JTALK M., AVERIT'

COLLEGE

(I;!'{._{'Uﬁ{.f.-’ﬂl‘l:: Georgia Southern University
STUDIEDS .. .

Digital Commons@Georgia Southern
Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Summer 2018

Optimal Supply Delivery Under Military Specific
Constraints

TaLena Fletcher

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

O‘ Part of the Operational Research Commons, Other Applied Mathematics Commons, and
the Other Mathematics Commons

Recommended Citation

Fletcher, TaLena, "Optimal Supply Delivery Under Military Specific Constraints" (2018).
Electronic Theses and Dissertations. 1782.
https://digitalcommons.georgiasouthern.edu/etd/1782

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1782?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1782&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

OPTIMAL SUPPLY DELIVERY UNDER MILITARY SPECIFIC CONSTRAINTS
by
TA’LENA FLETCHER
(Under the Direction of Ionut E. Iacob)

ABSTRACT

Through-out military history, the need to safely and effectively allocate resources to various
military operations was a task of extreme importance. Satisfying the needs of multiple
consumers by optimally pairing with appropriate suppliers falls into the category of vehicle
routing problems (VRP), which has been intensively studied over the years. In general,
finding the optimal solution to VRP is known to be NP-hard. The proposed solutions rely
on mathematical programming and the size of the problems that can be optimally solved
is typically limited. In military settings, balancing the needs of multiple consumers with
the current operational environment has always been a challenge. This balancing is equally
crucial to the survivability of transporters and consumers. The main goal is finding an
optimal way of ensuring required delivery while minimizing Soldiers risks. We show that
under certain assumptions we can formulate this problem as a linear programming problem

with specific constraints.

INDEX WORDS: Vehicle routing problem, Delivery optimization, Military logistics

2009 Mathematics Subject Classification: 90-08, 90C11, 90C90

OPTIMAL SUPPLY DELIVERY UNDER MILITARY SPECIFIC CONSTRAINTS
by
TA’LENA FLETCHER
B.S., Troy University, 2010
A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial
Fulfillment of the Requirements for the Degree
MASTER OF SCIENCE

STATESBORO, GEORGIA

©2018
TA’LENA FLETCHER

All Rights Reserved

OPTIMAL SUPPLY DELIVERY UNDER MILITARY SPECIFIC CONSTRAINTS
by

TA’LENA FLETCHER

Major Professor: Ionut E. Iacob
Goran Lesaja

Committee: Scott Kersey
Hua Wang

Electronic Version Approved:
July 2018

DEDICATION
This thesis is dedicated to my husband, without his support and love I would not have

ventured down this path.

ACKNOWLEDGMENTS
I wish to acknowledge Dr. lacob for agreeing to be my thesis advisor and assist me with
modeling an unorthodox problem. Your knowledge and unwavering support will forever
be appreciated and remembered.
I would also like to thank MAJ Parker for being my military sounding board, ensuring
that the topic of my thesis was relevant and worth researching.
I would also like to thank Ms. Tina Flanagan and Mr. Morris Hayes who agreed to

sponsor me and provided me with the data to be modeled.

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS 3

LISTOFTABLES 6

LISTOF FIGURES 8

LISTOF SYMBOLS e 9
CHAPTER

1 Introduction 10

1.1 Introduction 10

1.2 The Vendor Managed Inventory 11

1.2.1 The Vehicle Routing Problem 11

1.2.2 The Capacitated Vehicle Routing Problem 14

1.2.3 Inventory Routing Problem 16

1.3 Military Standard Problem 19

2 Problem Description 24

2.1 Problem Introduction 24

2.2 Problem definition 25

2.2.1 The Minimum-cost network-flow problem 25

2.2.2 Mininum-cost network-flow under edge overhead and
security constraints L. 27

2.2.3 Mininum-cost network-flow under routes overhead and
security constraints 30

2.2.4 Complexity of the Problem 35

3 Implementationo 37
3.1 Solving the optimization problem using Pyomo 37

3.2 Experimental datasets using AMPL 43

4 Experimental Results 000 48
4.1 ExperimentResults 1 48

4.2 Experimental Results2 52

4.3 Experimental Results3 54

5 Conclusion 58
5.1 FutureResearch 59
REFERENCES e 60
A Reorder Informationo 0oL 63
B Truck Characteristics 67
C Pythoncode 68
C.1 Experiment1 68

C.2 Experiment 1 Datafile 73

C.3 Results Experiment1 75

C4 Experiment2 Lo 89

C.5 Experiment2 DataFile 95

C.6 Results Experiment2 99

C.7 Experiment3 116

C.8 Experiment3 DataFile 121

C.9 Results Experiment3 125

Table

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

LIST OF TABLES

Table of symbols o

C2 Supply Delivery Experiment 1
C3 Supply Delivery Experiment 1
Consumer Commodity Request Experiment 1
Supplier-Consumer Commodity Delivery Experiment 1
Ammo Deliverylo o
Cargo Deliveryl Lo
Fuel Deliveryl
Water Deliveryl o
C2 Supply Delivery Experiment2
C3 Supply Delivery Experiment2
Consumer Commodity Request Experiment2
Supplier-Consumer Commodity Delivery Experiment2
Ammo Delivery2o
Cargo Delivery2o
Fuel Delivery2
Water Delivery2o
C2 Supply Delivery Experiment3
C3 Supply Delivery Experiment3

Security Cost

Page

4.20

4.21

4.22

4.23

4.24

A.l

A2

A3

A4

A5

A.6

B.1

Supplier-Consumer Commodity Delivery Experiment3 57
Ammo Delivery3o 57
Cargo Delivery3 57
Fuel Delivery3 57
Water Delivery3 57
Threshold Limits L oL 63
Min-Max Truck Requirement 64
ReorderPointo 65
Delivery Frequency oo 65
Hourly Consumption 66
10 Day Consumption 66

Truck Capacity By Type [29][20][26][30] 67

Figure

1.1

2.1

2.2

4.1
4.2

4.3

LIST OF FIGURES
Page
A typical military suppliers-consumers network 21
A Suppliers-Consumers Network 25
Suppliers-consumers under security constraints 33

Suppliers-consumers network under security constraints (Experiment 1) 49
Suppliers-consumers network under security constraints (Experiment 2) 52

Suppliers-consumers network under security constraints (Experiment 3) 55

LIST OF SYMBOLS

Symbols Description
C Transportation Cost
N(V,E) Routing Network
V Vertex Set
E Edge Set
Wjj Weight capacity per edge
b; Node identifier
Tij Commodity Quantity per edge
Cij Transportation cost per edge
x° c denotes type of commodity
0ij Overhead per edge
¢j, Q5 | Quantity: lower and upper bound
m;j, M;; | Trucks: lower and upper bound
0ij Route identifier

Table 1: Table of symbols

10

CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION

Throughout military history, the complicated mission of moving supplies whether by air
or ground around the battlefield has always been a daunting task. Balancing the needs of
multiple consumers in conjunction with the current operational environment is always a
challenge. This balancing act is crucial to the survivability of the consumers. So, what is
the optimal way of ensuring maximum delivery while minimizing Soldiers risk?
Answering this question is not as straightforward as you may think; delivering sup-
plies in a hostile environment creates many challenges. One of those challenges is whether
you are operating in a constrained or unconstrained network. A constrained network limits
your ability to efficiently deliver supplies to the consumer and an unconstrained network
has no barriers. Historically, methods have been developed to address supply movement in
the above two networks. However, for this paper we will focus on what is the most optimal
way of delivering supplies in a constrained network. So, the new question is, how do you
account for these variables while still trying to maximize delivery and minimize Soldiers
risk. Since, there are so many challenges we face when moving around the battlefield in a
constrained environment, it is best to focus on three items. Those three key items are listed

below:

¢ Fulfillment of supply demands, reach back to threshold, convoy capacity (maximize)

e Distance traveled, Soldier hours of exposure (risk) and number of convoys (mini-

mize)

e Transportation Cost (overhead items) (minimize)

Supply delivery is based on consumer request and driven by consumer demand. Con-

11

sumer request is determined by the consumption rates of the commodities being used. Now,
certain commodities are consumed at a faster rate than other commodities and therefore can
drive the deliveries to be executed in an inefficient manner. If we allowed our consumers
to determine the delivery of their supplies this would cause deliveries to be handled in an
ineffective manner because they are driven by the individual needs of the consumer rather
than the needs of the network. Therefore, we have to employ a method that would be
cost-effective in terms of resources being employed and timely as well. We need a system
where we can forecast the deliveries of the consumers based upon their consumption of the

commodities.

1.2 THE VENDOR MANAGED INVENTORY

The Vendor Managed Inventory (VMI) provides us with a mechanism where we can have
more oversight of the scheduling of the deliveries and optimization of the delivery routes.
The VMI is a system in which the consumer will relinquish resupply request rights to the
supplier, meaning the supplier determines when the consumer will receive their good (how
much and how often). In turn, the supplier agrees to not allow the consumer to fall below
a pre-determined threshold amount [4]. Utilizing this system will allow us to be able to
control the scheduling of our deliveries. The VMI combines the Vehicle Routing Problem
(VRP) and Inventory Routing Problem (IRP) into one cohesive unit. For the purpose of
this thesis we explain both components of the VMI but only provide a solution to the VRP.
The purpose for discussing the IRP is to help you understand the complexity of the VMI as

whole. It is only for context purposes.

1.2.1 THE VEHICLE ROUTING PROBLEM

The Vehicle Routing Problem (VRP) is a combinatorial optimization problem and a gener-

alization of the Traveling Salesman Problem (TSP). The TSP determines the most optimal

12

(cheapest) way of traveling through a network of cities. In its general form the traveling
salesman only use one vehicle and to achieve optimality the traveling salesman will start
and stop from the same point and the route must go through each city only once without
traveling over any roads twice. The transportation cost in a TSP are either symmetric mean-
ing the distance traveled between two cities both ways are the same or asymmetric meaning
the distanced traveled between two cities can be different or the path does not exist in the
other direction. The TSP has one glaring and obvious limitation, it uses only one vehicle
and this vehicle has a limited amount of capacity. When the demand of the network exceeds
the capacity it forces another vehicle to be added to fulfill all delivery requirements then
the problem becomes a VRP. The VRP answers the question “How do I maximize delivery
of my supplies while minimizing transportation cost?” The VRP is broad in scope and can
be applied to any industry, and for this thesis the application will be in the construction of
a military supply system. The basic definition of the VRP states “that m vehicles initially
located at a depot are to deliver discrete quantities of goods to n consumers”. The VRP
problem determines the optimal routes to deliver the goods to the consumers in such a way
that transportation cost is minimized. The VRP started in its infancy with mathematicians
George Dantzig and John Ramser in 1959. They developed an algorithm to address opti-
mizing gasoline delivery to service stations then in 1964 Clarke and Wright improved upon
this algorithm by employing a greedy heuristic. Through this improvement several varia-
tions of the VRP has been developed to address different applications and industries. The

basic characteristics of a vehicle routing problem are outlined below [32]:

e Road Network: represented by a directed or undirected graph. A directed graph is
unidirectional meaning travel can only happen in one direction. An undirected graph
is bidirectional meaning travel can happen in both directions. The graph is made up
of vertices and edges. The vertices represent the depot and consumers. The edges

will be the paths connecting the vertices. The edges will incur a transportation cost

13

(time and distance) and this is crux of the minimization problem.
e Customers: will request goods to be delivered at certain time intervals.

e Depots: will fulfill the request of the customers, contains the required amount of

commodities to be delivered.

e Vehicles: have limited capacity based on the type of vehicle it is and the location of

the vehicle.

e Drivers: set number of individuals responsible for getting the goods to their proper

destination.

e Operational Constraints: are limitations placed on the routes, such as distance,

vehicle capacity or usable road networks.

e Objective Functions: other than transportation cost minimization, do you want to

maximize vehicle usage or minimize driver time on the road.

Starting with Dantzig and Ramser and then to Clarke and Wright the VRP has been
modeled over the past 80 years to account for the different variations that has arisen through
the different applications to solve real world problems. You can now categorize these

different models into three basic categories [32]:

e Vehicle flow formulations: use integers and counts the number of times a vehicle
travels over each edge. This type of model is best suited for cases when you can sum
the global transportation cost across all the edges of the network. This model is not

suited when constraints are vehicle dependent.

o Commodity flow formulation: uses integers as well and is based on the amount of

commodity traveling through the network.

14

o Set-Partitioning Problem (SPP): uses binary variables which is connected to a sub-
set of optimal routes. This model address the grouping of optimal routes with associ-

ated minimal cost that delivers to a consumer once and address additional constraints.

All of these models are associated with one of the most well known vehicle routing
problems, the Capacitated Vehicle Routing Problem (CVRP). The CVRP is where there is
a known demand at each location on the delivery route and the sum of that demand cannot
exceed the capacity of the vehicles on that route. In the next section we will examine this

problem and its formulations.

1.2.2 THE CAPACITATED VEHICLE ROUTING PROBLEM

Amongst the class of VRP, the CVRP is the one which our problem formulation was con-
structed. We will first examine the basic notation and formulation of the CVRP and com-
pare and contrast that with our problem formulation. Next, we will examine how we uti-
lized different aspects of other formulations to form our hybrid problem formulation. The
CVRP operates using a single depot denoted by 0 from which a fleet of vehicles K leave to
service the consumer demand ¢; > 0 along their dedicated routes and returns back to depot.
The dedicated routes are identified by r» = g, %1, - , %511 : 190 = 541 and the consumers
will be a subset of the overall consumer set N. This operation incurs a transportation cost
c;; along that particular edge. The characteristics of the vehicle fleet is assumed to be
homogeneous in nature, meaning all vehicles are identical from fuel consumption to load
capacity () and therefore incur the same cost. In order to determine route optimality you
have to calculate the transportation cost along each edge and identify the type of network
you have. As we mentioned before the CVRP can be represented by a directed or undirected
graph. The structure of these graphs are the same in that they are complete and there is a set
of vertices identifying the consumers and depot denoted by V= 0U N|N € 0,1,--- ,n

and a set of edges identifying the routes between the supplier and the consumers. It is the

15

identification of the edge set in which they differ. This is due to the symmetric or asym-
metric nature of the network. Since, the VRP is a generalization of the TSP this is one of
the traits it inherits. In a symmetric network, the transportation cost association from sup-
plier to consumer and vice versa is the same and therefore is associated with an undirected
graph, G = (V, E). So, the edge set will be identified as £ = {i,j| € V,i # j}. On the
other hand if the transportation cost is not the same in different directions along the same
edge or that edge connection does not exist in one of the directions then your network is
asymmetric, and your associated graph is directed G = (V, A). So, instead of an edge set
you have an arc set and it will be identified as A = {(4,j)| € V x Vi # j} [33]. The over-
all purpose of the CVRP is to identify a set of optimal routes to minimize transportation
cost across the network.

In comparison to our problem there are several things we had to do to adjust the
standard CVRP to our problem formulation. First, the notation used for the vertex set is
structured for a one supplier network which does not address our need to have two suppliers
and in some situations possibly more. Currently, the set V' is denoted by V' = {0U N|N €
0,1,---,n} and this will change to V' = {1,2,--- n}; redefining the supplier-consumer
set this way affords us the flexibility to account for multiple suppliers in our network. Sec-
ond, the CVRP is structured as a directed graph or an undirected graph however due to
the complexity of our problem we had to change this structure to a bipartite graph. This
allowed for us to partition our suppliers into one set and our consumers into another set.
Thereby allowing us to properly account for the dual delivery possibilities. For example,
our problem contains 2 suppliers and 8 consumers and as you will see in Experiment 1
supplier C'2 only delivers to 3 of the consumers while supplier C'3 delivers to all. The way
the standard CVRP is structured there was no way to account for multiple depots in the
problem formulation. This brings us to the last revision of the standard CVRP, that is the

problem formulation. During the initial stages of our problem it was structured as a ver-

16

sion of the two-index (vehicle-flow) formulation VRP1 [33]. However as the full problem
began to take shape we recognized there were several shortcomings in this formulation,
which is laid out in detail in chapter 2. A major shortcoming of this formulation was there
was no way to account for the additional trucks required to secure a convoy. The current
formulation only provides quantities for the amount of trucks needed to carry the commod-
ity but not the amount of trucks needs to secure the convoy. This is because in the civilian
sector securing a delivery route is not a requirement however in the military it is one of the
most important aspects of supply delivery. For this reason, the problem formulation was
revised to include a key aspect of the set partition formulation, binary variables. By adding
a binary variable into the problem formulation it provided a way to include the calculation
of the overhead and security cost along an edge. Some of the other key items to mention
here is the usage of the variable x and the characteristics of the fleet. In VRP1 and sub-
sequent formulations x represents the number of times an edge is traveled, however in our
problem formulation it will represent the quantity of a commodity that is traveling across
that edge. In standard CVRP formulations the fleet of trucks are thought to be homogenous
because there is no way to account for variances in truck capacity but our fleet of vehicles
is a heterogeneous mix. Now there are additional formulations you can employ that would
partition the vehicles into subsets of like quantities thereby making them homogenous [33]
but we didn’t want to include this type of formulation because our vehicles are commodity

driven and therefore can be utilized as a constant.

1.2.3 INVENTORY ROUTING PROBLEM

In their paper Inventory Routing Problems: An Introduction, Bertazzi and Speranaza out-

lines the basic characteristics of an IRP[4].

e Time is the main discriminate in an inventory routing problem. You want to en-

sure that you deliver the right quantity to the right customer at the right time. All

17

customers are not going to require deliveries at the same time or on the same day.

— Continuous: there are no restrictions set on shipping, it can happen at anytime.

— Continuous with a minimum intershipment time: the main restriction set on
shipment is the intershipment time, which is the time between shipments. This
time cannot fall below a preset time. This allows for the customer to have time

to receive and set-up the inventory before the next shipment arrives.

— Discrete: This shipment times is related to intershipment time.

e The planning horizon determines how long you are supposed to deliver to a partic-

ular consumer.

— Infinite: this is used when trying to establish a more permanent distribution
plan. One that will be used over a significantly longer time. This plan can be
used to assist a company with understanding the amount of resources required

to supply a certain number of customers. It can be used as a forecasting tool.

— Finite: this is used for short-term planning.

e How you implement the shipment times and planning horizon is referred to as a
structured policy. There are several different types of structured policies highlighted

in their paper. However, I will only discuss the ones that are pertinent to this model.

— Frequency-based: this policy is referred to as periodic because it establishes
how often a shipment will occur based on a predetermined frequency. In our
case we have established threshold for each product and this will be used as the

determining factor for how often a consumer will be replenished.

— Order-up-to-level: this defines how much you will deliver to your consumer.
The goal with this policy is to always deliver enough product to the consumer

which will get them to maximum level.

18

— Maximum level: this policy is a generalization of the order-up-to-level, this
just means that a consumer will never exceed their maximum level. Meaning

that the supplier cannot deliver more product than the consumer can store.

e The objective function of the IRP determines what you are trying to optimize. If
the function is not properly well-defined you will not be able to find an optimal
solution. In most IRPs the objective is to either minimize transportation cost or
inventory cost. There are significant drawbacks experienced in trying to minimize
one or the other and it has been shown to be more effective to minimize both of
them. In our paper, inventory cost minimization is not as high of a priority as it is
to minimize transportation cost. Which is why this portion of the problem will be

addressed in a different paper.

e Finally, the most important factor of IRPs, deciding when and which routes to tra-
verse, just like VRPs. There are two different types of decisions that can be used
but they depend heavily on the type of environment they are employed in. So, let
us briefly explain the two different types of environments, retailer managed inven-
tory (RMI) and VMI. A supplier operating in an RMI is held captive based on the
customer’s wishes. The customers determine when and how much of a product the
supplier will deliver. The VMI has been discussed previously and therefore will not
be repeated here. In comparing the two inventory managed system the one similarity
is determining when and how much of a product, this is an aspect of a decision space.

The decision space is defined by two different categories:

— Decisions over time only: With this decision the routes are predetermined for
the supplier so the only thing that has to be determined is when and how much to
deliver. Generally, this is done by the customer and can therefore be associated

with the RMI environment.

19

— Decisions over time and space: With this decision the routes, when the ship-
ment occurs and how much to be delivered are determined at the same time.
For this reason, this can be associated with the VMI environment because this

is what the supplier will be responsible for figuring out.

1.3 MILITARY STANDARD PROBLEM

Logistics in the most generic form is the process by which an item is moved from its initial
point to its final destination. This definition works well in the civilian sector however in
the military, logistics becomes a complex operation. According to the Maneuver Center
of Excellence “military logistics is the processes, resources, and systems involved in gen-
erating, transporting, sustaining, and redeploying or reallocating materiel and personnel.”
Military logistics plays a pivotal role in the success of any mission. The ability to sustain
the warfighter who is immediately behind enemy lines marks the difference between win-
ning and losing a war and for this reason sustainment operations can be seen as a combat
multiplier. Sustainment operations are conducted along eight pillars: integration, antici-
pation, responsiveness, simplicity, economy, survivability, continuity, and improvisation.
While all 8 pillars are key and integral to successful combat operations, in our context
there are a few that stand out among the rest[24]. Our problem is structured to operate
in a vendor managed inventory (VMI) construct and within this anticipation, simplicity,
economy and continuity are of most important. Operating in a VMI environment there is
an agreement between the supplier and consumer that the consumer will not fall below a
pre-determined threshold therefore anticipation of the consumer needs keeps this agree-
ment intact. The supplier has fore-knowledge of the consumers’ requirements through the
usage of the commodity consumption rate by each consumer and can therefore forecast out
the proper delivery times for each commodity. This brings us to the next two principles,

simplicity and economy. Simplicity is having a well-defined resupply plan and clearly es-

20

tablished chain of command. This principle works in connection with economy because if
the plan is not completely laid out then it can lead to inefficiencies. Economy is the ability
to effectively and efficiently conduct resupply operations. This translates to the supplier
having the necessary available resources on hand to ensure timely delivery of supplies to
the consumers. These resources include but not limited to vehicles, personnel, the neces-
sary infrastructure to house the supplies, and they can be all organic or a combination of
organic with contracted support. A typical military supply problem is constructed with one
supplier and multiple consumers, Figure 1.1 is an example of a standard military resupply
operations. Resupply operations start at the port (sea or air) where the supplies are pro-
cessed for onward movement to either the Theater Distribution Center (TDC) or to a main
supplier labeled as C1 - C7 in Figure 1.1. The resupply chain is hierarchial in nature. It
starts with the 7 main suppliers and stops at the company labeled as XS throughout the

figure. This resupply occurs three different ways:

e Unit distribution: supplies are configured in unit sets (battalion/company/platoon,
depending on the level of distribution) and delivered to one or more central locations
or directly to the unit’s final location. Unit distribution maximizes the use of the
Brigade Combat Team (BCT) lift capacity of its transportation assets and minimizes

the delivery and turnaround time. Figure 1.1 is a typical supply network.

e Supply point distribution: requires unit representatives to move to a supply point
to pick up their supplies. Supply point distribution is most commonly executed by
means of a logistics release point. The logistics release point (LRP) may be any
place on the ground where unit vehicles return to pick up supplies and then take
them forward to their unit. Occasionally, the logistics release point is the brigade

support area (BSA).

e Throughput: The supplies will be delivered from the port directly to the requesting

21

P6 P7
S2XS1 |« _FW
saxs2 % 251
S2XS3 |« FW EW EW
AW
S2XS4 |~ F
S2XS ey | 5252
5 "\A‘L
L S2M W ce [EY c7 |[EY| s1m
S2XS6 |«_F' el 1
S253
S2XS7 < Fw AW P5
EW EW
c5 [£% g3m | TDC: Theater
S2XS8 || S254 Distribution
v E‘[V/’ Center
IN3M €Y% ca 22 T0C | €% | PORT

. T EWT T AW LT | EW P1
- A2sx2 £ pos2 ([A0 pom | %’
A2SX3 < FiaA2s3 < AW < AW i A1S1 |
************* c1 F c2 |[Ehiam
W ew AW A1S2
IN2S1 |<_A o
IN2S2 < cs
=
INTM
y iEWW
IN1S1 ~—EW 5/ IN1S2 EW IN1S3
e] R Ew few
IN1XS1 IN1XS2 | | IN1XS3 IN1XS4

Figure 1.1: A typical military suppliers-consumers network

unit. This process bypasses the main suppliers and the TDC.

The resupply operations discussed above are conducted via convoys or through air

22

delivery. Air delivery is the safest and most optimal way to deliver supplies to units how-
ever mission priorities, weather, location or cost will prohibit continual usage of this asset.
Therefore when air assets are not available commodities must be delivered via ground
assets through convoy operations. Convoy operations have evolved over time from the
Vietnam War through operations in Afghanistan and Iraq. During Vietnam it was thought
that daytime operations were best because the enemy owned the night however this proved
problematic because during a daytime attack you cannot pinpoint the muzzle flash of the
enemy so operations were changed to the night time. Nighttime convoy operations con-
tinued through Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF,
Afghanistan) because there were no civilians on the road due to a curfew being imposed on
the civilian population. However this proved to be very problematic because during OIF
and OEF improvised explosive devices (IEDs) were heavily employed due to the enemies
ability to conceal them along the side of the road or burying them in the road.[16] From
these two examples, it is evident that the security of the convoy is paramount. Therefore,
convoy operations are conducted under very strict guidelines because Soldiers are being
exposed to hazards that cannot be mitigated away. While there are many items that must
be followed during convoy operations we will discuss two of them for this paper, security

and convoy composition. A standard convoy composition is outlined below[22]:
e Head

— Security Vehicle

— Lead Vehicle Commander
e Main body

— Additional security trucks

— Logistics Trucks

23

— Convoy Commander

— Additional trucks for convoy personnel

o Trail

— Medical Vehicle
— Recovery Support
— Security Trucks

— Assistant Convoy Commander

The number of vehicles in a convoy varies depending on the mission. The commander
of that geographic area will set the minimum/maximum number of trucks required for a
convoy. Generally, the minimum number of trucks required to conduct convoy operations is
5 while the maximum number is 30 and the number of security trucks is based on the convoy
size and is implemented on a 1 : 5 ratio, being 1 security truck per 5 logistics trucks.[16]
The convoy composition detailed above contains what we refer to as overhead. Overhead
is the standard trucks that are required for every convoy, they are medical, recovery support
and security trucks. These trucks are mainly located in the trail portion of the convoy while

the security trucks are dispersed throughout the convoy.

24

CHAPTER 2
PROBLEM DESCRIPTION

2.1 PROBLEM INTRODUCTION

A constrained environment prevents a free flow of transportation from supplier to con-
sumer and within the delivery network. When operating in this type of environment the
objective is to minimize or eliminate the obstacles which prevents the network from op-
erating smoothly. Within our delivery network the major obstacles our supplier have to
contend with are distance, security, convoy size, product availability and road type. Some
things to consider but will not greatly distress the network are inventory holding capacity
at the consumer and supplier and vehicle capacity. Inventory capacity at the consumer will
not be exceeded because the threshold quantity will control this variable. Vehicle capacity
is not a problem because the requested amounts will never exceed the capacity of the light-
est vehicle. Taken these factors into consideration the problem allows security to dictate
the optimal route. Security is priority one because the enemy is always looking for ways to
disrupt the movement of personnel and supplies around the battlefield. Knowing this, we
have designed for each edge of the delivery network to have a security overhead denoted
by 0;; associated with delivering supplies along that edge of the network. This will account
for the different security requirements throughout the network. The following is how we

classify different security requirements which can be adjusted as the situation changes:
e Normal: requires no additional vehicles
e Moderate: requires 4 additional security vehicles
e High: requires 8 additional security vehicles

Let us first discuss the classic problem and then we will address how we used this formu-

lation and created our hybrid solution.

25

2.2 PROBLEM DEFINITION

2.2.1 THE MINIMUM-COST NETWORK-FLOW PROBLEM

INIM —_
\ e
INISI T

T /

\ -
IN1XS1
/

IN1XS3 IN1XS2

/

IN1XS4
Figure 2.1: A Suppliers-Consumers Network

IN1S3

We considered the standard network flow optimization [1] as a first, natural choice
for modeling our military supplier-consumer delivery problem. Figure 2.1 is an example of
geographical placements and connections between a few suppliers (C2, C'3) and consumers
(1M, 151, 152, 1X 51, 1.X 52, 1.XS3, 1.X54) of the hierarchical distribution scheme in

Figure 1.1. The problem is formulated as follows.

Definition 2.1 (Standard Network Flow Problem). Let N(V, A) be a suppliers-consumer
network, where V.= {1,2,--- ,n} is the set of vertices and A = {(i,j) € V. x V : i # j}
is the set of edges (a directed graph, as given in Figure 2.1). Each node v € V has a
divergence value b; that represents the amount of commodity on stock (if b; > 0, in which
case 1 is a supply node) or needed (if b; < 0, in which case 1 is a demand node) at node
i. Each directed edge (i,j) € A has a transport cost coefficient c;;, which represents the

cost of transporting one unit of commodity, and a maximum capacity (;;, which represents

26

the maximum amount of commodity that can be transported along the edge (i, j) at a given
moment of time.
The minimum cost network flow problem for transporting quantity x of commodity

across network N is formulated as follows:

Minimize C' = Z CijTij (2.1a)
(i,5)€A
subject to
Z Tij — Z :cji:bi, i:1,~~,n (21b)
j:(i,j)EA j:(Ji)EA
1y < Qyy, V(i,j) €A (2.1¢c)
x5 > 0, V(i,j) € A (2.1d)

The standard network flow problem follows closely the topology of a network as in
Figure 2.1, with suppliers (C2, C'3) and consumers (/N1M, IN1S1, IN152, IN1X 51,
IN1XS2, IN1XS3, IN1XS4) connected (or not connected) as in the real world. A
decision variable x;; is associated to each network edge (4, j) and the objective in (2.1)
1s to minimize the cost associated with transporting commodities along all edges (2.1a),
subject to delivering requested quantities at each node (2.1b), edge capacities limits (2.1c),
and positiveness of the quantities being transported (2.1d).

There are a few major shortcomings of the standard minimum-cost network-flow

model in (2.1):

SC1 There is an overhead cost, o;; associated to transporting a non-zero quantity of com-
modities along each edge (i, j) of the network. These overhead costs are a conse-
quence of using standard detail trucks (medical, security and recovery) and can be
considered constant parameters associated to each edge (essentially proportional to

the length of the edge).

27

SC2 Extra-overhead costs may appear along an entire route passing through at least one
edge associated with high security risk. These costs are a consequence of using extra
security trucks for the whole route from a supplier to a consumer. Similar to the
overhead costs, these costs can be considered constant for each edge, proportional to

the length of the edge.

SC3 Additional constraints may be imposed to restrict traversal of edges with high secu-
rity risk. For instance, a cap might be desired for the security costs, which would be

equivalent to an upper limit for the security risk along any route.

SC4 Different commodities may have different transportation costs and demand-supply

amounts (divergences b;) at each node varies from commodity to commodity.

SC5 Suppliers have the necessary amount of commodities on hand to service their respec-
tive consumers (although not every commodity can be found at each supplier) and
these commodities are transported by trucks organized in convoys. There are upper
bound limitations on the number of trucks allowed along edges and routes (similar to
the edge capacities above), but there are also lower bound limitations on the number

of trucks.

We address these shortcomings in the subsequent subsections.

2.2.2 MININUM-COST NETWORK-FLOW UNDER EDGE OVERHEAD AND SECURITY

CONSTRAINTS

Let us refine the standard problem of network flow optimization (2.1) to include the edge
overhead and security costs. We will stick with the topology of the network to model
the real world interconnection between suppliers and consumers and define the enhanced

model on networks as in Figure 2.1. However, we will consider distinctively suppliers

28

and consumer nodes, rather than differentiating them by the sign of the ’divergence” value
b; (the amount requested/provided). This distinction is necessary to remove the cap on
quantities one supplier can deliver (and hence address the shortcoming SC5). Also, the

quantities being transported (represented by variable x) represent the number of trucks.

Definition 2.2 (Network Flow Problem under Edge Overhead and Security Constrains). Let
N(V, A) be a suppliers-consumer network, where V.= {1,2,--- ,n} is the set of vertices
and A = {(i,j) | i,5 € V'} is the set of edges (a directed graph, as given in Figure 2.1).
Some of the vertices are designed as suppliers, the others are designed as consumers. Each
consumer node j € V' has a requested quantity value q; for each commodity c, which rep-
resents the amount of commodity ¢ needed at node j. Each directed edge (i,7) € A has: (i)
a transport cost coefficient ci;, which represents the cost of transporting one unit (truck) of
commodity ¢, (ii) an overhead and security cost o;; and s;;, respectively; they are constants
proportional to the length of the edge; (iii) and maximum and minimum capacities M;; and
mgj, respectively; they represent the maximum/minum amount of commodity (number of

trucks) that can be transported along the edge (i, j) at a given moment of time.

The minimum cost network flow problem for transporting x¢ trucks of commodity c

29

across network N is formulated as follows:

Minimize C' = Z (Z iy + 6ij(os + s”)) (2.2a)

subject to
Z xi; = qj, for all consumers j, commodity c (2.2b)
2}%<5A@,V@ﬁeA (2.2¢)
x5 > 0, V(i,j) € A ¢ (2.2¢)
5ij < {07 1}7 V(Z,]) €A (2.2f)

The objective in (2.2) is to minimize the cost associated with transporting commodities
along all routes (2.2a), including the overhead and security costs. The inclusion/exclusion
binary variables ¢;; serve the purpose of including only the costs associated to edges that

appear in a route:

1, ifx; >0
51']' —
0, if Tij = 0

The objective is subject to delivering requested quantities at each consumer node
(2.2b), edge capacities limits (2.2c) and (2.2d), positiveness of the quantities being trans-
ported (2.2e), and the inclusion/exclusion binary variable (2.2f).

The model is also constructed on a network as in Figure 2.1, for instance, but in
this formulation two decision variables are assigned to each edge (7,7): the quantity x;;
transported along the edge and the binary variable ¢;;.

While the current formulation (2.2) of the problem does incorporate both the overhead
and security costs, in practice, it is not yet satisfactory. A subtle issue of shortcoming SC2

in Section 2.2.1 is that the security detail for a whole route from a supplier to a consumer

30

must be decided by the highest security risk edge in the route. That is, even if some edges
need no additional security detail, additional security will be provided along these edges if
they are part of a route that contains at least one edge needing additional security. Moreover,
the shortcoming SC3 (which requires security limitations along routes) is not addressed at
all and difficult to incorporate in formulation (2.2). Furthermore, the shortcoming SCS5 is
incorrectly addressed, as the bounds on the number of trucks (quantities transported) in
constraints (2.2c) and (2.2d) act on the overall number of trucks for each edge (from all
suppliers), rather than the number of trucks per convoy.

Next, we will address these limitations.

2.2.3 MININUM-COST NETWORK-FLOW UNDER ROUTES OVERHEAD AND SECURITY

CONSTRAINTS

One of the major limitations of the model formulation (2.2) consists in its inability to in-
corporate security risk costs as the maximum security needed along a whole route. This
limitation clearly affects the solution of the problem in a negative way. Say a route R1
has N edges with a single high security edge and many edges with no security restrictions.
Another route 12 is longer than R1, with low security assignments along all edges. As the
cost of the high security edge in 1 contributes only once in the overall cost (2.2a), the
route R1 will likely win against route R2 (for which a cost of security is added for each
edge of the longer route). However, the security overhead trucks are assigned to cover all
needed security for the whole route. That is, with the high security needed along some
edge of R1 the additional security will need to accompany the convoy along all edges of
route 1. Summing the high security edge cost of R1 for all N edges in 1?1, the route R2
will become the righteous winner.

In order to correctly incorporate in the model the sensitive aspect of transportation

security we remodel the problem as a set partitioning vehicle routing problem (SPVRP,

31

[18]) rather than a network flow problem. We partition the nodes of the network in two
disjoint sets: the set of suppliers (U/) and the set of consumers (V). We then formulate and
solve the delivery problem under security constraints in two steps.

In step 1, for the original network, we compute the optimal route between every sup-
plier 7 and every consumer j, in the sense that we compute the minimum overhead o;;
needed (that includes both the overhead and security costs between ¢ and j) for traveling
from supplier ¢ to consumer j. For instance, the network in Figure 2.1 becomes a bipartite
graph as in Figure 2.2. Finding the optimal route overhead (that includes both the convoy
standard accompanying vehicles and the security detail) between supplier © and consumer
v can be performed by iteratively using Dijktra’s algorithm for finding the shortest path
between u and v. Given that the overhead costs (including security) is proportional to the
length of the route between two nodes and that security cost is determined by the high-
est security level along the route, one can slightly enhance Dijktra’s algorithm (we call it
Enh-Dijkstra in the description below) to return the edge of highest security level along the
shortest route in addition to the length of the shortest route. The algorithm for finding the
optimal route between nodes u and v is described in Algorithm 1.

The algorithm takes as input the suppliers-consumers network N(V, E) and a pair
(u,v) of a supplier and a consumer, respectively. The objective is to find (if possible) the
optimal cost route between u and v. The algorithm’s idea is quite simple: it uses Dijktra’s
algorithm to find the shortest path and the edge of highest security. It then computes the
cost of route and stop if the cost at the current iteration is higher then the previously found
cost. If not higher, the edge of highest security is removed from network and the algorithm
proceeds to find again the shortest path and compute its cost. The algorithm also stops if
no route is found (in which case the optimal cost is infinity and no route between supplier
u and consumer v will be established). Clearly the algorithm iterates and uses Dijktra’s at

most |F| times (at each iteration an edge is removed). It therefore runs in O(|E| - [V]?)

32

Algorithm 1 Optimal overhead cost route

1: procedure OPT-COST(N(V, E), (u,v)) > computes optimal cost
2: Input: N(V, E), (u,v)

3: Output: optcost(u,v)

4. optcost +— oo

5: COSt < 00

6: do

7: optcost < cost

8: (d, HSedge) <— Enh-Dijkstra(N, (u,v))> shortest distance, highest security

edge

9: if no route then
10: break
11: end if
12 cost < d - cost(H Sedge)
13: if cost < optcost then
14: remove H Sedge from N(E,V)
15: end if

16: while optcost > cost;
17: return optcost > Returns the optimal cost

18: end procedure

33

Figure 2.2: Suppliers-consumers under security constraints

time.
In step 2, we consider the bipartite graph of suppliers and consumers and all possible,
pre-computed routes between them (see Figure 2.2). The delivery problem under overhead

and security constraints is formulated as follows.

Definition 2.3 (Delivery Problem under Route Overhead and Security Constraints). Let
N(U UV, E) be a suppliers-consumer network, where U UV = {1,2,--- n} is the set of
vertices (disjoint union of suppliers and consumers) and E = {(i, j) | i,j € V'; i is a supplier;
J is a consumer} is the set of routes from supplier i to consumer j (a bi-partite graph, as
in Figure 2.2). Each consumer node j € V' has a requested minimum quantity value ¢
for each commodity c, which represents the amount of commodity c needed at consumer j.
Each directed edge (i,j) € E has: (i) a transport cost coefficient Ci;» which represents the
cost of transporting one unit (truck) of commodity c; (ii) an overhead and security cost 0;;,
precomputed as constants incorporating both the length and maximum security along route
(4,7); (iii) and maximum and minimum capacities M;; and m;;, respectively; they repre-
sent the maximum/minum amount of commodity (number of trucks) that can be transported

along the route (i, 7) at a given moment of time.

34

The minimum cost network flow problem for transporting x¢ trucks of commodity c

across network N is formulated as follows:

Minimize C' = Z <Z CoTy; + 5@'0@']') (2.3a)
2,J c

subject to
> x> qf, forall jc (2.3b)
> af < 6yMy, foralli (2.3¢)
7,c
foj > 0;,;m;j, foralli (2.3d)
J,c
x>0, V(i,j)€E,c (2.3¢)
5ij S {07 1}7 \V/(Z,j) S (23f)

While formulation (2.3) looks very similar to (2.2), there is a big difference between
them: an edge (¢, j) in (2.3) represents a whole route starting at supplier ¢ and ending at
consumer j, whereas in (2.2) it simply represents a (topological) connection between two
network nodes (which can be supplier-consumer or consumer-consumer). As such, the
objective (2.3a) incorporates the correct overhead and security costs for the whole route
(and hence the shortcoming SC2 is implicitly addressed). The shortcoming SC3 (caps on
security costs) can be implicitly address as well by the model: by imposing maximum
security costs along certain edges, these costs are included (in step 1) in the overhead cost
for a whole route and hence incorporated in (2.3a). Finally, the constraints in (2.3c) and
(2.3d) correctly address limitations of number of truck in a convoy sent from supplier ¢ to
consumer j. Hence shortcoming SCS5 is also removed.

Another subtle difference is the interpretation of the binary variables d;;:

1, if 7 delivers to j
5ij =

0, ifz does not deliver to j

35

. This decision variable practically indicates who delivers (no matter which commodity)
to whom. In practice, this will give the human decision factors a clear image of delivery
plans, which may help other subsequent decision (like combining convoys, etc.).

Notice that, in practice, there might be no routes between certain suppliers and some
consumers (not every supplier delivers to every consumer) and hence the suppliers-consumers

graph (as in Figure 2.2) does not necessary connect every supplier with every consumer.

2.2.4 COMPLEXITY OF THE PROBLEM

Since this problem is a generalization of the TSP, it inherits the properties of the TSP as
well. The TSP is classified as an NP-hard (non-deterministic polynomial-time hardness)
problem and therefore the VRP is an NP-hard as well. This is an especially useful attribute
to inherit because this means that if an algorithm was created to solve a TSP then it can
also be used to solve a VRP. To calculate the computational complexity of a problem, we
identified our parameters and constructed a constraints formula. This will provide us with
the size of our problem.

Parameters:
e Number of suppliers: S
e Number of consumers: C'
e Number of commodities: P
Size of the Model (upper bounds):
e Continuous Variables: P - S - C
e Binary Variables: S - C'

e Constraints: 2(PC + S) 4+ SC(P + 1)

36

For our problem: S = 2, C' = 8, P = 4 would produce:
2(PC + S) + SC(P + 1) = 148 constraints

This shows that for what appears to be a small problem is actually computationally inten-

sive with 148 constraints.

37

CHAPTER 3
IMPLEMENTATION

We used Pyomo [13, 12], a Python language based optimization modeling language, for
setting up and solving the optimization problems rising from our proposed solution.

Pyomo was specially developed to support intuitive modelling of optimization prob-
lems. It can be used to symbolically define optimization problem instances and then dele-
gate the actual solving of these problems to specialized open-source or commercial solvers.
Moreover, Pyomo offers support for using algebraic modelling languages, such as “A Math-
ematical Programming Language” (AMPL [10]), which can be used to separate the prob-
lem definition, parameters data, and the problem solver.

Our implemented solution consist of:

1. Pyomo code for defining the problem instance (for the case of the Delivery Problem

under Route Overhead and Security Constraints as in Definition 2.3).

2. AMPL-based experiments data: we designed a few experimental data sets to illus-
trate a few case scenarios and their solutions for optimal delivery under security

constraints.

3. Solving the model using two solvers: GLPK [11] and Gurobi [14].

In the following we will describe both the Pyomo formulation of the model (in Python)

and the general concepts for designing an experimental data set using AMPL.

3.1 SOLVING THE OPTIMIZATION PROBLEM USING PYOMO

The complete Python code for the model formulation is included in Appendix C. We will
explain in the following the main steps for the model formulation, which is the implemented

analogue equivalent of the elements of the problem formulated in Definition 2.3.

e The required libraries:

import pyomo
import pyomo.opt
import pyomo.environ as pe

import os

e Creation of the abstract model of the LP problem in the Pyomo environment:

model = pe.AbstractModel (doc=PROBLEM_NAME)

e Creation of the parameters of the problem:

the number of suppliers and consumers:

model.NS = pe.Param(within=pe.Positivelntegers)

model .NC = pe.Param(within=pe.Positivelntegers)

— the indexes over suppliers/consumers respectively:

model.I = pe.RangeSet (1, model.NS)

model.J pe.RangeSet (1, model.NC)

— the suppliers/consumers lists, respectively:

model.SS pe.Set (doc=' Suppliers’)

model.CS = pe.Set (doc=’'Consummers’)

— the lower/upper bounds for quantities:

model.m pe.Param/()

model.M = pe.Param()

— cost (distance) along each route:
model.c = pe.Param(model.I, model.J)
— the overload cost (including security) parameters:

model.Ot

pe.Param()
model.Of = pe.Param()
def O_init (model, i, 3J):
v = 0.0
if model.c[i, j] >= model.Ot:
v = model.c[i, j] * model.Of

return v

model.o = pe.Param(model.I, model.J, initialize=0_init)

— the requested quantities for each consumer J:

model.qga pe.Param (model.J)
model.Qa = pe.Param(model.J)
model.qgc = pe.Param(model.J)
model.Qc = pe.Param(model.J)
model.gf = pe.Param(model.J)
model.Qf = pe.Param(model.J)

model.qgw = pe.Param(model.J)

model.Qw = pe.Param(model.J)

e The problem variables:

— the quantities (number of trucks) for each commodity

model.xa = pe.Var (model.I, model.dJ,

domain = pe.PositiveReals)

#ammo

model . xc

domain = pe.PositiveReals)

model.xf

domain = pe.PositiveReals)

model .xw

domain = pe.PositiveReals)

— the binary variables

pe.Var (model.I, model.J,

pe.Var (model.I, model.J,

pe.Var (model.I, model.J,

model.d = pe.Var (model.I, model.J,

domain = pe.NonNegativelntegers,

bounds (0,1))
e The problem constraints:

— the requested amounts:

def supply_ruleAl (model, 7j):

return sum(model.xal[i,j] for

def supply_ruleAu (model, 7j):

return sum(model.xal[i, j] for

def supply_ruleCl (model, 7j):

return sum(model.xc[i, j] for

def supply_ruleCu(model, 7J):

return sum(model.xc[i, j] for

def supply_ruleFl1 (model, 7J):

in

in

in

in

model.

model.

model.

model.

40

#cargo

#fuel

#fwater

model.gal]j]

model.Qalj]

model.qgc[]]

model.Qc[]]

return sum(model.xf[i, j] for i in

def supply_ruleFu(model, 7):

return sum(model.xf[i, j] for i in

def supply_ruleWl (model, 3J):

return sum(model.xw[i, j] for i in

def supply_ruleWu (model, 3J):

return sum(model.xw[i, j] for i in
— the for binary variables constraints:

def supply_ming(model, i, 7Jj):
return model.xal[i, j] + model.xc[i,

+ model.xw[i, j] >=m

def supply_maxqg(model, i, Jj):
return model.xal[i, j] + model.xc[i,

+ model.xw[i, J] <= m

model.

model.

model

model.

Jjl o+

odel.

Jjl o+

odel.

41

I) >= model.qgf[]]

I) <= model.Qf[7]

.I) >= model.gwl[]]

I) <= model.Qw([]]

model.xf[i, J]

d[i, j]*model.m

model .xf[i, J]

d[i, j]*model.M

e The objective function definition, which is subsequently stored in the model:

def objective_rule (model) :

return sum(model.c[i, j]* (model.xal[i, J]

+ model.xf[i, j] + model.xw[i, J])

+ model.d[i, j]l*model.o[i, J]

+ model.xc[i, J]

for i in model.I for j in model.J)

42

model.objective = pe.Objective (rule=objective_rule,
sense=pe.minimize,

doc='The objective function’)

e Populating the model with actual data from an AMPL file:

datafile = ’'constants2a.dat’

instance = model.create_instance (datafile)

e Solving the model (with a choice between GLPK and/or Gurobi solvers) and display-

ing the results:

#solver = pyomo.opt.SolverFactory (’gurobi’)
solver = pyomo.opt.SolverFactory ('glpk’)
results = solver.solve (instance)

results.write ()

We conclude the implementation description with an important remark. The implemen-
tation creates and abstract model of the problem that completely separates the model de-
scription from the actual model size and parameter values. That is, the model presented
in this section can handle any problem size, with any number of parameters. The actual
problem parameters are provided to the implemented model through an AMLP data file
(the ’constants2a.dat’ file in the description above). We run our experiments for different
configurations (suppliers and consumers, distances, etc.) stored in a few AMPL data files
but using the same model implementation.

A typical AMPL file content is described in the next section.

43

3.2 EXPERIMENTAL DATASETS USING AMPL

A Mathematical Programming Language (AMPL [10]) is a modeling language to describe
high-complexity problems for large-scale mathematical computing (and in particular large-
scale optimization problems). One advantage of AMPL is the similarity of its syntax to the
mathematical notation of optimization problems [34]. This allows for a very concise and
readable definition of problems in the domain of optimization. According to Wikipedia,
AMPL is the most popular format for representing mathematical programming problems.
We created three network configurations corresponding to each of the following sce-

narios:

1. All suppliers can deliver to all consumers and distances are comparable. However,

no supplier has every commodity available on stock.

2. All suppliers can deliver to all consumers but one supplier is located significantly

closer to the consumers.

3. Similar to above, but the closer supplier must overcome some higher security costs

for delivering to some consumers.

Each configuration was described by a corresponding AMPL file. The results of the ex-
periments are presented in Chapter 4. We will focus next on describing how one model

configuration dataset is created using AMPL.

e The number of suppliers and consumers

param NS := 2;

param NC 8;

e The set of suppliers and the set of consumers (as in Figure 2.2):

44

set SS

c2’ 1C3Y;

set CS

"INIM’ 7IN1S1"” ’YIN1SZ2’ "IN1S3"” ’'INIXS1’" ’'INIXS2’" ’'IN1XS3’

The lower/upper number of trucks bounds

param m := 5;

param M := 30;

The costs (distances) from each supplier to each consumer:

param c: 1 2 3 4 5 6 7 8 :=
1 120 143 183 163 158 195 193 172

2 93 116 156 136 131 168 166 145

The overload threshold and factor: the distance above which an overload factor is

applied to take into account security detail cost:

param Ot 150;

param Of := 2;

The requested quantities for: ammo, cargo, fuel, water (one value for each consumer

in the list)

param Qa :=
1 5

2 10.5

param ga :=

10

2 4.5

7
param gc :=

1 4.1

45

46

47

7
param gw :=

1 5.1

We created three configuration files, one for each experimental scenario listed at the begin-
ning of this section. The experimental results for each scenario are described in the next

chapter.

48

CHAPTER 4
EXPERIMENTAL RESULTS

We tested the model using three networks configurations:

1. All suppliers can deliver to all consumers and distances are comparable. However,
no supplier has every commodity available on stock. The goal was to test the model

solution for a relatively small network.

2. All suppliers can deliver to all consumers but one supplier is located significantly
closer to the consumers. We then compare the solution of this experiment with the
previous, with the obvious expectation that the closer supplier would deliver the com-

modities.

3. Similar to above, but the closer supplier must overcome some higher security costs
for delivering to some consumers. We wanted to observe how the security constrains
factor in and overcome geographical distance costs, so the farther supplier becomes

an optimal choice (at least for some commodities).

The experimental results are described in the following.

4.1 EXPERIMENT RESULTS 1

Based on the model we created a computer program using the python language to test
whether the constraints we imposed will produce the results we were expecting to receive.
For this experiment we ran our scenario for ten days and used a portion of those results to
test the viability of the program. In examining Figure 4.1 you can see C2 and C3 are both
responsible for resupplying all 8 consumers. However, notice that C2 only delivers to 4
of the consumers. This is primarily due to the fact that the amount requested exceeds the

amount of on hand quantity located at C3.

49

Figure 4.1: Suppliers-consumers network under security constraints (Experiment 1)

Table 4.4 provides a breakdown detailing the number of trucks each supplier will
deliver to their respective consumer. In comparing 4.4 and 4.3 you will notice that on
certain commodities the suppliers are sharing the delivery duties. For example, look at
table 4.7 and 4.8 consumer 4 is being resupplied by both suppliers because neither supplier

has enough on hand quantity to fulfill this particular commodity request.

Supplier C2

M || (1,1)] 0.0
1S1 || (1,2) | 1.0
1S2 || (1,3) | 0.0
1S3 || (1,4) | 1.0
1XS1 || (1,5) | 1.0
1XS2 || (1,6) | 1.0
1XS3 || (1,7) | 0.0
1XS4 || (1,8) | 0.0

Table 4.1: C2 Supply Delivery Experi-

50

Supplier C3

M || (2,1)] 1.0
1S1 | (2,2) | 1.0
1S2 || (2,3) | 1.0
1S3 | (2,4) | 1.0
1XS1 || (2,5) | 1.0
1XS2 || (2,6) | 1.0
1XS3 | 2,7) | 1.0
1XS4 | (2,8) | 1.0

Table 4.2: C3 Supply Delivery Experi-

ment 1 ment 1
INIM | IN1S1 | IN1S2 | IN1S3 | IN1XS1 | IN1XS2 | IN1XS3 | IN1XS4
Ammo 22 0 18 28 16 4 4
Cargo 8 22 0 18 28 16 0
Fuel 8 22 0 18 28 16 8
Water 8 22 0 18 28 16 5

Table 4.3: Consumer Commodity Request Experiment 1

Table 4.4: Supplier-Consumer Commodity Delivery Experiment 1

Ammo || Supplier C2 | Supplier C3 Cargo || Supplier C2 | Supplier C3
1M (I,1H)| 0.0 | (2,1 | 220 M || (I,1)| 00 [(2,1)] 8.0
151 (1,2) | 0.0 |(2,2)| 0.0 1S1 || (1,2) | 0.0 | (2,2) | 22.0
1S2 (1,3)| 0.0 | (2,3)| 18.0 1S2 || (1,3) | 0.0 | (2,3)| 0.0
1S3 (1,4)| 0.0 | (2,4) | 28.0 1S3 || (1,4) | 00 | (2,4) | 18.0

1XS1 || (1,5) | 0.0 | (2,5) | 16.0 1XS1 || (1,5) | 220 | (2,5) | 6.0
1XS2 || (1,6) | 0.0 | (2,6) | 4.0 1XS2 || (1,6) | 0.0 | (2,6) | 16.0
1XS3 ([(1,7) | 00 |[(2,7)| 0.0 1XS3 || (1,7)| 00 | (2,7)| 4.0
1XS4 || (1,8) | 0.0 |(2,8) | 4.0 1XS4 || (1,8) | 0.0 | (2,8) | 40.0
Table 4.5: Ammo Deliveryl Table 4.6: Cargo Delivery1
Fuel || Supplier C2 | Supplier C3 Water || Supplier C2 | Supplier C3
IM || (1,1)| 00 [(2,1)]| 80 M (LL,)| 00 | (2, 1)| 8.0
1S1 || (1,2) | 0.0 | (2,2) | 22.0 181 (1,2) | 16.0 | (2,2)| 6.0
1S2 || (1,3) | 0.0 | (2,3)| 0.0 1S2 (1,3)| 0.0 | (2,3)| 0.0
1S3 | (1,4) | 140 | (2,4) | 4.0 1S3 (1,4) | 180 | (2,4) | 0.0
1XS1 || (1,5) | 28.0 | (2,5) | 0.0 1XS1 || (1,5) | 0.0 | (2,5 | 28.0
1XS2 || (1,6) | 0.0 | (2,6) | 16.0 1XS2 || (1,6) | 10.0 | (2,6) | 6.0
1XS3 | (1,7) | 0.0 | (2,7)| 4.0 1XS3 ([(1,7)| 00 | (2,7)| 4.0
1XS4 || (1,8) | 0.0 | (2,8 | 8.0 1XS4 || (1,8) | 00 [(2,8 | 5.0

Table 4.7: Fuel Delivery1 Table 4.8: Water Deliveryl

52

4.2 EXPERIMENTAL RESULTS 2

As you saw in the previous experiment distance and requested amount affected which sup-
plier would deliver to which consumer. So, for this experiment we wanted to see what
would happen if we adjusted the amount of commodity being requested and not change
the distance between supplier and consumer. The way the program is designed, there is
a penalty imposed if the distance is over 150 miles, to discourage long delivery routes.
Thereby providing another mechanism to reduce the amount of time Soldiers are exposed
to environment. In examining Figure 4.2 you can see C3 is the only supplier responsible
for resupplying all 8 consumers. So, by adjusting the amount requested we can eliminate
the need of having both suppliers delivering to all consumers. This is accomplished due
to two factors: first, the distance between C2 and the consumers and second, the amount

requested does not exceed the amount of commodity C3 has on hand.

Figure 4.2: Suppliers-consumers network under security constraints (Experiment 2)

Supplier C2

IM || (I,1)]| 0.0

1S1 || (1,2) | 0.0

1S2 || (1,3) | 0.0

1S3 || (1,4) | 0.0

1XS1 || (1,5) | 0.0
1XS2 || (1,6) | 0.0
1XS3 || (1,7) | 0.0
1XS4 || (1,8) | 0.0

Table 4.9: C2 Supply Delivery Experi-

ment 2

53

Supplier C3

M |2, 1)] 1.0

1S1 | (2,2) | 1.0

1S2 | (2,3) | 1.0

1S3 | 2,4) | 1.0

1XS1 || (2,5) | 1.0
1XS2 || (2,6) | 1.0
1XS3 || 2,7) | 1.0
1XS4 | (2,8) | 1.0

Table 4.10: C3 Supply Delivery Experi-

ment 2

Table 4.12 provides a breakdown detailing the number of trucks each supplier will

deliver to their respective consumer. Unlike experiment 1 due to the quantities being re-

quested, as laid in table 4.11 supplier C3 is responsible for all deliveries.

INIM | IN1S1 | IN1S2 | IN1S3 | IN1XS1 | IN1XS2 | IN1XS3 | IN1XS4
Ammo 0 4.5 2 0 0 3.5 4.5
Cargo 4.1 2 24 2 2.5 4.4 0
Fuel 0 3 5 0 3 3 3
Water 5.1 0 0 13.18 1 0 0

Table 4.11: Consumer Commodity Request Experiment 2

54

Table 4.12: Supplier-Consumer Commodity Delivery Experiment 2

Ammo || Supplier C2 | Supplier C3 Cargo || Supplier C2 | Supplier C3
1M 1,1)] 0.0 | (@2,1)| 0.0 M 1, 1)] 00 | (2,1)] 4.1
151 (1,2) | 0.0 | (2,2)| 45 1S1 ([(1,2) | 00 |(2,2)| 20
1S2 (1,3)] 0.0 | (2,3)] 2.0 1S2 || (1,3) | 0.0 | (2,3)| 2.4
1S3 (1,4) | 0.0 | (2,4 | 0.0 1S3 | (1,4 | 00 | (2,4 | 2.0

1XS1 || (1,5)| 0.0 | (2,5 | 0.0 1XS1 || (1,5) | 0.0 | (2,5 | 2.5
1XS2 (| (1,6) | 0.0 | (2,6) | 3.5 1XS2 || (1,6) | 0.0 | (2,6) | 44
1XS3 || (1,7)| 0.0 | (2,7)| 0.0 1XS3 (| (1,7) | 00 | (2,7)| 0.0
1XS4 || (1,8) | 0.0 | (2,8) | 4.5 1XS4 | (1,8) | 0.0 | (2,8) | 0.0
Table 4.13: Ammo Delivery2 Table 4.14: Cargo Delivery2
Fuel || Supplier C2 | Supplier C3 Water || Supplier C2 | Supplier C3
IM || (1,1)]| 00 [(2,1)]| 0.0 1M (L) 00 {2, 1)| 5.1
1S1 | (1,2) | 0.0 | (2,2)| 3.0 1S1 || (1,2) | 0.0 | (2,2)| 0.0
1S2 || (1,3) | 0.0 | (2,3)| 05 1S2 | (1,3)| 00 | (2,3)| 0.0
1S3 || (1,4 | 00 |(2,4)| 40 1S3 || (1,4)| 0.0 | (2,4) | 13.18
1XS1 | (1,5 | 0.0 | (2,5 | 3.0 1XS1 || (1,5) | 0.0 | (2,5) | 1.0
1XS2 || (1,6) | 0.0 | (2,6)| 3.0 1XS2 || (1,6) | 0.0 | (2,6) | 6.0
1XS3 | (1,7) | 0.0 | (2,7)| 3.0 1XS3 | (1,7) | 0.0 | (2,7)| 1.0
1XS4 || (1,8) | 0.0 | (2,8 | 3.0 1XS4 || (1,8) | 0.0 | (2,8) | 0.0
Table 4.15: Fuel Delivery2 Table 4.16: Water Delivery2

4.3 EXPERIMENTAL RESULTS 3

So far, we have seen how distance and quantity can dictate how consumers will be re-

supplied. However, we have not shown the impact that security can have on the delivery

55

routes. This experiment will use the same base information from experiment 2, the one key
difference will be changing the security along some of the routes and see how this change

will impact which supplier gets used.

Figure 4.3: Suppliers-consumers network under security constraints (Experiment 3)

Table 4.19 shows the related security cost in terms of distance. The security cost is a factor
applied to the distance of the route. For this scenario we changed the threat assessment
along the edges connecting C3 to 7 and C3 to 8 from normal to moderate. Therefore a fac-
tor of 4 is applied to this edge. By doing this it increases the transportation cost along this
route and therefore this supplier-consumer route is eliminated from the equation resulting

in supplier C2 being responsible for these deliveries.

Supplier C2
IM || (I,1)]| 0.0
1S1 || (1,2) | 0.0
1S2 || (1,3) | 0.0
1S3 || (1,4) | 0.0
1XS1 || (1,5) | 0.0
1XS2 || (1,6) | 0.0
1XS3 || (1,7) | 1.0
1XS4 || (1,8) | 1.0

Table 4.17: C2 Supply Delivery Experi-

Supplier C3
M |2, 1)] 1.0
1S1 | (2,2) | 1.0
1S2 || (2,3) | 1.0
1S3 || 2,4) | 1.0
1XS1 || (2,5 | 1.0
1XS2 || (2,6) | 1.0
1XS3 || 2,7 | 0.0
1XS4 || (2,8) | 0.0

56

Table 4.18: C3 Supply Delivery Experi-

ment 3 ment 3
INIM | IN1S1 | IN1S2 | IN1S3 | INIXS1 | INIXS2 | INIXS3 | IN1XS4
C2 120 143 183 163 158 195 193 172
C3 93 116 156 136 131 168 664 580

Table 4.19: Security Cost

Table 4.20: Supplier-Consumer Commodity Delivery Experiment 3

Ammo || Supplier C2 | Supplier C3 Cargo || Supplier C2 | Supplier C3
1M (I,h)| 00 | (2, 1) | 0.0 M [(I, | 00 |2, 1) 41
181 (1,2) | 0.0 | (2,2)| 45 1S1 | (1,2)| 0.0 | (2,2)| 2.0
1S2 (1,3 0.0 | (2,3)| 2.0 1S2 | (1,3)| 0.0 | (2,3)| 24
1S3 (1,4 | 00 | (2,4 | 0.0 1S3 | (1,4 | 00 | (2,4 | 20

1XS1 || (1,5)| 0.0 | (2,5 | 0.0 1XS1 || (1,5) | 0.0 | (2,5 | 25
1XS2 (| (1,6) | 0.0 | (2,6) | 3.5 1XS2 || (1,6) | 0.0 | (2,6) | 4.4
1XS3 ([(1,7) | 00 [(2,7)| 0.0 1XS3 || 1,7) | 0.0 | (2,7)| 0.0
1XS4 || (1,8) | 45 [(2,8) | 0.0 1XS4 || (1,8) | 0.0 [(2,8 | 0.0
Table 4.21: Ammo Delivery3 Table 4.22: Cargo Delivery3
Fuel || Supplier C2 | Supplier C3 Water | Supplier C2 | Supplier C3
IM || (1,1)| 00 [(2,1)| 0.0 IM || (I,1)| 00 [(2,1)] 5.1
1S1 || (1,2) | 00 |(2,2)| 3.0 1S1 || (1,2) | 0.0 | (2,2)| 0.0
1S2 || (1,3) | 0.0 | (2,3)| 05 1S2 | (1,3)| 00 | (2,3)| 0.0
1S3 || (1,4) | 00 |(2,4)| 40 1S3 || (1,4)| 0.0 | (2,4) | 13.18
1XS1 | (1,5 | 0.0 | (2,5 | 3.0 1XS1 || (1,5) | 0.0 | (2,5 | 1.0
1XS2 || (1,6) | 0.0 | (2,6) | 3.0 1XS2 || (1,6) | 0.0 | (2,6)| 6.0
1XS3 | (1,7) | 3.0 | (2,7)| 0.0 1XS3 | (1,7) | 1.0 | 2,7)| 0.0
1XS4 || (1,8) | 3.0 | (2,8 | 0.0 1XS4 || (1,8) | 0.0 | (2,8 | 0.0

Table 4.23: Fuel Delivery3 Table 4.24: Water Delivery3

58

CHAPTER 5
CONCLUSION

Due to the increased interest in vehicle routing problems over the past 80 years several
variations has arisen to address issues associated with the varying industries in which they
are employed. The capacitated vehicle routing problem (CVRP) and set partitioning vehicle
routing problem (SPVRP) are two of those variations and the basis upon which we built
our military vehicle routing problem. By using the model for CVRP we were able to model
our problem which would compute route optimality from supplier to consumer. This model
was plagued by 5 crucial shortcomings as laid out in detail in chapter 2. To mitigate these
shortcomings, first we reclassified the problem as a SPVRP and secondly, created a 2-
step process to calculate the routes. This allowed us to incorporate security as part of
the solution and partition our suppliers into one set and our consumers into another set.
Effectively changing our model from an undirected graph to a bipartite graph. Due to these
changes in the model we were able to address our multiple supplier scenario and additional
factors. In our particular multiple supplier scenario, our suppliers do not carry all of the
required commodities. This was done to address the possibility of a commodity shortage
at one supplier but still needing the capability to support all consumers with the requested
amount of commodities. Through experiment 1 you were able to see how the suppliers (C2,
(C'3) shared the responsibility of delivering supplies to their 8 consumers. This was because
distance and on hand quantity forced both suppliers to be utilized. However, in experiment
2 you were able to see only one supplier was utilized this is primarily due to distance from
consumers. We imposed a penalty on distances greater than 150 miles to discourage long
deliveries routes. Since, supplier C'3 was able to handle the quantities requested there was

no reason to include supplier C2.

59

5.1 FUTURE RESEARCH

The application of this model is to be used in a vendor managed inventory (VMI) environ-
ment. This thesis only addressed the vehicle routing aspect of this environment. In Chapter
1 we reviewed the Inventory Routing Problem (IRP) to provide a full understanding of the
VMI environment as a whole. So, future work would include modeling the IRP and pro-
viding a solution. The IRP will address how often, how much and when will the resupply
take place.

Another possibility for future research would be in a military context. This current
model could potentially be used to identify unit augmentations to logistics companies. Cur-
rently, security (outside the normal requirements) is not an aspect that logistics companies
have to worry about along delivery routes. Because the battlespace owner secures every-
thing within their span of control however as in our problem this was not the case. There-
fore, forcing the supplier to supply their own security assets. In practice this cannot be
sustained because the suppliers are not equipped with trained personnel to handle security
as a full-time job. So, if this becomes the norm it would be essential to augment logistics
companies with a security element. By utilizing this model it will help identify how the

manning requirements for that security element.

60

REFERENCES

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows, Prentice-Hall, New Jersey,
1993.

[2] Steven F. Baker, David P. Morton, Richard E. Rosenthal, and Laura Melody Williams,
Optimizing military airlift, Operations Research 50 (2002), no. 4, 582—-602.

[3] Moshe Dror; Michael Ball, Inventory/routing: Reduction from an annual to a short-
period problem, Naval Research Logistics (NRL) 34 (1987).

[4] M. Grazia Bertazzi, Luca; Speranza, Inventory routing problems: an introduction,
EURO Journal of Transportation and Logistics 1 (2012).

[5] Shoshana Anily; Julien Bramel, A probabilistic analysis of a fixed partition policy for
the inventory-routing problem, Naval Research Logistics (NRL) 51 (2004).

[6] G.G.Brown, W.M. Carlyle, R.F. Dell, and J.W. Brau, Optimizing intratheater military
airlift in iraq and afghanistan, Military Operations Research 18 (2013), no. 3, 35-52.

[7] Partha Chakroborty, Optimal Routing and Scheduling in Transportation: Using Ge-
netic Algorithm to Solve Difficult Optimization Problems, Direction IITK Newsletter
6 (2004), 29-40.

[8] Jianxiang Li; Haoxun Chen; Feng Chu, Performance evaluation of distribution strate-
gies for the inventory routing problem, European Journal of Operational Research 202
(2010).

[9] Awi Federgruen, [handbooks in operations research and management science] net-
work routing volume 8 —— chapter 4 analysis of vehicle routing and inventory-
routing problems, 1995.

[10] Robert Fourer and Brian W Kernighan, Ampl: A modeling language for mathematical
programming, Duxbury Press, 2002.

[11] GNU, GNU Linear Programming Kit, Version 4.65, 2018,
http://www.gnu.org/software/glpk/glpk.html.

61

[12] William E. Hart, Carl D. Laird, Jean-Paul Watson, David L. Woodruff, Gabriel A.
Hackebeil, Bethany L. Nicholson, and John D. Siirola, Pyomo—optimization modeling
in python, second ed., vol. 67, Springer Science & Business Media, 2017.

[13] William E Hart, Jean-Paul Watson, and David L. Woodruff, Pyomo: modeling and
solving mathematical programs in python, Mathematical Programming Computation
3(2011), no. 3, 219-260.

[14] Gurobi Optimization Inc, Gurobi Optimizer Reference Manual, 2014,
http://www.gurobi.com.

[15] Dr. Gerald G. Brown Dr. E. Matthew Carlyle John W. Brau, Jr and Dr. Robert F. Dell,
Optimizing Intra theater Military Airlift in Iraq and Afghanistan, Military Operations
Research 18 (2013), no. 3, 35—-52.

[16] Richard E. Killblane, Convoy ambush case studies, Volume II: Iraq and
Afghanistan (2015), 274-276.

[17] CPT McCormack, Ian M., The Military Inventory Routing Problem with Direct De-
livery, March 2014.

[18] P. Munari, T. Dollevoet, and R. Spliet, A generalized formulation for vehicle routing
problems, ArXiv e-prints (2016).

[19] Department of the Army, Technical Manual 9-2320-366-10-1 M1083 Series 5 ton
6x6, Medium Tactical Vehicles (MTV), 15 September 1998.

[20] , Technical Manual 9-2320-365-10 M1078 Series 2.5 ton 4x4, Light Medium

Tactical Vehicles (LMTV), 20 August 2005.

[21] , Technical Manual 9-2330-326-14p Flat Bed Semitrailer, Break Bulk, 20 May
2003.

[22] , Field Manual 4-01.45(05) Tactical Convoy Operations, 24 March 2005.

[23] , Technical Manual 9-2330-386-14p Flat Bed Semitrailer, Break Bulk, 28

September 1990.

[24] , Army Techniques Publication 4-93 The Sustainment Brigade, 9 August 2013.

62

[25]

, Technical Manual 9-2330-359-14p Flat Bed Semitrailer, Break Bulk, August
1991.

, Technical Manual 9-2320-364-10 Truck, Tractor, M1074 and M1075 Pal-
letized Load System (PLS), August 1999.

[26]

[27] , Technical Manual 9-2330-385-14 Palletized Load System (PLS) Trailer, Au-

gust 1999.

[28] , Technical Manual 9-2330-358-14p Flat Bed Semitrailer, Break Bulk, De-

cember 1987.

[29] , Technical Manual 9-2320-279-10-1 M977 Series 8x8, Heavy Expanded Mo-

bility Tactical Trucks (HEMTT), November 1986.

[30] , Technical Manual 9-2320-356-14 Semitrailer, Tank, 5000 Gallon, Bulk

Haul, October 1990.

[31] Martin Savelsbergh; Jin-Hwa Song, An optimization algorithm for the inventory rout-
ing problem with continuous moves, Computers & Operations Research 35 (2008).

[32] Daniele Toth, Paolo; Vigo, The vehicle routing problem —— 12. inventory routing in
practice, vol. 10.1137/1.9780898718515, 2002.

[33] Paolo Toth and Daniele Vigo, Vehicle routing:problems, methods, and applications,
2nd ed., Society for Industrial and Applied Mathematics and the Mathematical Opti-
mization Society, 2014.

[34] Wikipedia, AMPL, 2018, https://en.wikipedia.org/wiki/AMPL.

[35] Lei Yang, Xianfeng; Feng, Inventory routing problem, Transportation Research
Record Journal of the Transportation Research Board 2378 (2013).

63

Appendix A
REORDER INFORMATION

Tables in this appendix were utilized in determining the quantities to be used in our exper-
iments. While the tables represents the needs of the consumer after 10 days have lapsed
you can easily adjust these figures to represent a different time-frame. These tables are pre-
sented to give an understanding of the consumers consumption over any planning horizon.

Table A.1 gives the threshold limits by commodity and unit. There is a minimum and
maximum threshold limit. This is what sets the minimum and maximum quantity amounts

a unit receive.

Unit Threshold Limits
Cargo Water Fuel Ammo
Min | Max | Min | Max | Min | Max | Min | Max
INIM | 060|090 | 0.69 | 0.99 | 0.65 | 095 | 0.60 | 0.90
INIS1 [050 | 0.75 | 0.65| 0.95 | 0.60 | 0.90 | 0.50 | 0.75
IN1S2 | 050 | 0.75 |1 0.63 | 093 | 0.60 | 0.90 | 0.50 | 0.75
IN1S3 | 0.50 | 0.75 | 0.66 | 0.96 | 0.60 | 0.90 | 0.50 | 0.75
IN1XS1 | 0.50 | 0.75 | 0.60 | 0.90 | 0.60 | 0.90 | 0.50 | 0.75
IN1XS2 | 0.50 | 0.75 | 0.63 | 0.93 | 0.60 | 0.90 | 0.50 | 0.75
IN1XS3 | 0.50 | 0.75 | 0.61 | 0.91 | 0.60 | 0.90 | 0.50 | 0.75
INIXS4 | 0.50 | 0.75 | 0.59 | 0.89 | 0.60 | 0.90 | 0.50 | 0.75

Table A.1: Threshold Limits

Table A.2 provides a breakdown of the minimum and maximum truck requirement
based on the amount goods a unit request. The quantity requested is translated into truck

requirements.

64

Unit Truck Equivalent for Reorder*
Cargo Water Fuel Ammo
Min Max Min Max Min Max Min Max
INIM | 16.32132 | 4.080329 | 158.9888653 | 5.128673075 | 87.61767008 | 12.51681001 | 0.83324169 | 0.208310423
INIST | 1.678358 | 0.839179 | 15.54010763 | 2.220015375 | 11.19385244 | 2.798463111 | 0.04712906 | 0.023564528
IN1S2 | 2.890612 | 1.445306 | 26.30988878 | 4.977546525 | 1.469855677 | 0.367463919 | 0.12567748 | 0.06283874
IN1S3 | 3.304878 | 1.652439 | 26.13386455 | 3.0745723 15.457488 3.864372 | 0.14531459 | 0.072657293
INIXS1 | 0.479923 | 0.239961 3.170023 0.79250575 | 2.663128889 | 0.665782222 | 0.03770324 | 0.018851622
IN1XS2 | 0.64872 | 0.32436 | 4.172048775 | 0.789306525 | 3.362195556 | 0.840548889 | 0.00942581 | 0.004712906
IN1XS3 | 0.64872 | 0.32436 | 4.397564925 | 1.014822675 | 3.362195556 | 0.840548889 | 0.00942581 | 0.004712906
IN1XS4 | 0.64872 | 0.32436 | 4.623081075 | 1.240338825 | 3.148862222 | 0.787215556 | 0.00942581 | 0.004712906

Table A.2: Min-Max Truck Requirement

To determine the number of trucks required to deliver the reorder point figures:

e Cargo was calculated with a truck that has a capacity of 49,5001bs

e Fuel was calculated with a truck that has a capacity of 4,500 gallons

e Ammo was calculated with a truck that has a capacity of 12,7311bs

e Water was calculated with a truck that has a capacity of 4,000 gallons

Formula:

(storagecapacity — reorderpoint)

truckcapacity

Table A.3 gives the quantity which will trigger a resupply. Just as in the previous table

there is a minimum and maximum requirement as well. This information will be used in

the IRP solution.

65

Unit Reorder Point
Cargo Water Fuel Ammo
Min Max Min Max Min Max Min Max

INIM | 1,211,857.79 | 1,817,786.68 | 1,415,513.77 | 2,030,954.54 | 732,233.39 | 1,070,187.26 | 15,912.00 | 23,868.00

IN1S1 83,078.70 124,618.05 115,440.80 168,721.17 | 75,558.50 | 113,337.76 600.00 900.00

IN1S2 143,085.30 214,627.95 179,191.67 264,521.04 | 109,136.78 | 163,705.18 1,600.00 | 2,400.00

IN1S3 163,591.45 245,387.17 202,921.77 295,158.94 | 104,338.04 | 156,507.07 1,850.00 | 2,775.00
IN1XS1 | 23,756.18 35,634.27 19,020.14 28,530.21 17,976.12 26,964.18 480.00 720.00
IN1XS2 | 32,111.66 48,167.49 28,415.03 41,946.00 22,694.82 34,042.23 120.00 180.00
IN1XS3 | 32,111.66 48,167.49 27,512.97 41,043.94 22,694.82 34,042.23 120.00 180.00
IN1XS4 | 32,111.66 48,167.49 26,610.91 40,141.87 21,254.82 31,882.23 120.00 180.00

Table A.3: Reorder Point

Table A.4 provides a time frame for how often a units reorder point is reached. This

will help gauge when a resupply operation should occur (forecasting). This information

will be used in the IRP solution. The numbers in the table represent days, to get the hours

Unit How often Reorder Point is reached?*
Cargo Water Fuel Ammo
Min Max Min Max Min Max Min Max
INIM | 4.7084627 | 1.17711567 | 4.29464739 | 0.138537 | 10.17115 | 1.453022 | 4.494916 | 1.123729
IN1S1 | 5.67633765 | 2.83816882 | 5.40189998 | 0.7717 10.82058 | 2.705145 | 7.500069 | 3.750034
IN1S2 | 6.15021242 | 3.07510621 | 5.95758249 | 1.1271102 | 11.93345 | 2.983362 | 5.333333 | 2.666667
IN1S3 | 5.44537831 | 2.72268916 | 4.63552058 | 0.5453554 | 8.837226 | 2.209307 | 5.138889 | 2.569444
IN1XS1 | 6.00014316 | 3.00007158 | 4.85492403 | 1.213731 | 9.270687 | 2.317672 | 6.000041 | 3.000021
IN1XS2 | 6.00012519 | 3.0000626 | 4.72437129 | 0.8938 10.06953 | 2.517382 | 6.000046 | 3.000023
IN1XS3 | 6.00012494 | 3.00006247 | 4.97977039 | 1.1491778 | 9.578748 | 2.394687 | 6.00006 | 3.00003
IN1XS4 | 6.0001216 | 3.0000608 | 5.23511413 | 1.4045428 | 9.043116 | 2.260779 | 6.00005 | 3.000025

Table A.4: Delivery Frequency

equivalent multiply by 24. Formula:

(capacity — reorderpoint)

consumption

Table A.5 provides the hourly consumption rate by commodity. This information was

already pre-determined and provided in our data set.

Unit Hourly Consumption by Good
Cargo Water | Ammo Fuel
INIM | 7,149.41 | 6,496.49 | 98.33 | 2,655.38
IN1S1 | 609.83 560.42 3.33 322.66
IN1S2 | 969.38 838.19 12.5 422.45
IN1S3 | 1251.76 | 1,067.52 15 534.03
IN1XS1 | 164.97 123.94 3.33 94.52
IN1XS2 | 222.99 166.68 .83 112.50
IN1XS3 | 222.99 166.68 .83 116.38
IN1XS4 | 222.99 166.68 .83 123.05

Table A.6 provides the consumption by commodity per 10 days. This was calculated by

Table A.5: Hourly Consumption

multiplying the hourly consumption rate by 24.

Unit 10 Day Consumption by Good
Cargo Water Ammo Fuel

INIM | 171,585.77 | 148,080.95 | 2,360.00 | 38,764.49

IN1S1 | 14,635.97 | 11,507.14 80.00 4,655.23

IN1S2 | 23,265.10 | 17,664.81 | 300.00 | 6,096.97

IN1S3 | 30,042.26 | 22,550.96 | 360.00 | 7,871.10
IN1XS1 | 3,959.27 2,611.80 80.00 1,292.69
IN1XS2 | 5,351.83 3,532.36 20.00 1,502.54
IN1XS3 | 5,351.83 3,532.34 20.00 1,579.53
IN1XS4 | 5,351.83 3,532.36 20.00 1,566.92

Table A.6: 10 Day Consumption

TRUCK CHARACTERISTICS

Appendix B

Table B.1 provides the characteristics of the logistics in the fleet.

67

N latur Model Fuel Capacity | Length Width Fallets Maximum Load
omenclature oae (gallons) (inches) | (inches) | (40”x48”) | (Cargo/Fuel)
HEMTT Truck | M977/985 155 401 102 8 11.00 ST
MTV M1083 155 168 88 6 11.00 ST
LMTV M1078 155 147 88 6 11.00 ST
HEMTT
Fuel Tanker 2.5K MO978 155 401 96 NA 2250 GAL
HEMTT
Fuel Tanker SK M969 155 401 96 NA 4750 GAL
Palletized Loading | M1074
System w/Flatrack | M1075 155 431 102 10 11.005T
Loading Handling
System w/Flatrack M1120 155 419 96 20 11.00 ST
MS871A1 358 96 14 22.50 ST
22.5-ton Trailer MS871A2 NA 374 96 13 22.50 ST
MS871A3 495 96 13 22.50 ST
34-ton Trailer MS872 NA 490 96 18 34.00 ST
16.5-ton Trailer |y 1) 176 NA 309 96 18 16.50 ST

PLS w/Flatrack

Table B.1: Truck Capacity By Type [29][20][26][30]

Appendix C
PYTHON CODE

C.1 EXPERIMENT 1

—x— coding: utf-8 —x-

nmmwn

Created on Tue Oct 31 05:48:31 2017

Qauthor: T.Fletcher

mman

Import

import pyomo

import pyomo.opt

import pyomo.environ as pe

import os

#problem name

PROBLEM_NAME = "Minimal cost supplies delivery"

Creation of an Abstract Model

model = pe.AbstractModel (doc=PROBLEM_NAME)

iddssatasatasasasasaxaaddi

#general parameters: all read from a data file
#HAH A

#number of suppliers and consumers

model.NS = pe.Param(within=pe.Positivelntegers)

model .NC pe.Param(within=pe.Positivelntegers)

68

#indexes over suppliers/consumers respectively
model.I = pe.RangeSet (l, model.NS)

model.J = pe.RangeSet (1, model.NC)

Define sets

Sets
model.SS Suppliers set
model.CS Consummers set

model.SS = pe.Set (doc=’Suppliers’)

model.CS

pe.Set (doc=’Consummers’)

#lower/upper bounds for quantities
model.m = pe.Param()

model .M

pe.Param()

#cost (distance) along each route

model.c = pe.Param(model.I, model.J)

#foverload cost (security) parameters

model.Ot

pe.Param()
model.Of = pe.Param/()
def O_init (model, i, 7J):
#
Create the value of model.ol[i, J]
#
v =20.0
if model.c[i, j] >= model.Ot:
v = model.c[i,j] * model.Of

return v

model.o = pe.Param(model.I, model.J, initialize=0_init)

69

70

#frequested quantities

model.ga = pe.Param(model.J)
model.gc = pe.Param(model.J)
model.gf = pe.Param(model.J)

model.qw = pe.Param(model.J)

HHEFHEF AR AR AR

Variables

FHEFHFHESHES RS

#fquantities (number of trucks) for each commodity

model.xa = pe.Var (model.I, model.J, domain = pe.NonNegativelIntegers) #ammo

model.xc = pe.Var (model.I, model.J, domain = pe.NonNegativelntegers) #cargo

model.xf pe.Var (model.I, model.J, domain = pe.NonNegativeIntegers) #fuel

model.xw = pe.Var (model.I, model.J, domain = pe.NonNegativelntegers) #water

#binary variables
model.d = pe.Var (model.I, model.J, domain = pe.NonNegativelntegers,

bounds = (0,1))

FHAHFF A AR H AR SRR A
Constraints
FHAFFFA AR F AR R A
def supply_ruleA (model, 3J):
return sum(model.xa[i,j] for i in model.I) >= model.qgal]j]
model.supplyA = pe.Constraint (model.J, rule=supply_ruleh,

doc=’'Supply requested ammo quantities for j’)

def supply_ruleC (model, 7):

return sum(model.xc[i, j] for i in model.I) >= model.qgc[]]

model.supplyC = pe.Cons

def supply_ruleF (model,
return sum(model.xf[i

model.supplyF = pe.Cons

def supply_ruleW (model,
return sum(model.xw/[i

model.supplyW = pe.Cons

#constraints for binary
fquantities lower bound
def supply_ming(model,

return model.xali, J]

model.supplymin = pe.Co

doc='"Minimum quantity f

fquantities upper bound

def supply_maxg(model,
return model.xali, J]
<= model.d[i, j]*mode

model.supplymax = pe.Co

doc='Maximum quantity £

s saasaadandssi

71

traint (model.J, rule=supply_ruleC,

doc=’Supply requested cargo quantities for J’)

3):
,J] for i in model.I) >= model.gf[7]]
traint (model.J, rule=supply_ruleF,

doc=’Supply requested fuel quantities for 3’)

3):
,J] for i in model.I) >= model.qgqw[]]
traint (model.J, rule=supply_ruleW,

doc=' Supply requested water quantities for j’)

variables

i, J):

+ model.xc[i, j] + model.xf[i,j] + model.xwl[i, J]
>= model.d[i, j]*model.m

nstraint (model.I, model.J, rule=supply_ming,

rom supplier i to consumer ')

i, J):

+ model.xc[i, j] + model.xf[i,j] + model.xwl[i, J]
1.M

nstraint (model.I, model.J, rule=supply_maxdqg,

rom supplier i to consumer j')

FHEFHAAFEES RS

72

Define Objective function
minimize cost C = sum((i,j), c(i,J)*(xa(i,]j) + xc(i,]j) + xf(i,])
+ xw(i, J)) + d(i,J)*o(i,3));
def objective_rule (model) :
return sum(model.c[i, j]l* (model.xal[i,j] + model.xc[i, J]
+ model.xf[i, j] + model.xwl[i, J])
+ model.d[i, j]l*model.o[i, 7]

for i in model.I for J in model.J)

model.objective = pe.Objective (rule=objective_rule, sense=pe.minimize,

doc=’The objective function’)

##fread these parameters from a data file (relative to working directory)

cwdir = os.getcwd() #the current working directory must be set to the script
location
datafile = os.path.join(os.sep, cwdir + ’\\data\\constantsl.dat’)

instance = model.create_instance (datafile)

instance.pprint ()

"""Solve the model."""

#solver = pyomo.opt.SolverFactory (’'gurobi’)

#results = solver.solve (instance, tee=True, keepfiles=False,
options_string="mip_tolerances_integrality=1e-9 mip_tolerances_mipgap=0")
solver = pyomo.opt.SolverFactory (’'glpk’)

results = solver.solve (instance)

results.write ()

instance.solutions.load_from(results)

for v in instance.component_objects (pe.Var, active=True) :

print ("Variable",str(v))
varobject = getattr(instance, str(v))

for index in varobiject:

print (" ",index, varobject[index].value)

C.2 EXPERIMENT 1 DATA FILE

##
Data set for Scenario 1

##

#the number of suppliers and consumers

param NS 2;

param NC 8;

#the set of suppliers
set SS := 'C2' 'C3’;
#the set of consummers

set CS := ’INIM’ ’YIN1S1’ ’IN1S2’ ’"IN1S3’ ’IN1IXS1l’

#lower/upper number of trucks bounds
param m := 10;

param M := 50;

" IN1XS2'

#costs (distances) from each supplier to each consummer

param c: 1 2 3 4 5 6 7 8 :=
1 120 143 183 163 158 195 193 172

2 93 116 156 136 131 168 166 145

" IN1XS3'

73

" IN1XS4’ ;

74

#foverload threshold: the distance above which an overload factor is applied
param Ot := 150;
#the overload factor: the distance-multiplier when overload is applied

param Of := 2;

#requested quantities for: ammo, cargo, fuel, water
(one value for each consumer in the 1list)

param ga :=

1 22

2 0

3 18

4 28

5 16

param gc :=
18

2 22

30

4 18

5 28

6 16

75

param gw :=
138
2 22
30
4 18
5 28

6 16

C.3 RESULTS EXPERIMENT 1

11 Set Declarations
CS : Consummers
Dim=0, Dimen=1, Size=8, Domain=None, Ordered=False, Bounds=None
[/IN1M’, "IN1S1’, ’IN1S2’, ’"IN1S3’, ’'IN1XS1l’, ’'IN1XS2’, ’'IN1XS3’, ’"IN1XS4’]
SS : Suppliers

Dim=0, Dimen=1, Size=2, Domain=None, Ordered=False, Bounds=None

[(rcz2’, c3’]

c_index : Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True, Bounds=None
Virtual

d_index : Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True, Bounds=None
Virtual

o_index : Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True, Bounds=None

Virtual

supplymax_index
Virtual
supplymin_index
Virtual
xa_lindex Dim=0,
Virtual
XC_index Dim=0,
Virtual
xf_index Dim=0,
Virtual
Dim=0,

Xw_index

Virtual

Dim=0, Dimen=2,

Dim=0, Dimen=2,
Dimen=2, Size=1l6,
Dimen=2, Size=1l6,
Dimen=2,

Size=1l6,

Dimen=2, Size=1l6,

2 RangeSet Declarations

I Dim=0, Dimen=1,
Virtual

J Dim=0, Dimen=1,
Virtual

12 Param Declarations

M Size=1,
Key Value
None 50
NC Size=1,
Key Value
None 8
NS Size=1,
Key Value
None 2
of Size=1,

Key Value

Index=None,

Index=None,

Index=None,

Index=None,

Size=2,

Size=8,

Domain=Any,

Domain=Any,

Size=1l6,

Size=16,

Domain=Integers,

Domain=Integers,

Domain=None,

Domain=None,

Domain=None,

Domain=None,

Default=None,

Domain=PositiveIntegers,

Domain=PositiveIntegers,

Default=None,

Domain=

Domain=

Ordered=True,

Ordered=True,

Ordered=True,

Ordered=True,

Ordered=True,

Ordered=True,

None,

None,

Mutable=False

Default=None,

Default=None,

Mutable=False

Ordered=

Ordered=

Bounds=(1,

Bounds= (1,

76

True, Bounds=None

True, Bounds=None

Bounds=None

Bounds=None

Bounds=None

Bounds=None

2)

8)

Mutable=False

Mutable=False

ot

None : 2

Size=1, Index=None, Domain=Any,

Key : Value
None : 150

Size=16, Index=c_index,

Key : Value
(1, 1) : 120
(1, 2) : 143
(1, 3) : 183
(1, 4) : 163
(1, 5) : 158
(1, 6) : 195
(1, 7) : 193
(1, 8) : 172
(2, 1) : 93
(2, 2) : 116
(2, 3) : 156
(2, 4) : 136
(2, 5) : 131
(2, 6) : 168
(2, 7) : 166
(2, 8) : 145

Size=1, Index=None, Domain=Any,

Key : Value
None : 10

Size=16, Index=o_index,

Key : Value
(1, 1) : 0.0
(1, 2) : 0.0
(1, 3) : 366

(1, 4) : 326

Domain=Any,

Domain=Any,

Default=None,

Default=None,

Default=None,

Default=None,

77

Mutable=False

Mutable=False

Mutable=False

Mutable=False

ga

gc

(1, 5)
(1, 6)
(1, 7)
(1, 8)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(2, 5)
(2, 6)
(2, 7)
(2, 8)
Size=8,
Key Value
1 22
2 0
3 18
4 28
5 16
6 4
7 0
8 4
Size=8,
Key Value
1 8
2 22
3 0
4 18
5 28
6 16
7 4

316

390

386

344

336

332

0.0

Index=J, Domain=Any,

Index=J, Domain=Any,

Default=None,

Default=None,

Mutable=False

Mutable=False

78

8

gf : Size=8,

0

Key Value
1 8
2 22
3 0
4 18
5 28
6 16
7 4
8 8
agw : Size=8§,
Key Value
1 8
2 22
3 0
4 18
5 28
6 16
7 4
8 5

5 Var Declarations

d : Size=lo,

Lower

0

Index=d_index

Value

None

None

None

None

None

None

Index=J, Domain=Any,

Index=J, Domain=Any,

Upper

Default=None,

Default=None,

Fixed

False

False

False

False

False

False

Stale

True

True

True

True

True

True

79

Mutable=False

Mutable=False

Domain

NonNegativeIntegers
NonNegativeIntegers
NonNegativelntegers
NonNegativeIntegers
NonNegativelIntegers

NonNegativeIntegers

Xa

XC

(1, 7) 0
(1, 8) 0
(2, 1) 0
(2, 2) 0
(2, 3) 0
(2, 4) 0
(2, 5) 0
(2, 6) 0
(2, 7) : 0
(2, 8) : 0
Size=16,
Key Lower
(1, 1) : 0
(1, 2) 0
(1, 3) 0
(1, 4) 0
(1, 5) 0
(1, 6) 0
(1, 7) 0
(1, 8) 0
(2, 1) 0
(2, 2) 0
(2, 3) 0
(2, 4) 0
(2, 5) 0
(2, 6) 0
(2, 7) : 0
(2, 8) : 0
Size=16,
Key Lower
(1, 1) = 0

None

None

None

None

None

None

None

None

None

None

Index=xa_index

Value

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

Index=xc_index

Value

None

Upper
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

None

Upper

None

False

False

False

False

False

False

False

False

False

False

Fixed

False

False

False

False

False

False

False

False

False

False

False

False

False

False

False

False

Fixed

False

True

True

True

True

True

True

True

True

True

True

Stale

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

Stale

True

80

NonNegativeIntegers
NonNegativeIntegers
NonNegativelIntegers
NonNegativeIntegers
NonNegativelIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers

NonNegativelIntegers

Domain

NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativelIntegers
NonNegativeIntegers
NonNegativelIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers

NonNegativelntegers

Domain

NonNegativeIntegers

xf

(1, 2)
(1, 3)
(1, 4)
(1, 5)
(1, 6)
(1, 7)
(1, 8)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(2, 5)
(2, 6)
(2, 7)
(2, 8)
Size=16,
Key

(1, 1)
(1, 2)
(1, 3)
(1, 4)
(1, 5)
(1, 6)
(1, 7)
(1, 8)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(2, 5)
(2, 6)

0

0

Index=xf_index

Lower

0

0

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None

Value

None

None

None

None

None

None

None

None

None

None

None

None

None

None

None
None
None
None
None
None
None
None
None
None
None
None
None
None

None

Upper
None
None
None
None
None
None
None
None
None
None
None
None
None

None

False

False

False

False

False

False

False

False

False

False

False

False

False

False

False

Fixed

False

False

False

False

False

False

False

False

False

False

False

False

False

False

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

Stale

True

True

True

True

True

True

True

True

True

True

True

True

True

True

81

NonNegativeIntegers
NonNegativeIntegers
NonNegativelIntegers
NonNegativeIntegers
NonNegativelIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativelIntegers
NonNegativeIntegers
NonNegativelIntegers
NonNegativeIntegers
NonNegativeIntegers

NonNegativeIntegers

Domain

NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativelIntegers
NonNegativeIntegers
NonNegativelIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativeIntegers
NonNegativelntegers
NonNegativeIntegers
NonNegativelIntegers

NonNegativeIntegers

82

(2, 7) : 0 : DNone : None : False : True : NonNegativelIntegers
(2, 8) : 0 : ©None : None : False : True : NonNegativeIntegers
Xw : Size=16, Index=xw_index

Key : Lower : Value : Upper : Fixed : Stale : Domain

(1, 1) : 0O : None : None : False : True : NonNegativelIntegers
(1, 2) : 0 : DNone : None : False : True : NonNegativeIntegers
(1, 3) : 0 : None : None : False : True : NonNegativeIntegers
(1, 4) : 0 : DNone : None : False : True : NonNegativelIntegers
(1, 5) : 0 : DNone : None : False : True : NonNegativeIntegers
(1, 6) : 0 : DNone : None : False : True : NonNegativelIntegers
(1, 7) : 0 : DNone : None : False : True : NonNegativeIntegers
(1, 8) : 0O : None : None : False : True : NonNegativelIntegers
(2, 1) : 0 : DNone : None : False : True : NonNegativeIntegers
(2, 2) : 0O : None : None : False : True : NonNegativelIntegers
(2, 3) : 0 : None : None : False : True : NonNegativeIntegers
(2, 4) : 0 : ©None : None : False : True : NonNegativeIntegers
(2, 5) : 0 : None : None : False : True : NonNegativelIntegers
(2, 6) : 0 : DNone : None : False : True : NonNegativeIntegers
(2, 7) : 0 : DNone : None : False : True : NonNegativelIntegers
(2, 8) : 0 : DNone : None : False : True : NonNegativeIntegers

1 Objective Declarations
objective : The objective function

Size=1, Index=None, Active=True
Key : Active : Sense : Expression
None : True : minimize : 120+x(xa[l,1] + xc[l,1] + x£f[1,1] + xw([l,1])
+ 143%(xall,2] + xc[l,2] + xf[1,2] + xw[l,2]) + 183x(xa[l,3] + xc[l,3]
+ xf[1,3] + xw[l,3]) + 366%d[1,3] + 163x(xal[l,4] + xc[l,4] + xf[1,4] +
xw[l,4]) + 326xd[1,4] + 158%(xall,5] + xc[l,5] + x£f[1,5] + xw[1l,5])
+ 316%d[1,5] + 195x(xal[l,6] + xc[l,6] + xf[1l,6] + xw[1l,6]) + 390«d[1,6]

+ 193%(xall,7] + xc[l,7] + x£f[1,7] + xw[1l,7]) + 386xd[1l,7] + 172%(xall,8]

83

+ xc[1,8] + xf[1,8] + xw[1,8]) + 344xd[1,8] + 93x(xal2,1] + xc[2,1]

+ x£[2,1] + xw[2,1]) + 116%(xal[2,2] + xc[2,2] + x£f[2,2] + xw([2,2])

+ 156« (xa[2,3] + xc[2,3] + x£[2,3] + xw[2,3]) + 312+d[2,3] + 136%(xal2,4]

+ xc[2,4] + x£[2,4] + xw[2,4]) + 131x(xa[2,5] + xc[2,5] + xf[2,5] + xw[2,5])

+ 168« (xal[2,6] + xc[2,6] + xf[2,6] + xw[2,6]) + 336+d[2,6] + 166%(xal[2,7]

+ xc[2,7] + x£[2,7] + xw([2,7]) + 332+d[2,7] + 145+ (xal[2,8] + xc[2,8] + xf[2,8]

+ xw[2,8])

6 Constraint Declarations
supplyA : Supply requested ammo quantities for j

Size=8, Index=J, Active=True

Key : Lower : Body : Upper : Active
1 : 22.0 : xall,1] + xa[2,1] : +Inf : True
2 0.0 : xa[l,2] + xa[2,2] : +Inf : True
3 : 18.0 : xa[l,3] + xa[2,3] : +Inf : True
4 28.0 : xal[l,4] + xal[2,4] : +Inf : True
5: 16.0 : xa[l,5] + xa[2,5] : +Inf : True
6 : 4.0 : xal[l,6] + xa[2,6] : +Inf : True
7 0.0 : xa[l,7] + xal[2,7] : +Inf : True
8 4.0 : xall,8] + xal[2,8] : +Inf : True

supplyC : Supply requested cargo quantities for j

Size=8, Index=J, Active=True

Key : Lower : Body : Upper : Active
1 8.0 : xc[l,1] + xc[2,1] : +Inf : True
2 22.0 : xc[1l,2] + xc[2,2] : +Inf : True
3 : 0.0 : xc[l1,3] + xc[2,3] : +Inf : True
4 18.0 : xc[l,4] + xc[2,4] : +Inf : True
5 28.0 : xc[1l,5] + xc[2,5] : +Inf : True
6 : 16.0 : xc[l,6] + xc[2,6] : +Inf : True
7 4.0 : xc[1,7] + xc[2,7] : +Inf : True

8 : 0.0 : xc[l1,8] + xc[2,8] : +Inf : True

supplyF Supply requested fuel quantities for j
Size=8, Index=J, Active=True
Key Lower Body Upper Active
1 8.0 xf[1,1] + x£[2,1] +Inf True
2 22.0 xf[1,2] + x£f[2,2] +Inf True
3 0.0 xf[1,3] + x£[2,3] +Inf True
4 18.0 xf[1,4] + xf[2,4] +Inf True
5 28.0 xf[1,5] + x£f[2,5] +Inf True
6 16.0 xf[l,6] + x£[2,6] +Inf True
7 4.0 xf[1,7] + x£[2,7] +Inf True
8 8.0 xf[1,8] + xf[2,8] +Inf True
supplyw Supply requested water quantities for
Size=8, Index=J, Active=True
Key Lower Body Upper Active
1 8.0 xwl[l,1] + xw[2,1] +Inf True
2 22.0 xwl[l,2] + xw[2,2] +Inf True
3 0.0 xw[l,3] + xw[2,3] +Inf True
4 18.0 xw([l,4] + xw[2,4] +Inf True
5 28.0 xw[l,5] + xw[2,5] +Inf True
6 16.0 xw[l,6] + xw[2,6] +Inf True
7 4.0 xwl[l,7] + xw[2,7] +Inf True
8 5.0 xw[l,8] + xw[2,8] +Inf True
supplymax Maximum quantity from supplier i to consumer j
Size=16, Index=supplymax_index, Active=True
Key Lower Body Upper Active
(1, 1) -Inf xall,1] + xc[1l,1] + x£f[1,1] + xw[1l,1]
(1, 2) -Inf xall,2] + xc[l,2] + xf[1,2] + xw[l,2]
(1, 3) -Inf xall,3] + xc[l1,3] + x£f[1,3] + xw[l, 3]
(1, 4) -Inf xall,4] + xc[l,4] + xf[1,4] + xw[l,4]
(1, 5) -Inf xall,5] + xc[l1,5] + xf[1,5] + xw[1l,5]
(1, 6) —-Inf xall,6] + xc[l,6] + xf[1l,6] + xw[l,6]

84

50%xd[1,1]
50%d[1, 2]
50«d[1, 3]
50xd[1,4]
50%d[1,5]

50xd[1, 6]

True

True

True

True

True

True

(1, 7) : -Inf : xall,7] + xc[l,7] + x£f[1,7]
(1, 8) : -Inf : xall,8] + xc[l1l,8] + x£f[1,8]
(2, 1) : —-Inf : xal[2,1] + xc[2,1] + xf[2,1]
(2, 2) : -Inf : xal2,2] + xc[2,2] + x£f[2,2]
(2, 3) : -Inf : xal2,3] + xc[2,3] + x£f[2,3]
(2, 4) : —-Inf : xal2,4] + xc[2,4] + x£f[2,4]
(2, 5) : -Inf : xal2,5] + xc[2,5] + xf[2,5]
(2, 6) : —-Inf : xal2,6] + xc[2,6] + x£f[2,6]
(2, 7) : -Inf : xal2,7] + xcl[2,7] + x£[2,7]
(2, 8) : —-Inf : xal[2,8] + xc[2,8] + xf[2,8]

supplymin : Minimum quantity from supplier i to

Size=16, Index=supplymin_index,

Key : Lower : Body

(1, 1):-Inf:10xd[1,1]-xa[l,1]-xc[1,1]-xf[1,1]-xw[l,1]:
(1, 2):-Inf:10%d[1,2]-xa[l,2]-xc[l,2]-xf[1,2]-xw[1l,2]:0.
(1, 3):-Inf:10xd[1,3]-xal[l,3]-xc[1l,3]-x£f[1,3]-xw[1l,3]:0.
(1, 4):-Inf:10%d[1,4]-xa[l,4]-xc[1l,4]-x£[1,4]-xw[1l,4]:0.
(1, 5):-Inf:10xd[1,5]-xa[l,5]-xc[1l,5]-x£[1,5]-xw[1l,5]:0.
(1, 6):-Inf:10+d[1,6]-xall,6]-xc[l,6]-xf[1,6]-xw[l,6]:0.
(1, 7):-Inf:10+d[1,7]-xall,7]-xc[l,7]-x£[1,7]-xw[1l,7]:0.
(1, 8):-Inf:10xd[1,8]-xa[l,8]-xc[1,8]-xf[1,8]-xw[l,8]:0.
(2, 1):-Inf:10%d[2,1]-xa[2,1]-xc[2,1]-xf[2,1]-xw[2,1]:0.
(2, 2):-Inf:10xd[2,2]-xa[2,2]-xc[2,2]-xf[2,2]-xw[2,2]:0.
(2, 3):-Inf:10xd[2,3]1-xal2,3]-xc[2,3]-x£f[2,3]-xw[2,3]:0.
(2, 4):-Inf:10xd[2,4]-xal2,4]-xc[2,4]-xf[2,4]-xw[2,4]:0.
(2, 5):-Inf:10%«d[2,5]-xa[2,5]-xc[2,5]-xf[2,5]-xw[2,5]:0.
(2, 6):-Inf:10xd[2,6]-xal[2,6]-xc[2,6]-xf[2,6]-xw[2,6]:0.
(2, 7):-Inf:10+d[2,7]1-xal2,7]1-xc[2,7]1-x£[2,7]1-xw[2,7]:0.

(2, 8):=-Inf:10xd[2,8]—-xa[2,8]-xc[2,8]-xf[2,8]-xw[2,8]:0.

Active=True

+

+

xw[l,7] -
xw[l,8] -
xw[2,1] -
xw[2,2] -
xw([2,3] -
xw([2,4] -
xw[2,5] -
xw[2,6] -
xw(2,7] -

xw[2,8] -

consumer Jj

85

50%d[1,7]
50%d[1,8]
50%d[2,1]
50%d[2,2]
50+d[2, 3]
50%d[2,4]
50+d[2,5]
50%d[2, 6]
50%d[2,7]

50«d[2, 8]

:Upper:Active

0.

0:True

0:True

0:True

0:True

0:True

0:True

0:True

0:True

0:True

0:True

0:True

0:True

0 True

0:True

0:True

0:True

37 Declarations: NS NC I J SS CS m M c_index c Ot Of o_index o ga gc gf

True

True

True

True

True

True

True

True

True

True

gw xa_index xa xc_index xc xf_index xf xw_index xw d_index d supplyA
supplyC supplyF supplyW supplymin_index supplymin

supplymax_index supplymax objective

= Solver Results

=+
Il
Il
I
i
i
Il
i
Il
Il

Problem:

— Name: unknown
Lower bound: 57115.0
Upper bound: 57115.0
Number of objectives: 1
Number of constraints: 65
Number of variables: 81
Number of nonzeros: 225

Sense: minimize

__
Solver Information

__
Solver:

- Status: ok
Termination condition: optimal
Statistics:
Branch and bound:
Number of bounded subproblems: 11
Number of created subproblems: 11
Error rc: O

Time: 0.14010190963745117

Solution Information
o
Solution:

— number of solutions: O
number of solutions displayed: O

Variable xa

87

88

&9

C.4 EXPERIMENT 2

—x— coding: utf-8 —*-

90

nmmwn

Created on Tue Oct 31 05:48:31 2017

Qauthor: T.Fletcher

Variation of transport2.py, with no integer constraints for quantities.

mwn

Import

import pyomo

import pyomo.opt

import pyomo.environ as pe

import os

#problem name

PROBLEM_NAME = "Minimal cost supplies delivery"

Creation of an Abstract Model

model = pe.AbstractModel (doc=PROBLEM_NAME)

igssadssdsissaadsad s iastadi

#fgeneral parameters: all read from a data file

FHAFF AR AR SRS

#fnumber of suppliers and consumers

model .NS pe.Param(within=pe.Positivelntegers)

model .NC = pe.Param(within=pe.Positivelntegers)

#indexes over suppliers/consumers respectively

model.T

pe.RangeSet (1, model.NS)

model.J pe.RangeSet (1, model.NC)

Define sets

Sets

model.SS Suppliers set
model.CS Consummers set

model.SS

pe.Set (doc=’ Suppliers’)

model.CS = pe.Set (doc='"Consummers’)

#lower/upper bounds for quantities
model.m = pe.Param()

model .M = pe.Param()

#cost (distance) along each route

model.c = pe.Param(model.I, model.J)

#overload cost (security) parameters
model.Ot = pe.Param()

model.Of

pe.Param()
def O_init (model, i, 7J):
#

Create the value of model.ol[i, j]

model.Ot:

if model.c[i, j] >
v = model.c[i,j] * model.Of
return v

model.o = pe.Param(model.I, model.J, initialize=0_init)

#requested quantities

model.ga = pe.Param(model.J)

model.Qa pe.Param(model.J)

91

92

model.qc = pe.Param(model.J)
model.Qc = pe.Param(model.J)
model.gf = pe.Param(model.J)
model.Qf = pe.Param(model.J)
model.qw = pe.Param(model.J)

model.Qw = pe.Param(model.J)

FHAFFHH AR

Variables

FHAHFHH AR HERSA

#quantities (number of trucks) for each commodity

model.xa = pe.Var (model.I, model.J, domain = pe.PositiveReals) #ammo

model . xc pe.Var (model.I, model.J, domain pe.PositiveReals) f#cargo

model.xf = pe.Var (model.I, model.J, domain = pe.PositiveReals) #fuel

model .xw pe.Var (model.I, model.J, domain pe.PositiveReals) #water
#binary variables

model.d = pe.Var (model.I, model.J, domain = pe.NonNegativelntegers,

bounds = (0,1))

HHEFHRFHRF A AA AR F SRS S
Constraints
HHAFAFF AR A ARSI
def supply_ruleAl (model, 3J):

return sum(model.xa[i,j] for i in model.I) >= model.qgal]j]
model.supplyAl = pe.Constraint (model.J, rule=supply_ruleAl,

doc=’ Supply requested ammo quantities for J (lower bound)’)

def supply_ruleAu(model, 7j):

return sum(model.xa[i,j] for i in model.I) <= model.Qal]j]

93

model.supplyAu = pe.Constraint (model.J, rule=supply_ruleAu,

doc=’ Supply requested ammo quantities for J (upper bound)’)

def supply_ruleCl (model, 3J):
return sum(model.xc[i,j] for i in model.I) >= model.qgc|[]]
model.supplyCl = pe.Constraint (model.J, rule=supply_ruleCl,
doc=’Supply requested cargo quantities for J (lower bound)’)
def supply_ruleCu(model, 7J):
return sum(model.xc[i, j] for i in model.I) <= model.Qc[]]
model.supplyCu = pe.Constraint (model.J, rule=supply_ruleCu,

doc=’ Supply requested cargo quantities for J (upper bound)’)

def supply_ruleFl (model, 3J):
return sum(model.xf[i,j] for i in model.I) >= model.gf[]]
model.supplyFl = pe.Constraint (model.J, rule=supply_ruleFl,
doc=’Supply requested fuel quantities for J (lower bound)’)
def supply_ruleFu(model, 7j):
return sum(model.xf[i,j] for i in model.I) <= model.Qf[7]]
model.supplyFu = pe.Constraint (model.J, rule=supply_rulefu,

doc=’ Supply requested fuel quantities for J (upper bound)’)

def supply_ruleWl (model, 3J):
return sum(model.xw[i, j] for i in model.I) >= model.qgw([]]
model.supplyWl = pe.Constraint (model.J, rule=supply_ruleWl,
doc=’Supply requested water quantities for J (lower bound)’)
def supply_ruleWu (model, 3J):
return sum(model.xw[i, j] for i in model.I) <= model.Qw|[]]
model.supplyWu = pe.Constraint (model.J, rule=supply_ruleWu,

doc=’ Supply requested water quantities for J (upper bound)’)

94

#constraints for binary variables
#quantities lower bound
def supply_ming(model, i, Jj):
return model.xal[i, j] + model.xc[i,j] + model.xf[i,j] + model.xw[i, j]
>= model.d[i, j]*model.m
model.supplymin = pe.Constraint (model.I, model.J, rule=supply_ming,

doc=’Minimum quantity from supplier i to consumer 3j’)

#quantities upper bound
def supply_maxqg(model, i, 7J):
return model.xal[i, j] + model.xc[i,j] + model.xf[i,j] + model.xw[i, j]
<= model.d[i, j]*model.M
model.supplymax = pe.Constraint (model.I, model.J, rule=supply_maxq,

doc='Maximum quantity from supplier i to consumer 7j’)

FHEFHHHHH AR H AR AR F AR F AR
#4# Define Objective function ##
minimize cost C = sum((i,]j), c(i,J)*(xa(i,]) + xc(i,]j) + x£f(i,]) + xw(i,J))
+ d(i,J)*o(i,3)) ;
def objective_rule (model) :
return sum(model.c[i, j]* (model.xa[i,j] + model.xcl[i, J]
+ model.xf[i, j] + model.xw([i,J])
+ model.d[i, jl*model.o[i,]

for i in model.I for J in model.J)

model.objective = pe.Objective (rule=objective_rule, sense=pe.minimize,

doc=’The objective function’)

##read these parameters from a data file (relative to working directory)

cwdir = os.getcwd() #the current working directory must be set to the script location

95

datafile

os.path.join(os.sep, cwdir + ’\\datal\constants2a.dat’)
instance = model.create_instance (datafile)

instance.pprint ()

"""Solve the model."""

#solver = pyomo.opt.SolverFactory (’'gurobi’)

#results = solver.solve (instance, tee=True, keepfiles=False,
options_string="mip_tolerances_integrality=le-9 mip_tolerances_mipgap=0")
solver = pyomo.opt.SolverFactory ('glpk’)

results = solver.solve (instance)

results.write ()

instance.solutions.load_from(results)

for v in instance.component_objects (pe.Var, active=True) :
print ("Variable",str(v))
varobject = getattr(instance, str(v))
for index in varobject:

print (" ",index, varobject[index].value)

C.5 EXPERIMENT 2 DATA FILE

##
Data set for Scenario 2

##

#the number of suppliers and consumers

param NS := 2;

param NC 8;

#the set of suppliers

96

set SS := ’'C2’ 'C3';
#the set of consummers

set CS := ’INIM’ ’YINIS1’ ’IN1S2’ ’"INI1S3’ ’INIXS1l’ ’IN1XS2’ ’INIXS3’ ’IN1XS4';

#lower/upper number of trucks bounds
param m := 5;

param M := 30;

#costs (distances) from each supplier to each consummer
param c: 1 2 3 4 5 6 7 8 :=
1 120 143 183 163 158 195 193 172

2 93 116 156 136 131 168 166 145

#foverload threshold: the distance above which an overload factor is applied
param Ot := 150;
#the overload factor: the distance-multiplier when overload is applied

param Of := 2;

#requested quantities for: ammo, cargo, fuel, water
(one value for each consumer in the 1list)

param Qa :=

1 5

2 10.5

7
param ga :=
10

2 4.5

7
param gc :=
1 4.1

2 2

param Qf
1 88

2 11.2

98

99

param gw :=
1 5.1

2 0

C.6 RESULTS EXPERIMENT 2

supplymin_index : Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True, Bounds=None
Virtual

xa_index : Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True, Bounds=None
Virtual

xc_index : Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True, Bounds=None
Virtual

xf_index : Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True, Bounds=None
Virtual

Xw_index : Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True, Bounds=None

Virtual

2 RangeSet Declarations
I : Dim=0, Dimen=1, Size=2, Domain=Integers, Ordered=True, Bounds=(1l, 2)
Virtual
J : Dim=0, Dimen=1, Size=8, Domain=Integers, Ordered=True, Bounds=(1l, 8)

Virtual

16 Param Declarations

M : Size=1, Index=None, Domain=Any, Default=None, Mutable=False

NC

NS

Oof

ot

Qa

Qc

Key

None

Size=

Key

None

Size=

Key

None

Size=

Key

None

Size=

Key

None

Size=

Key

1

8

Size=

Key

1

Value
30

1, Index=None,
Value
8

1, Index=None,
Value
2

1, Index=None,
Value
2

1, Index=None,
Value

150

100

Domain=PositivelIntegers, Default=None, Mutable=False

Domain=PositiveIntegers, Default=None, Mutable=False

Domain=Any, Default=None, Mutable=False

Domain=Any, Default=None, Mutable=False

8, Index=J, Domain=Any, Default=None, Mutable=False

Value

5

10.5

9

8.5

8, Index=J, Domain=Any, Default=None, Mutable=False

Value

16

9

Qf : Size=8,

Key Value
1 88
2 11.2
3 1.5
4 4
5 3
6 3.3
7 3.3
8 3.2

Qw : Size=8,

Key Value
1 159
2 16
3 5
4 26.1
5 3.2
6 1
7 4.4
8 5

c : Size=l6,

Key Va

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(1, 6)

Index=J, Domain=Any,

Index=J, Domain=Any,

Index=c_index,

lue

120

143

183

163

158

195

Domain=Any,

Default=None,

Default=None,

Default=None,

101

Mutable=False

Mutable=False

Mutable=False

Index=None,

Index=o_index,

(1, 7) 193
(1, 8) 172
(2, 1) 93
(2, 2) 116
(2, 3) 156
(2, 4) 136
(2, 5) 131
(2, 6) 168
(2, 7) 166
(2, 8) 145
Size=1,

Key Value
None 1
Size=16,

Key Value
(1, 1) 0.0
(1, 2) 0.0
(1, 3) 366
(1, 4) 326
(1, 5) 316
(1, o) 390
(1, 7) 386
(1, 8) 344
(2, 1) 0.0
(2, 2) 0.0
(2, 3) 312
(2, 4) 0.0
(2, 5) 0.0
(2, 6) 336
(2, 7) 332
(2, 8) 0.0

Domain=Any,

Domain=Any,

Default=None,

Default=None,

102

Mutable=False

Mutable=False

103

ga : Size=8, Index=J, Domain=Any, Default=None, Mutable=False

Key : Value

1: 0
2 4.5
3 : 2
4 0
5 : 0
6 3.5
7 0
8 : 4.5

gc : Size=8, Index=J, Domain=Any, Default=None, Mutable=False

Key : Value

1 : 4.1
2 2
3 2.4
4 2
5 2.5
6 4.4
7 0
8 : 0

gf : Size=8, Index=J, Domain=Any, Default=None, Mutable=False

Key : Value

1: 0
2 3
3 0.5
4 0
5 3
6 3
7 3
8 : 3

agw : Size=8, Index=J, Domain=Any, Default=None, Mutable=False

104

Key : Value

1 5.1
2 0
3 : 0
4 13.18
5 1
6 0
7 1
8 0

5 Var Declarations

d : Size=16, Index=d_index

Key : Lower : Value : Upper : Fixed : Stale : Domain

(1, 1) : 0 : None : 1 : False : True : NonNegativelntegers
(1, 2) : 0 : None : 1 : False : True : NonNegativelntegers
(1, 3) : 0 : None : 1 : False : True : NonNegativelIntegers
(1, 4) : 0 : None : 1 : False : True : NonNegativelIntegers
(1, 5) : 0 : None : 1 : False : True : NonNegativelntegers
(1, 6) : 0 : None : 1 : False : True : NonNegativeIntegers
(1, 7) : 0 : None : 1 : False : True : NonNegativelntegers
(1, 8) : 0 : None : 1 : False : True : NonNegativelntegers
(2, 1) : 0 : None : 1 : False : True : NonNegativelIntegers
(2, 2) 0 : None : 1 : False : True : NonNegativelntegers
(2, 3) : 0 : None : 1 : False : True : NonNegativelIntegers
(2, 4) : 0 : None : 1 : False : True : NonNegativelIntegers
(2, 5) : 0 : None : 1 : False : True : NonNegativelntegers
(2, 6) : 0 : None : 1 : False : True : NonNegativelntegers
(2, 7) : 0 : None : 1 : False : True : NonNegativelIntegers
(2, 8) : 0 : None : 1 : False : True : NonNegativelntegers

xa : Size=16, Index=xa_index

Key : Lower : Value : Upper : Fixed : Stale : Domain

105

(1, 1) : 0O : None : None : False : True : PositiveReals
(1, 2) : 0O : None : None : False : True : PositiveReals
(1, 3) : 0O : None : None : False : True : PositiveReals
(1, 4) : 0O : None : None : False : True : PositiveReals
(1, 5) : O : None : None : False : True : PositiveReals
(1, 6) : 0O : None : None : False : True : PositiveReals
(1, 7) : 0O : None : None : False : True : PositiveReals
(1, 8) : 0O : None : None : False : True : PositiveReals
(2, 1) : 0O : None : None : False : True : PositiveReals
(2, 2) : 0O : None : None : False : True : PositiveReals
(2, 3) : 0O : None : None : False : True : PositiveReals
(2, 4) : O : None : None : False : True : PositiveReals
(2, 5) : 0O : None : None : False : True : PositiveReals
(2, 6) : 0O : None : None : False : True : PositiveReals
(2, 7) : 0O : None : None : False : True : PositiveReals
(2, 8) : 0O : None : None : False : True : PositiveReals
Xc : Size=16, Index=xc_index

Key : Lower : Value : Upper : Fixed : Stale : Domain

(1, 1) : O : None : None : False : True : PositiveReals
(1, 2) : 0O : None : None : False : True : PositiveReals
(1, 3) : 0O : None : None : False : True : PositiveReals
(1, 4) : 0O : None : None : False : True : PositiveReals
(1, 5) : 0O : None : None : False : True : PositiveReals
(1, ©6) : 0O : None : None : False : True : PositiveReals
(1, 7) : 0O : None : None : False : True : PositiveReals
(1, 8) : 0O : None : None : False : True : PositiveReals
(2, 1) : 0O : None : None : False : True : PositiveReals
(2, 2) : 0O : None : None : False : True : PositiveReals
(2, 3) : 0O : None : None : False : True : PositiveReals
(2, 4) : 0O : None : None : False : True : PositiveReals

(2, 5) : 0O : None : None : False : True : PositiveReals

106

(2, 6) : 0O : None : None : False : True : PositiveReals
(2, 7) : 0O : None : None : False : True : PositiveReals
(2, 8) : 0O : None : None : False : True : PositiveReals
xf : Size=16, Index=xf_index

Key : Lower : Value : Upper : Fixed : Stale : Domain

(1, 1) : 0O : None : None : False : True : PositiveReals
(1, 2) : 0O : None : None : False : True : PositiveReals
(1, 3) : 0O : None : None : False : True : PositiveReals
(1, 4) : 0O : None : None : False : True : PositiveReals
(1, 5) : 0O : None : None : False : True : PositiveReals
(1, 6) : 0O : None : None : False : True : PositiveReals
(1, 7) : O : None : None : False : True : PositiveReals
(1, 8) : 0O : None : None : False : True : PositiveReals
(2, 1) : 0O : None : None : False : True : PositiveReals
(2, 2) : 0O : None : None : False : True : PositiveReals
(2, 3) : 0O : None : None : False : True : PositiveReals
(2, 4) : 0O : None : None : False : True : PositiveReals
(2, 5) : 0O : None : None : False : True : PositiveReals
(2, 6) : O : None : None : False : True : PositiveReals
(2, 7) : 0O : None : None : False : True : PositiveReals
(2, 8) : 0O : None : None : False : True : PositiveReals

Xw : Size=16, Index=xw_index

Key : Lower : Value : Upper : Fixed : Stale : Domain

(1, 1) : 0O : None : None : False : True : PositiveReals
(1, 2) : 0O : None : None : False : True : PositiveReals
(1, 3) : 0O : None : None : False : True : PositiveReals
(1, 4) : 0O : None : None : False : True : PositiveReals
(1, 5) : 0O : None : None : False : True : PositiveReals
(1, 6) : 0O : None : None : False : True : PositiveReals
(1, 7) : 0O : None : None : False : True : PositiveReals

(1, 8) : 0O : None : None : False : True : PositiveReals

(2, 1) 0 None None False True PositiveReals
(2, 2) 0 None None False True PositiveReals
(2, 3) 0 None None False True PositiveReals
(2, 4) 0 None None False True PositiveReals
(2, 5) 0 None None False True PositiveReals
(2, 6) 0 None None False True PositiveReals
(2, 7) 0 None None False True PositiveReals
(2, 8) 0 None None False True PositiveReals

1 Objective Declarations

objective The objective function

Size=1, Index=None, Active=True
Key Active Sense Expression
None True minimize 120« (xa[l,1] + xc[1l,1] + xf[1,1] + xw[1l,1])
+ 143+ (xall,2] + xcl[l,2] + xf[1,2] + xw[l,2]) + 183x(xall,3]
+ xc[1,3] + x£[1,3] + xw[1l,3]) + 366xd[1,3] + 163%(xa[l,4] + xc[1l,4]
+ xf[1,4] + xw[l,4]) + 326xd[1,4] + 158« (xall,5] + xc[1l,5] + xf[1,5]
+ xw[l,5]) + 316xd[1,5] + 195« (xa[l,6] + xc[l,6] + x£f[1l,6] + xw[l,6])
+ 390+d[1,6] + 193x(xall,7] + xc[l,7] + x£f[1,7] + xw[1l,7]) + 386%d[1,7]
+ 172+ (xall,8] + xc[l1,8] + x£f[1,8] + xw[l,8]) + 344xd[1,8] + 93*(xal2,1]
+ xc[2,1] + xf[2,1] + xw[2,1]) + 1ll6x(xal[2,2] + xc[2,2] + xf[2,2]
+ xw[2,2]) + 156«%(xal[2,3] + xc[2,3] + xf[2,3] + xw[2,3]) + 312%d[2, 3]
+ 136+ (xal[2,4] + xc[2,4] + xf[2,4] + xw[2,4]) + 131x(xal[2,5] + xc[2,5]
+ xf[2,5] + xw[2,5]) + 168x(xa[2,6] + xc[2,06] + xf[2,6] + xw[2,6])
+ 336%d[2,6] + 166x(xal2,7] + xcl[2,7] + xf[2,7] + xw[2,7]) + 332%d[2,7]
+ 145% (xa[2,8] + xc[2,8] + xf[2,8] + xw[2,8])

10 Constraint Declarations
supplyAl
Size=8, Index=J, Active=True

Key Lower Body

Upper

Supply requested ammo quantities for j

107

(lower bound)

Active

1 0.0
2 4.5
3 2.0
4 0.0
5 0.0
6 3.5
7 0.0
8 4.5
supplyAu

Size=8,

Key Lower
1 —-Inf
2 -Inf
3 —-Inf
4 —Inf
5 —-Inf
6 —-Inf
7 —-Inf
8 —-Inf

supplyCl

Size=8,

Key Lower
1 4.1
2 2.0
3 2.4
4 2.0
5 2.5
6 4.4
7 0.0
8 0.0

supplyCu

xal[l,1]
xall,2]
xal[l,3]
xall,4]
xal[l,5]
xal[l, 6]
xall,7]

xal[l, 8]

+ xal[2,1]
+ xal2,2]
+ xal2, 3]
+ xal2,4]
+ xal[2,5]
+ xal[2, 0]
+ xal2,7]

+ xal2,8]

+Inf

+Inf

+Inf

+Inf

+Inf

+Inf

+Inf

+Inf

Supply requested ammo quantities

Supply requested cargo quantities for j

Supply requested cargo quantities for j

Body

xal[l,1]
xall,2]
xal[l,3]
xall,4]
xal[l,5]
xal[l,6]
xall,7]

xal[l, 8]

Body

xc([1l,1]
xc[1l,2]
xc[1, 3]
xc[1l,4]
xc[1,5]
xc[1l,6]
xc[1l,7]

xc[1l, 8]

Index=J, Active=True

+ xal[2,1]
+ xal2,2]
+ xal[2, 3]
+ xal2,4]
+ xal2,5]
+ xal[2, 6]
+ xal2,7]

+ xal2,8]

Index=J, Active=True

+ xc[2,1]
+ xc[2,2]
+ xc[2,3]
+ xc[2,4]
+ xc[2,5]
+ xc[2,6]
+ xc[2,7]

+ xc[2,8]

Upper
5.0

10.5

9.0

8.5

Upper
+Inf
+Inf
+Inf
+Inf
+Inf
+Inf
+Inf

+Inf

True
True
True
True
True
True
True
True
for j (upper bound)
Active
True
True
True
True
True
True
True
True

(lower bound)

Active
True
True
True
True
True
True
True
True

(upper bound)

108

Size=8,

Key Lower
1 —-Inf
2 —-Inf
3 —-Inf
4 —Inf
5 -Inf
6 —-Inf
7 —-Inf
8 —-Inf

supplyF1l

Size=8,

Key Lower
1 0.0
2 3.0
3 0.5
4 0.0
5 3.0
6 3.0
7 3.0
8 3.0

supplyFu

Size=8,

Key Lower
1 —-Inf
2 —-Inf
3 —-Inf
4 —Inf
5 —Inf
6 —-Inf
7 —-Inf

Body

xc([1l,1]
xc[1l,2]
xc[1l, 3]
xc[1l,4]
xc[1l,5]
xc([1l,6]
xc[1l,7]

xc[1l, 8]

Index=J, Active=True

+ xc[2,1]
+ xc[2,2]
+ xc[2, 3]
+ xc[2,4]
+ xc[2,5]
+ xc[2, 0]
+ xc[2,7]

+ xc[2,8]

Upper

16.0

8.0

Supply requested fuel quantities

Body

xf[1,1]
xf[1,2]
xf[1l,3]
xf[1,4]
xf[1,5]
xf[1,6]
xf[1,7]

xf[1,8]

Index=J, Active=True

+ xf[2,1]
+ xf[2,2]
+ xf[2,3]
+ xf[2,4]
+ xf[2,5]
+ xf[2,6]
+ xf[2,7]

+ x£[2,8]

Upper

+Inf

+Inf

+Inf

+Inf

+Inf

+Inf

+Inf

+Inf

Supply requested fuel quantities

Body

xf[1,1]
xf[1,2]
xf[1l,3]
xf[1,4]
xf[1,5]
xf[1,6]

<f[1,7]

Index=J, Active=True

+ xf[2,1]
+ xf[2,2]
+ xf[2,3]
+ xf[2,4]
+ xf[2,5]
+ xf[2,6]

+ xf[2,7]

Upper

88.0

11.2

Active

True

True

True

True

True

True

True

True

for 3 (lower bound)

Active

True

True

True

True

True

True

True

True

for j (upper bound)

Active

True

True

True

True

True

True

True

109

Supply requested water quantities for J

Supply requested water quantities for j

Maximum quantity from supplier i to

8 —-Inf
supplyWl
Size=8,
Key Lower
1 5.1
2 0.0
3 0.0
4 13.18
5 1.0
6 0.0
7 1.0
8 0.0
supplyWu
Size=8,
Key Lower
1 —-Inf
2 —-Inf
3 —-Inf
4 —Inf
5 —-Inf
6 —-Inf
7 —Inf
8 —-Inf
supplymax
Size=16,
Key Lower
(1, 1) -Inf
(1, 2) -Inf
(1, 3) -Inf
(1, 4) -Inf
(1, 5) -Inf

xf[1,8]

Body

xw([l,1]
xw[l,?2]
xw[1l,3]
xw([l,4]
xw([l,5]
xw([l, 6]
xw(l, 7]

xw([1l,8]

Body

xw(l,1]
xw([l,2]
xw([l,3]
xw([l,4]
xw([l,5]
xw([l,6]
xw[l, 7]

xw([1l,8]

Body
xall,
xall,
xall,
xall,

xall,

+ xf[2,8]

Index=J, Active=True

+ xw[2,1]
+ xw[2,2]
+ xw[2,3]
+ xw[2,4]
+ xw[2,5]
+ xw[2, 6]
+ xw[2,7]

+ xw[2,8]

Index=J, Active=True

+ xw[2,1]
+ xw[2,2]
+ xw[2, 3]
+ xw[2,4]
+ xw[2,5]
+ xw[2,6]
+ xw[2,7]

+ xw[2,8]

Index=supplymax_index,

3.2

True

Upper Active
+Inf True
+Inf True
+Inf True
+Inf True
+Inf True
+Inf True
+Inf True
+Inf True

Upper Active
159.0 True
16.0 True
5.0 True
26.1 True
3.2 True
1.0 True
4.4 True
5.0 True

Active=True

Active

Upper

1] + xc[1,1] +
2] + xc[1l,2] +
3] + xc[1,3] +
41 + xc[l,4] +
5] + xc[l1,5] +

xf[1,1]
xf[1,2]
xf[1,3]
xf[1,4]

xf[1,5]

consumer Jj

+ xw[l,1]
+ xw[l,2]
+ xw[l, 3]
+ xw[l,4]

+ xw[l,5]

110

(lower bound)

(upper bound)

30%d[1,1]
30%xd[1,2]
30xd[1, 3]
30%d[1,4]

30xd[1,5]

True

True

True

True

True

Minimum quantity from supplier i to

(1, o) -Inf
(1, 7) -Inf
(1, 8) -Inf
(2, 1) -Inf
(2, 2) -Inf
(2, 3) —-Inf
(2, 4) -Inf
(2, 5) —-Inf
(2, 6) —-Inf
(2, 7) -Inf
(2, 8) —-Inf
supplymin

Size=16,

Key Lower
(1, 1) -Inf
(1, 2) -Inf
(1, 3) —-Inf
(1, 4) -Inf
(1, 5) -Inf
(1, 6) —-Inf
(1, 7) -Inf
(1, 8) —-Inf
(2, 1) -Inf
(2, 2) -Inf
(2, 3) -Inf
(2, 4) -Inf
(2, 5) -Inf
(2, 6) -Inf
(2, 7) -Inf
(2, 8) -Inf

xal[l,6]
xall,7]
xal[l, 8]
xal2,1]
xal[2,2]
xal[2,3]
xal2,4]
xal[2,5]
xal2,6]
xal[2,7]

xal2,8]

+

+

xc[l,6] +

xc[1l,7] +

xc[1l,8] +

xc[2,1] +

xc[2,2] +

xc[2,3] +

xc([2,4] +

xc[2,5] +

xcl[2,6] +

xc[2,7] +

xc[2,8] +

Index=supplymin_index,

Active=True

Body Upper Active
dari,1] - xafli, 11 -
dri,2] - xall,2] -
d[i,3] - xall,3] -
dri,4] - xall,4] -
da[1l,5] - xall,5] -
dri,6] - xall,6] -
dri,71 - xall,7] -
dri,8] - xall1,8] -
dr2,11 - xal2,1]1 -
d[2,2] - xal2,2] -
dr2,31 - xal2,3] -
d[2,4] - xal2,4] -
dr2,5] - xal2,5] -
d[2,6] - xal2,6] -
dr2,7] - xal2,7] -
dr2,8] - xal2,8] -

xf[1,6]
xf[1,7]
xf[1,8]
x£[2,1]
xf[2,2]
xf[2,3]
xf[2,4]
xf[2,5]
xf[2,6]
x£[2,7]

xf[2,8]

xc[1l,1]
xc[1l,2]
xc[1l, 3]
xc[1l,4]
xc[1l,5]
xc([1l,6]
xc([1l,7]
xc[1l, 8]
xc[2,1]
xc[2,2]
xc[2,3]
xc([2,4]
xc[2,5]
xc[2,6]
xc[2,7]

xc[2,8]

+ xw[l, 6]
+ xw[l,7]
+ xw[l,8]
+ xw[2,1]
+ xw[2,2]
+ xw[2, 3]
+ xw([2,4]
+ xw[2,5]
+ xw[2, 0]
+ xw[2,7]

+ xw[2,8]

consumer j

xf[1,1]
xf[1,2]
xf[1,3]
xf[1,4]
xf[1,5]
xf[1,6]
xf[1,7]
xf[1,8]
xf[2,1]
x£[2,2]
xf£[2,3]
x£[2,4]
x£[2,5]
xf[2,6]
x£[2,7]

xf[2,8]

111

30%d[1, 6]
30%d[1,7]
30%d[1,8]
30%d[2,1]
30+d[2,2]
30%d[2, 3]
30+d[2,4]
30%d[2,5]
30+d[2, 6]
30%d[2,7]

30%xd[2, 8]

xw[l,1]
xw(l,?2]
xw([1l, 3]
xw([l,4]
xw([1l,5]
xw[l, 6]
xw([l,7]
xw[l,8]
xw([2,1]
xw[2,2]
xw([2,3]
xw([2,4]
xw([2,5]
xw([2,6]
xw[2,7]

xw([2,8]

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

112

45 Declarations: NS NC I J SS CS m M c_index c Ot Of o_index o ga Qa gc Qc
gf Of gw Qw xa_index xa xc_index xc xf_index

xf xw_index xw d_index d supplyAl supplyAu supplyCl supplyCu supplyFl
supplyFu supplyWl supplyWu supplymin_index

supplymin supplymax_index supplymax objective

==== == == = == ==
#

Il
n
o
'_l
<
(0]
o]
o
(]
)]
o
'_l
ct
)]

Il

Problem:

— Name: unknown
Lower bound: 10200.68
Upper bound: 10200.68
Number of objectives: 1
Number of constraints: 97
Number of variables: 81
Number of nonzeros: 289

Sense: minimize

Solver:
- Status: ok
Termination condition: optimal
Statistics:
Branch and bound:
Number of bounded subproblems: 33
Number of created subproblems: 33

Error rc: 0

113

Time: 0.18099379539489746

o
Solution Information

77
Solution:

— number of solutions: O
number of solutions displayed: O

Variable xa

(1, 1) 0.0
(1, 2) 0.0
(1, 3) 0.0
(1, 4) 0.0
(1, 5) 0.0
(1, 6) 0.0
(1, 7) 0.0
(1, 8) 0.0
(2, 1) 0.0
(2, 2) 4.5
(2, 3) 2.0
(2, 4) 0.0
(2, 5) 0.0
(2, 6) 3.5
(2, 7) 0.0
(2, 8) 4.5

(1, 1) 0.0
(1, 2) 0.0
(1, 3) 0.0
(1, 4) 0.0
(1, 5) 0.0

XW

114

115

116

C.7 EXPERIMENT 3

—x— coding: utf-8 —x-

nmmn

Created on Tue Oct 31 05:48:31 2017

Qauthor: T.Fletcher

Variation of transport2.py, with no integer constraints for quantities.

nmmn

Import

import pyomo

import pyomo.opt

import pyomo.environ as pe

import os

#fproblem name

PROBLEM_NAME = "Minimal cost supplies delivery"

Creation of an Abstract Model

model = pe.AbstractModel (doc=PROBLEM_NAME)

FHAFHH AR A AR AR HHSHH
#general parameters: all read from a data file
FHAFEHFH S H AR

#number of suppliers and consumers

model .NS pe.Param(within=pe.PositiveIntegers)

model .NC = pe.Param(within=pe.Positivelntegers)

#indexes over suppliers/consumers respectively

model.I =
model.J =

Define

Sets

model.
model.
model.SS = pe
model.CS = pe

#lower/upper bounds for quantities

model.

model.

#cost

model.

m

M

pe.RangeSet (1,

pe.RangeSet (1,

sets ##

SS Suppli

.Set (doc=’ Su

.Set (doc=’Consummers’)

pe.Param()

pe.Param()

(distance) along ea

C

pe.Param(model.T,

#overload cost (security)

model.

@)

#requested

model.

model.

model

model.

model.

model.

model.

model.

ga

Qa

.gc

Qc
af
Qf
qw
Qw

pe.Param(model.T,

quantities

e

pe.

pe.

e

pe.

pe.

pe.

pe.

.Param (model.

.Param (model.

Param (model.

Param (model.

Param (model.
Param (model.
Param (model.

Param (model.

model.NS)

model.NC)

ers set

CS Consummers set

ppliers’)

ch route

parameters

model.J)

model.J)

117

118

HHEFHEF AR AR AR

Variables

FHEFHHH AR HESAAAS

#fquantities (number of trucks) for each commodity

model.xa = pe.Var (model.I, model.J, domain = pe.PositiveReals) #ammo

model . xc pe.Var (model.I, model.J, domain pe.PositiveReals) f#cargo

model.xf = pe.Var (model.I, model.J, domain pe.PositiveReals) #fuel

model .xw pe.Var (model.I, model.J, domain pe.PositiveReals) f#water
#binary variables

model.d = pe.Var (model.I, model.J, domain = pe.NonNegativelntegers,

bounds = (0,1))

FHEFHHH AR HE AR
Constraints
#HAHHE A
def supply_ruleAl (model, 3J):

return sum(model.xa[i,j] for i in model.I) >= model.gal]j]
model.supplyAl = pe.Constraint (model.J, rule=supply_ruleAl,

doc=' Supply requested ammo quantities for j (lower bound)’)

def supply_ruleAu (model, 3J):

return sum(model.xal[i,j] for i in model.I) <= model.Qal7]]
model.supplyAu = pe.Constraint (model.J, rule=supply_ruleAu,

doc=’ Supply requested ammo quantities for J (upper bound)’)

def supply_ruleCl (model, 3J):
return sum(model.xc[i, j] for i in model.I) >= model.qgc[]]
model.supplyCl = pe.Constraint (model.J, rule=supply_ruleCl,
doc=' Supply requested cargo quantities for j (lower bound)’)

def supply_ruleCu(model, 3J):

119

return sum(model.xc[i,j] for i in model.I) <= model.Qc[]]
model.supplyCu = pe.Constraint (model.J, rule=supply_ruleCu,

doc=' Supply requested cargo quantities for j (upper bound)’)

def supply_ruleFl (model, 7):
return sum(model.xf[i,j] for i in model.I) >= model.qgf[]]
model.supplyFl = pe.Constraint (model.J, rule=supply_ruleFl,
doc=’ Supply requested fuel quantities for J (lower bound)’)
def supply_ruleFu(model, 3J):
return sum(model.xf[i, j] for i in model.I) <= model.Qf[7]]
model.supplyFu = pe.Constraint (model.J, rule=supply_ruleFfu,

doc=' Supply requested fuel quantities for j (upper bound)’)

def supply_ruleWl (model, 7j):
return sum(model.xw[i, j] for i in model.I) >= model.qw[]]
model.supplyWl = pe.Constraint (model.J, rule=supply_ruleWl,
doc=’Supply requested water quantities for j (lower bound)’)
def supply_ruleWu (model, 3J):
return sum(model.xw[i, j] for i in model.I) <= model.Qw[]]
model.supplyWu = pe.Constraint (model.J, rule=supply_ruleWu,

doc=' Supply requested water quantities for j (upper bound)’)

#constraints for binary variables

fquantities lower bound

def supply_ming(model, i, 7J):
return model.xal[i, j] + model.xc[i,j] + model.xf[i,j] + model.xw[i, j]
>= model.d[i, j]*model.m

model.supplymin = pe.Constraint (model.I, model.J, rule=supply_ming,

doc='Minimum quantity from supplier i to consumer 7j’)

120

#fgquantities upper bound

def supply_maxqg(model, i, 7J):
return model.xa[i, j] + model.xc[i,j] + model.xf[i,]j] + model.xw[i, J]
<= model.d[i, j]*model.M

model.supplymax = pe.Constraint (model.I, model.J, rule=supply_maxd,

doc=’Maximum quantity from supplier i to consumer 7j’)

C i i i i
Define Objective function

minimize cost C

= sum((i,J), c(i,J)*(xa(i,j) + xc(i,]) + x£f(i,]J) + xw(i,J))
+ d(i,3)*0(i,3)) ;
def objective_rule (model):
return sum(model.c[i, j]* (model.xal[i,j] + model.xc[i, J]
+ model.xf[i, j] + model.xwl[i, J])

+ model.d[i, jl*model.o[i, 7]

for i in model.I for J in model.J)

model.objective = pe.Objective (rule=objective_rule, sense=pe.minimize,

doc=’The objective function’)

##read these parameters from a data file (relative to working directory)
cwdir = os.getcwd() #the current working directory must be set to the script location

datafile

os.path.join(os.sep, cwdir + ’'\\data\\constants2b.dat’)
instance = model.create_instance (datafile)

instance.pprint ()

"""Solve the model."""

#solver = pyomo.opt.SolverFactory (’'gurobi’)

121

#fresults = solver.solve (instance, tee=True, keepfiles=False, options_string=
"mip_tolerances_integrality=le-9 mip_tolerances_mipgap=0")

solver = pyomo.opt.SolverFactory (’glpk’)

results = solver.solve (instance)

results.write ()

instance.solutions.load_from(results)

for v in instance.component_objects (pe.Var, active=True):
print ("Variable",str(v))
varobject = getattr(instance, str(v))
for index in varobject:

print (" ",index, varobject[index].value)

C.8 EXPERIMENT 3 DATA FILE

#4
Data set for Scenario 3

##

#the number of suppliers and consumers

param NS := 2;

param NC 8;

#the set of suppliers
set SS := 'C2' 'C3’;
#the set of consummers

set CS := ’INIM’ ’YINIS1’ ’IN1S2’ ’"INI1S3’ ’INIXS1l’ ’IN1XS2’ ’'INIXS3’ ’IN1Xs4';

#lower/upper number of trucks bounds
param m := 5;

param M := 30;

#costs (distances) from each supplier to each consummer
param c: 1 2 3 45 6 7 8 :=
1 120 143 183 163 158 195 193 172

2 93 116 156 136 131 168 166 145

#security costs from each supplier to each consummer
param o: 1 2 3 4 5 6 7 8 :=
1 120 143 183 163 158 195 193 172

2 93 116 156 136 131 168 664 580

frequested quantities for: ammo, cargo, fuel, water
(one value for each consumer in the list)

param Qa :=

1 5

2 10.5

14

param ga :=

122

param Qc

14

param gc

1

2

param Qf

16

88

.1

123

param gf

10

param Qw

1

2

3

14

param gw

1

2

159

16

124

125

Bounds=None

Bounds=None

8 0
7
C.9 RESULTS EXPERIMENT 3
d_index Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True, Bounds=None
Virtual
o_index Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True, Bounds=None
Virtual
supplymax_index Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True,
Virtual
supplymin_index Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True,
Virtual
xa_index Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True, Bounds=None
Virtual
xc_index Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True, Bounds=None
Virtual
xf_index Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True, Bounds=None
Virtual
Xw_index Dim=0, Dimen=2, Size=16, Domain=None, Ordered=True, Bounds=None
Virtual

2 RangeSet Declarations

I : Dim=0, Dimen=1, Size=2, Domain=Integers, Ordered=True, Bounds= (1,
Virtual

J : Dim=0, Dimen=1, Size=8, Domain=Integers, Ordered=True, Bounds=(1,
Virtual

14 Param Declarations

M : Size=1, Index=None, Domain=Any,

Key Value

None 30

Default=None, Mutable=False

2)

8)

126

NC : Size=1l, Index=None, Domain=PositivelIntegers, Default=None, Mutable=False
Key : Value
None : 8

NS : Size=1, Index=None, Domain=PositivelIntegers, Default=None, Mutable=False
Key : Value
None : 2

Qa : Size=8, Index=J, Domain=Any, Default=None, Mutable=False

Key : Value

1 : 1
2 0.5
3 0.5
4 0.5
5 0.5
6 0.5
7 0
8 : 0.5

Qc : Size=8, Index=J, Domain=Any, Default=None, Mutable=False

Key : Value

1: 16
2 2
3 3
4 3.5
5 : 1
6 : 1
7o 0.5
8 : 1

Qf : Size=8, Index=J, Domain=Any, Default=None, Mutable=False
Key : Value
1 : 88
2+ 11.2

3 1.5

8

Qw : Size=8,

3.2

Index=J, Domain=Any,

Index=c_index,

Key Value

1 159

2 16

3 5

4 26.1

5 3.2

6 1

7 4.4

8 5

c : Size=lg¢,

Key Value
(1, 1) 120
(1, 2) 143
(1, 3) 183
(1, 4) 163
(1, 5) 158
(1, o) 195
(1, 7) 193
(1, 8) 172
(2, 1) 93
(2, 2) 116
(2, 3) 156
(2, 4) 136
(2, 5) 131
(2, 6) 168

Domain=Any,

Default=None,

Default=None,

127

Mutable=False

Mutable=False

128

(2, 7) : 166

(2, 8) : 145

Size=1, Index=None, Domain=Any, Default=None, Mutable=False
Key : Value

None : 1

Size=16, Index=o_index, Domain=Any, Default=None, Mutable=False

Key : Value
(1, 1) : 120
(1, 2) : 143
(1, 3) : 183
(1, 4) : 163
(1, 5) : 158
(1, ©6) : 195
(1, 7) : 193
(1, 8) : 172
(2, 1) : 93
(2, 2) : 116
(2, 3) : 156
(2, 4) : 136
(2, 5) : 131
(2, ©6) : 168
(2, 7) : 266
(2, 8) : 445

Size=8, Index=J, Domain=Any, Default=None, Mutable=False

Key : Value

1: 0.5
2 0.5
3 : 0
4 0.5
5 : 0

129

gc : Size=8, Index=J, Domain=Any, Default=None, Mutable=False

Key : Value

1 : 4.1
2 1
3 1.4
4 2
5 0.5
6 0
7o 0
8 : 0.5

gf : Size=8, Index=J, Domain=Any, Default=None, Mutable=False

Key : Value

1 : 13
2 3
3 0.5
4 0
5 1
6 : 1
7 1
8 : 1

gw : Size=8, Index=J, Domain=Any, Default=None, Mutable=False

Key : Value

1 : 5.1
2 0
3 : 0
4 13.18
5 1
6 0

130

5 Var Declarations

d : Size=16, Index=d_index

Key : Lower : Value : Upper : Fixed : Stale : Domain

(1, 1) = 0 : None : 1 : False : True : NonNegativelntegers
(1, 2) 0 : None : 1 : False : True : NonNegativelIntegers
(1, 3) : 0 : None : 1 : False : True : NonNegativelIntegers
(1, 4) : 0 : None : 1 : False : True : NonNegativelntegers
(1, 5) : 0 : None : 1 : False : True : NonNegativelIntegers
(1, 6) : 0 : None : 1 : False : True : NonNegativelntegers
(1, 7) : 0 : None : 1 : False : True : NonNegativelntegers
(1, 8) : 0 : None : 1 : False : True : NonNegativelntegers
(2, 1) : 0 : None : 1 : False : True : NonNegativelntegers
(2, 2) : 0 : None : 1 : False : True : NonNegativelntegers
(2, 3) : 0 : None : 1 : False : True : NonNegativelIntegers
(2, 4) : 0 : None : 1 : False : True : NonNegativelIntegers
(2, 5) : 0 : None : 1 : False : True : NonNegativelntegers
(2, 6) : 0 : None : 1 : False : True : NonNegativeIntegers
(2, 7) : 0 : None : 1 : False : True : NonNegativelntegers
(2, 8) : 0 : None : 1 : False : True : NonNegativelntegers

xa : Size=16, Index=xa_index

Key : Lower : Value : Upper : Fixed : Stale : Domain

(1, 1) : 0O : None : None : False : True : PositiveReals

(1, 2) : 0O : None : None : False : True : PositiveReals

(1, 3) : 0O : None : None : False : True : PositiveReals

(1, 4) : 0O : None : None : False : True : PositiveReals

(1, 5) : O : None : None : False : True : PositiveReals

(1, 6) : 0O : None : None : False : True : PositiveReals

(1, 7) : 0O : None : None : False : True : PositiveReals

(1, 8) : 0O : None : None : False : True : PositiveReals

131

(2, 1) : 0O : None : None : False : True : PositiveReals
(2, 2) : 0O : None : None : False : True : PositiveReals
(2, 3) : 0O : None : None : False : True : PositiveReals
(2, 4) : 0O : None : None : False : True : PositiveReals
(2, 5) : O : None : None : False : True : PositiveReals
(2, 6) : 0O : None : None : False : True : PositiveReals
(2, 7) : 0O : None : None : False : True : PositiveReals
(2, 8) : 0O : None : None : False : True : PositiveReals
Xc : Size=16, Index=xc_index

Key : Lower : Value : Upper : Fixed : Stale : Domain

(1, 1) : 0O : None : None : False : True : PositiveReals
(1, 2) : O : None : None : False : True : PositiveReals
(1, 3) : 0O : None : None : False : True : PositiveReals
(1, 4) : 0O : None : None : False : True : PositiveReals
(1, 5) : 0O : None : None : False : True : PositiveReals
(1, 6) : 0O : None : None : False : True : PositiveReals
(1, 7) : 0O : None : None : False : True : PositiveReals
(1, 8) : 0O : None : None : False : True : PositiveReals
(2, 1) : O : None : None : False : True : PositiveReals
(2, 2) : 0O : None : None : False : True : PositiveReals
(2, 3) : 0O : None : None : False : True : PositiveReals
(2, 4) : 0O : None : None : False : True : PositiveReals
(2, 5) : 0O : None : None : False : True : PositiveReals
(2, 6) : 0O : None : None : False : True : PositiveReals
(2, 7) : 0O : None : None : False : True : PositiveReals
(2, 8) : 0O : None : None : False : True : PositiveReals

xf : Size=16, Index=xf_index

Key : Lower : Value : Upper : Fixed : Stale : Domain

(1, 1) : 0O : None : None : False : True : PositiveReals
(1, 2) : 0O : None : None : False : True : PositiveReals

(1, 3) : 0O : None : None : False : True : PositiveReals

132

(1, 4) : 0O : None : None : False : True : PositiveReals
(1, 5) : 0O : None : None : False : True : PositiveReals
(1, 6) : 0O : None : None : False : True : PositiveReals
(1, 7) : 0O : None : None : False : True : PositiveReals
(1, 8) : O : None : None : False : True : PositiveReals
(2, 1) : 0O : None : None : False : True : PositiveReals
(2, 2) : 0O : None : None : False : True : PositiveReals
(2, 3) : 0O : None : None : False : True : PositiveReals
(2, 4) : 0O : None : None : False : True : PositiveReals
(2, 5) : 0O : None : None : False : True : PositiveReals
(2, 6) : 0O : None : None : False : True : PositiveReals
(2, 7) : O : None : None : False : True : PositiveReals
(2, 8) : 0O : None : None : False : True : PositiveReals
Xw : Size=16, Index=xw_index

Key : Lower : Value : Upper : Fixed : Stale : Domain

(1, 1) : 0O : None : None : False : True : PositiveReals
(1, 2) : 0O : None : None : False : True : PositiveReals
(1, 3) : 0O : None : None : False : True : PositiveReals
(1, 4) : O : None : None : False : True : PositiveReals
(1, 5) : 0O : None : None : False : True : PositiveReals
(1, 6) : 0O : None : None : False : True : PositiveReals
(1, 7) : 0O : None : None : False : True : PositiveReals
(1, 8) 0O : None : None : False : True : PositiveReals
(2, 1) : 0O : None : None : False : True : PositiveReals
(2, 2) : 0O : None : None : False : True : PositiveReals
(2, 3) : 0O : None : None : False : True : PositiveReals
(2, 4) : 0O : None : None : False : True : PositiveReals
(2, 5) : 0O : None : None : False : True : PositiveReals
(2, 6) : 0O : None : None : False : True : PositiveReals
(2, 7) : 0O : None : None : False : True : PositiveReals

(2, 8) : 0O : None : None : False : True : PositiveReals

1 Objective Declarations

objective The objective function
Size=1, Index=None, Active=True
Key Active : Sense
None True : minimiz

120xd[1,1]

+

+

+ 143+ (xall

183« (xall,3] + xcIl1,

xc[1,4]
xf[1,5]

xw[l,6]

)

+ xf[1,4] +

+ xw[l,5]) + 158+d[1,5]

+ 195%d[1,6

193xd([1,7] + 172x(xa

93* (xal[2,1] + xc[2,1

xc[2,2]

xf[2,3]

+ xf[2,2] +

+ xw([2,3]) + 156%d[2,3]

136%d[2,4] + 131%(x

168* (xal[2,6] + xcl[2

xc[2,7]

xf[2,8]

+ xf[2,7] + xw([2,7])

+ xw[2,8])

10 Constraint Declarations

supplyAl

Size=8,

Key Lower
1 0.5
2 0.5
3 0.0
4 0.5
5 0.0
6 0.5
7 0.0

Body

xall,1] +
xal[l,2] +
xall,3] +
xal[l,4] +
xall,5] +
xal[l,6] +

xall,7] +

Expression

e : 120+ (xal[l,1]

, 2] + xc[l,2] +

31 + x£f[1,3]

xwll,4])

+ xc[1,1

xf[1,2] +

+ xw[l,3]) +

+ 163%d[1,4] + 1

] + 193x(xall,7]

[1,8] + xc[1,8]

1 + xf[2,1]

xwl[2,2])

+ xc[1l,7

+ xf[1,8]

+ xw[2,1]) +

+ 116%d[2,2] + 1

al2,5] + xcl[2,5]

, 6] + x£f[2,6] +

+ 266%

+ 445%d[2, 8]

Index=J, Active=True

xal2,1]
xal[2,2]
xal2, 3]
xal[2,4]
xal[2,5]
xal[2,6]

xal2,7]

Upper
+Inf
+Inf
+Inf
+Inf
+Inf
+Inf

+Inf

+ xf[2,5
xw[2,6])

darz,7] +

Supply requested ammo quantities for J (1

Active

True

True

True

True

True

True

True

133

1 + x£f[1,1] + xw[l,1]) +
xw[l,2]) + 143%d[1,2]
183+d[1,3] + 163x(xal[l,4]

58*(xall,5] + xc[1l,5]

+ 195« (xa[l,6] + xc[l,6] + xf[1l,6]

1 + x£f[1,7] + xw[l,7])
+ xw[1l,8]) + 172%d[1, 8]
93xd[2,1] + 1ll6*(xal[2,2]

56*(xal[2,3] + xc[2,3]

+ 136%(xal2,4] + xc[2,4] + xf[2,4]1+xw[2,4])

] + xw[2,5]) + 131xd[2,5]
+ 168«d[2,6] + 166x(xal2,7]

145« (xal[2,8] + xcl[2,8]

ower bound)

8 0.5
supplyAu
Size=8,
Key Lower
1 —-Inf
2 —-Inf
3 —-Inf
4 —Inf
5 —-Inf
6 —-Inf
7 —-Inf
8 —-Inf
supplyCl
Size=8,
Key Lower
1 4.1
2 1.0
3 1.4
4 2.0
5 0.5
6 0.0
7 0.0
8 0.5
supplyCu
Size=8,
Key Lower
1 —-Inf
2 —-Inf
3 -Inf
4 —-Inf
5 —-Inf

xal[l, 8]

+ xal2,8]

+Inf

Supply requested ammo quantities

Index=J, Active=True

Supply requested cargo quantities for j

Body

xal[l,1]
xall,2]
xal[l, 3]
xall,4]
xal[l,5]
xal[l,6]
xall,7]

xal[l, 8]

+ xal[2,1]
+ xal2,2]
+ xal2,3]
+ xal2,4]
+ xal2,5]
+ xal[2, 6]
+ xal2,7]

+ xal[2,8]

Index=J, Active=True

Supply requested cargo quantities for j

Body

xc[1l,1]
xc([1l,2]
xc[1, 3]
xc([1l,4]
xc[1,5]
xc[1l,6]
xc[1l,7]

xc[1l,8]

+ xc[2,1]
+ xc[2,2]
+ xc[2,3]
+ xc[2,4]
+ xc[2,5]
+ xc[2,6]
+ xc[2,7]

+ xc[2,8]

Index=J, Active=True

Body

xc[1l,1]
xc([1l,2]
xc([1l, 3]
xc([1l,4]

xc[1l,5]

+ xc[2,1]
+ xc[2,2]
+ xc[2, 3]
+ xc[2,4]

+ xc[2,5]

0.0

0.5

Upper
+Inf
+Inf
+Inf
+Inf
+Inf
+Inf
+Inf

+Inf

Upper

16.0

True

for j (upper bound)

Active

True

True

True

True

True

True

True

True

Active

True

True

True

True

True

True

True

True

Active

True

True

True

True

True

(lower bound)

(upper bound)

134

6 —-Inf
7 —-Inf
8 —-Inf
supplyF1l
Size=8,
Key Lower
1 13.0
2 3.0
3 0.5
4 0.0
5 1.0
6 1.0
7 1.0
8 1.0
supplyFu
Size=8,
Key Lower
1 —-Inf
2 —-Inf
3 -Inf
4 —-Inf
5 —Inf
6 —-Inf
7 —Inf
8 —-Inf
supplyWl
Size=8,
Key Lower
1 5.1
2 0.0
3 0.0

Supply requested fuel quantities for j

xc([1l,6]
xc([1l,7]

xc[1l, 8]

+ xc[2,06]
+ xc[2,7]

+ xc[2,8]

Index=J, Active=True

Body

xf[1,1]
xf[1,2]
xf[1l,3]
xf[1,4]
xf[1,5]
xf[1,6]
xf[1,7]

xf[1,8]

+ xf[2,1]
+ xf[2,2]
+ xf[2,3]
+ xf[2,4]
+ xf[2,5]
+ xf[2,6]
+ xf[2,7]

+ x£f[2,8]

1.0
0.5

1.0

Upper
+Inf
+Inf
+Inf
+Inf
+Inf
+Inf
+Inf

+Inf

Supply requested fuel quantities

Index=J, Active=True

Supply requested water quantities for j

Body

xf[1,1]
xf[1,2]
xf[1,3]
xf[1,4]
xf[1,5]
xf[1l,6]
xf[1,7]

xf[1l,8]

+ xf[2,1]
+ x£[2,2]
+ xf[2,3]
+ xf[2,4]
+ xf[2,5]
+ xf[2,6]
+ x£f[2,7]

+ xf[2,8]

Index=J, Active=True

Body
xw[l,1]
xw([l,2]

xw([l, 3]

+ xw[2,1]
+ xw[2,2]

+ xw([2, 3]

Upper
88.0

11.2

Upper
+Inf
+Inf

+Inf

True

True

True

Active

True

True

True

True

True

True

True

True

for j (upper bound)

Active

True

True

True

True

True

True

True

True

Active

True

True

True

(lower bound)

(lower bound)

135

Supply requested water quantities for j

Maximum quantity from supplier i to

4 13.18

5 1.0

6 0.0

7 1.0

8 0.0

supplyWu

Size=8,
Key Lower

1 —-Inf

2 —-Inf

3 —-Inf

4 —Inf

5 —Inf

6 —-Inf

7 —Inf

8 —-Inf

supplymax

Size=16,
Key Lower
(1, 1) -Inf
(1, 2) -Inf
(1, 3) -Inf
(1, 4) -Inf
(1, 5) -Inf
(1, 6) -Inf
(1, 7) -Inf
(1, 8) -Inf
(2, 1) -Inf
(2, 2) -Inf
(2, 3) -Inf

-Inf

xw([l,4]
xw([l,5]
xw([l,6]
xw[l, 7]

xw([1l,8]

Body

xw(l,1]
xw([l,2]
xw([l,3]
xw([l,4]
xw([l,5]
xw([l,6]
xw[l, 7]

xw[l,8]

Body
xall,
xall,
xall,
xall,
xall,
xall,
xall,
xall,
xal2,
xal2,
xal2,

xal2,

+ xw[2,4]
+ xw[2,5]
+ xw[2,6]
+ xw[2,7]

+ xw[2,8]

Index=J, Active=True

+ xw[2,1]
+ xw[2,2]
+ xw[2, 3]
+ xw[2,4]
+ xw[2,5]
+ xw[2,6]
+ xw[2,7]

+ xw[2,8]

Index=supplymax_index,

Upper

+Inf

+Inf

+Inf

+Inf

+Inf

True

True

True

True

True

Upper Active
159.0 True
16.0 True
5.0 True
26.1 True
3.2 True
1.0 True
4.4 True
5.0 True

Active=True

Active

1] + xc[1,1] +

2] +
31 +
41 +
5] +
6] +
7] +
81 +
1] +
2] +
3] +

4] +

xc[1l,2] +
xc[1l,3] +
xc([1l,4] +
xc[1l,5] +
xc[l,6] +
xc[1l,7] +
xc[1l,8] +
xc[2,1] +
xc[2,2] +
xc[2,3] +

xc[2,4] +

xf[1,1]
xf[1,2]
xf[1,3]
xf[1,4]
xf[1,5]
xf[1,6]
xf[1,7]
xf[1,8]
xf[2,1]
xf[2,2]
xf[2,3]

xf[2,4]

consumer Jj

+ xw[l,1]
+ xw[l,2]
+ xw[l, 3]
+ xw[l,4]
+ xw[l,5]
+ xw[l, 6]
+ xw[l,7]
+ xw[l, 8]
+ xw[2,1]
+ xw[2,2]
+ xw[2, 3]

+ xw[2,4]

136

(upper bound)

30%d[1,1]
30%d[1,2]
30%d[1, 3]
30+d[1,4]
30%d[1,5]
30%d[1, 6]
30%d[1,7]
30+d[1,8]
30%d[2,1]
30%d[2,2]
30+d[2, 3]

30xd[2,4]

True

True

True

True

True

True

True

True

True

True

True

True

(2, 5) : -Inf : xal[2,5] + xc[2,5] + xf[2,5] + xw[2,5]
(2, 6) : -Inf : xal2,6] + xcl[2,6] + x£f[2,6] + xw[2,6]
(2, 7) : —-Inf : xal[2,7] + xc[2,7] + x£f[2,7] + xw[2,7]
(2, 8) : -Inf : xal2,8] + xc[2,8] + xf[2,8] + xw[2,8]
supplymin : Minimum quantity from supplier i to consumer Jj
Size=16, Index=supplymin_index, Active=True
Key : Lower : Body : Upper Active
(1, 1) : -Inf : d[1,1] - xall,1] - xc[l,1] xf[1,1]
(1, 2) : -Inf : d[1,2] - xall,2] - xcl[l,2] xf[1,2]
(1, 3) : -Inf : df[1,3] - xa[l,3] - xc[1,3] xf[1l,3]
(1, 4) : —-Inf : d[1,4] - xall,4] - xcll,4] xf[1,4]
(1, 5) : —-Inf : d[1,5] - xa[l,5] - xc[l,5] xf[1,5]
(1, 6) : —-Inf : d[l,6] - xal[l,6] - xcl[l,6] xf[1,6]
(1, 7) : -Inf : d[1,7] - xall,7] - xc[1l,7] xf[1,7]
(1, 8) : —-Inf : d[1,8] - xall,8] - xcl[l,8] xf[1,8]
(2, 1) : -Inf : d[2,1] - xal[2,1] - xcl[2,1] xf[2,1]
(2, 2) : —-Inf : d[2,2] - xal[2,2] - xc[2,2] xf[2,2]
(2, 3) : -Inf : d[2,3] - xal[2,3] - xcl[2,3] xf[2,3]
(2, 4) : —-Inf : d[2,4] - xal[2,4] - xc[2,4] xf[2,4]
(2, 5) : -Inf : d[2,5] - xal2,5] - xcl[2,5] xf[2,5]
(2, 6) : —-Inf : d[2,6] - xa[2,6] - xc[2,6] xf[2,6]
(2, 7) : —-Inf : d[2,7] - xal2,7] - xcl[2,7] xf[2,7]
(2, 8) : —-Inf : d[2,8] - xal2,8] - xc[2,8] xf[2,8]

137

- 30%d[2,5]
- 30%d[2, 6]
— 30%d[2,7]

- 30+xd[2,8]

xw[l,1] : O.
xw[l,2] : O.
xw[1l,3] : O.
xw[l,4] : O.
xw[1l,5] : O.
xw[l,6] : O.
xw[l,7] : O.
xw[1l,8] : O.
xw[2,1] : O.
xw[2,2] : O.
xw[2,3] : 0.
xw[2,4] : O.
xw[2,5] : O.
xw[2,6] : O.
xw[2,7] : O.

xw[2,8] : O.

0.

0.

0.

0

0

0

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

43 Declarations: NS NC I J SS CS m M c_index c o_index o ga Qa gc Qc gf Qf gw Qw

xa_index xa xc_index xc xf_index xf xw_index xw d_index d supplyAl supplyAu

supplyCl supplyCu supplyFl supplyFu supplyWl supplyWu supplymin_index supplymin

supplymax_index supplymax objective

= Solver Results

==== == ==

Problem:

— Name: unknown
Lower bound: 7536.48
Upper bound: 7536.48
Number of objectives: 1
Number of constraints: 97
Number of variables: 81
Number of nonzeros: 289

Sense: minimize

Solver:

— Status: ok
Termination condition: optimal
Statistics:

Branch and bound:

Number of bounded subproblems:

Number of created subproblems:

Error rc: O

Time: 0.1275949478149414

Solution:
— number of solutions: O
number of solutions displayed: O

Variable xa

83

83

138

139

xf

140

141

	Optimal Supply Delivery Under Military Specific Constraints
	Recommended Citation

	tmp.1529155947.pdf.y8lzV

