a concept tagger from the University of 
Michigan) indicated a precision for both tools in the 76% range when tagging Medline text [68].   The 
abstracts in the NLM manually annotated test data are also from the Medline abstract database.  This 
reference study, however, did not use the NLM manual annotations data that we used in our study, so we ran 
MetaMap against the NLM manual annotations using a local installation on a Windows platform. 

This process consisted of executing a MetaMap analysis of each manual annotation (again, using only the 
annotated portion of a phrase).  The concept associated with the maximum MetaMap score was compared to 
the concept indicated in the data.  The results are shown in Table 3. 

Table 3: METAMAP PRECISION RESULTS USING NLM HAND-ANNOTATED DATA 

Number of Annotations True Positive False Positive Precision 

3,644 1,923 1,721 52.8% 

 

This precision is significantly lower than that obtained with our MLP inverse cogency-based approach. 

The results in Table 3 come from using the default MetaMap configuration.  For example, the default 
configuration does not include the use of word sense disambiguation.  Further optimization of the MetaMap 
configuration may produce results closer to that found in [68]. 

4.5 Results Summary 

Figure 10 provides a summary of precision results. 

 

Figure 10: PRECISION RESULTS – the IOC-based multi-layer perceptron has superior performance compared to both MetaMap best 
in literature, and compared to a local instance of MetaMap performing concept recognition for the manually annotated concept-text 
maps from the NLM. 
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5. CONCLUSIONS 

The development of the inverse ontology cogency measure offers a new approach for improved precision 
in concept recognition.  This measure is based upon the confabulation theory of cognition that does not rely 
upon lexicons or grammar.  As stated in [2], linguistics such as grammar and syntax “exist only as emergent 
properties of confabulation.”  In comparison, MetaMap scores are based upon linguistics.  Hence, inverse 
cogency is significantly different from traditional linguistics-based approaches. 

In a comparison with MetaMap, the inverse cogency approach offers superior precision when 
implemented in a multi-layer perceptron neural network.  This advantage can offer a significant 
improvement in concept-based search precision. 

Furthermore, since inverse cogency is based upon a theory of cognition, future work based upon 
cognitive/biologic mimicry may achieve greater fidelity and further improve precision.  Examples include 
the extraction of cognition relations from sentences as a means to infer cross-phrase concepts for improved 
search fidelity 
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Abstract —.This paper discusses the results of 

investigating simple, cognitive-based approaches to 

search.  The emphasis is placed on simplicity, and 

determining if a simple ranking measure is sufficient 

for improved search precision.  The measures chosen 

are concept-based since concept and context-based 

search improves precision. These results provide 

direction on the need for more complicated methods.  

If a simple, yet effective, distance measure is found 

for rank-ordering search results for improved 

precision, then approaches may be feasible for 

improving search precision in a shorter period of 

time at less cost.  Moreover, the methods investigated 

use a natural language interface that enables far 

more complicated criteria while remaining intuitive 

to the casual user.  Furthermore, these criteria better 

reflect search requirements than keywords alone.  

Two cognitive measures were investigated: a 

topology-based measure, and a cogency-based 

measure.  The topology-based measure uses a 

covering space algorithm for the domain ontology, 

quantifying the size of the intersection of the 

topological covering space of the search criteria and 

covering space of the document in the corpora being 

searched.  This covering space, based upon the 

subsumptive property of the ontology, creates a set of 

imputed concepts that are cognitively relevant.  The 

cogency-based measure, along with the ontological 

structure itself, is consistent with the confabulation 

theory of cognition, serving as a proxy for the 

knowledge base stored in the cerebral cortex.  It is 

also consistent with cognitive linguistics.  The corpus 

for testing search precision was sampled from NLM 

publication abstracts, and search results were scored 

by a physician.  Results indicate that improving 

search precision via the simple use of these two 

measures, even though related to cognition, are 

insufficient for improving search precision.  While a 

simple ranking metric is preferred, the results suggest 

that efforts to improve search precision are better 

spent on more complicated methods, for example, 

neural network-based approaches. 

Index terms — ontology, search, search relevancy, 

semantic search, cognitive search, healthcare 

informatics 

I. INTRODUCTION 

Two simple cognitive relevance measures are 
presented here for rank-ordering search results to 
improve precision.  These are the topology-based 
measure and the cogency-based measure.  The basis 
for both of these measures is explained in the 
context of a theory of human cognition [1-3] and 
cognitive linguistics [4].  Furthermore, benefits 
from use of a cognitive-based relevance measure in 
conjunction with a fully natural language user 
interface are explored.   

The topology-based measure uses the ontology 
covering space for scoring search relevance.  It 
leverages the subsumptive property of ontologies, 
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which is used to determine the cognitive context of 
both the search criteria and the text being searched. 

The approach described for the topology-based 
measures requires use of a domain ontology and a 
tool for automated concept recognition in text.  The 
benefit is that this enables a natural language user 
interface.  The ability to create complicated search 
criteria is an inherent outcome of the natural 
language interface, and negates the need for 
complicated search logic.  Such an interface 
provides end-users with the ability to create 
complicated search criteria in an intuitive manner, 
thereby masking from the average user the 
complexity of creating sophisticated search criteria.  
In practical terms the natural language interface 
avoids overly simplistic criteria necessary for a 
simplified user interface, or a complex interface 
required for complicated search logic.  Furthermore, 
the natural language interface requires little or no 
training for the casual user. 

The cogency-based measure uses the cogency 
measure described in the cogent confabulation 
theory of cognition [1-3].  Maximization of the 
conditional probabilities of co-occurring concepts 
in text, in theory, identifies the most likely 
cognitive fit.  This is a straight-forward application 
of the cogency measure, a desirable attribute when 
striving for simplicity.  

Section II introduces the notion of concept-
based search, along with its relationship to a 
cognition theory, cognitive linguistics, and 
ontologies.    It defines the simple ontology 
covering space measure for quantifying the 
relevance of search results.  This investigates if the 
ontology structure, as a proxy for the knowledge 
networks in the human brain, can be used to 
quantify how close a search result is to the criteria.  
In particular this section defines how the 
ontological relationships provide the subsumptive 
covering space and how the covering space 
leverages the complicated part/whole aspect of 
knowledge.  The cogency-based measure is also 
defined in Section III.  Section IV presents the 
testing approach and results.  This includes an 
example of the natural language search criteria used 
for testing.  Section V addresses conclusions.   

II. ONTOLOGY, COGNITION, SEMANTIC 

SEARCH 

Ontology, cognition theory, semantic search, 
and cognitive grammar are reviewed to provide the 
rationale for use of the ontology structure to 
compute cognitive relevancy.   

A. Ontology 

1) Medical Ontologies and Tools Used in 

Research 

The Systematized Nomenclature of Medicine 
(SNOMED) ontology used in this research is a 
subset of the Unified Medical Language System 
(UMLS) [5] available from the National Library of 
Medicine (NLM).  The UMLS version used for our 
research consists of 2,493,384 concepts.  The 
SNOMED subset used for our research consisted of 
323,292 concepts, and was chosen due to the clarity 
and simplicity of its relationships.  These 
relationships provide the context needed for the 
covering space calculations (to be addressed later in 
this paper).  The UMLS was needed since it 
contains certain metadata required for the NLM 
MetaMap tool (the tool used for automated concept 
recognition in text).  Use of the UMLS for 
contextual relationships was not feasible due to the 
ambiguity of the direction and uniqueness of its 
relationships, hence, research was limited to 
SNOMED subset due to the concise and 
understandable relationship structure. 

The ontology structure used by SNOMED is 
quite simple and was stored in two simple relational 
database tables as shown in Figure 1, and consists 
of the following: 

 Concepts: unique identifier, name, and whether 
or not the concept is a relationship type 

 Relationships: from concept, to concept, and 
type of relationship.  A relationship type is 
itself a concept. 

 

Figure 1: SIMPLE ONTOLOGY PERSISTENCE SCHEMA - 

the ontology was stored in a simple relational database 
structure. 

SNOMED contains a hierarchy of relationship 
types but these are not relevant to our purposes. 

No predicate logic was used in our research.  
Instead, the algorithm for computing relevancy used 
only existing ontology relationships.  This 
minimized algorithmic complexity.  If new 
relationship types were required to identify the 
cognitive covering space, it may require fairly 
sophisticated rules logic.  An example of logic rules 
for instantiating new relationships can be found in 
Kumar, et al. [6].   
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2) Ontology Subsumption and Features 

Subsumption refers to the ontological property 
of concepts representing more abstract, broad 
notions and more specific, narrow notions concepts 
that it encompasses.  A parent subsumes all of its 
descendent concepts, that is, it refers to the “is a” 
hierarchical relationship between parent and child.  
The parent is the more abstract concept in 
comparison to the child, the child’s children, ad 
infinitum.  A more detailed explanation of 
subsumption along with an example of extracting 
subsumptive relationships from text can be found in 
[7]. 

The subsumptive properties of the ontology 
results in a number of features that are important to 
the development of the cognitive relevance measure 
as follows: 

 Relationship Types: The subsumptive 
relationship type, the “is a” relationship, is 
required.  Relationship types can also include 
zero or more non-subsumptive relationship 
types.  A relationship type is a concept. 

 Directed Relationships and Subsumption 
Requirement: All relationships emanate 
“upwards” conceptually from the most specific 
concept towards the most abstract concept, 
forming the subsumptive hierarchy.  For 
SNOMED this results in a small set of 
categorical concepts at the highest conceptual 
level (procedure, anatomy, device, etc.).  If a 
relationship emanating from a concept is non-
subsumptive, the “to” concept that the non-
subsumptive relationship points to is part of a 
one or more subsumptive hierarchies, by 
definition. 

 Multiplicity of Subsumption: The ontology 
allows multiple subsumptive parents, i.e., a 
concept may conceptually exist in multiple 
high-level categories.  An example of this is a 
multi-word concept that encompasses multiple 
parental concepts, e.g., a multi-word concept 
may encompass a procedure, anatomical 
location, and device used. 

 Specificity – Abstractness Relationship: The 
specificity of a concept increases as the 
distance between it and concepts at the highest 
abstract level increases.  

 Ontological Graph: The ontology can be 
represented as a directed, acyclic graph.  Points 
in the graph are concepts and connections are 
instances of a relationship type. 

3) SNOMED Ontology Example 

Take for example a concept in the healthcare 
domain, as shown in Figure 2. 

 

Figure 2: SNOMED CONCEPT EXAMPLE – Example of a 

complex, multi-word concept that encompasses multiple 
conceptual categories. 

The concept “dorsolumbar spinal fusion with 
Harrington rod” shown in Figure 2 is one concept in 
the SNOMED ontology.  This concept is in the 
anatomy, procedure, and device categories (see 
Figure 3 below).  

 

Figure 3: SIMPLIFIED ONTOLOGY SNIPPET - Small subset 
of subsumptive hierarchy from the concept "dorsolumbar spinal 

fusion with Harrington rod" (provided by NLM’s Terminology 

Services https://uts.nlm.nih.gov/home.html). 

The actual number of concepts in the simplified 
hierarchy shown in Figure 3 is far more than that 
shown.  In reality there are over 100 related 
concepts at higher, more abstract cognitive levels.  
As shown in this example, the subsumptive 
relationships can imply a large number of more 
abstract concepts.  Obviously this is not taken into 
account by search engines based upon keywords 
alone.   

B. Theory of Cognition 

The ontology structure essentially serves as a 
proxy for the knowledge base stored in the cerebral 
cortex. 

Confabulation theory [1-3] explains cognition as 
a process that accesses the neural codes and 
relationships in the cerebral cortex.  This process is 
instantiated via thalamocortical links between the 
thalamus and the cerebral cortex.   

https://uts.nlm.nih.gov/home.html
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Figure 4: BRAIN ANATOMY, COGNITION, AND 

CONFABULATION THEORY - Confabulation theory predicts 

the outcomes of the fast, greedy, feed-forward neural network 
architecture composed of the cerebral cortex, thalamus, and 

knowledge links which find the most plausible.  Adapted from 

[1, 3]. 

Confabulation theory is based upon evidence 
that the human cognitive process exists via 
cooperation between approximately 4,000 paired 
zones in the thalamus and the cerebral cortex 
(summarized in Figure 4).  Zones of neurons in the 
thalamus and cerebral cortex reflect attributes of a 
conceptual notion, where an attribute is stored as a 
set of neurons in a cortical patch (typically ~ 60 
neurons).  Each set of neurons defines the neural 
code for a particular attribute.  For example, a set of 
neurons in the patch for color attributes store the 
neural code for individual colors, e.g., blue.  
Excitation of such a set of neurons fires cascading 
signals to other groups via knowledge links.   

Note that confabulation theory and cogency 
address neuronal dynamics at a macro level.  
Neither confabulation theory nor the cogency 
measure attempts to delve into the details of 
sophisticated neural processes, e.g., neuron spiking 
or timing, such as that discussed in [8, 9]. 

The feed-forward neuronal group firing 
continues until the most plausible ending group is 
fired (i.e., winner takes all).  The final group in this 
chain signals an action or conclusion.  For example, 
a group of neurons related to color, another group 
related to object shape, and other related to size 
may result in the final group being related to apples.  
This final group is the most plausible, that is, the 
group with maximum cogency. 

Cogent confabulation [1] defines cogency as a 
conditional probability whereas for a set of assumed 
facts 𝜆 = {𝛼, 𝛽, 𝛾, 𝛿 }, the most plausible conclusion 
휀 is the one maximizing the probability:  

𝜖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝(𝛼𝛽𝛾𝛿|휀)) 

If confabulation is applied to language cognition 
then 𝛼𝛽𝛾𝛿 is a set of words in a phrase or sentence, 
and 𝜖 is any word likely found to occur after them 
in the temporal sequence.  The word set 𝛼𝛽𝛾𝛿 is 

referred to as assumed facts because these words 
were identified in prior confabulation steps.  
Cogency does not make use of the probability that 
their perceived existence is accurate, i.e., it is non-
Bayesian. 

Hecht-Nielsen, et al. [3, 10] reported results for 
sentence completion experiments that apply cogent 
confabulation via maximization of a proxy measure 
considered to be “approximate proportional” to 
cogency as follows: 

𝑝(𝛼𝛽𝛾𝛿|휀) ∝  𝑝(𝛼|휀)𝑝(𝛽|휀)𝑝(𝛾|휀)𝑝(𝛿|휀) 2 

휀 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝(𝛼|휀)𝑝(𝛽|휀)𝑝(𝛾|휀)𝑝(𝛿|휀)) 

 

Figure 5: CONFABULATION OUTCOME FROM ASSUMED 
FACTS – The confabulation process simplified consists of a 

greedy approach based upon the strength of the knowledge link 

(i.e., cogency).  Adapted from [3]. 

Notable about these experiments was the 
identification of plausibly logical, linguistically 
correct words to complete a sentence without the 
need for either linguistic rules or dictionaries (e.g., 
grammars, lexicons, or part-of-speech tags).  
Furthermore, these experiments demonstrated 
similar results when the set of assumed facts was 
extended to include prior sentences.  The 
conclusion is that grammar and syntax “exist only 
as emergent properties of confabulation” [10]. 

C. Semantic Brain Map and the Ontology 

In Huth, et al. [11], fMRI imaging, taken while 
test subjects listen to scripted stories, produced 
maps, called “semantic tiles,” of the physical 
location of concepts stored in the cerebral cortex.  
Patterns of similar storage locations for the same 
concepts were observed across study subjects.  It 
also provided evidence of the physical co-location 
of similar concepts, i.e., semantic grouping.  
Conversely, it demonstrated that a different 
meaning of the same word is stored in a different 
location, i.e., the cerebral cortex stores concepts, 
not words. 

This research is consistent with the 
confabulation viewpoint that the cerebral cortex 
stores a person’s knowledge as a network of 
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interconnected concepts.  An interpretation of this 
consistency, as it relates to the use of ontological 
data to determine cognitive relevance, is that the 
ontology is an emergent property of cognition.  This 
is simply an extension of Hecht-Nielsen’s 
interpretation of linguistics as “an emergent 
property of confabulation” [10].   

In the research discussed in this paper, the 
ontology, as a written and graphical artifact of 
cognition, is interpreted to have a structure that 
reflects the cognitive structure of these concepts in 
the cerebral cortex.  This structure consists of a 
unique neural patch/code for each unique concept, 
links between related concepts, along with the 
physical co-location of related concepts.  It is 
assumed that physical co-location occurs to reduce 
latency in identifying related concepts. 

Ontology subsumption, along with 
confabulation theory, semantic tiling, and 
interpreting the ontology as an emergent property of 
cognition, provided the theoretical basis for the 
development of the cognitive relevance measure. 

D. Semantic Search 

Semantic search, also called concept-based 
search, refers to the search method of finding 
mental notions in lieu of keywords.  Concept-based 
search looks for a specific concept rather than a list 
of keywords.  For example, when the search criteria 
consist of "dorsolumbar spinal fusion with 
Harrington rod", a concept-based search has only to 
look for one concept.  But a keyword search must 
look for all keywords and the possible combinations 
of these. 

From this perspective the shortcoming of 
keyword search is that they can be grouped into 
multiple different combinations that infer 
fundamentally different cognitive notions, thereby 
biasing search results.  Concept-based search, along 
with context-based search, however, can improve 
precision [12].  The approach provided in this paper 
is a step towards blending concept and context 
search. 

This does not mitigate the difficulties of natural 
language processing.  For example, developing an 
automated method that maps text to concepts in the 
ontology can be challenging. 

In our research we used MetaMap [13-18] from 
the NLM to perform this mapping.  MetaMap made 
it possible to “tag” words and phrases in the natural 
language search criteria with the matching 
concepts.  The same was performed for corpora text 
being searched.  As described later in this paper, 
these tags are used to extract an ontological 
covering space from both the search criteria and 
corpora text and determining the intersection of the 

two.  This intersection is the basis for quantifying 
the relevancy of search results. 

E. Cognitive Linguistics 

Cognitive linguistics is based upon the premise 
that “language is governed by general cognitive 
principles, rather than by a special-purpose 
language module” [19].  Linguistic operations relate 
to general cognitive processes.  The three major 
hypotheses for cognitive linguistics are (as stated in 
[19]), as follows:  

1. Language is not an autonomous cognitive 
facility 

2. Grammar is conceptualization 

3. Knowledge of language emerges from 
language use 

Cognitive linguistics appears consistent with the 
cognition theory per Hecht-Nielsen as shown in 
Table 1 below. 

Table 1: COGNITIVE LINGUISTICS RELATION TO 

COGNITION THEORY 

Cognitive 
Linguistics 

Cognition Theory 
(Confabulation) 

Language is not 
autonomous 
facility 

Knowledge base stored in the 
greedy feedforward networks 
in cerebral cortex is used for 
all cognition, including 
language 

Grammar is 
conceptualization 

Neural patches contain the 
neural codes for attributes and 
conceptual notions (neural 
code exists for words, and via 
the feedforward networks, 
link to other patches 
representing cognitive notions 
in the knowledge base) 

Language 
emerges from 
language use 

Language experiments using 
sentence completion, based 
solely upon conditional 
probabilities computed from 
prior language use, produced 
rational and linguistically 
correct sentences without the 
use of lexicon, grammatical 
analysis, or linguistic rules  

 

An example in medicine is the linguistic 
construal of topological or geometric structure that 
is represented in the ontology.  Cognition regarding 
the concept “dorsolumbar spinal fusion with 
Harrington rod” is shown in the ontology snippet in 
Figure 3, demonstrating the ontological equivalence 
of “construal” of anatomic location via subsumptive 
relationships.  Other concepts are easily construed 
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via subsumption, such as medical device, procedure 
type, etc. 

Cognitive grammar, a topic within cognitive 
linguistics, relates traditional grammar roles to a 
cognitive process [4].  As defined by the three 
general cognitive linguistics hypotheses, cognitive 
grammar involves the conceptualization from words 
in a grammatical unit (i.e., a sentence).   

In general the conceptualization objectives of 
cognitive grammar is aimed at understanding two 
things [4]:  

1. Things – cognitive notions that are usually 
nouns 

2. Relations – cognitive notions that are 
usually verbs and adjectives 

These two goals of cognitive grammar are 
functionally equivalent to the two core concept 
types in ontologies: 1) identify conceptual entities, 
and 2) identify relations between concepts (see 
Figure 1).  Loosely speaking, item 1 is related to 
concept-based search, and item 2 is related to 
context-based search. 

For example, if a sentence states that someone 
buys something, the cognitive grammar typically 
refers to participants and a relation, where the 
relation type matches the word used to describe the 
relation (‘buy’ in this case).  Identifying the specific 
relation concept that maps to this role for a 
particular knowledge domain, however, requires 
more analysis.   

For example, a spinal fusion may be 
accomplished without use of the Harrington rod.  
This simple negation operator is quite obvious to 
most anyone, i.e., this rod type is not applicable.  
But lacking the specific participant-role-participant 
relationship makes it difficult to determine this.   

Unfortunately the field of cognitive grammar 
does not yet possess the computational approaches 
to the extent found in computational linguistics.  
For example, computational linguistics tools exist 
for mapping the linguistic part-of-speech to each 
words and phrase in a sentence.  Although research 
has proceeded in cognitive linguistics in similar 
areas, algorithms and tools do not yet exist for the 
automated application of cognitive grammar.  
Hence it is not possible yet to parse sentences using 
a completely cognitive approach, and from this 
extract entities and relationships that map to 
ontological concepts (i.e., identify conceptual 
relations between concepts). 

It is possible to map a noun phrase to one or 
more concepts using the MetaMap tool.  Hence the 
remainder of this paper focuses on cognitive search 
limited to nouns and noun phrases.  The 

development of computational approaches that 
automate cognitive grammar analysis and identify 
the cognitive relation between concepts is the topic 
of future research. 

III. TOPOLOGY COVERING SPACE  

AND COGNITIVE RELEVANCE 

The overarching objective of this research was 
to identify a simple measure of cognitive relevancy 
for ranking search results that improved precision.  
In addition, wherever possible minimizing the use 
of heuristics was desired to aid in diagnosing and 
fixing shortcomings. 

The first objective of this section is to define a 
topology covering space for the ontology.  The 
ontology will consist of a set of concepts and 
relationships that can be represented as a directed, 
acyclic graph whose highest level of abstraction 
consists of a small set of concepts.  Relationship 
types are not restricted other than the set must 
include subsumption, as previously discussed.  
Furthermore, each concept name in the ontology 
must be unique.  While name uniqueness is not a 
theoretical requirement for defining the covering 
space, it was required for practical purposes.  

The second objective is to define a measure for 
comparing two covering spaces.  This measure must 
be as simple as possible and reflect the cognitive 
relationships between two conceptual covering 
spaces defined by: a) the concepts associated with 
the search criteria, and, b) the concepts associated 
with the text being searched.  

A. Topology Space and Ontology Neighborhood 

Addressing the use of topology theory and 
neighborhoods applied to ontologies defines the 
mathematical basis for the cognitive search 
relevancy measure.  It also addresses the intuitive 
relationship that relevancy has to cognition theory.  
These two areas provide the substantiation of an 
approach that minimizes heuristics and provides a 
simple measure for relevancy that achieves the 
basic objectives for this research. 

The term neighborhood used in this paper refers 
to an ontological neighborhood of concepts where 
concepts in the same neighborhood share a set of 
cognitive notions of interest.  

Definition 0: Per Willard [20], a topology on a 
set 𝑋 is a collection 𝜏 of subsets of 𝑋, called the 
open set, satisfying the following: 

1. Any union of elements of 𝜏 belong to 𝜏, 
2. Any finite intersection of elements of 𝜏 

belong to 𝜏, 
3. Ø and 𝑋 belong to 𝜏 
Definition 1: An ontology can be represented as 

a directed acyclic graph that consists of a set of 
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vertices, 𝑉, and a set of relationships, 𝑅, where each 
relationship is a directed connection between two 
concepts 𝑐𝑓𝑟𝑜𝑚 and 𝑐𝑡𝑜. 

𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦 ∶= 𝑔𝑟𝑎𝑝ℎ 𝐷𝐴𝐺(𝑉, 𝑅) 𝑤ℎ𝑒𝑟𝑒  (4) 

𝑉 = {𝑐1, 𝑐2, … 𝑐𝑛} (5) 

𝑅 = {𝑐𝑓𝑟𝑜𝑚 , 𝑐𝑡𝑜|𝑐𝑓𝑟𝑜𝑚 ∈ 𝑉, 𝑐𝑡𝑜 ∈ 𝑉} (6) 

Definition 2: the set 𝑋 used to define a topology 
for an ontology consists of all concepts in the 
ontology, i.e., 𝑉. 

Definition 3: the distance 𝑑 between two 
concepts in the ontology is the length of the shortest 
path 𝑃 between the two concepts in the directed 
graph regardless of relationship type.   

𝑃(𝑐𝑓𝑟𝑜𝑚 , 𝑐𝑡𝑜) 𝑖𝑠 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑠𝑒𝑡 {𝑐𝑓𝑟𝑜𝑚 , 𝑐2, … 𝑐𝑡𝑜} (7) 

𝑑(𝑐𝑓𝑟𝑜𝑚 , 𝑐𝑡𝑜) =

𝑎𝑟𝑔𝑚𝑖𝑛𝑃(𝑐𝑓𝑟𝑜𝑚,𝑐𝑡𝑜) (|𝑃(𝑐𝑓𝑟𝑜𝑚, 𝑐𝑡𝑜)|) (8) 

Definition 4 the ontology neighborhood 𝑁 for a 
concept 𝑐𝑓𝑟𝑜𝑚 consists of itself plus any concept 𝑐𝑛 

where 𝑑(𝑐𝑓𝑟𝑜𝑚 , 𝑐𝑛) > 0.  

𝑁𝑜𝑛𝑡(𝑐𝑓𝑟𝑜𝑚) = {𝑐𝑓𝑟𝑜𝑚 , 𝑐𝑛|𝑑(𝑐𝑓𝑟𝑜𝑚 , 𝑐𝑛) > 0} (9) 

Definition 3 is intended to reflect the basic 
notion of subsumption, i.e., specificity increases as 
the distance increases to higher level, more abstract 
concepts.  Non-subsumptive relationships are 
included, per Definition 3 and in accordance with 
the ontological property that all concepts exist in at 
least one subsumptive hierarchy.   

Use of non-subsumptive relationships can be 
justified by example using the relationship between 
spinal fusion and Harrington rod.  This is a ‘uses’ 
relationship, not an ‘is a’ relationship.  The use of 
the Harrington rod cognitively triggers the neuronal 
code for this medical device which in turn triggers 
the downstream feed-forward knowledge network 
in the cerebral cortex related to it.  It therefore 
includes all of the concepts related to the 
Harrington rod, including the higher-level, abstract 
cognitive notions related to a device of this type.  
This is intuitively obvious in this case since the 
name of the concept includes the term Harrington 
rod, but such naming is not mandatory in the 
ontology.   

Sophisticated search criteria may exclude 
certain concepts normally part of a concept’s 
neighborhood.  But, as previously stated, use of 
predicate logic extracted from cognitive relations in 

sentences is for future research, so this functionality 
is excluded from the scope of this paper. 

Definition 5: the size of the neighborhood for a 
concept 𝑐𝑓𝑟𝑜𝑚 is the cardinality of its neighborhood 

set 𝑁𝑜𝑛𝑡(𝑐𝑓𝑟𝑜𝑚). 

Definition 6: the neighborhood for multiple 
concepts is the union of the neighborhood set 𝑁 
associated with each concept.  

𝑁𝑜𝑛𝑡(𝑐1, 𝑐2, … 𝑐𝑚) = ⋃ 𝑁𝑜𝑛𝑡(𝑐𝑖)
𝑚
𝑖=1  (10) 

Definition 7: the neighborhood common to two 
or more neighborhoods consists of the set of 
concepts found in the intersection of their 
neighborhoods.  

𝑁𝐼(𝑁1, 𝑁2, … 𝑁𝑚) = ⋂ 𝑁𝑖
𝑚
𝑖=1  (11) 

Definitions 1 through 7 define neighborhoods 
that contain subsets of the ontology concepts set 𝑉.  
The set 𝑉 corresponds to 𝑋 in Definition 0, whereas 
the set 𝑋 contains the concepts for the entire 
knowledge domain defined in the ontology.  The 
collection of neighborhoods 𝑁 and intersections 𝑁𝐼 
corresponds to the collection of subsets 𝜏 referenced 
in Definition 0.  This includes the empty set Ø and 
the entire domain ontology 𝑋.  Therefore the use of 
Definitions 1 – 7 creates a topology over the 
ontology per the requirements of Definition 0. 

This topology appears consistent with the 
cognitive process described in the prior section B.
 Theory of Cognition.  Suppose a neural code is 
activated that represents concept 𝑐𝑓𝑟𝑜𝑚.  And also 

suppose that this occurs in a hypothetical person 
whose knowledge base is complete and accurate.  
The activated neural code triggers the feedforward 
paths in the knowledge base of the cerebral cortex.  
This in turn activates a neighborhood of neural 

codes in the cerebral cortex, 𝑁𝑐𝑜𝑟𝑡𝑒𝑥(𝑐𝑓𝑟𝑜𝑚), that 

are cognitively related.  For our purposes, 

𝑁𝑐𝑜𝑟𝑡𝑒𝑥(𝑐𝑓𝑟𝑜𝑚) is interpreted to be a neighborhood 

of concepts represented by these activated neural 
codes.  This, of course, is a simplification of the 
actual cognitive process. 

This does not imply that the ontology 

𝑁𝑜𝑛𝑡(𝑐𝑓𝑟𝑜𝑚) neighborhood is a 1:1 match with the 

𝑁𝑐𝑜𝑟𝑡𝑒𝑥(𝑐𝑓𝑟𝑜𝑚) neighborhood.  The cerebral cortex 

𝑁𝑐𝑜𝑟𝑡𝑒𝑥(𝑐𝑓𝑟𝑜𝑚) and ontology 𝑁𝑜𝑛𝑡(𝑐𝑓𝑟𝑜𝑚) 

neighborhoods are viewed as functionally 
equivalent.  Such equivalency is considered in 
respect to validating that the ontology topology 
𝑇𝑜𝑛𝑡 , defined for determining cognition-base 
relevancy, is consistent with what is known about 
human cognition. 
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Definition 7: the neighborhood of the search 
criteria, 𝑁𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎,consists of the union of the 
neighborhoods for each concept in the criteria.  
Likewise, the neighborhood of the text being 
searched, 𝑁𝑡𝑒𝑥𝑡 , consists of the union of the 
neighborhoods for each concept found in the text.   

Definition 8: a shared cognitive space for two or 
more neighborhoods consists of the intersection of 
these neighborhoods.  

Definition 9: topology-based relevance,r, is 
measured by the relative size of cognitive space that 
the text neighborhood shares with the criteria 
neighborhood. 

r =
|𝑁𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 ∩ 𝑁𝑡𝑒𝑥𝑡|

|𝑁𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎|⁄  (12) 

 

 

 

Figure 6: EXAMPLE OF SEARCH AND DOCUMENT NEIGHBORHOODS – suppose the search criteria consist of one concept, 
dorsolumbar spinal fusion with Harrington rod (blue).  Suppose a document includes two related concepts.  The green area is the 

covering space for the document.  Cognitive relevance is the 23 concepts in the document neighborhood divided by the 127 concepts 

in the criteria neighborhood. 

 

Cognitive relevance has range 0 ≤ 𝑟 ≤ 1 that 
indicates the relative size of the shared cognitive 
space that the text has with the criteria.   

B. Example: Cognition versus Keyword 

Consider two keywords – hypoglycemia and 
diabetes.  In the context of keyword search these 
two terms have no relationship. 

When considered within a cognitive context, 
however, they share a common parent, disorder of 
glucose metabolism.   

Consider a search criteria containing diabetes.  
Some documents in the corpora being searched may 
contain hypoglycemia but not diabetes.  These 

documents, while not having a cognitive relevancy 
equal to 100%, should, nonetheless, have a 
relevancy higher than concepts that exist in a 
completely different part of the ontology hierarchy.  
When criteria contain many concepts, such “near-
miss” scenarios will likely return a set of documents 
of far greater relevance than keyword approaches. 

C. Cogency-Based Relevance Measure 

The cogency-based measure is a straight-
forward application of confabulation theory [1-3].  
The conditional probability of two concepts co-
occurring in the same document and in the search 
criteria is the basis for computing cogency, as 
follows: 
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The search criteria consist of concepts extracted 
from the description supplied in natural language 
(for our experiments the search criteria was the 
patient’s profile, along with search phrases 
provided by the physician. 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = {𝑐1, 𝑐2, 𝑐3 … 𝑐𝑛|𝑐𝑛 ∈ 𝐶𝑜𝑛𝑡𝑜𝑙} (13) 

The corpus consists of documents to be 
searched.  In our experiments the corpus is a set 
of abstracts retrieved using the NLM’s PubMed 
search tool and the search phrases from the 
physician. 

𝐶𝑜𝑟𝑝𝑢𝑠 = {𝑑1, 𝑑2, 𝑑3 … 𝑑𝑛} (14) 

Each document in the corpus, i.e., abstract in 
our experiments, is represented by a set of 
concepts.  These were identified using the 
MetaMap automated concept-text mapper. 

𝑑𝑛,𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠 =
{𝑐1, 𝑐2, 𝑐3 … 𝑐𝑚|𝑐𝑚 ∈ 𝐶𝑜𝑛𝑡𝑜𝑙 , 𝑑𝑛 ∈ 𝐶𝑜𝑟𝑝𝑢𝑠} (15) 

The corpus of concepts consists of the union 
of all concepts across all documents in the 
corpus. 

𝐶𝑜𝑟𝑝𝑢𝑠𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠 =
{𝑐1, 𝑐2, 𝑐3 … 𝑐𝑙|𝑐𝑙 ∈ 𝐶𝑜𝑛𝑡𝑜𝑙 , ∀𝑑𝑛 ∈ 𝐶𝑜𝑟𝑝𝑢𝑠}  (16) 

Cogency values are calculated using the 
frequency of occurrence of concept pairs across 
the entire corpus. 

𝑐𝑜𝑔𝑒𝑛𝑐𝑦𝑐𝑙,𝑐𝑚
=

𝑙𝑛(𝑝𝑟𝑜𝑏(𝑐𝑙|𝑐𝑚)|𝑐𝑙 , 𝑐𝑚 ∈ 𝐶𝑜𝑟𝑝𝑢𝑠𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠) (17) 

The cogency for a document is the sum of the 
cogency for all concept pairs found in both the 
document and the search criteria. 

𝑐𝑜𝑔𝑒𝑛𝑐𝑦𝑑𝑛
=

∑ 𝑙𝑛(𝑐𝑜𝑔𝑒𝑛𝑐𝑦𝑐𝑙,𝑐𝑚
|𝑐𝑙 , 𝑐𝑚 ∈ 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎) (18) 

This forms a distance measure for ranking 
search results, as a relation between documents 
where documents with a larger cogency value 
are ranked higher. 

𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑅: 𝑐𝑜𝑔𝑒𝑛𝑐𝑦𝑑𝑎
> 𝑐𝑜𝑔𝑒𝑛𝑐𝑦𝑑𝑏

⇒ 𝑑𝑎𝑅𝑑𝑏(19) 

III. TEST AND RESULTS 

A. Approach 

1) Purpose and Summary 

The purpose testing for this research is 
exploratory in nature.  The question is whether or 
not the two cognitive relevance measures is a 
plausible approach for improved search precision, 
and hence, suitable for continued research and 
validation. 

A comparison was made between the cognitive 
search approach described herein and the traditional 
keyword approach.  The baseline for comparison is 
the NLM’s PubMed search tool, a popular search 
tool in medicine.  This provides the following: 

 Provide a baseline for keyword search 
precision for comparison. 

 Extract a large corpus of document 
abstracts for search using the cognitive 
relevance measure.   

Precision results for the cognitive approaches 
are compared to the results provided by the PubMed 
traditional keyword approach.  The recall measure 
is not used since a corpus that identifies all relevant 
documents was not practical due to storage 
limitations.  However, the corpus size for 
computing cognitive search precision was large 
enough to be suitable.  

Real-world patient profiles were used for 
testing.  These consisted of the History of Present 
Illness, or HPI, a clinical artifact created in a 
number of clinical processes.  The HPIs used for 
this study are fictitious, but, reflect the clinical 
experience of a cardio-thoracic surgeon and hence 
realistic.   

A total of ten HPIs were used, which, while 
appearing to be a relatively small sample size, was 
deemed appropriate for exploratory testing since 20 
NLM abstracts are scored for each patient and 
precision is computed for the aggregate of all 
abstracts across all HPIs.  This provided a total of 
200 abstracts for dichotomous categorization by the 
physician (either relevant or not relevant) and 
precision calculations.  The HPIs ranged from 1 to 5 
paragraphs in length.  See Figure 7 for an example.  
Sample size justification and other statistical 
considerations are provided in the Results section. 

The scenario used for testing is that of a surgeon 
who needs to identify any clinical, procedure, 
device, or other medical factors that may increase 
safety or clinical outcomes risk for that particular 
patient.  The search tool supports this task with a 
broad-based search to perform a “sweep” of 
potential factors that the surgeon must address to 
ensure minimal risk and optimal results.  It is 
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envisioned that this would occur as part of the 
normal clinical process that evaluates and plans the 
surgical procedure.  That is, this scenario is 
envisioned as standard step in the typical clinical 
process.  The purpose is to include the effectiveness 
of the unique capabilities enabled by the cognitive 
relevance measure.  That is, a natural language 
interface for a fast and easy search interface, 
analysis of all relevant patient information via use 
of the entire HPI as the search criteria, and 
improved confidence in results due to higher search 
precision.   

 

Figure 7: HISTORY OF PRESENT ILLNESS – example of the 
HPI for a patient undergoing cancer surgery.  Surgical concerns 

typically stem from complications that can occur due to patient 

condition and medical history. Performing a fast and accurate 

A 64-year-old women presents with a 3 cm 

mass in her left upper lobe, which was not 

present 18 months previously. Computed 

tomography confirms the presence of the mass 

without evidence of mediastinal adenopathy. 

Transthoracic fine needle aspiration reveals 

non-small cell lung cancer. The surgeon 

reviews the patient’s medical record, x-ray 

findings, pulmonary function studies, 

laboratory results, and bronchoscopy report. A 

mediastinoscopy has been performed which 

shows no evidence of N2 or N3 nodal 

involvement. Informed consent is obtained. 

The planned procedure is discussed with the 

anesthesiologist. 

The patient is admitted to the hospital the 

morning of the scheduled operation and 

undergoes a left posterolateral thoracotomy. 

The lateral chest wall, diaphragm, 

pericardium, and mediastinum are examined 

for evidence of metastatic disease; if detected, 

appropriate biopsies are obtained. The 

pulmonary ligament is divided and 

representative pulmonary ligament, 

paraesophageal, aortopulmonary window, 

subcarinal, and hilar lymph nodes are sampled. 

The pulmonary artery is exposed in the fissure 

and the fissure is completed with a stapler. The 

segmental pulmonary arteries to the upper lobe 

are isolated, ligated, and divided. The superior 

pulmonary vein is isolated, divided and over-

sewn. The distal vein is ligated. All 

peribronchial tissue and lymph nodes are 

reflected into the specimen and the left upper 

lobe bronchus is isolated and divided at its 

origin. The closed bronchial stump is checked 

for competency. Two chest tubes are inserted 

into the pleural cavity and the thoracotomy is 

closed. The patient is extubated and sent to the 

post anesthesia recovery unit. 

Chest tubes are removed in the hospital on 

the third or fourth day. Following discharge on 

the seventh postoperative day, the patient is 

seen in the office for suture removal and 

checking of the incision site, chest x-ray, and 

management of routine postoperative problems 

with pain management, wound care, and return 

of preoperative pulmonary and physical 

function 
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search for risk factors assists the surgeon in taking steps to 

mitigate risks and improve clinical outcomes.  

The study approach is blind.  The physician 
does not know the search approach used to retrieve 
the abstract he categorizes, nor does he know the 
ranked relevance position of the abstract. 

2) Steps 

The search criteria, i.e., the HPI, were analyzed 
using the MetaMap program from the NLM.  This 
parses the HPI into sentences, and then sentences 
into phrases.  It then retrieves a list of concepts that 
match the words/phrases in the HPI.  This list will 
be used to identify the criteria’s cognitive 
neighborhood 𝑁𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 .  See Figure 8 for an 
example. 

 

Figure 8: SEARCH CRITERIA – example of search criteria, 

i.e., list of concepts mapped to the History of Present Illness. 

The physician also provided a set of keywords 
for each HPI.  This was used to perform a search for 
each HPI using the PubMed search engine (as 
mentioned earlier, for computing a precision 
baseline and to develop search corpus). 

A corpus was developed for the cognitive 
approach using the keywords supplied by the 
physician.  All abstracts returned by the keyword 
approach were downloaded and stored in a 
relational database.  There were 93,436 abstracts 
downloaded and included in the corpus for our 
experiments.   

Concept recognition for each abstract in the 
corpus was then performed using MetaMap.  
Concept maps provided by MetaMap were stored in 
the relational database, i.e., each NLM abstract is 
associated with a cognitive covering space based 
upon the concepts found in the abstract. 

A desktop application was provided to the 
physician for scoring the top 20 NLM abstracts for 
each HPI.  The 20 abstracts consisted of the top 10 
ranked abstracts from keyword search, and the top 

10 ranked abstracts from cognitive search.  The 
categorization for the abstracts is blind, that is, the 
physician does not know which search method was 
used, and the order in which the abstracts are 
presented is randomized. 

3) Precision Calculations and Confidence 

Goal 

Precision was calculated as follows [21]: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝⁄  (20) 

𝑤ℎ𝑒𝑟𝑒: 
𝑡𝑝 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝑓𝑝 = 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

A target confidence level of 5% was chosen for 
Type I error for this study (𝑝 = 0.05). 

Precision was based upon the first 10 abstracts 
returned by the search methods, rank ordered by 
relevancy.  Basing precision upon the first 10 
abstracts for each search method both provides the 
desired confidence level in study results, and also 
mimics the typical hectic clinical environment 
where accurate information is needed in a relatively 
short period of time.  This approach is consistent 
with other findings [22]. 

4) Null Hypothesis, Sample Size, and Normal 

Approximation to Binomial 

The null hypothesis is that the difference in the 
proportion of relevant documents is zero, as follows 
(all statistical equations from Devore [23]): 

𝐻𝑜: 𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 − 𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑 = Δ𝑝 = 0 (21) 

where 

𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒

= 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 

𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑

= 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑙𝑒𝑔𝑎𝑐𝑦 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 𝑠𝑒𝑎𝑟𝑐ℎ 

The alternative hypothesis, 𝐻𝑎, is that the 
precision of concept-based search, in combination 
with use of the cognitive relevance distance 
measure, results in improved precision, as follows:  

𝐻𝑎: Δ𝑝 > 0 (22) 

The binomial probability distribution applies for 
the dichotomous experiments performed in this 
research, as follows: 
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𝑏(𝑥; 𝑛, 𝑝) =

{
(

𝑛
𝑥

) 𝑝𝑥(1 − 𝑝)𝑛−𝑥   𝑤ℎ𝑒𝑟𝑒 𝑥 = 0,1,2, … 𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (23) 

where 

𝑥 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡𝑟𝑖𝑎𝑙𝑠

𝑛 𝑖𝑠 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒

𝑝 𝑖𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

Of course the p for the binomial is not the same 
p value for confidence in test results. 

The normal distribution will be used to 
approximate the binomial to simplify computation 
of the Type I error.  The mean and standard 
deviation of the normal approximation, stated in 
terms of success proportion instead of number of 
successes, is as follows: 

Mean of the binomial: 𝜇𝑋 = 𝑛𝑝 (24) 

Standard deviation of the binomial: 𝜎𝑋 =

√𝑛𝑝(1 − 𝑝) (22) 

Since the measure of interest is the population 
success proportion 𝑝, Equations 12 and 13 are 
restated in terms of the success proportion 𝑝, as 
follows: 

Mean of the binomial: 𝜇𝑋 = 𝑝 (25) 

Standard deviation of the binomial: 

 𝜎𝑋 = √𝑝(1 − 𝑝) 𝑛⁄  (26) 

The standard normal variable 𝑧 is then stated in 
terms of 𝜌 and 𝑛 as follows: 

Standard normal variable: 𝑧 =
𝑋−𝜇𝑃

𝜎𝑃
=

𝑋−𝑝

√𝑝(1−𝑝) 𝑛⁄
(27) 

The normal distribution is a suitable 
approximation to the binomial when two 
conditions are met in Devore, page 166 [23], as 
follows: 

Rule 1. 𝑛𝑝 ≥ 10 

Rule 2. 𝑛(1 − 𝑝) ≥ 10 
That is, the expected number of successes 

should be at least 10, and the expected number of 
failures should be at least 10.   

Solve 𝑛 for both rules, as follows: 

Rule 1. 𝑛 ≥ 10
𝑝⁄  

Rule 2. 𝑛 ≥ 10
(1 − 𝑝)⁄  

If the sample size, success proportion, and 
failure proportion for both methods of search 
complies with the two rules for using the normal 
approximation to the binomial, then the difference 
in these proportions can be approximated with the 
normal distribution (all equations below for 
difference in proportions from Devore pp. 391-397 
[23]). 

Rule 1. 𝑛 ≥
10

𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒
 𝑎𝑛𝑑 𝑛 ≥

10

𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑
 

Rule 2. 𝑛 ≥
10

(1−𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒)
 𝑎𝑛𝑑 𝑛 ≥

10

(1−𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑)
 

𝑤ℎ𝑒𝑟𝑒 

𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒, 𝑒𝑎𝑐ℎ 𝑠𝑒𝑎𝑟𝑐ℎ 𝑚𝑒𝑡ℎ𝑜𝑑 

B. Results 

1) Precision and p Value 

The precision results shown in Table 2 are based 

upon the total true positives 𝑡𝑝 and total false 

positives 𝑓𝑝 across all four patient histories.Table 2: 

PRECISION RESULTS 

Search Type tp fp precision 

Keyword 58 42 0.58 

Topology-Based  40 60 0.40 

Cogency-Based 1 99 0.01 

 

 

Figure 9: PRECISION RESULTS – PubMed outperformed the 

topology-based ranking measure, and the cogency-based 

measure was inadequate.  This suggests that use of a cognitive-
based ranking measure alone is insufficient to achieve 

significant improvements in search precision. 

The p value for rejecting the null hypothesis of 
equal proportions is estimated using the normal 
distribution: 

𝑧 =
𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒−𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑−(𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒−𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑)

√𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒(1−𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒)+𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑(1−𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑)

𝑛

(28) 
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𝑤ℎ𝑒𝑟𝑒: 
𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒, 𝑒𝑎𝑐ℎ 𝑠𝑒𝑎𝑟𝑐ℎ 𝑚𝑒𝑡ℎ𝑜𝑑 

The tests resulted in �̂�𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 = 0.404 and 

�̂�𝑘𝑒𝑦𝑤𝑜𝑟𝑑 = 0.58, or Δ𝑝 = 0.18.  The standard 

normal distribution variable for this difference 
𝑧 = 2.54, or 0.5% significance, albeit at a rate 
lower than PubMed 

IV. CONCLUSIONS 

This paper has focused on the definition of the 
cognitive relevance measures and theoretical 
considerations in terms of consistency with concept 
and context-based search, consistency with a theory 
of cognition, and consistency with theories of 
cognitive grammar.  Exploratory test results were 
also provided that suggest that the cognitive 
relevance measures, when used in isolation, are 
inadequate for improving search precision. 

While use of concept-based approaches has 
potential for improved search precision, a simple 
ranking measure alone cannot address the complex 
cognitive functions required for high-precision 
search.  . More complicated methods, such as neural 
networks, are likely required. 

Despite the limited sample size, the difference 
in precision rates is statistically significant .  .  The 
need for improvements in cognitive-based methods 
is apparent from this. 

These results are useful in the decision-making 
process for future research efforts.  Our test results 
suggest that a greater emphasis on sophisticated 
approaches, for example neural networks, may pay 
a higher dividend in precision. 

In addition, follow-on research into cognitive 
grammar appears promising with the goal of 
extracting query conditions from text that includes 
cognitive relationships (e.g., negation conditions, 
cross-phrase relationships for concept recognition, 
etc.).  This addresses the fidelity/precision question: 
as more relationships are identified in the sentences, 
then improved fidelity in concept recognition likely 
occurs. 

Domain ontologies, required when using the 
cognitive search measure, are typically built by 
hand and hence are laborious and expensive.  This 
is a limiting factor for use of a cognitive relevance 
measure when the economic benefits of high-
precision search are difficult to quantify, i.e., “soft”, 
in comparison to alternative uses of an 
organization’s capital.  Given this context it appears 
reasonable to assume that until an automated 
approach is found that effects a material reduction 
in the cost of creating ontologies the use of the 
cognitive relevance measure will be limited to those 
domains where ontologies already exist. 

References 

 

[1] R. Hecht-Nielsen, "Cogent confabulation," 
Neural Networks, vol. 18, pp. 111-115, 3// 
2005. 

[2] R. Hecht-Nielsen, Confabulation Theory The 
Mechanism of Thought. LaJolla, California: 
Springer, 2007. 

[3] S. Solari, A. Smith, R. Minnett, and R. Hecht-
Nielsen, "Confabulation Theory," Physics of 
Life Reviews, vol. 5, pp. 106-120, 6// 2008. 

[4] G. Radden and R. Dirven, Cognitive English 
Grammar. Amsterdam, The Netherlands: John 
Benjamins Publishing Company, 2007. 

[5] N. L. o. Medicine. (2013). Unified Medical 
Language System (UMLS). Available: 
http://www.nlm.nih.gov/research/umls/quickst
art.html 

[6] A. Kumar, Y. L. Yip, B. Smith, and P. 
Grenon, "Bridging the gap between medical 
and bioinformatics: An ontological case study 
in colon carcinoma," Computers in Biology 
and Medicine, vol. 36, pp. 694-711, 7// 2006. 

[7] D. Movshovitz-Attias, S. Euijong Whang, N. 
Noy, and A. Halevy, "Discovering 
Subsumption Relationships for Web-Based 
Ontologies," presented at the Proceedings of 
the 18th International Workshop on Web and 
Databases, Melbourne, VIC, Australia, 2010. 

[8] M. Bastiaansen and P. Hagoort, "Oscillatory 
neuronal dynamics during language 
comprehension," in Progress in Brain 
Research. vol. Volume 159, K. Christa 
Neuper and Wolfgang, Ed., ed: Elsevier, 
2006, pp. 179-196. 

[9] W. Gerstner, W. M. Kistler, R. Naud, and L. 
Paninski, Neuronal Dynamics: From Single 
Neurons to Networks and Models of 
Cognition. Cambridge, United Kingdom: 
Cambridge University Press, 2014. 

[10] R. Hecht-Nielsen, "The Mechanism of 
Thought," in Neural Networks, 2006. IJCNN 
'06. International Joint Conference on, 2006, 
pp. 419-426. 

[11] A. G. Huth, W. A. de Heer, T. L. Griffiths, F. 
E. Theunissen, and J. L. Gallant, "Natural 
speech reveals the semantic maps that tile 
human cerebral cortex," Nature, vol. 532, pp. 
453-458, 04/28/print 2016. 

[12] R. Moskovitch, S. B. Martins, E. Behiri, A. 
Weiss, and Y. Shahar, "A Comparative 
Evaluation of Full-text, Concept-based, and 
Context-sensitive Search," Journal of the 
American Medical Informatics Association : 
JAMIA, vol. 14, pp. 164-174, Mar-Apr 

[13]  A. R. Aronson, "The effect of textual 
variation on concept based information 
retrieval," Proceedings : a conference of the 



 

 

80 

American Medical Informatics Association / 
... AMIA Annual Fall Symposium. AMIA 
Fall Symposium, pp. 373-377, // 1996. 

[14] A. R. Aronson, "Effective mapping of 
biomedical text to the UMLS Metathesaurus: 
the MetaMap program," Proceedings / AMIA 
. Annual Symposium. AMIA Symposium, pp. 
17-21, // 2001. 

[15] A. R. Aronson, "MetaMap: Mapping Text to 
the UMLS Metathesaurus," UMLS White 
Paper, 2006. 

[16] A. Aronson, "The Current State of MetaMap 
and MMTX," 2009. 

[17] N. H. Shah, N. Bhatia, C. Jonquet, D. Rubin, 
A. P. Chiang, and M. A. Musen, "Comparison 
of concept recognizers for building the Open 
Biomedical Annotator," BMC Bioinformatics, 
vol. 10, pp. S14-S14, 09/17 2009. 

[18] A. R. Aronson and F. M. Lang, "An overview 
of MetaMap: Historical perspective and recent 
advances," Journal of the American Medical 
Informatics Association, vol. 17, pp. 229-236, 
2010. 

[19] W. Croft and D. A. Cruse, Cognitive 
Linguistics: Cambridge University Press, 
2004. 

[20] S. Willard, General Topology. Mineola, New 
York: Dover Publications, Inc., 1970. 

[21] C. D. Manning and H. Schütze Foundations of 
Statistical Natural Language Processing. 
Cambridge, Massachusetts: The MIT Press, 
1999. 

[22] Z. S. Shariff, A. D. S. Bejaimal, M. J. 
Sontrop, V. A. Iansavichus, B. R. Haynes, A. 
M. Weir, et al., "Retrieving Clinical Evidence: 
A Comparison of PubMed and Google 
Scholar for Quick Clinical Searches," J Med 
Internet Res, vol. 15, p. e164, 08/15 2013. 

[23] J. Devore, Probability and Statistics for 
Engineering and the Sciences. Boston, MA: 
Cengage Learning, 2016. 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX D 

COGNITIVE RELEVANCE TEST PLAN 

 



 

 

82 

 

Test Plan 

 

Cognitive Relevance Measure 

 

 

George Shannon 

PhD Candidate, Systems Engineering 

Missouri University of Science and Technology 

Version 2.0 

February 26, 2017 

 
  



 

 

83 

1. Content of Plan 

This plan contains objectives, definitions, background, measures, any preliminary results 

relevant to testing, calculations and relevant statistical approaches or theories, and references 

used.  Emphasis is placed on documentation of important details for review by others. 

2. Objective 

Quantify improvement in search precision using a cognitive-based search approach.  

Determine if precision has improved, and by how much at a specified level of statistical 

significance. 

This includes use of the following technologies: 

1. Use of MetaMap for automated concept recognition in text. 

2. Use of the cognitive relevance distance measure for rank ordering search results by 

relevance. 

MetaMap is used for concept recognition for consistency with prior test results and to isolate 

the effect of using the inverse ontology cogency approach.  The latter goal is aimed at future 

testing. 

This will be a blind study.  The physician performing the testing will not know which search 

method was used to retrieve a document he is categorizing, and the order of documents presented 

to the physician will be randomized. 

3. Definition 

Cognitive-based search is defined to include the following three features: 1) the recognition of 

concepts in text, 2) retrieving documents containing the desired concepts, and, 3) rank-ordering 

these documents using the concept relevance distance measure. 

NLM – National Library of Medicine, including PubMed, the keyword search engine used by 

NLM. 

4. References 

Statistical theories, methods, equations, etc. come from Devore, 2016 [1]. 

5. Background 

5.1 Search Product Niche 

The purpose of the cognition-based approach is to provide high-precision search at a level that 

materially differentiates the concept-base search from legacy keyword search. 

It is not intended to replace a general, Internet-based search engine, such as Google or Bing. 

5.2 Preliminary Results 

Preliminary tests, using four (4) – history of present illness (HPI) documents, resulted in the 

following: 

Precision for keyword search: 𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑 = 0.20 ± 

Precision for cognitive search: 𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 = 0.70 ± 

These results are preliminary. 
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6. Statistical Tests 

Quantify the improvement in precision when using a concept-based search approach in 

comparison to legacy keyword-based approaches. 

6.1 Search Precision Measurement 

Precision, 𝜌, is defined as follows: 

𝑝 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝⁄   

where
𝑡𝑝 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠, and 
𝑓𝑝 = 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

6.2 Null and Alternative Hypotheses 

Null hypothesis 𝐻𝑜: the precision of concept-based search, in combination with use of the 

cognitive relevance measure, is no different than the precision of legacy approaches.   

𝐻𝑜: 𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 − 𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑 = Δ𝑝 = 0 (2) 

where
𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 = 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 − 𝑏𝑎𝑠𝑒𝑑 𝑠𝑒𝑎𝑟𝑐ℎ 
𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑 = 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝑙𝑒𝑔𝑎𝑐𝑦 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 𝑠𝑒𝑎𝑟𝑐ℎ

Alternative hypothesis 𝐻𝑎: the precision of concept-based search, in combination with use of 

the cognitive relevance distance measure, results in improved precision.  

𝐻𝑎: Δ𝑝 > 0 (3) 

6.3 Computations 

6.3.1Type I and Type II Test Significance Objectives 

The targeted level of significance for the Type I error, 𝛼, the probability of rejecting 𝐻𝑜 when 

it is true, is as follows: 

𝛼 = 0.05  (4) 

The targeted level of significance for the Type II error, 𝛽, the probability of failing to reject 𝐻𝑜 

when it is false, is as follows: 

𝛽 = 0.10  (5) 

The actual Type I and Type II probabilities will be computed after testing is complete and 

compared to these objectives. 

6.3.2 Binomial Distribution for Test Samples 

Each document returned by the two search methods (legacy keyword and cognitive-based) for 

each HPI will be binary scored as relevant or not by a physician. 

An experiment with the following characteristics will follow the binomial discrete distribution 

(Devore pg. 119):  

a. Experiment has two possible outcomes (success or failure),  

b. The probability of each of these outcomes is constant for all samples, and,  

c. Each sample is independent.   

The tests being performed meet these criteria. 

The binomial distribution is defined as follows: 
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𝑏(𝑥; 𝑛, 𝑝) = {
(

𝑛
𝑥

) 𝑝𝑥(1 − 𝑝)𝑛−𝑥   𝑤ℎ𝑒𝑟𝑒 𝑥 = 0,1,2, … 𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

𝑥 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡𝑟𝑖𝑎𝑙𝑠

𝑛 𝑖𝑠 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒

𝑝 𝑖𝑠 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

6.3.3 Normal Approximation and Sample Size Range 

The normal distribution will be used to approximate the binomial to simplify computation of 

the Type I error.  The mean and standard deviation of the normal approximation, stated in terms 

of success proportion instead of number of successes, is as follows: 

Mean of the binomial: 𝜇𝑋 = 𝑛𝑝 (7) 

Standard deviation of the binomial: 𝜎𝑋 = √𝑛𝑝(1 − 𝑝) (8) 

Since the measure of interest is the population success proportion 𝑝, Equations 7 and 8 are 

restated in terms of the success proportion 𝑝, as follows: 

Mean of the binomial: 𝜇𝑋 = 𝑝 (9) 

Standard deviation of the binomial: 𝜎𝑋 = √𝑝(1 − 𝑝) 𝑛⁄  (10) 

The standard normal variable 𝑧 is then stated in terms of 𝜌 and 𝑛 as follows: 

Standard normal variable: 𝑧 =
𝑋−𝜇𝑃

𝜎𝑃
=

𝑋−𝑝

√𝑝(1−𝑝) 𝑛⁄
 (11) 

The normal distribution is a suitable approximation to the binomial when two conditions are 

met (Devore pg. 166), as follows: 

Rule 3. 𝑛𝑝 ≥ 10 

Rule 4. 𝑛(1 − 𝑝) ≥ 10 
That is, the expected number of successes should be at least 10, and the expected number of 

failures should be at least 10.   

Solve 𝑛 for both rules, as follows: 

Rule 1. 𝑛 ≥ 10
𝑝⁄  

Rule 2. 𝑛 ≥ 10
(1 − 𝑝)⁄  

The null hypothesis for the difference of two population proportions is shown in Equation 2, 

that is, there is no difference.  If the sample size, success proportion, and failure proportion for 

both methods of search complies with the two rules for using the normal approximation to the 

binomial, then the difference in these proportions can be approximated with the normal 

distribution (all equations below for difference in proportions are from Devore pp. 391-397). 

Rule 1. 𝑛 ≥ 10
𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒

⁄  𝑎𝑛𝑑 𝑛 ≥ 10
𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑

⁄  

Rule 2. 𝑛 ≥ 10
(1 − 𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒)⁄  𝑎𝑛𝑑 𝑛 ≥ 10

(1 − 𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑)⁄  

𝑤ℎ𝑒𝑟𝑒 

𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒, 𝑓𝑜𝑟 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑛𝑑 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 𝑠𝑒𝑎𝑟𝑐ℎ, 𝑒𝑎𝑐ℎ 
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6.3.4 Difference in Proportions 

The population mean and variance are estimated using the sample data, as follows: 

�̂�𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 = 𝑋
𝑛⁄   (12) 

𝑤ℎ𝑒𝑟𝑒 𝑋 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓𝑜𝑟 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑎𝑟𝑐ℎ, 𝑎𝑛𝑑 𝑋~𝐵𝑖𝑛(𝑛, 𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒) 

�̂�𝑘𝑒𝑦𝑤𝑜𝑟𝑑 = 𝑌
𝑛⁄   (13) 

𝑤ℎ𝑒𝑟𝑒 𝑌 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑓𝑜𝑟 𝑘𝑒𝑦𝑤𝑜𝑟𝑘 𝑠𝑒𝑎𝑟𝑐ℎ, 𝑎𝑛𝑑 𝑌~𝐵𝑖𝑛(𝑛, 𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑) 

𝐸(�̂�𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 − �̂�𝑘𝑒𝑦𝑤𝑜𝑟𝑑) = 𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 − 𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑 (14) 

𝑉(�̂�𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 − �̂�𝑘𝑒𝑦𝑤𝑜𝑟𝑑) =
𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒(1−𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒)+𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑(1−𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑)

𝑛
 (15) 

If the inequalities specified in Rules 1 and 2 are met, then both 𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 and 𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑 can be 

approximated by the normal distribution.  In this case the standardized z value is as follows: 

𝑧 =
𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒−𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑−(𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒−𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑)

√𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒(1−𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒)+𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑(1−𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑)

𝑛

 (16) 

If the null hypothesis holds, then Δ𝑝 = 0.  The standardized z value is then as follows: 

𝑧 =
𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒−𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑−0

√
2�̂�(1−�̂�)

𝑛

 (17) 

𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 �̂� 𝑖𝑠   

�̂� =
𝑋+𝑌

2𝑛
  (18) 

The test significance, 𝛼, will be the area under the normal curve to the right of the 𝑧 value 

computed by Equation 17, i.e., this is an upper-tail test. 

6.3.5 Confidence Interval under Alternative Hypothesis 

If the null hypothesis is shown to be false, at the desired significance level 𝛼 = 0.05, then a 

confidence interval for the difference in proportions will be computed. 

Under the alternative hypothesis 𝐻𝑎, the variance of Δ𝑝 is no longer pooled since equality of 

proportions, the null hypothesis of Δ𝑝 = 0, has been rejected.  Instead, the variance is computed 

per Equation 18.  The confidence limits for Δ𝑝 becomes a two-tail test as follows: 

Δ̂𝑝 ± 𝑧𝛼 2⁄ √
𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒(1−𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒)+𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑(1−�̂�𝑘𝑒𝑦𝑤𝑜𝑟𝑑)

𝑛
 (19) 

Using a P-value equal to the Type I error 𝛼 = 0.05, 𝑧𝛼 2⁄ = 1.96. 

6.4 Sample Size 

6.4.1 Minimum Sample Size for Normal Approximation 

For a preliminary estimate of the minimum sample size for use of the normal distribution as an 
approximation to the binomial, the preliminary results are used.  The expectation is that tests per 
this plan will be approximately the same. 
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Assuming that similar values obtained during preliminary testing are obtained, i.e., 𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑 =
0.20 and 𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 = 0.70, then a minimum sample size can be computed using Equations 13 and 

14. 

For cognitive search: 

𝑛 ≥ 10
0.70⁄  𝑎𝑛𝑑 𝑛 ≥ 10

(1 − 0.70)⁄ , 𝑜𝑟 𝑛 ≥ 15 𝑎𝑛𝑑 𝑛 ≥ 33 (23) 

For keyword search: 

𝑛 ≥ 10
0.20⁄  𝑎𝑛𝑑 𝑛 ≥ 10

(1 − 0.20)⁄ , 𝑜𝑟 𝑛 ≥ 50 𝑎𝑛𝑑 𝑛 ≥ 13 (24) 

Equation 24 indicates that a minimum sample size 𝑛 ≥ 50  is required to use the normal 
distribution to approximate the binomial. 

6.4.2 Sample Size Considering Type I and Type II Error Objectives 

Equation 9.7 of Devore [1] provides an estimate of the sample size when taking into account 
the Type I and Type II error probabilities, as follows: 

𝑛 =

[𝑧𝛼√(𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒+𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑)(𝑞𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒+𝑞𝑘𝑒𝑦𝑤𝑜𝑟𝑑) 2⁄ +𝑧𝛽√𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒𝑞𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒+𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑞𝑘𝑒𝑦𝑤𝑜𝑟𝑑]

2

Δ𝑝
2  (25) 

𝑤ℎ𝑒𝑟𝑒 

𝑞𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 = 1 − 𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑞𝑘𝑒𝑦𝑤𝑜𝑟𝑑 = 1 − 𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑 

Note that the sample size 𝑛 is equal for both populations.  That is, a total of 𝑛 documents are 
scored for the cognitive search approach, and a total of 𝑛 documents are scored for the keyword 
search approach. 

With a Type I and Type II error probabilities 𝛼 = 0.05 and 𝛽 = 0.1 respectively, 𝑧𝛼 = 1.645 
and 𝑧𝛽 = 1.28.  The estimated sample size, using the preliminary success rations 𝑝𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 =

0.70 and 𝑝𝑘𝑒𝑦𝑤𝑜𝑟𝑑 = 0.20, is as follows: 

𝑛 =
[1.645√(0.5)(0.90)(1.10) + 1.28√(0.7)(0.3) + (0.8)(0.2)]

2

(0.70 − 0.20)2
 

𝑛 = [(1.1574 + 0.7786) 0.50⁄ ]2 = 15 

6.4.3 Patient Count and Retrieved Document Count 

The sample size calculations in Sections 0 and 0 indicate that the minimum sample size is 50.  
This sample size is driven by the requirements that must be met to approximate the binomial 
distribution with the normal. 

This sample size refers to the number of search documents scored by a physician as relevant to 
a patient’s history, i.e., success is defined as relevance to a patient. 

The next step is to determine the number of patient histories to use and number of documents 
scored per patient such that the total number of scored documents is greater than or equal to 50. 

The approach taken select the number of patient histories and number of scored documents per 
patient is as follows: 

1. Select the total number of scored documents 𝑛 to obtain from a physician for each of 
the populations, and meets the constraint that 𝑛 ≥ 50. 
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2. Identify the minimum number of documents per patient that the physician scores.  This 
number will replicate what likely occurs in practice.  That is, it is the maximum 
number of documents that a busy clinician will review to: a) get the desired 
information, or, b) feel confident that the information is not available.  In other words, 
determine the maximum number of documents that a physician will tolerate to obtain 
the desired information. 

3. Calculate the number of patient histories necessary to obtain the desired total number 
of scored documents. 

Results: 

1. Number of documents for each population: 𝑛 = 100. 

2. Min. number of documents per patient: 10. 

3. Number of patient histories: 10. 

This approach obtains more patient histories than used in the preliminary testing.  The small 
number of patient histories in the preliminary testing tended to raise questions about sample size.   

Moreover, since the preliminary testing indicated a relatively large improvement in precision, 
∆𝑝= 0.50, a large sample size is less of an issue.  

A summary of the sample size analysis is provided in Table 1. 

 

Table 1: Sample Size Summary 

Sample Size Selection Value 

Number of documents for each population 100 

Number of documents scored per patient 10 

Number of patient histories 10 

Targeted Type I error 𝛼 ≤ 0.50 

Targeted Type II error 𝛽 ≤ 0.10 
 

7. Test Steps and Logistics 

The process used for preliminary testing will be repeated for this test plan, but with larger 

sample size and more sophisticated outcomes analysis. 

This process is shown in Table 2 below. 

 

Table 2: Steps for Testing 

Who What How/Why/Deliverable 

Physician Identify clinical 
need and search 
scenario 

 Determine what to search for.  Select a typical clinical 
scenario where a high-precision search tool can help 
improve patient safety and other clinical outcomes.   

 Ideally the medical opinion used to determine relevance 
of each document scored is based upon this clinical 
scenario. 



 

 

89 

Who What How/Why/Deliverable 

Physician Select patient 
histories. 

Identify history of present illness (HPI) for the number of 
patients shown in Table 1, Section 0 above. 

Physician De-identify 
HPIs for HIPAA 
compliance 

Ensure all patient identifiers are removed from HPIs. 

Physician Identify 
keywords 

 For each HPI, indicate keywords to use for the keyword-
based search.   

 Can simply create a MS Word document or Excel 
spreadsheet that contains the HPIs, and for each HPI, the 
keywords to use. 

Physician Email HPIs and 
keywords to 
PhD student 

Email file from prior step to author 

PhD 
student 

Import into 
desktop app 

Import the HPIs into a desktop application that in later steps 
will be used by physician to record score results.2 

PhD 
student 

Perform 
automated 
concept 
recognition 

Execute the MetaMap process to identify concepts in the 
HPIs. 

PhD 
student 

Perform 
keyword search 

 Use PubMed and the keywords provided by the 
physician to execute keyword searches for each HPI.  A 
very large set of documents are retrieved for each HPI 
using keyword search so that the cognitive-based search 
has a large corpora from which to select highly-relevant 
documents.   

 Note that PubMed will return the documents rank 
ordered.  However, a small number of the top-ranked 
documents (per sample size in Table 1) are provided to 
the physician for relevance scoring using the keyword 
search approach.   

 Retrieving a large number of documents is simply to 
avoid having to download, index, and store the entire 
NLM database for search. 

 Import results into the database for the desktop 
application. 

                                                 

2
 The desktop application will make it easy for the physician to read and score search results for each 

HPI.  A portable database will be used by this application such that the physician can transmit these scores 

back to the author by simply emailing the database file.  The author will then use this database to determine 

precision results. 
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Who What How/Why/Deliverable 

PhD 
student 

Perform 
cognitive-based 
search 

 Execute cognition-based search to retrieve candidate 
documents from those downloaded from PubMed, and 
then rank order results using the cognitive-based 
relevance measure.   

 Import results into the database for the desktop 
application, limited to the number of documents per 
patient as shown in Table 1. 

PhD 
student 

Send 
documents and 
desktop app to 
physician 

 Package database and desktop application into a single 
file that can be installed by simply copying to a 
computer. 

 Provide instructions/readme text, along with any other 
suitable documentation if required. 

Physician Score 
documents 

 Follow simple forms provided in the desktop application 
to review documents returned by the two desktop for 
each HPI. 3 

 For each patient history, the desktop application will 
provide a list of documents to for the physician to 
categorize as “relevant” or “not relevant.”  

 This list will be randomized and no indication is 
provided to the physician as to the search method used 
to extract each document, i.e., this is a blind study. 

 The form will provide the ability to view the HPI 
concurrently with viewing each document. 

 To “score” a document, physician simply clicks on a field 
that indicates whether or not this document is relevant. 

Physician Email desktop 
app database to 
PhD student 

Copy the database file for the desktop application and email 
to the author.  Detailed instructions will be provided with 
the application. 

PhD 
student 

Perform 
analysis 

 Import scores and perform analysis in accordance with 
this test plan. 

 Report results to physician and academic advisers.. 
 Update journal article (currently in draft). 
 Obtain final reviews by Grad Office. 
 Obtain final reviews by physician and academic advisers. 
 Submit paper to journal. 

 

 

                                                 

3
 A “document” as referred to in this plan is an abstract in the NLM.  Full-text documents are not used 

since full-text is not available for all abstracts. 
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Dr. Levett is providing the medical opinion on relevancy of search results, as 

discussed in the test plan in Appendix D.  He has extensive experience in medical 

research and new healthcare technologies. 

Dr. James Levett is the Chief Medical Officer of Physicians’ Clinic of Iowa. Dr. 

Levett has maintained and active practice in adult cardiac, vascular, and thoracic surgery 

for the past 25 years, and is actively working in the areas of process management 

excellence, outcomes research, and the implementation of quality management system 

principles in healthcare organizations. In 2003, Dr. Levett led PCI to become certified to 

ISO 9001:2000, the largest medical group in the U.S. to achieve this distinction. 

Dr. Levett serves on the Nomenclature and Coding Committee of the Society of 

Thoracic Surgeons and has recently been appointed the STS Advisor to the Relative 

Value Update Committee of the American Medical Association. He is a past president of 

the Iowa Society of Thoracic Surgeons, and served as a National Examiner for the 

Baldrige National Quality Award Program in 2003 and 2004. Dr. Levett is a member of 

the Iowa Healthcare Collaborative and the Wellmark Physicians Quality Council. He is 

also the principle investigator on a recently approved AHRQ grant, Partnerships in 

Implementing Patient Safety (PIPS), RFA HS-05-012; Project Title, “Improving 

Warfarin Management in Competitive Healthcare Using ISO 9001 Principles.” The two-

year grant will establish an anticoagulation clinic in Cedar Rapids using ISO 9001 

principles, and will test the concept of using ISO 9001 principles to improve healthcare 

within a community by allowing competing providers to work together using a common 

ISO framework. 

Dr. Levett graduated cum laude from Carleton College, earned his medical degree 

from the University Of Iowa College Of Medicine, and completed surgical residencies in 

both general and thoracic surgery at the University of Chicago Hospitals and Clinics. He 

did post-graduate work in electrophysiology at Duke University Medical Center. Prior to 

returning to Iowa, Dr. Levett was Chairman of the Department of Surgery at Lutheran 

General Hospital in Park Ridge, IL. He is an author and/or contributing author of over 80 

original articles, books, and scientific abstracts. 
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Semantic Processing System Framework 

SPS 

George J. Shannon 

 

Abstract 

Semantic processing of textual information involves the use of technologies across different 

disciplines – linguistics and natural language processing, computational intelligence, and high-

speed information processing.  Some but not all of the technologies required to provide fast and 

effective semantic processing in an economical fashion are found in these different disciplines.  

This paper will propose a distributed system framework for semantic processing, entitled 

Semantic Processing Framework or SPS.  The intent of the SPS Framework is to provide a 

common language for identifying, developing, and evaluating required core technologies.  In 

addition it will present a new element not yet apparent in other semantic applications that 

addresses the need for computing semantic relevance.  It will also identify unfulfilled needs that 

are required for a semantic processing system to be economically viable and achieve 

performance needs.  This framework will be presented using a case study from the development 

of a prototype semantic processing application (“medText”) for information retrieval from 

medical research text and other examples.  Based upon the knowledge gained from developing 

this application, gaps will be identified in currently available technologies that reduce the value 

of semantic processing systems.  New products will be suggested that appear practical (i.e., 

economically viable and high performance) if these gaps are addressed. 

 

I. Introduction and Background 

Introduction 
Semantic processing uses automated computer technologies to apply human reasoning in the 

interpretation of unstructured textual information.  In essence it strives to create software 

applications that can mimic the complex and ambiguous/fuzzy logic that humans are capable of 

when reading text.  Beginning at a young age humans develop a sophisticated ability to 

interpretation the written form in a way that takes into account a myriad of linguistic rules and 

vague references typical of natural language.  Mimicking this ability with semantic processing 

technology is a difficult challenge. 

A semantic processing system must perform tasks that while seemingly simple to a human are 

not trivial when attempting to codify the rules and data required by a computer system to 
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perform the same task.  Added to this is the performance required for semantic information 

processing of large data sets, most notably requirements for speed and accuracy.   

Take for example relatively simple pronoun and anaphora resolutions (“Mike was elected 

President of the Student Council.  If he can do it, so can I”).  Before performing any sophisticated 

natural language analysis like pronoun or anaphora resolution a semantic processing system 

must first recognize sentence boundaries (not necessarily a simple text parsing task).  Then it 

must parse each sentence into individual tokens (words).  After that it must determine the 

linguistic context of each word and phrase in each sentence (part-of-speech identification, i.e., 

nouns, noun phrases, verb, etc.).  Then finally for resolution of pronouns and anaphora it must 

determine subject, verb, and object, and then map each abstract subject or object (he, it, etc.) 

to the concrete form found in earlier sentences.  Add to this the need for high-speed processing 

where applications that search large data sets (mega or tera-byte) must process requests with 

speeds in the millisecond latency range.  And ideally it will take into account the possibility of 

misspelled words and incorrect punctuation.  Then finally, depending upon the situation, it must 

address word sense disambiguation (“President” in the above example refers to the head of the 

Student Council, not President of the United States).  The net result is that developing a system 

for semantic processing is not a trivial endeavor. 

In addition, a complete system for semantic processing must address all functionality needed to 

be economically viable, effective and efficient.  A notable gap in existing technologies, a gap that 

has a significant impact on the economic viability of semantic processing, is the lack of 

automated or semi-automated ontology learning.  Ontologies have been recognized as a key 

part of any semantic processing.  For example in the case of the Semantic Web the lack of 

ontology data is considered a critical stumbling block in realizing the benefits of the Semantic 

Web [1].  Developing ontologies is a manual process and as such is typically expensive and time 

consuming.  The result is a reduction in the economic viability of semantic processing, i.e., it is 

neither cost-effective nor timely.  Hence the lack of cost-effective ontologies can create a 

significant stumbling block for any organization seeking a practical semantic processing system. 

ROM Estimate of Monetization Potential 
While these are rough-order-of-magnitude estimates only, a significant economic potential 

appears to exist for a successful SPS implementation.  A few examples are as follows: 

 Research Oriented Search Engines 

o ROM revenue potential for medicine alone: $50MM+ 

 Knowledge Management  

o Multi-billion dollar industry; ROM revenue potential: $100MM+ 

 Education Search and Learning Tools, Help-Oriented Search 

o Self-directed learning, software help desk or user self-service, product 

debugging and maintenance 

o ROM revenue potential: $100MM+ 
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 Military or Other Intelligence Applications 

o ROM revenue potential: $50MM+ 

The bottom-line is that while a number of serious challenges remain; if these challenges can be 

overcome the economic benefits appear to exist to make it worthwhile to address these 

challenges. 

Example of Potential Monetization Opportunities 

In this example a database engine search tool provides a simple list of results for keywords.  The 

user enters the keywords “generate C++ bindings” and the list below is retrieved. 

 

Figure 1: Example Search Results for Database Engine 

An alternative is to provide a learning roadmap-style result.  Instead of providing a list of 

keywords, the user enters the question “How do I generate C++ light bindings?”   
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Figure 2: Alternative Database Search - Learning Roadmap 

In this example the ontology for the database engine help desk was built around root concepts 

matching a Failure Modes and Effects Analysis (FMEA) paradigm.  In this manner the use could 

click on subjects (i.e., concepts) to explore more details, either at a more abstract level or detail 

level, to learn enough about a subject to answer the question posed.  The purpose of developing 

the ontology around the FMEA paradigm was to facilitate answering questions about why 

something doesn’t work, which is in part based upon the product state and events that occurred 

in addition to product functions.  Conceptual feedback from product users was positive, 

indicating that this approach had merit in terms of having a perceived value to end users. 

This is but one example among numerous applications of a practical, real-world implementation 

of the SPS Framework. 

Background 
The need for semantic processing has been recognized for quite a few years; hence, a number of 

technologies exist.  A few selected examples, certainly not comprehensive, follows: 

 The General Architecture for Text Engineering (GATE) [2], developed at the University of 

Sheffield, is an open-source Java tool targeting the “development of language 

processing components”.  It is roughly equivalent to semantic applications what Eclipse 

is to Java applications, i.e., an integrated development environment.  For example it was 

used to develop applications for information mining to extract medical events from text 

[2].   

 The Unified Medical Language System (UMLS) [3], created by the US National Library of 

Medicine, aggregates roughly 100 medical ontologies into one data source for use in 

information extraction and natural language tools.  The NLM also has a variety of tools 
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for text parsing and part-of-speech tagging [4].  In addition, the NLM also developed 

MetaMap [5], a tool for natural language processing that parses text and then tags each 

noun phrase with the matching concept found in UMLS ontologies 

 The Never Ending Language Learner (NELL) [6], currently under development at 

Carnegie-Mellon, is an attempt to mimic how humans learn, that is, using “both context 

and background knowledge gained over time.”  NELL is attempting to autonomously 

learn by reading millions of web pages and extracting/learning stated facts from these 

data (“Anger is an emotion.  Bliss is an emotion.”).  According to an article published in 

2010 by the NY Times [7], NELL has roughly 390,000 learned facts which are purportedly 

about 87% accurate. 

 IBM alphaWorks’ LanguageWare [8] is an Eclipse-based application for analyzing 

unstructured text and extracting facts.  It provides a range of functionality such as text 

parsing, part-of-speech identification, text annotation, and fact mining. 

Unresolved Issues for Practical Semantic Processing Systems 
While SPS-related technologies are certainly capable in their own right, it was discovered during 

development of medText that a number of key issues important to practical semantic processing 

remain unsolved.  It is important to note that this prototype included the development of an 

ontology/topology metric that quantified how well a particular document in the collection being 

searched matched the search criteria.  This added certain requirements for a semantic 

processing system not apparent in most existing applications.  With this addition a number of 

key issues for a semantic processing system were identified.  These include: 

1.   Computation of semantic relevancy: 

MedText implemented a form of search called semantic search, also called “concept-

based” search.  Just as the name implies, concept-based search uses a mechanism for 

retrieving relevant documents based upon concepts that exist in the ontology, not 

Boolean key word logic using the terms provided by a user (aka, “Google” search).   

A standard approach for the quantification of relevancy for concept-based search was 

not found in the literature prior to the development of medText.  One of the main 

objectives of the medText prototype was to develop and test such an approach. 

When development of medText was almost complete a recently published literature 

source addressing concept-based search was identified [9].  Test results published in this 

book supports superior search precision using concept-based search, which was 

subsequently confirmed on a preliminary basis when performing limited testing of 

medText.  

What resulted in medText was the calculation of a topological covering space for both 

the search criteria and each document to be searched.  Relevancy for each document is 

computed by the intersection of these two covering spaces, quantified by the relative 

size of the intersection compared to the size of the search criteria covering space.  
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Modeling knowledge context as a topological covering space is reasonable since, due to 

ontological subsumption, ontologies can be modeled as directed acyclic graphs (DAG).  

Further details are provided below. 

2.   High-speed processing:  

The calculation of semantic relevancy involves graph computations for the ontological 

DAG to determine which concepts are related to the set of concepts associated with the 

search criteria.  First it computes the covering space for the search criteria by extracting 

a sub-graph of the ontological DAG where all ancestors for the search criteria are 

included in the sub-graph.  Then it performs a similar process for each candidate 

document in the corpus being searched. 

Two factors have a significant impact on computational speed: 

a. Avoiding costly covering space calculations for a candidate document requires 

the determination of whether or not the covering space for the candidate 

contains any of the ancestors of the search criteria.  Semantic tagging of a 

document identifies the concepts that exist in a document, but not their 

ancestors.  Hence when scoring a document it is necessary to very quickly 

compute ancestors on a real-time basis, which has a significant impact on 

application throughput and latency (i.e., impacts broad market acceptance). 

b. Calculating relevance for a candidate document requires quantification of the 

size of the intersection between the covering spaces of the search criteria and 

candidate document (which is itself a covering space).  Again, ancestors are not 

tagged hence this computation is also real-time and hence has a significant 

impact on throughput. 

Traditional graph computations necessary to perform the above two calculations involve 

loading the ontological DAG into memory and performing graph walking.  However, this 

is computationally expensive when considering that search performance requirements 

are typically measured in the millisecond or sub-millisecond range.  Further, no industry-

standard indexing that accelerates the computation of covering space intersections for 

arbitrary graphs was found in the literature. 

3.   Accuracy of semantic (concept) tagging: 

The medText prototype used the MetaMap [5] open-source tool to tag phrases in 

medical text with matching ontology concepts found in the UMLS vocabulary.  It uses a 

set of linguistic rules to identify and score potentially matching concepts [10].  Semantic 

tagging, since it involves natural language processing, is a difficult and complex task and 

hence is not 100% accurate.  Furthermore, the accuracy of semantic relevancy 

quantification is highly sensitive to the accuracy of concept tags; due to inheritance 

structures in the ontology even relatively small inaccuracies in tagging can have an 

impact on semantic relevancy.   
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Not only is this evident on a deductive basis it was also evident during testing of 

medText.  If purely by chance the tagging mechanism happens to pick a concept that is 

removed from the true context of the text being tagged, then the calculated covering 

space used in the relevancy computations can be dramatically different from the actual 

covering space.  Due to ontological subsumption this can be particularly true if picking 

an incorrect concept deep in the ontological hierarchy, i.e., those closer to leaf 

concepts.  Hence the accuracy of the semantic relevancy quantification is highly 

dependent upon the accuracy of the tagging mechanism. 

4.   Availability of low-cost ontologies: 

The medical industry was chosen for the medText prototype simply because the medical 

industry has already developed a large number of freely available ontologies.  The UMLS 

provided the ontological data for medText.  As far as the author is aware, all of these 

ontologies were developed by hand.  Testing of medText was limited to a subset of the 

UMLS called the Systematized Nomenclature of Medicine ontology (SNOMED) [11][69].  

This was done to reduce the uncertainty associated with concept similarity across 

ontologies when aggregated by the UMLS. 

The subset of SNOMED used for testing medText consisted of approximately 310,000 

concepts and 1,340,000 relationships.  If development of a large ontology of an order of 

magnitude equal to SNOMED were required for medText it would have taken at least 2-

3 more years of development with a cost in the millions of dollars. 

Given the scale of ontologies required to represent a complete knowledge domain, the 

economic benefits of low-cost ontologies is significant.  It can not only improve the 

value of semantic search tools in general, via a reduced cost of development, it can also 

make new technologies that rely upon ontological data become economically viable.  

This is especially true for small technology startups working on a shoe string budget. 

5.   “Learning roadmaps” interface for viewing and understanding search results: 

The medText prototype simply presented search results in a traditional format – a list of 

links to documents, ranked by relevancy. 

However, it was soon discovered that when a user is in a “learning” mode, this simple 

ranking is not sufficient.  Users are forced to click on each link and review the document 

content to determine what in the document is relevant to the search criteria.  

Furthermore, in some cases a user may be learning new information as they progress 

through the search, so although they may not have entered a particular topic in the 

search criteria, in a dynamic learning process they end up having to run multiple 

searches to finally get all of the relevant information they need to both get an answer to 

a question and also to understand the answer.  Getting an answer and understanding 

the answer can be two different things that are dynamically mixed together as part of a 

search. 
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The use of ontologies to enhance search precision (via concept-based search) provides 

an opportunity to greatly enhance the user search interface since ontologies provide 

relationships between concepts.  These relationships can be leveraged to provide a 

network-based display that enhances the learning experience.  Results that are directly 

related to the search criteria are displayed as a “central” box.  This central box is 

surrounded by boxes containing results for semantically related concepts of potential 

interest to the user.  Lines between the boxes represent the relationships to the 

semantically related concepts, sometimes a complex spider web of relationships 

depending upon the topic.  The user can learn by exploring related topics by simply 

clicking on a box linked to the original search results and obtain additional, related 

results.   

Take for example a complex search that retrieves information about “dorsolumbar 

spinal fusion with Harrington rod complicated by post-polio syndrome”.  This phrase 

refers to a SNOMED medical concept; it exists in the category of surgical procedures, 

and contains another concept in the category disease processes that is related to the 

latent effects of polio.  A box is displayed for both concepts, along with all related boxed 

within a certain distance in the ontology DAG.  For example among the boxes displayed 

will be a box about “dorsolumbar” (an anatomy concept), another box about “spinal 

fusion”, and finally a box about “Harrington rod” (a surgical device concept).  If the user 

needs to understand more about Harrington rods they can click on that box to retrieve a 

subset of documents in the search results that provide more details about that concept.  

Optionally they can perform another query to retrieve additional information about 

Harrington rods alone.  This provides an interleaving of actions that is represented 

graphically as related concepts that the user can explore as needed; hence a display 

incorporating this type of interface is entitled “learning roadmaps”. 

The primary benefit of this approach is to accelerate end-to-end learning for more 

complex topics.  This is not an appropriate interface for finding a restaurant or movie.  It 

targets more complex or scientific information that requires an understanding of more 

basic knowledge before a more complex topic can be completely understood.  The 

learning roadmap provides an end-user with a tool that helps them work through this 

learning process. 

Integrated End-to-End Processing System: 
Taking into account all of the above five points, while a number of tools do exist, a complete 

system performing all aspects of semantic processing is not readily available.  The lack of an 

integrated, end-to-end system is the primary motivation for this research.  For example, GATE 

has been available for around 15 years, but it focuses primarily on text processing.  Due to a 

large part with the addition of semantic relevance computations defined earlier, it is important 

and necessary to add components for ontology development and learning.   
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In addition it is necessary to integrate these components to ensure performance objectives can 

be reached.  For example in the development of medText the MetaMap concept tagging 

application was not available other than through Web Service calls to the NLM web site.  This 

was not an adequate interface when processing a very large volume of data and needing 24x7 

real-time search capabilities with latency having an order of magnitude in the millisecond range.  

The volume and latency requirements dictated a solution hosted on resources with low 

latency/high throughput (e.g., distributed architecture on high-speed platforms connected via 

high-speed network or backbone).   

Hence adding and integrating all key components provides complete end-to-end processing that 

enables economically viable, fast and effective semantic processing. 

Core Components 
As a result of these experiences during the development of medText, a semantic processing 

system framework, or SPS, was drafted in concept that consists of the following components: 

Component Description Objective 

1. Ontology 
Development 

A suite providing automated or semi-
automated tools for authoring 
ontologies and managing ontological 
data in a way that dramatically reduces 
labor requirements. 

Low-cost ontologies 

2. Natural Language 
Processing  

Parsing of search criteria and candidate 
documents and then tagging these with 
ontology concepts. 

Speed and throughput 
appropriate for low latency 
and big data applications 

3. Semantic 
Relevancy  

Index ontological data and perform 
covering space calculations. 

4. Search and 
“Learning” User 
Interface 

Graph-based user interface for 
performing search and learning. 

Accelerated learning by end 
users 

 

Note that the SPS Framework targets ontology-based semantic processing.  If non-ontology-

based processing is performed, modifications are required or a different framework must be 

developed. 
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Core Software Components 

 

Figure 3: SPS Core Software Components 

Core Hardware Components 

 

Figure 4: SPS Core Hardware Components 

The core hardware components, shown in Figure 4 above, are anticipated for typical distributed 

systems architecture, similar to those in use today.  However, each semantic search application 
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One or more per server.  This device is currently a  

requirement for high-speed semantic relevancy calculations.  

It implements the matrix version of semantic relevancy 

calculations to avoid graph walking.

EXAMPLE ONLY:

     nVidia Tesla device.

     Server version: Kepler GK 110  1 Teraflop (dbl precision)

     2,688 CUDA cores

     320 Gb/sec bandwidth
...

Detailed network hardware 

architecture TBD, but will be similar 

to existing search engines.  

For all high-speed networks, 10 Gig 

network bandwith min., much 

higher-speed backbone may be 

required (i.e., rack-mounted blade 
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Ontology database and ontology manager applications 

including automated ontology learning.  Semantic 

relevancy computations device reads ontology data into 
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NLP services includes 

   * Lexicon data

   * Paragraph/sentence parsing

   * Part-of-speech parsing

   * Pronoun/anaphora resolution
...
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appropriate services to fulfill the request.

Services include:

   * Semantic parsing of search criteria

   * Query corpora for relevant documents

   * Relevancy calculations for documents

Storage and data services for 

documents to be searched.
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implementation must follow an architecture that is designed and sized to meet the anticipated 

number of requests workload, which may vary significantly between different semantic 

processing projects. 

All servers are Linux 64-bit, with Intel or AMD CPUs.  All applications, with the exception of 

those required for the nVidia CUDA devices (C++) are written in Java and J2EE. 

Web Servers 

Search interfaces are performed via a standard web browser, so web servers are required to 

provide http web interfaces for users to perform queries.  The web interface is implemented by 

the User Search and Learning Interface component shown in Figure 2.  The web servers each 

instantiate multiple threads in a pool sized to service the query demand rate.  The web server 

invokes a query search request to service each request received from an instance of the http 

connection for the User Search and Learning Interface browser page.  This query search request 

is submitted to the distributed application server bank hosting the semantic search engine front-

end application. 

Semantic Search Distributed Application Servers 

The semantic search application hosted on distributed application servers are the brokers that 

handle each search request submitted by a user (i.e., submitted via each http instance in the 

web server thread pools).  It will follow a simple, automated work for to fulfill each service 

request.  The functionality for this application is as follows (shown in the same order as the work 

flow): 

1. Submit requests to the ontology and NLP servers to perform the semantic parsing of 

search criteria submitted by user.  Search criteria are received as a simple string of text.  

Text parsing includes the following: 

a) Parse text into paragraphs, sentences, words, and phrases. 

b) Tag each phrase with a part-of-speech category (noun phrase, verb phrase, 

etc.). 

c) Tag each phrase with a matching concept found in the ontology. 

2. Query corpora database to obtain relevant documents. 

3. Perform relevancy calculations for each document. 

4. Categorize documents by concepts in the ontology to facilitate user exploration via a 

“learning roadmap” paradigm.  Categorization consists of flagging each concept found in 

the sub-graph of the ontology to the document if that concept is also found in the 

document covering space.  The user interface for search and learning uses these flags to 

provide matching documents when a user is walking the learning roadmap and clicks on 

a concept to follow a learning thread. 

None of the above tasks are performed by applications on the semantic search server.  The 

semantic search server is the broker; it forwards these requests to the appropriate server 

hosting that application. 
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While performing the above steps the semantic search application will perform load balancing 

across the distributed servers hosting the ontology and natural language application and the 

servers hosting the distributed corpora database. 

Ontology and Natural Language Processing Distributed Application Servers 

These servers host the following processing functions:  

a) Store the ontology data and fulfill requests for ontology data,  

b) Perform natural language processing, including parsing text into paragraphs, sentences, 

words and phrases, part of speech tagging, and concept tagging, and pronoun/anaphora 

resolution 

c) Store the lexicon database required to complete NLP requests.   

Ontology data storage does not require extensive bandwidth since the ontology will be loaded 

into memory of GPU devices installed in the servers for ontology calculations. 

Ontology development is performed on distributed servers in the same manner as semantic 

search requests.  The browser interface is the main difference.  For automated ontology 

development a browser plugin is required so that the browser becomes a “thick client”, almost 

to the same level as a typical desk-top application.  This is required due to the added 

functionality required for ontology development.  An implementation of the SPS framework may 

use a client-server model instead of web model whereas the service requests are still via http, 

but the requests are for web services and the interface is a standard windows-based thick client 

instead of browser-based. 

Semantic Computations Device 

This component is a massively parallel computation device that is programmed to perform 

graph computations for the ontology with extremely low latency.  Both the ontology and NLP 

distributed servers and the semantic search distributed servers will have one or more of these 

devices installed (multiple devices for high service volume needs, i.e., high bandwidth 

requirements). 

These devices will be nVidia GPU units capable of processing in the 1 teraflop range.  These 

devices are programmed using CUDA/C++.  An example configuration is as follows: 

nVidia Tesla device 

Server version: Kepler GK 110 ( 1 teraflop processing speed @ double precision) 

2, 688 CUDA cores 

320 Gb/s bandwidth 

Corpora Distributed Database Servers 

This architecture employs distributed database storing the corpora on multiple servers to 

achieve required high bandwidth.  It will use a traditional RDBMS system (e.g., Oracle, MySQL, 

etc.) that provides distributed database functionality.  Inter-server communication between 

database instances will make the data appear as one database, even though portions are 
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distributed across multiple servers.  Communication protocol will be in accordance with the 

requirements of the database technology.  This will be TCP/IP with another layer on top of the 

TCP/IP for inter-server queries. For example, Oracle provides the Net8 protocol that accepts 

queries and performs the distributed processing, over TCP/IP network, in a manner that is 

transparent to the user. 

Rack-Mounted Installation, Between Server Communications 

Servers are connected using TCP/IP, 10 gig networks, with servers at the same site being 

mounted on racks with a very high-speed backplane.  Unless otherwise noted all inter-process 

service requests are via RPC calls using Java J2EE applications. 

Ontology Data 

 

Figure 3: Basic Ontology Persistent Data Structure 

As can be seen in Figure 5 the ontology data is conceptually simple since it consists of only two 

basic classes: a) concepts, and b) relationships.  For the medText prototype the SNOMED 

ontology was stored and accessed using this structure. 

The ontology will be loaded into memory in the nVidia GPU devices, so the ontology database is 

accessed only when the servers are booted.  Hence a low latency, distributed approach is not 

required for the database. 

*1

*1

1

*

*
1

Concept

id

name

incomingRelationships

outgoingRelationships

rootConcepts

isaRootConcept

isaRelType

Relationship

fromConcept

toConcept

relType

*1

fromConcept outgoingRelationships

*1

toConcept incomingRelationships

1

*

relType

*
1

rootConcepts

C



108 

 

 

Corpora and Search Criteria Data 

 

Figure 6: Corpora and Search Criteria, Text, Paragraphs, Sentences, Phrases, and Tags 

The corpora data structure consists of the document itself, which consists of paragraphs, 

phrases, and words.  Phrases are tagged with part of speech category and matching concept 

found in the ontology.   

The search criteria are treated just like a document in the corpora.  This is done because the 

search criteria are processed in a manner almost identical to a document. 
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Software Subsystems 

Natural Language Processing Software Subsystems 

 

Figure 7: Natural Language Processing (NLP) Software Components 

The subsystems of the natural language processing software component are shown in Figure 7.  

The functions associated with these components are as follows: 

Component Description/Function Host Platform 

1.   Lexicon and NLP 
Libraries 

Library suite for: 
a) Storing and retrieving lexicon data 
b) NLP functions 
The components described below are 
the realization of this component. 

Ontology and NLP 
distributed servers. 

2.   Corpora Text 
Storage 

Storage and indexing of corpora being 
searched. 

Corpora distributed 
database servers 

3.   Paragraph, 
Sentence, and 
Phrase Parsing  

Parsing of text into paragraphs, 
sentences, words, and phrases.  This 
includes parsing corpora and search 
criteria (where search criteria are 
equivalent to a small document). 

Ontology and NLP 
distributed servers 

ibd [block] NLP

pos : Part-of-Speech Extraction

allocatedTo
Ontology and NLP Distributed Servers

conceptTag : Concept Tagging

allocatedTo
Ontology and NLP Distributed Servers

basicTextParse : Paragraph, Sentence,
and Phrase Parsing

allocatedTo
Ontology and NLP Distributed Servers

textStorage : Corpora Text Storage

allocatedTo
Corpora Distributed Database Servers

lexicon : Lexicon and NLP Libraries

allocatedTo
Ontology and NLP Distributed Servers



110 

 

 

Component Description/Function Host Platform 

4.   Concept Tagging  Perform linguistic or other computations 
necessary to identify a concept in the 
ontology that matches a phrase in a 
sentence. 

Ontology and NLP 
distributed servers 

5.   Part of Speech 
Tagging 

Uses trained tagged speech components 
for selection of part-of-speech category 
for phrases in sentence.  Used by 
concept tagging subsystem. 

Ontology and NLP 
distributed server 

 

Natural Language Processing makes heavy use of lexicons, which is required for syntactic and 

semantic analysis of phrases and words, e.g., synonyms and morphological variants. 

A number of sources exist for these data, such as: 

 WordNet 

 National Library of Medicine 

Insofar as practical implementation of the components for natural language processing, part-of-

speech tagging can be stumbling block: 

 Training a tagger requires human judgment for a particular domain 

 Speed can be improved if POS avoided altogether (potential research topic) 

In addition, word sense disambiguation can be stumbling block.  This is a common issue with any 

semantic search tool.  Scoping the SPS to a narrow knowledge domain helps to alleviate this 

concern, but examples were found when testing medText where ambiguous word references 

did occur. 
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Ontology Development Software Components 

 

Figure 8: Ontology Development Software Components 

The ontology development software component is hosted on the ontology and NLP distributed 

servers.  It consists of the following: 

Component Description/Function Host Platform 

1.   Stated Facts 
Extraction 

Perform lexical analysis and identify 
facts stated in sentences. 

Ontology and NLP 
distributed servers 

2.   Ontology 
Evolution 

Perform ontology learning using an 
evolutionary-style of approach to 
incrementally build ontology based upon 
the stated facts extracted by the Stated 
Facts Extraction component.  As a goal 
completely automated, but in real-world 
applications likely is semi-automated.  
Will likely use evolutionary algorithms 
supplemented by clustering techniques. 

Ontology and NLP 
distributed servers 

3.   Evolutionary 
Learner 

Evolutionary algorithms library used by 
#2. 

Ontology and NLP 
distributed servers. 

ibd [block] Ontology Development

ontEvolver : Ontology Evolution

allocatedTo
Ontology and NLP Distributed Servers

facts : Stated Facts Extraction

allocatedTo
Ontology and NLP Distributed Servers

gui : Ontology Development GUI

allocatedTo
Ontology and NLP Distributed Servers

evoLearnerEngine : Evolutionary Learner

allocatedTo
Ontology and NLP Distributed Servers

«use»
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Component Description/Function Host Platform 

4.   Ontology 
Development GUI 

Front end used by ontology author.  
Includes functions for loading exemplar 
text that represents knowledge domain 
being learned, functions for evaluating 
and confirming/changing entities 
extracted, and functions for evaluating 
and confirming relationships extracted.  
Also includes graph layout functions to 
present the entire ontology or ontology 
sub-graphs to user. 

Ontology and NLP 
distributed servers 

Semantic Relevancy Software Components 

 

Figure 9: Semantic Relevancy Software Components 

Semantic relevancy consists of first determining if common ancestors exist between the search 

criteria covering space and the covering space for the document.  Then, if common ancestors do 

exist, a sub-graph for the document is extracted (Sub-Graph Extraction component), and 

covering space calculations occur (Covering Space Size Calculator component).  All components 

are hosted on the Ontology and NLP distributed servers. 

Relevancy calculations are computed by the Semantic Computations Device (nVidia GPU device) 

installed on the distributed server.  These are computed using graph incident matrices as 

follows: 

𝒊𝒏𝒄𝒊𝒅𝒆𝒏𝒕 𝒎𝒂𝒕𝒓𝒊𝒙 𝑨 𝒐𝒇 𝒈𝒓𝒂𝒑𝒉 𝑮 = 𝒏 × 𝒏 𝒎𝒂𝒕𝒓𝒊𝒙 (𝒊𝒊𝒋)       

𝒘𝒉𝒆𝒓𝒆 𝒊𝒏𝒋 = 𝟏 𝒊𝒇 𝒊 𝒂𝒏𝒅 𝒋 𝒂𝒓𝒆 𝒂𝒅𝒋𝒂𝒄𝒆𝒏𝒕,  𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 

𝑨𝒄𝒐𝒗𝒆𝒓𝒊𝒏𝒈 𝒔𝒑𝒂𝒄𝒆 = 𝒏 × 𝒏 𝒎𝒂𝒕𝒓𝒊𝒙 (𝒊𝒊𝒋)      

𝒘𝒉𝒆𝒓𝒆 𝒊𝒏𝒋 = 𝟏 𝒊𝒇 𝒂𝒅𝒋𝒂𝒄𝒆𝒏𝒕 𝑨𝑵𝑫 𝒊𝒏 𝒄𝒐𝒗𝒆𝒓𝒊𝒏𝒈 𝒔𝒑𝒂𝒄𝒆,  𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 

𝑭𝒐𝒓 𝑪𝑺 = 𝑪𝑺𝒂 ∩ 𝑪𝑺𝒃,  𝒔𝒊𝒛𝒆𝑪𝑺 = (𝑨𝒂 × 𝑨𝑩)𝑻 × 𝑰𝒏
𝑻 

 

ibd [block] Semantic Relevancy

ancestors : Common Ancestors Identifier

allocatedTo
Ontology and NLP Distributed Servers

subgaph : Sub-Graph Extraction

allocatedTo
Ontology and NLP Distributed Servers

csCalc : Covering Space Size Calculator

allocatedTo
Ontology and NLP Distributed Servers
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The speed of these calculations is important to achieve internet-level latency typically found in 

search engines today.  For medText the best possible latency for a small document was about 15 

milliseconds, but latency in the arena of 1 millisecond is less is necessary.  Use of the nVidia 

devices with 1 teraflop capable throughput appears to make this possible. 

Covering Space Calculations and Semantic Relevancy 

This section contains additional details regarding the covering space calculations used to 

determine the semantic relevancy of a document retrieved as part of a search.   

All ancestors for one medical concept “Dorsolumbar spinal fusion with Harrington rod” are 

shown in Figure 10: Example Ontology Snippet: SNOMED-CTFigure 10 below (this concept is a leaf – it has 

no children).  This example is provided to demonstrate that a leaf concept for a complex 

ontology like SNOMED will likely have a large number of ancestors, 127 in this case.  SNOMED 

has roughly 300,000 concepts and over one million relationships.   

Subsumption Relationships in Ontologies 

Ontologies have the attribute of subsumption.  Subsumption refers to the semantics of broader 

terms that include all of their descendants.  For example, a transportation vehicle has as 

ancestors the semantics of car, airplane, train, ship, etc.  Hence if a document contains a word 

or a phrase that maps to car, it also includes the concept of transportation vehicle because a car 

is a transportation vehicle; hence both are in the same topological neighborhood. 

The use of subsumption relationships and modeling ontologies as a directed acyclical graph 

(DAG) are both key to implementing the relevancy calculations described next. 

Relevancy Calculation 

The covering space, i.e., topological neighborhood, for the concept “Dorsolumbar spinal fusion 

with Harrington rod” contains the concept itself plus all related concepts in the ontology 

subsumption hierarchy.  Using a graph theory and DAG perspective, this neighborhood consists 

of all ancestors. 

Figure 11 provides an example for calculating relevancy for a fictitious document.  The document 

contains three medical concepts.   

Relevancy is the relative size of the intersection of the document covering space with the search 

criteria covering space.  In this case the search criterion contains one concept and the document 

three. 

Taking subsumption into account, the covering space for the documents contains 23 concepts in 

common with the covering space for the concept “Dorsolumbar spinal fusion with Harrington 

rod.”   

Hence the relevancy of this document is 23/127 or 18%. 

This is a simple calculation but it is mathematically defensible when considering that ontologies 

provide subsumption relationships, and these define topological neighborhoods.  Its validity was 
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verified on a preliminary basis by limited testing of the medText prototype, which suggested 

superior precision in comparison to the search engine provided by the National Library of 

Medicine (about 250% higher precision).  Due to the limited scope of testing these results are 

certainly preliminary, but they do suggest that this simple algorithm is worth investigating 

further. 

The stumbling blocks identified in the medText prototype included: 

• Speed of relevancy calculations 

• Identifying common ancestors to omit non-relevant documents 

Graph walking in medText was computationally expensive.  The best possible response was in 15 

millisecond range for small document (using customized graph walker), which is inadequate for 

market needs.  It does appear that GPU implementations that make use of matrix calculations 

are capable of required performance. 

 

 



 

 

Example Ontology Snippet from SNOMED-CT 

 

Figure 10: Example Ontology Snippet: SNOMED-CT 

‘Snippet’ contains: 
• 127 concepts 

• 263 relationships 

From SNOMED ontology, 2010 

• Total of 300,000+ concepts 

• Total of 800,000+ relationships 

1
1
5
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𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒕𝒄𝒐𝒗𝒆𝒓𝒊𝒏𝒈 𝒔𝒑𝒂𝒄𝒆 = 𝑪𝑺𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕 ∩ 𝑪𝑺𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒂                        

                                             = 𝟐𝟑 𝒄𝒐𝒏𝒄𝒆𝒑𝒕𝒔 𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒄𝒆  

𝒓𝒆𝒍𝒆𝒗𝒂𝒏𝒄𝒆 𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒊𝒐𝒏 = 𝟐𝟑
𝟏𝟐𝟕⁄ = 𝟏𝟖% 

Fictitious set of concepts 

in a document in corpora 

being searched 

Figure 11: Relevancy Calculations 

1
1
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II. Use Cases 

Use cases described in this section will include additional details regarding the interactions and 

information flow between SPS software subsystems.  This section will provide details on how 

the software components are linked together to create an integrated system. 

Searching and Learning 

Use Cases 

 

Figure 12: Information Retrieval and Results Use Cases 

 

Researcher or
Learner

Enter Criteria as
Free-Form Text

and Launch Search

Parse and Tag
Text

Parse Text

Tag Phrases in
Sentences with
Part of Speech

Tag Phrases in
Sentences with

Matching Concept in
Ontology

Process
Search

Compute Topological
Relevancy for Each

Candidate Document

Rank Order Candidate
Documents by

Topological Relevancy

Present Graphical
Network of Results

View and Traverse
Network of Results

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Text being parsed and tagged

is the search criteria
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Overall, Simple User Search Process 

 

Figure 13: Overall Search Process from User's Perspective 

Figure 13 shows a summary of the overall search process.  From a user’s perspective it is simple.  

Search criteria are natural language descriptions of a situation or question that user is interested 

in retrieving information about.  The user simply enters the criteria text and clicks on the search 

button.  No keywords or keyword logic is needed. 

For medText the search criteria consisted of the history of present illness (HPI) for a small 

sample of patients (with all identifiers stripped to maintain privacy).  Most consisted of 4 or 

more paragraphs; hence the physician was able to perform complex search using a work 

product (the HPI) that they create as a normal part of their work activity.  This avoided the need 

for the physician to identify keywords or other information not directly related to a natural 

language description of the situation, greatly improving ease-of-use. 

searchCriteriaText User Enters Search Criteria as
Free-Form Text

searchCriteria

: User Launches Search

searchCriteriaText

ontologyGraph
retrievedDocuments

: Process Search

searchCriteria

: searchLaunched

retrievedDocuments
ontologyGraph

: Present Results as Graphical Network

ontologyGraph

Enter Criteria as Free-Form Text and Perform Search

searchCriteriaText User Enters Search Criteria as
Free-Form Text

searchCriteriaText

searchCriteria

: User Launches Search

searchCriteria

searchCriteriaText

ontologyGraph
retrievedDocuments

: Process SearchsearchCriteriaText

ontologyGraph
retrievedDocuments

searchCriteria

: searchLaunched

searchCriteria

retrievedDocuments
ontologyGraph

: Present Results as Graphical Network
retrievedDocuments

ontologyGraph

ontologyGraph

«discrete»

searchCriteriaText

«discrete»

searchCriteriaText

ontologyGraph

retrievedDocuments

ontologyGraph
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Process Search 

 

Figure 14: Processing Search Request 

Processing the search consists of three functions: parsing and tagging the search criteria, 

computing the topological relevance for each candidate document, and rank ordering results by 

relevancy. 

scoredSearchResults

searchCriteriaConcepts

ontologyGraph

: Compute Topological Relevance for Each Candidate Document

searchCriteriaText

searchCriteriaConcepts Tag Search Criteria : Parse and Tag Text

scoredSearchResults : Rank Order Candidate Documents by Topological Relevancy

searchCriteriaText

ontologyGraph

Process Search

scoredSearchResults

searchCriteriaConcepts

ontologyGraph

: Compute Topological Relevance for Each Candidate Document

scoredSearchResults

searchCriteriaConcepts

ontologyGraph

searchCriteriaText

searchCriteriaConcepts Tag Search Criteria : Parse and Tag Text

searchCriteriaText

searchCriteriaConcepts

scoredSearchResults : Rank Order Candidate Documents by Topological RelevancyscoredSearchResults

searchCriteriaText

ontologyGraph

«discrete»

searchCriteriaText

«discrete»

scoredSearchResults

«discrete»

searchCriteriaConcepts

«continuous»

ontologyGraph

TODO next steps: 

greaty simplify and 

accelerate this step via 

matrix form of relevancy 

computation using GPU 

device.  This step is 

thru-put choke point.
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Parsing and Tagging Search Criteria Text 

 

Figure 15: Parsing and Tagging Search Criteria Text 

The medText prototype used MetaMap from NLM, a free product, to perform these functions.  

As noted above, MetaMap applies linguistic rules to find best fit concept for noun phrases 

However, anecdotal analysis suggested that MetaMap did not appear to achieve a high level of 

accuracy desired to produce search precision in the 90%+ range.   

Use of topological covering spaces under the influence of ontological subsumption appears to 

drive the sensitivity of search precision to tagging accuracy.  If tagging picks the wrong concept, 

with subsumption this can dramatically change the size of the covering space (i.e., the number 

of ancestor concepts in common with the search criteria). 

The 90% search precision level appears to be required to meet market needs.  Discussions with 

entrepreneurs interested in investing in these technologies were concerned that without a 

dramatic improvement in accuracy beyond search engines currently available on the market, the 

probably of market adoption is significantly lower.  It appears that search accuracy is highly 

sensitive to tagging accuracy, and due to user expectations successful market introduction 

appears to require higher accuracy levels.  Hence the accuracy of concept tagging may be a 

stumbling block to the economic viability of semantic search. 

parsedSentences
: Parse Text into Paragraphs and Sentences

parsedSentences

pos

: Tag Phrases in Sentences with Part-of-Speech

pos
: Tag Phrases in Sentence with Matching Concept from Ontology

Parse and Tag Text

parsedSentences
: Parse Text into Paragraphs and Sentences

parsedSentences

parsedSentences

pos

: Tag Phrases in Sentences with Part-of-Speech parsedSentences

pos

pos
: Tag Phrases in Sentence with Matching Concept from Ontology

pos

«discrete»

sentences

«discrete»

parts-of-speech
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Computing Topological Relevancy (Covering Spaces) 

 

Figure 16: Computing Semantic Relevancy 

Computing semantic relevancy consists of extracting the adjacency matrix for sub-graphs from 

the ontology graph, retrieving documents with at least one concept in common with the search 

criteria covering space, and finally calculating semantic relevancy for each document.  These 

steps are associated with the components discussed in the Covering Space Calculations and 

Semantic Relevancy section above. 

The key stumbling block to these steps is achieving one or two orders of magnitude 

improvement in latency (from 15 milliseconds typical in medText to 0.15 milliseconds ±). 
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Ontology Development via Automated Learning 

Use Cases 

 

Figure 17: Ontology Learning Use Cases 
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Figure 18: Ontology Development Steps 

The objective of these steps is to achieve fully automated ontology development; however, a 

fully automated approach appears impractical at this time.  Hence the approach shown uses 

person-in-the-loop approach. 

The bottom-line goal is to save 80-90% labor over manual approaches. 
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Figure 19: Automated Portion of Ontology Development 

Figure 19 above shows the process for the automated portion of ontology development within 

the overall process shown in Figure 18.   

Based upon experiences gained with medText and with feedback from investors and potential 

users, the key enabler for a practical implementation of the SPS Framework is having the ability 

to evolve ontology within the context of person-in-the-loop feedback as the evolutions occur.  

The optimum combination appears to be a combination of evolutionary algorithm with 

clustering techniques, although this is purely speculative at this time. 

Note that fact extraction already demonstrated by research staff at Boeing, but a key unknown 

is the identification of a metric quantifying what is a ‘good’ ontology. 

Automated ontology learning appears to be a key to the economic viability of a SPS. 
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Loading and Indexing Corpora to be Searched 

 

Figure 20: Loading Text into System 

 

As can be seen in earlier sections, loading and indexing corpora to be searched executes all of 

the functions described earlier. 

III. Conclusions 

Since many technologies exist today that fill many of the SPS Framework roles, any SPS 

implementation can reuse existing search engine architectures for distributed systems.  This 

reduces the cost and risk for those investing in new products that make heavy use of SPS 

technologies. 

However, one key technology gap remains – ontology learning – that is key to economic viability 

and appears to be a significant stumbling block to successful implementation of a practical SPS 

Framework.  For this reason automated ontological learning is the recommended focus for 

future research. 

While other system components require definition, e.g., ontology library management, the 

majority of SPS functions and components were identified.  Based upon these results it appears 
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that the analysis of potential SPS solutions via the SPS Framework has value.  It provided a 

framework that identified key areas that must be addressed to make semantic processing a 

reality, areas that were consistent with those identified during the development of a prototype 

SPS system targeting medicine. 
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