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ABSTRACT

Shear-resistant 1ight—gagé metal diaphragms can be very
effective in increasing the load carrying capacity of beams
contincously braced by diaphragms, or of columns braced by
girts which in turn are braced by diaphragms, if proper con-
nections are made between the individual elements. In this
thesis, behavior of diaphragm-braced I-beams, channel beams,
and Z-beams under uniform moments, and the behavior of axially
loaded I-section columns braced by girts which in turn are
braced by diaphragms are investigated.

Load-deflection relationships of diaphragm-braced beams
are obtained taking into consideration the initial imperfec-
tions of the beams and using the equilibrium method. Critical
moments of diaphragm-braced beams are derived from the load-
deflection relationships by ietting the initial imperfections
equal zero and solving the resultiﬁg eigenvalue problem. A
proceduré to determine the load carrying capacities of dia-
phragm-braced beams is given using an assumed criteria of fail-
ure for beams and diaphragms. Using the above procedure, load
carrying capacities of diaphragm-braced beams are calculated
in two examples; they range from 80% to 85% of the correspond-
ing critical moments.

A test was conducted on an assembly of four diaphragm-
braced I-beams, and the moment sustained by the beams was 10%
smaller than the predicted critical moment. Three tests were

conducted on assemblies of two diaphragm-braced channel beams,

vi



and the moments sustained by fhe beam assemblies ranged from

75% to 99.6% of the corresponding critical moments. Tests con-
ducted on assemblies of two diaphragm-braced I-beams are also
reported here. In general, the experimental and predicted load-
deflection relationships are in fairly good agreement for both
diaphragm-braced I-beam and channel beam assemblies.

Load—deflection relationships of columns braced by girts
and diaphragms are obtained taking into consideration the ini-
tial imperfections of the columns and using the energy method.
The Réyleigh—Ritz technique is used to obtain an approximate
solution. Similar to the case of beam assemblies, critical
loads of columniassembliés are derived from the load-deflection
‘relationships. A procedure to determine the load carrying ca-
pacity of columns braced by girts and diaphragms is given using
assumed criteria of failure of columns, girts, and diaphragms.
~Using the above procedure, load carrying capacities of two dif-
férent wall columns are calculated and they_réhge from 68% to
83% of the corresponding critical loads.

Three tests were conducted on columns braced by two inter-
mediate girts which in turn were braced by diaphragms, and the
failure loads of the column assemblies ranged from 8u4% to 9u%
of the corresponding critical loads. Fully flexible, fully
rigid, and semi-rigid girtecolumn connections were used in the
-three tests. The experimental and theoretically predicted
load-deflection relationships are in fair agreement.

Theoretical solutions for diaphragm-braced beams and for



columns braced by girts and diaphragms were developed first in
the elastic range and then extended to the inelastic range by
suitably modifying the elastic modulii, The plastic moment of
the beams or the Euler buckling load of the columns between
successive girts appears to be theoretically attainable by us-

ing the diaphragm bracing.

viii-



1. INTRODUCTION

In many structures, shear-resistant light-gage metal
diaphragms, such as wall cladding, roof decking, or floor
panels are connected directly to beams or columns, or to
girts which in turn are connected to columns. Therefore,
the beams are continuously braced by the diaphragm, and the
columns are either continuously braced by the diaphragm or
discretely braced by the girts which in turn are braced by
a diaphragm (refer to Figs. 1-1 and 1-2). The investigation
reported in this thesis had the objective of determining (1)
the buckling strength of ideal members, (2) the load-deflec-
tion relationships of imperfect members, and (3) the load
carrying capacities of imperfect members, when the members
are directly or indirectlylbraced by a diaphragm. The light-
gage steel wall cladding on a metal building frame can brace
" the girts which in turn brace the columns against buckling
about their weak axes 1if adequate connections are provided.
Similarly, light-gage steel roof decking can oppose lateral
buckling of truss chords, roof beams and purlins. This in-
vestigation is directed towards the determination of the
effectiveness and reliability of such bracing.

()=

Timoshenko has discussed the buckling of bars on

elastic foundations, where the foundation consists of closely

* Superscripts in parentheses indicate reference numbers in
.the Bibliography.



spaced, independently acting elastic springs whose reactions
are proportional to the lateral displacement of the bar. He
also considered the buckling of bars supported on several

interior elastic point supports. Bleich(Z)

extended the
theory and considered further cases of bars elastically sup-
ported at various points.

(3) (4) determined the behavior of columns

Green and Winter
braced by elastic suﬁports either discretely or continuously
at the center of gravity of the cross section or symmetrically
about the flanges. In Ref. (4) the magnitude of the lateral
forceé in bracing is determined and two characteristics of
lateral support are distinguished: strength and stiffness;

and "full bracing" is defined as equivalent in effectiveness
to immovable lateral support. Full bracing, or full lateral
support, therefore, is that restraint which increases the
.critical load of a member from that for the unbraced mode to
that corresponding to the next higher failure mode, such as
attainment of full plastic moment in a beam, or strong axis
eritical load in a column. For discrete spring-type bracing,
Winter concluded that to provide less than "full bracing"”

for a member generally would be uneconomical.

Larson(S), in a discussion of Ref. (4), extended Winter's
analysis to shear type lateral supporting media, including
diaphragms continuously connected to columns or beams. In
this case, the restraint is a function of the slope, or the
rate of change of lateral deflection of the member, rather than
(6)

the lateral deflection itself. Pincus and Fisher have



presented an independent analysis for beams and columns
braced by continuous shear-rigid diaphragms, and introduced
the concept of "partial lateral support" for this type of
bracing. Partial lateral support is defined as that restraint
which results in member failure at a load higher than that for
the unbraced condition, but in the same mode. For example, a
partially braced column may fail by weak-axis buckling, but
at a load which 1is intermediate between the unbraced weak-axis
failure load and the strong-axis failure load, and which méy
be‘called the "increased or augmented weak-axis buckling load".
In many present forms of construction, such partial restraint
may be available, and if accounted for, may result in more
economical design.

In 1961, an investigation of diaphragm-braced members was
initiated at Cornell University under the direction of Profes-

sor Gordon P. Fisher, leading to doctoral theses by Pincus(7)

in 1963 and by Errera(S)

in 1965. From the general energy ex-
pression for a beam-column, and using Euler-Lagrange condi-h
tions from the calculus of variations, Pincus obtained a theo-
retical solution to the problem of a centrally loaded elastic
column braced by shear-resistant diaphragms symmetrically lo-
cated with respect to the centroid; that is, with a diaphragm
on each flange of the column. An approximate solution was ob-
tained by Pincus for the case of bracing on one flange only,
by neglecting twist of the column. Pincus showed that his

approach could be used to determine the critical moment to

cause lateral buckling of a simply supported elastic beam



with diaphragm bracing. Ref. (9) includes four tests in
addition to those presented in Ref. (7) and summarizes the
progress to that date. Ref. (6) is a summary of Refs. (7)
and (9).

(8)

Errera corrected and modified some of the solutions
presented by Pincus using the same general procedure. In ad-
dition, he presented, (1) the solution for the problem of
lateral buckling of diaphragm-braced beams with ends fixed
about the veftical and longitudinal axes and subjected to uni-
form bending moment, using the Rayleigh-Ritz technique; (2)

a solution giving the critical buckling load for diaphragm-
braced columns with an‘enforced axis of rotation; and (3) a
consideration of the behavior of diaphragm-braced beams and
columns in the inelastic range. Theoretical results were com-
pared with experimental results.

(107 solution for the problem of an axially loaded

Dooley's
column attached at finite intervals to sheeting rails and shear-
stiff cladding became known to the author after the author had
already obtained a much more general solution for the problem
of an axially loaded column braced by girts which in turn are
braced by a shear diaphragm. The solution to the above problem
obtained by the author is presented in the following as a part
of this thesis. This solution (1) permits the movement of the
flange at the points of attachment to the intermediate girts
relative to- the ends of the column (Dooley's solution does

not permit this movement), (2) uses a better approximation of

the deflection functions, (3) considers the initial imperfec—



tions of the column, and (4) includes the case of sidesway

of the column. Further, the load carrying capacity of an
imperfect column braced by girts which in turn are braced by
a diaphragm is determined basing the failure of the column-
girt-diaphragm assembly on either (1) yield failure of the
column, or (2) shear failure of the diaphragm, or (3) failure
by bending of the intermediate girts.

The investigation reported in this present thesis com-
prises.the following: |

A) For diaphragm-braced beams either "simply supported"
(i.e. flexurally simply supported twist is zero and warping
unrestrained at ends) or "fixed" (i.e. fixed about the verti-
cal and longitudinal axes and simply supported about the hori-
zontal axis at ends) subjected to uniform bending moment using
the equilibrium method,

1. a solution for load-deflection relationships for
imperféct Z-beams, I-beams and channel beams,

2. a solution for buckling loads of ideal Z-beams, I-
beams and channel beams,

3. an investigation of the load-carrying capacity of
imperfect I-beams and channel beams based on failure by yield-
ing of the beams or failure by shear of the diaphragm.

B) TFor an axially loaded I-section column with "hinged"
ends (i.e. flexurally hinged; twist is zero and warping is
unrestrained at ends) braced by girts which in turn are braced
by a diaphragm using an energy method and the Rayleigh-Ritz

technique,



1. a solution for the load-deflecticn relationships of
an imperfect column,

2. a solution for the buckling load of an ideal column,

3. an investigation of the load-carrying capacity of
an imperfect column based on failure by yielding of the column,
or failure by shear of the diaphragm, or failure of the girts
in bending.

C) For an axially loaded I-section column, with the
ends flexurélly hinged and torsionally "fixed" (i.e. twist
and first derivative of twist are zero and warping restrained),
braced by two girts which in turn are braced by a diaphragm,

1. a solution for the load-deflection relationships of
an imperfect column,

2. a solution for the buckling load of an ideal column.

D) Consideration of inelastic behavior of diaphragm-
braced beams, and of columns braced by girts which in turn
are braced by a diaphragm.

Three tests on diaphragm-braced 6 [ 8.5 double-beanm as-
semblies, and three tests on 8Jr6.5 I-section columns braced
by girts which in turn are braced by a diaphragm were con-
ducted to verify the respective theories developed for the
behavior of the members.

The theory for predicting the buckling loads of dia-
phragm-braced ideal I-beam assemblies has been developed by
Errera(e) and verified by experiments on diaphragm-braced

double 8Jr6.5 I-beam assemblies. Tests conducted by Errera



on diaphragm-braced 10B17 double I-beam assemblies are re-
ported in this thesis to verify the theory developed by the
author for the prediction of load-deflection relationships
in addition to the comparison of the failure loads of the
beam assemblies with the theoretically predicted buckling
loads. Further, a test was conducted on an assembiy of four
diaphragm-braced 8Jr6.5 I-beams and a comparison of the
failure load of the diaphragm-braced beam with its theoreti-
cally predicted buckling load is presented in this report.
Notation: The symbols adopted for use in this thesis
are defined where they first appear and are listed alphabeti-

cally in Appendix I.



2. DIAPHRAGM-BRACED BEAMS UNDER UNIFORM MOMENT

2.1 Elastic Theory
2.1.1 General Formulation of the Problem by Equilibrium
Methéd

A model of the diaphragm-braced beams chosen for ?he pur-
poses of the theoretical analysis is shown in Fig. 2-1. It
consists of two beams braced at their compression flanges by a
diaphragm. For the case of uniform moments applied at the ends
in a plane parallel to the planes of the webs of the beams, the
critical moment of the double-beam assembly is obtained by us-
ing an equilibrium approach. The following forces are considered
to describe the equilibrium of one of the beams when the assem-
bly is under load:

1. Components of uniform moments applied at the ends in
the directions of the principal axes %, n , and % of the de-
flected beam at the particular secfion under consideration.

The deflected shape of the beam assembly under load is shown in
Fig. 2-2 along with the coordinate axes. The vectorial compo-
nents of the uniform moments are shown in Figs. 2-3.

2. Distributed force on the beam perpendicular to its lon-
gitudinal axis at the level of the diaphragm due to shear in the
diaphragm in the deflected beam assembly. To evaluate this
force consider the deflected shape of the diaphragm in plan as
shown in Fig. 2-%, At the cross section AA the net force on
the beam due to shear in the diaphragm is the difference in the

shear forces contributed by the two adjacent shear panels 1 and

8



2 as shown in Fig. 2-4, In obtaining a continuous distributed
force per unit length of the beam the difference in the above
forces can be treated as the first derivative of the shear
force at the particular cross section. Shear force O, on one

beam at the cross section is given by

S, = Ttw (2-1)

where
T 1is the shear stress in the diaphragm
+ 1is the thickness of the diaphragm
and w 1is the width of the diaphragm contributing to the brac-

ing of one beam.

Further,
T = 6, ¥
i | (2-2)
where
Gﬂﬁis the effective shear modulus of the diaphragm(a)
and ¥ is the shear strain at section AA.

Therefore,
= Qr (2-3)

Gge T W (2-1)

D
I

where



10

Note that @ is the shear rigidity(8)

of the diaphragm contribu-
~ting to the bracing of one member. Hence the distributed force
% on one beam perpendicular to its longitudinal axis and in

the plane of the diaphragm due to shear in the diaphragm is giv-

en by
§ = & (ar)

= Qr’

(2-5)

The direction of the force is shown in Fig. 2-4., It can be ob-
served from Fig. 2-% that the longitudinal component of the com-
plementary shear in the aiaphragm balances in itself if the to-
tal length of the beam is considered.

3. Distributed twist restraint on the beam due to the cross

(8)

bending rigidity F of the diaphragm. F is defined as the re-

straining moment per unit twist of the beam.
4, Internal resistance of the beam.
(1)

The general equations of equilibrium for a beam bent

about both the principal axes and twisted may be written as

W " .
EIzv, = (-Mg) + %'1 (2-6)
]
v
I, W == M +
Byt ( 7‘) ?% (2-7)
"— \V _ JM
and GKp —-ENp = da? +FBp —ge (2-8)
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where

EI is the strong-axis bending rigidity

EI is the weak-axis bending rigidity
Er 1is the warping rigidity
GK is the torsional rigidity

and M are the vectorial components of the

M%’ M'] b ?
externally applied end moments at the particular

cross section under consideration

e is the distance from the center of gravity (C.G.)

of the beam to‘the plane of the diaphragm
% > ‘%% , and % are the equivalent distributed load§
as shown in Fig. 2-5.
and W, , v, , and p are the displacements in the directions

shown in Figs. 2-3 and 2-5.

Approximations which are consistent with the small deflec-
tion theory are used wherever necessary without explicit state-
. ment.

The quantities on the right hand side of Egs. 2-6 through
2-8 are evaluated explicitly for the problem of diaphragm-braced

Z-beams in the following, and the solution for the behavior of
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diaphragm-braced Z-beams under uniform moments is obtained.
The behavior of diaphragm-braced I-beams and channel beams will
be derived from the above solution as a particular case.

Case a, Ideal Z-beams. To realize a pure buckling prob-

(11)

lem of ideal Z-beams braced by a diaphragm on one flange only,
in addition to the uniform moments parallel to the webs of the
beams at the ends, moments in the horizontal plane at the sup-
ports have to be applied in such an amount that the beams bend
vertically until they buckle. Moments in the horizontal plaﬁe

are fequired because the principal axes of a Z-section are not
parallel and perpendicular to the plane of its web.

The horizontal moment Mg to be offered by the support

for each beam at its ends so that the beams bend vertically be-

fore they buckle is worked out in Appendix II and is given by

i Co I, —1
Ms - M Sinet sot ( X, Y,) (2-9)

le Cos™ + IY Sin¥x
i

where M 1is the moment applied at the ends on each beam in a
plane parallel to the plane of the web, ¥, and Y, are the
principal axes, X and Y are respectively the axes perpendicu-
lar and ﬁarallel to the web of the Z-section as shown in Fig. 2-2,
and o is the angle between X and X, . The components of M

and M, in the principal directions are given by

M"u = McCosx + Mg sin«

\

)
M { Cosx + Iy, anzgé_} (2-10)

le Cos &
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and My = M sinx - Ms Cos ol
]
- 1. Cos’w } (2-11)
Sin + il
’ Iy Sin
1]

Fig. 2-4% shows the deflected shape of one of the Z-beams
along with thé direction of measurement of displacements W,
and p along the‘principal axes. 1% and n represent the prin-
cipal axes of the Z-section in its deflected shape. ‘The shear

strain Y in this case is given by

¥ = ac_‘i{b\.Cosoc + V, Sin +3P} (2-12)
or
r = W, Cosec + \f.'SCM( + ep' (2-13)
Therefore,
1 n_. ‘
§ = Q(UL‘ Cosx + V| Smo&+€§”) (2-14)

considering the deflected shape of the beam shown in Fig. 2-5,

distributed forces %_. and %_ may be written as

5 "
Fy = F oo (o)

and %*l = 9 Sm(o(_(;)

As an approximation, letting sin p = p and cos £ =1, and
neglecting ;Zsind. and ﬁcoso( because they are smaller

. order terms compared to sine« and cos & % . and %q may



1y

be approximated as

‘kg = %.&ﬁoc

I

and V%W %-SW~d' (2-15)

The components of moments at the ends along the principal

axes of the Z-beam may be obtained, by referring to Fig. 2-3, as

Mg = M, Cosp — My, Scnp
\:’:: Mx‘ - MY|F
(2-16)
M71 — Mx‘ Sc’nF + MY, Cosg
= M. P o+ Pﬂyr
(2-17)
. / /
and Mti = My, %~ MY. Vi (2-18)

After substituting the above values, simplifying and rearrang-

ing the terms, Egqs. 2-6 through 2-8 may be written as

v
EI—x‘V\ —Q(ul"CoSec +v,‘"SCnoc+ ep") SinX — My' f5" =0 (2-19)

I} '
ET, W) —Q(ui Cosx + V; 'Sinx + € N cose 4 My, P =0

-

(2-20)
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and

v"‘umo

ekp'—enp’ +qe(u osx + v sinx 4 ep") ~Fp -M ) + M
' (2-21)

Y

(Note that I§ is replaced by I, and Ivi by I, -
It may be observed that Egs. 2-19 through 2-21 are coupled

in u, , v, , and p , and they describe a pure buckling prob-
lem as desired.

Case b. Imperfect Z-beams. The equations describing the
load-deflection relationships of a diaphragm-braced imperfect
Z-beam can be obtained from Egs. 2-19 through 2-21 by modifying

the terms containing the components of applied moments as fol-

lows:
v t " f « '

BEL,V, - Q (U Cost + V" senet + P ) sine ~My, (p'+po‘) =0 (2-22)
v n 0 M

EL U~ @(Wete + W sink +ep’)cosec + My (p'+ ;) =0 (2-23)

ekp' —er g’ 4 Qe (W ety i smx +ep") —Fp - My (Weuy)

+ My v+ "7: =0
(2-24)

Where W, , V,, , and ¢, are the initial imperfections cor-

responding to the displacements u, , v , and respectively.
P ‘ . p p y

2.1.2 Load-Deflection Relationships for Diaphragm-Braced
Imperfect Beams
Case a. Z-Beams. The load-deflection relationships for

Z-beams are obtained for the following end conditions by solv-
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ing Egs. 2-22 through 2-24,

a-1l. "Simply Supported" ends. (i.e. ends of the section
are free to warp and free to rotate about the X‘ and Y, axes
but cannot rotate about the Z axis or deflect in the X, and Y,

directions.) For this case,

u,\ = \fl = P = 0 at # =0 and z = L
d*w, _ v _ 4% _ ¢ at = -0 and gz - (2-25)
dz* dz* d &% .

The general solution for Eqs. 2-22 through 2-24 and the

above end conditions is given by

-

w, = C, Stn ,“_Si
- . nimz
o= Ba S L (2-26)
and - D, Sen M=z
13 n L J

(where C,, Dy, , and E, are the amplitudes of the unknown
additional deflections) when the initial imperfections are of

similar form, and given by

-~

— N Ntz
LL\O - Su-l,n SL“ T

. Nz
oy SinTREL (2-27)

Sin INZ

P L

1
N

and PO

where S s S , and SP are the amplitudes of
n n
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the initial imperfections. When there are no intermediate equi-
distant supports and when the initial imperfections are given by

\

_ . Mz
Wy T By, Sin
Vo = 8, sSinIE L (2-28)
. Wz
and Po = SP» Sn = J

the solution to Eqs. 2-22 through 2-24% and the above boundary
conditions is given by the additional deflection pattern:

N

_ T
W, = €, sen IE
V = E, Sin Lriz S (2-29)
p = D, s “'%J
a-2., "Fixed" ends. (i.e. the ends are free to rotate

about the X| axlis but are fixed about the Yl and Z axes and

cannot deflect in the X, direction.) For this case,

e
n

S
1

-
n
o

at 2z = 0 and =L

(2-30)

o
=
.
<

|
|

4B _o at 2 =0 and Z=L

(3
.
Q
t
a
)
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Similar to case a-1, when there are no lateral intermediate

equidistant supports and when the initial imperfections are given

by

U = Sy, (1 cs 202)
V\o = SV'-|("‘“‘C05 zlr—i> \ (2-31)
and F’o = SP| ( | — Ceos -%LT%&J

the solution to Eqs. 2-22 through 2-24% and the above boundary

conditions is given by the additional deflection pattern:

w, = c,(|L— Cos E%E

v = E, (1 —cs 22) L (2-32)

“/ 7

if the term containing the cross bending rigidity T of the die-
phragm is dropped. This may be justified by considering two
facts: (1) the spacing of the connectors may be considerable
and therefore the effective bending rigidity will be small, and
(2) the flanges of the beams may rotate with respect to the webs

of the beams. Note that because the initial imperfection pat-
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tern is affine to the additional deflection pattern, the addi-
tional deflections determined will be a conservatively high esti-
mate.

The total deflections W, , V,y , and £, of the beam
are given by |

-

Wy = Wy + Wy
Vieg = Vi + V; f (2-33)
and | ﬁf = B, +f3 ]

Considering the deflection pattern given by Eqs. 2-29 and

2-32, the maximum shear strain Y.

moyx ©Ff the diaphragm is giv-

en by (using Eq. 2-13)

¥ = DT (Ccicosec 4 E,Sink £€D)  (5-34)

where m = 1 if the ends are "simply supported”, or h =2 if
the ends are "fixed".

Substitution of the values of u,, v ., Ps Wy o Vo o
and f, either from Egs. 2-28 and 2-29 or from Eqs. 2-31 and
2-32 in Eqs. 2-22 through 2-24 gives the load-deflection rela-

tionships of a diaphragm-braced Z-beam as

' : 7 -
z
E_IY'(DLLT) + Q Cos'a Q Sinx Cose Q€ Cosext — KM C} (K!Sp'
Q Stinot CosX EIx‘LDS‘T)L*' Qs:m—o( Qe Stn 4+ K, M { E,r = M‘JKZSF.'
. A 'y K'Su‘ll
Qe cosel — KM Qe sk + KM  ErfE)+ ek +Qe*|| D, -
! | Ju U2 8w,
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where the term containing the flewural rigidity of the diaphragm

is dropped, and

K, = s
Cos k. - v, Sin"
le Cos <
and K2 = ‘
I, Cos ¥t
Sinet + 1

Iy' Sin e

Eq. 2-35 enables one to evaluate the amplitudes of the
additional deflections C,, D, , and E, for a diaphragm-braced

Z-beam if the amplitudes of the initial imperfections Su s
1,1

2

gv‘,‘ and SP are known.
Case b, I-beams and Channel beams. The load-deflection

relationships of diaphragm-braced I-beams and channel beams can

bAe derived from Eq. 2-35 by letting « = 0, where « 1is the

angle between the )(l and X axes. Consequently, K, = [, K, =0 s

StneX = 0, and Crd5X =1, After simplification the amplitudes

of additional deflections ¢, and D, can be expressed as

c Mgpjer(-rL—W‘)L+ 6K + Qez} + Mg, (M~Q‘3> (2-36)
>~ 2 2- 2 \\e
LEL, () + o} { Er(T) + ex + Qe f —(1-¢c)
and D = MSM{EIVL%F)‘P*"Q; + Mép (4 -¢e) (2-37)

f EIY@-E\Z);—{- e SENITY w6k + Qe”} ~(M-ge)"
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where §, and S‘5 are the amplitudes of initial imperfections
of either an I-beam or a channel beam corresponding to § |
and Sﬁ of a Z-beam. ,

Note that the amplitude of the uncoupled deflection E,
cannot be derived from Eq. 2-35 using the above approach, but
can be readily evaluated as the vertical deflection of a beam
under uniform moment. (

When there is no diaphragm bracing, i.e. when & =0
Eqs. 2-36 and 2-37 check with those obtained by Massey 12)
for imperfect I-beams and channel beams under uniform moment.

Maximum shear strain Yrox ©f the diaphragm can be derived

from Eq. 2-34 by letting & = 0 and is given by

Cooy = .%¥ (¢, +ed) (2-38)

2.1.3 Critical Moment for DiaPhragm-Braced Ideal Beams
Case a. Z-Beams. The critical moment for diaphragm-braced
"Z-beams can be derived from Egq. 2-35 by setting the amplitudes

of the initial imperfections Su‘” - , and $, equal

1,1 Pl

to zero and solving the resulting eigenvalue problem for a non-

trivial solution. Then the critical moment is given by

EI\/'L”’—‘LE)'LJr QCos’ QSink cosx Qe Cosx — KM
Q Stnet Cosx CIX'(TW)i-QSmx Q@SLY\oL-l- KM -0
Qe coset — KM Qe Stne + KM EP@,}!T«- 6k +Q€| (2-39)
When there is no diaphragm bracing, i.e. when Q =0 |,
(11)

Eq. 2-39 checks with that obtained by Hill for the criti-

cal moment of ideal Z-beams.
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Case b, I-Beams and Channel Beams. The critical moment
for diaphragm-braced ideal I-beams and channel beams can be de-
rived from Eq. 2-39 by letting o« = 0 . After simplification,

the critical moment M, is given by

M., .—;‘/{EIY(!\LE)’-;— QHEP(“T‘I)h- 6K + Qc”}‘ + Qe (2-140)

The above equation agrees with the equation developed by Errera(S)

for diaphragm-braced ideal I-beams using an energy method.

When there is no diaphragm bracing, i.e. when Q = 0 |
Eq. 2-40 checks with that obtained in the conventional theory
for the critical moment in lateral buckling of ideal I-beams and

channel beams.

2.2 Inelastic Theory

The bilinear stress-strain relation shown in Fig. 2-6 is
assumed for the inelastic theory pfesented in this section.
Further, residual stresses are not considered. Therefore the
inelastic theory is concerned with the beams subjected to mo-
ments M greater than the yield moments M, and smaller than
the plastic moments MPQ . The diaphragm bracing is assgmed
to be in the elastic range even if the beams are in the inelas-
tic range or have attained the plastic moment.

a. Diaphragm-Braced I-Beams and Channel Beams

The modulus of elasticity E and the shear modulus G are
replaced by the reduced modulii E.. or Eny and G, respec-

tively in all the equations of the elastic theory given in the

previous sections, to describe the behavior of the diaphragm-
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braced beams in the inelastic range. The reduced modulii Enx s
E » and G_ are defined as
(I;) lasti ti of the section
= astic portion
E.. = E € P (2-u41)

(IX)total section

(1)

Eny - E - elastic portion of the section (2-142)
( 7kota1 section
E
and G = @G (,_"’I> (2-43)
T E

where 1, and IY are the moments of inertia of the cross sec-
tion about the X and Y axes respectively. E 1is replaced by
E,x in the term EI, and E is replaced by E .y in the
terms EZIY and E because bending about the Y axis and twist-
ing of the beam are coupled in the lateral buckling of beams.
Bleich uses &G, = & (Eﬁt/ﬁ) in the inelastic range of
lateral buckling of beams. However, in most cases of lateral

torsional-flexural buckling the critical moment depends more on

E than on Gn_. This is due to the fact that only the last

4
of the three deformations--bending, warping, and twisting--de-
pends on the torsional stiffness Gﬂéls). The choice of value
G 1s therefore less critical than that of E,, . For the

purposes of simplicity the expression for G, in Eq. 2-43 is
used in the inelastic range.

To determine the critical moments of diaphragm-braced
ideal I-beams and channel beams the following procedure is fol-

lowéd.
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Depending on the value of the shear rigidity ¢ of the
diaphragm the beam buckles either elastically or inelastically
or it reaches its plastic moment. The minimum value of shear
rigidity Qy required for a beam to reach the yield moment

can be obtained from Eq. 2-40 as follows:

M () { Er@r GK]

Q, = e _ (2-44)
E5, (P + 2 Mye + er (1) G
The minimum value of shear rigidity QPQ required for a

beam to reach its plastic moment is obtained from Eq. 2-4u4 by

letting E = G = 0 and replacing M, by Mpg » and is given

by
Qe = ,Zlgﬂ (2-45)
Then, for
| Q = Q, ~ the beam buckles -in the elastic range,
Moy < M,

Qy<1Q<1QpQ the beam buckles in the inelastic
range, My <Mc, < Mp
Q = QPQ the beam attains its plastic moment,
Men = MPQ
where @ is the shear rigidity of the diaphragm contributing
to the support of one beam. If the beam buckles in the elastic
range its critical moment is evaluated straightforward by using

Eq.. 2-40.
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But if the beam buckles in the inelastic range its critical

moment is given by

Mo = [Ty L0+ e, n @ ok red] vee oved

and a trial and error procedure has to be used because the values
En” and G, are unknown until the critical moment M, is
known. The trial and error procedure of determining the criti-
cal moment will be tedious. Therefore, an approximate and sim-
ple procedure to determine the critical moment is suggested in

the following.

The shear rigidity € can be expressed as (from Eq. 2-u46)

Men — EnylﬂﬁgfiEhyP(%§f¥-6nK}

E,,_YIYG‘L—")»e” +2M & + BT (‘1511)7? LS

(2-47)

Now, a particular depth of penetration of yielding (%;—Y) (re-

fer to Fig. 2-7) may be assumed and the moment M , En# , and

G, can be calculated for this particular case. Then, § is

computed for the moment M using Eq. 2-47 and replacing M
by M . If the critical moment is required for a particular value
of @ , two values @ and Q, are obtained from Eq. 2-47 such
. that Qi = Q< &, , and Q and §Q, are in the close neigh-
borhood of Q . Let the moments corfesponding to q, and €4, be
M, and M, respectively. By linear interpolation, the criti-

cal moment M for the shear rigidity @ is given by
. T
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(My-m)(Q-q) )
@ —) (2-148)

M, = ™,

n

This type of procedure to obtain the critical moments in
the inelastic range is illustrated in the examples of the follow-
ing section.

Also, the additional deflections ¢, and D, of imperfeét
diapﬁragmnbraced beams under uniform moment M in the inelastic

range are given by (refer to Eqs. 2-36 and 2-37)

M 5&’:{ £, F(AT) % 6k +Qe*} + M5, (M-de)

{E ny IT@EIL)’; Q}{EnyPET) 4+ 6k +QeT} — (Mm-agf

(2-49)

and
Msu{Ewatg)l*Q} + Mg, (M-ge) _ (2-50)
€y Iy @5 Q1{ £, MBI+ gk + @™} ~ M-Q9)

b. Diaphragm-Braced Z-beams

The procedure for determining the behavior of diaphragm-
braced Z-beams in the inelastic range is similar to that pre-
sented above and the load-deflection relationships of a diaphragm-

braced imperfect Z-beam are given by
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2 I
v InlE) + Qeosee QSinet Coswt QC Cosel =K M (C' 8,
. nry v 2 J E J = MJ
Q SinK Cos et E\‘x.lx.(lﬂ] +QSn'Y Qe Sinx + K, M 'r = M- KBy,
QC cos ot KM e . Y - - |lp K.Sum
s , QE Sinx + K M E,w,r‘(L)+G,‘)<~+é2<1‘J | [kzgr”
(2-51)

where the term containing the flexural rigidity F of the dia-

phragm has been dropped (refer to page 18). In Eq. 2-51,

n = 1 if the ends are simply supported (i.e. twist
is zero and warping is unrestrained at the ends)
mn = 2 if the ends are "fixed" (i.e. fixed about the
vertical and longitudinal axes)
(li elastic portion of the cross section
E "
il E (Ix) total cross section
(I”)elastic portion of the cross section
= E - .
Enx (}n)total cross section
E
= Ly,
6, - e
Enx.Ix, is the flexural rigidity of the beam about
the principal axis X,
Enyly is the flexural rigidity of the beam about
fl ]

the principal axis Y,
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EmyP is the warping rigidity of the beam
i
G K is the torsional rigidity of the beam
n
a is the shear rigidity of the diaphragm
e is the distance from the C.G. of the beam to

the plane of the diaphragnm

I

K =
l C050< + IY S\’Y\iﬂ{
Ix, Cose
K _ |
2 - T
Sinx 4 Iy, Cos'we
o ’ S , and § are the amplitudes of the ini-
Wy Vi B

tial imperfections (refer to Egs. 2-28 and 2-31)
and C,, D, , and E, are the amplitudes of the additional de-
flections (réfer to Eqs. 2-29 and 2-32).
Tﬁe critical moment for a diéphragm-braced ideal Z-beam
can be derived from Eq.b2—51 by letting the initial imperfec-
tions equal zero and solving for the nontrivial solution of the

resulting eigenvalue problem. The critical moment is given by

=
Ewlr'(l‘é\_) + Qeos’x R Sin« Cosol Qe Cose — KM
\ nmy”
Q Senw. Cos« EM‘IX‘(L J+ Qs QeSine + kM =0

%
e cosx —K,M . nr
Q ' Qe sinet + K,M Eny‘f‘( T) +6 K+ GE-
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2.3 Investigation of Load Carrying Capacity of Diaphragm-Braced

Imperfect I-Beams and Channel Beams

In this section the load carrying capacity of diaphragm-
braced imperfect I-beams and channel beams 1is determined consider-
ing that the load carrying capacity is based on either the fail-
ure of the beam by yielding or the failgre of the diaphragm in
shear. The criteria for both of the above failures established
for the purposes of investigation in this section are described
in the following.

1. Failure of the beam by yielding. For the purposes of
the following investigation a beam is considered as failed when
the moment M in the verfical plane of the beam reaches the
yield moment M, of the beam. 1In fact, a beam could carry its
plastic moment MYQ if it bends only in the vertical plane.
However, the effect of lateral bending and twist of an imperfect
beam contributes towards the failure of the beam by yielding.

To account for this the beam is considered as failed if the mo-
ment about the strong axis of the beam reaches its yield moment
My -

2. Failure of the diaphragm in shear. To establish the
failure of the diaphragm in a diaphragm-braced beam assembly the
individual characteristics of the diaphragm in shear must be
known. From experience in testing shear diaphragms at Cornell

(14,15) it can be stated that two identical and rela-

University
tively flexible shear diaphragms may give considerably different
load-deflection relationships at higher load levels, say, beyond

80% of ultimate load. Therefore, the shear rigidity Qg and
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the average shear strain Y; at 80% of ultimate shear load of
the diaphragm are taken as the chafacteristics to be used for

the purposes of investigation in this section in the computations
for the failure of all typeé (whether relatively flexible or
rigid) of diaphragms in shear. 44 and 1y are determined from

the load-deflection curve (refer to Fig. 2-8) and the geometry

of the shear diaphragm as follows:

. ‘ . . P,
Shear stiffness 6&(lu) is defined as, @ . _a &
d Ag b

where

Py is 80% of the ultimate load

Ay is the shear deflection at 80% of the ultimate load

a. is the dimension of the shear panel perpendicular to

the direction of the applied shear load

and b is the dimension of the shear panel along the direction

of the applied shear load.
(Note that the subscript 'd ' refers to the values at 80%

of the ultimate load)

Then,
Shear rigidity(S) Qe = GqW and
Shear Strain Y= F%%

where
W 1is the width of the shear diaphragm contributing to
the bracing of one member.
Now, the diaphragm in a diaphragm—braced-beam assembly is con-
sidered as failed if the maximum shear strain Ymax  (computed

using Q = Q) in the equations) in the diaphragm at a certain
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moment M on the assembly exceeds the shear Strain Y .

All the assumptions made in the elastic and inelastic the-
ories, presented in the previous sections, are also applicable
in this section.

In evaluating the additional deflections €, and D, , the

amplitude of lateral imperfection §, is taken as the tolerance

u

limit of sweep for a length L ‘of the beam as specified in the

AISC manual(ls)

and the amplitude of initial twist SP is arbi-
trarily taken as equal to 0.01 radian (0°34'22.8").

.The following procedure is used to arrive at the load car-
rying capacity of diaphragm-braced I-beams and channel beams.

1. The individual shear characteristics Qg and ¥y of
the diaphragm employed in the beam assembly are determined from
an independent shear diaphragm test as described above.

2. The critical moment M of the diaphragm-braced ideal

cn

beam is determined for the shear rigidity @y wusing Egs. 2-u7

and 2-48.

3. If M6m>>h1y the maximum shear strain Y o of

the diaphragm at yield moment M, on the beam is determined.

==

If  Ypax < Ty , then, the moment carrying capacity of the

diaphragm-braced beam is Pﬂy and the beam fails before the dia-

phragm does. Otherwise, the moment carrying capacity is less
than M, and the diaphragm fails before the beam does. 1In
this event, the moment carrying capacity is the moment M at

which Yax Just reaches the value Yy .

4., If M., <M the diaphragm fails before the beam

. Y
does. The moment carrying capacity is the moment M at which
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the maximum shear strain r just reaches the shear strain

max
Yq

Two examples are worked ocut in Appendix II to illustrate

the above procedure. The results of the two examples are pre-

sented and discussed in the following.

Summary of Results

Example ; 1. 1uxuBx17.2# 2. 18x6x70#
I-beam,12' long, I-beam, 18' long,
6' spacing of €' spacing of
beams, 22g. roof beams, 22g. roof
deck deck
(1) Shear Rigidity
Q4 (kips) 152.5 152.5
(2) Yield Moment ‘
My (kip-in) 756 3668
(3) Plastic Moment
Mpt (kip-in) 889 4u57
(4) Shear Rigidity
(5) Shear Rigidity ‘
Qpt (kips) 63.5 247
(6) Critical Moment
(kip-in) 889 3841

(7) Critical Moment
M (without brac-

C’(J\L
ing) (kip-in) 329 2780
(8) Load Carrying
Capacity (kip-in) 756 3063
(9) Failure Beam Diaphragm
(8)
(10) ©Y 0.85 0.80

Discussion: Diaphragm bracing being the same, the heavier

the beams are the more critical will be the failure of the dia-
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phragm. In other words, the heavier beams require stronger

bracing to reach their maximum moment carrying capacities.

2.4 Tests on I-Beams and Channel Beams

2.4.1 Description of Tests"

The general arrangement for the double-beam flexure tests
made as part of this investigation is shown in‘Pig. 2-9. Each
test assembly comprises either two 10Bl17 I-beams or two 6[8.2
beams of A-u4hl steel, and a 30 gage plenum form cross-corrugated
steelidiaphragm attached to the compression flanges, with the
corrugations transverse to the longitudinal axes of the beams.
Loads were applied to the beams two feet inboard from each end
support. The two beams were rigidily battened together in the
fwo feet end lengths with 1/4 inch steel plates welded in place.
The length of the beam between applied loads thus is subjected
to uniform moment, with its ends "fixed" against lateral tor-
sional buckling, but free to rotaté about the major bending
axis., Tﬁis arrangement was selected as the siﬁplest one to
give well-defined and controllable conditions of loading and
support as related to the theoretical assumptions. In the ab-
sence of diaphragm bracing, such an arrangement provides an ef-
fective laterally unsupported length of half the distance be-
tween the load points.

Each pair of beams was tested first with no diaphragm brac-
ing, and then with diaphragm bracing of given width and connector
spacing. Power driven pins of 1l/4-inch diameter were used in
all the double-beam flexure tests except in one test where #1Uu

screws were used. A span of 30 feet was used for 10B17 beam
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assemblies, giving an effective laterally unsupported length of
15 feet, and Ld/nA; ratio of 138l. 1In the case of 6[8.2 beam
assemblies a span of 24 feet was used, giving an effective lat-
erally unsupported length of 12 feet, and Ld4%Aj ratio of 1311.
Diaphragms used were 28 and 17-3/4 inches wide, with distances
between the pins of 25-3/4 and 15-7/8 inches, for 10B17 and

6[8.2 beam assemblies respectively. A description of the double-
beam flexure test specimens is given in Tables 3 and 6.

Lateral deflections were measured at several points at the
leveis of top and bottom flanges along the length of each beam
using a surveying transit and scalé, and vertical deflections
were read with a level and a scale. The lateral deflections
taken at zero load level enable one to compute the initial lat-
eral imperfections and the initial twist of the beams. Level
bars were used to measure web rotations at each end, each quar-
ter point, and midspan of both the beams. In the case of 10B1l7
Beam assemblies a total of eight resistance strain gages were
mounted on the flange tips of both the beams at midspan. In the
case of 6[8.2 beam assemblies resistance strain gages were mounted
on the flange tips and on outside corners of flange and web in-
tersections for both channels at midspan. Readings of all instru-
ments were taken at several increments of load before failure.

The diaphragm-braced four-beam assembly similar to the two-
beam assembly is shown in Fig. 2-10. The beams were 8Jr6.5 I-
sections made of A-U441 steel and the diaphragm is 26 gage steel
panels (inverted) connected by #14 screws to the beams at every

rib- (8" spacing). A span of 20 feet was used for the 8Jr6.5
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beam assembly giving an effective laterally unsupported length

of 10 feet and LcJ\./n,A\f ratio of 2235. The beams were 3'8" apart
giving a total diaphragm width of (3'8") x 3 + 2-1/4" = 134-1/u",
It is assumed that a width of (134-1/4")/4 = 33.5" of the dia-
phragm contributes towards the shear rigidity for each beah.

This assumption would give a larger value of the predicted criti-
cal moment for a diaphragm-braced beam than when a diaphragm
width of (3'8")/2 = 22" contributing towards the shear rigidity
for an end beam is assumed.

Strains were measured at the flange tips of each beam at
midspan using resistance strain gages. The lateral deflections,
vertical deflections, and twist of the webs were measured for
the outer beams similar to the procedure in a double-beam assembly
test.

2.4.2 Predicted Load-Deflection Relationships and Criti-
cal Moment for Diaphragm-Braced Beams; and South-
well Plot for Unbraced Beams

The load-deflection relationships for either diaphragm-

braced I-beams or channel beams used to predict the behavior of

the beams in the tests are given by

c, = MSP{EF@T* 6K+ Q"] + M5, {M-qe} (2-36)
{ET,(3T)+ /f{er @) ex+ g} -(1-a9"

a > = Mgu{u,(%r)”w}+Ms,;(m—ge> (2-37)
S T o s g

( Note that 2 is substituted for n. )




36

The critical moments for either diaphragm-braced I-beams
or channel beams used for comparison with the failure loads of

beams in the tests were derived from

A

M, = /{EMIY ) el {E  ET) + 6k + Qe ] + Qe (2-u6)

Computations in evaluating the critical moments and load-
deflection relationships for unbraced or diaphragm-braced beams
were performed on a digital computer whenever necessary.

(12) for the elastic

A Southwell plot suggested by Massey
lateral instability of I-beams can be used in the case of tests
on unbraced I-beams and channel beams. The following derivation
indicates the basis of the Southwell plot.

The amplitude of additional twist D, of either an unbraced

I-beam or channel beam in the elastic range can be derived from

Eq. 2-37 by letting Q =0 and may be written as

Ms, S ELIT) |+ M5
2 YR

M — M

C.'L,u

where

Men,u =ﬂ517@§)$7{{ﬁr‘(—%ﬂ)b+ Gk‘{

The above equation may be rearranged in a form suitable for

a Southwell plot as follows:
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.
D, _ M(psp) 5. EL(55) ]
™ z + 2
<n,u Cre, W

In the above equation the term is

Su§ ELT)
MZ—

CJ’C—,L{

constant within the elastic range so that a plot of ]ﬂ(Dr+Sﬁ>
against %% will produce a straight line with a slope equal
to the square of the critical moment.

lThe above type of Southwell plot was used to obtain the
critical moments of unbraced I-beams and channel beams from ex-
perimental data from tests which were not carried to failure.

2.4.3 Beam Test Results

(a) Double I-beam or channel beam assemblies. Results of
the tests with and without diaphragm bracing are summarized in
Tables 4% and 7. For the unbraced beams, failure always was by
élastic lateral buckling at very low stresses, and the test was
arbitrarily stopped before the lateral deflections and stresses
became excessive, in order that the same beams could be used
for the braced beam tests. Upon removal of the load, the beams
returned almost exactly to their no-load condition. Buckling al-
ways occurred in the direction of initial crookedness, if such
crookedness was at all pronounced. Figs. 2-11 and 2-12 illustrate
the lateral deflection of the centroid of typical unbraced beams
at zero load and at or near the maximum applied load. The test

arrangement was designed to simulate the condition of full fixi-

ty against lateral buckling, and Figs. 2-11 and 2-12 indicate
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that the deflected shape of the unbraced beams reasonably approxi-
mates a displaced cosine curve. Figs 2-13 and 2-14 show typical
plots of load versus lateral deflection of the top and bottom .
flanges of unbraced beams at mid spaﬁ, and Figs. 2-15 and 2-16
sﬁow moment versus midspan vertical deflections. Figs. 2—i7
through 2-20 show moment-deflection relationships for the un-
braced beams. Southwell plots for the lateral instability of

the unbraced beams are shown in Figs. 2-21 and 2-22.

Figs. 2—23 through 2-32 present similar information for the
same beams discussed above with diaphragm bracing (except for
the Southwell plots). Comparing a braced beam with an identi-
cal unbraced beam, the méximum leocad and vertical deflections
before failure are much larger, and the lateral deflections are
much smaller. It should be noted that the compression flange
(braced flange) deflects more than the tension flange (unbraced
flange) in agreement with the assumption made in the analysis.
| For failure moments below the yield moment the diaphragm
fails by tearing or popping of the pins before the beam fails
by yielding (refer to Section 2-3), therefore, there was a sud-
den lateral deflection of the beams after the failure of the dia-
phragm. For failure moments higher than the yield moments the
‘beams fail initially by yielding. After yielding the beams de-
flect laterally much faster than before yielding until the dia-
phragm fails suddenly in shear. A photograph of a double-beam
assembly after failure is shown in Fig. 2-33. Figs. 2-34 and
2-35 show a comparison of the critical léads of the beams and

their experimental failure loads.
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(b) Four-beam assembly. The behavior of the four-beanm
assembly was similar to that of a double-beam assembly. Failure
occurred above the yield moment at 90% of Mpt and was by
local buckling at a quarter point, which is also the location
of a #14% screw, of the east beam. Fig. 2-36 shows a comparison
of the critical load and the experimental failure load of the
four-beam assembly.' A photograph of the four-beam assembly
after failure and the local buckling are shown in Figs. 2-37
and 2-38 respectively.

.2.u.4 Discussion of Beam Test Results

a. Unbraced Beams

The maximum moments applied to the unbraced beams with
their initial imperfections were 3% to 12% lower than the pre-
dicted critical moments for 10B1l7 I-beams, 19% to 26% lower than
the predicted critical moments in the case of 6[8.2 beams and
25% lower than the predicted critical moment in the case of
éJrS.S'I—beams. The predicted critical moments are based on
the classical lateral buckling theory for ideal beams. As in-
dicated in Section 2.4.3 these tests were arbitrarily stopped
before a true maximum load was reached, in order that the same
beams could be used with diaphragm bracing. It can be seen that,
in the case of an unbraced I-beam, the load (240 in-kips) at
which the test is arbitrarily stopped was very close to the
critical moment (246 in-kips) given by the Southwell plot shown
in Fig. 2-21. However, in the case of an unbraced channel beam
test, the load (66 in-kips) at which the test was arbitrarily

stopped was not as close to the critical moment (81.7 in-kips)
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given by the Southwell plot (refer to Fig. 2-22) as in the case
of an unbraced I-beam. The reason lies in the fact that in the
case of channel beam tests the precritical deflections increased
faster with the increase of load than in the case of I-beams.
The above indicates that the test setup functioned better for
the case of I-beams than for the case of channel beams, but for
both sections the behavior was considered satisfactory.

b. Diaphragm-Braced Beams

In Tables 4, 7 and 9, and in Figs., 2-34, 2-35, and 2—36.
the méximum moments sustained by beams are compared with the
predicted critical moments from Eq. 2-46., In the case of 10B1l7
I-beams the predicted critical moments underestimate the failure
moments of the beams in the elastic range by about 20% to 2u%.
This can be attributed, probably, to the fact that the cross-
bending rigidity of the diaphragm is not considered in the pre-
dicted critical moments. In the case of 10B17 I-beam tests the
ﬁoments sustained by the beams in the inelqstic range were smaller
than the predicted critical moments by about 3% to 5%. Similarly,
in the case of channel beam tests the moments sustained by the
beams were smaller than the predicted critical moments by about
0% to 25%. 1In the case of 8Jr6.5 I-beam test the moment sus-
tained by the diaphragm-braced beam was smaller than the pre-
dicted critical moment by 10%. The following reasons may be given
for the moments sustained by the beams at failure being smaller
than the predicted critical moments?

1. Eq. 2-46 was developed assuming the response of the

diaphragm bracing remains elastic until failure. This is probably
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not true at very high moments.

2. Eq. 2-48 gives the critical moment for an ideal beam.
Actually imperfections exist and it is shown in Section 2.3
that these imperfections cause the failure of the beam assembly
at lower moments than the critical moments.,

3. Any deviation of the plane of the applied uniform mo-
ment (refer to Fig. 2-9) from the vertical is more critical in
the case of channel beams than in the case of I-beams because
of the unsymmetry of the channel section.

‘Figs. 2-27 and 2-28 indicate that the theoretical and actual
vertical deflections of the beams agreed quite well. The theo-
retical vertical deflections of the braced beams were computed
neglecting the small contribution of the diaphragm, which acts
as a very flexible cover plate.

Theoretical lateral deflection of the C.G. of the cross
section and the twist of the beams at midspan were computed at
the desired moment levels using the elastic theory. The initial
imperfections were computed from the measurements of the posi-
tions of the beams at zero load level. The amplitudes of the
initial imperfections used in the computations of load-deflection
relationships were the maximum values of the average initial im-
perfections of the two beanms, éo that the computed deflections
should usually give a high estimate of the actual deflections.
Figs. 2-17, 2-18, 2-29, 2-30, and 2-32 show that the theoreti-
cally predicted deflections of the beams were larger than the
actual experimental deflections. But, Figs. 2-19, 2-20, and 2-31

show that the theoretically predicted deflections are smaller



than the actual experimental deflections.

be attributed to reason 3 on page 4“1,

This, probably, may



3., AXTALLY LOADED I-SECTION COLUMNS BRACED BY

GIRTS WHICH IN TURN ARE BRACED BY A DIAPHRAGM

3.1 Elastic Theory

3.1.1 General Formulation of the Problem by Energy

Method

A model consisting of two columns braced by girts which
in turn are braced by a diaphragm will be considered for the
purposes of analysis of the above problem., A sketch of the
above model is shown in Fig. 3-1 along with the sets of axes
X, ¥, Z and Xy Yl, Zl, and their corresponding displacements
w, v, g and Ugs Vg B, respectively. In the following analy-
sis the total energy U related to one column with j inter-
mediate girts is formulated and the Rayleigh-Ritz technique
is used to obtain an approximate solution. The analysis is
based on small deflection theory.

The total energy U related fo one column can be expressed
as

v = V'+1R:+'Bsﬁ-8t (3-1)

where

V is the internal strain energy of the column
is the potential energy of the axial load

B; is the energy due to shear in the diaphragm
and By is the energy of bending of the girts due to twist

of the column.

Case a. Ideal Columns. Internal strain energy of the

column. The general expression for the internal energy of

43
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an elastic column bent about both the principal axes, and

(2)

twisted, is
L. .

nt *+
vV = 'ij (er, W v eLV" S Er prrakp ™+ EAC ) d 2 (3-2)

A !

where
EI, is the weak-axis bending rigidity

1, is the strong-axis bending rigidity

X

Er is the warping rigidity

Gk is the torsional rigidity

£ 1s Young's Modulus

A 1is the cross sectional area of the column

€ 1is the axial strain

L  1is the total length of the column
and u, v, and p are the displacements as shown in Fig. 3-1.

Considering only the éhange‘in energy from the stable
‘ compréssed position to the unstable compressed and deflected
position, the term in € can be omitted from Eq. 3-2, and in
subsequent expressions. Further, in this problem, the strong-
axis flexural buckling is independent of bending about the
weak axis and twisting of the column. The strong-axis flexur-
al buckling load can be evalﬁated using Euler's equation.

Bending about the weak axis and twist of the column are con-

sidered in the following. Eq. 3-2 then reduces to
A - nt 0t 12
Vo= £ (Bnyu"verp +exp'®)ds (3-3)

Potential Energy of an Axial Load. The general expres-

sion for the change in potential energy of an axial load from
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the compressed stable position to the compressed and deflected

unstable position, for an ursymmetrical column section, is(z)
L
1
U, =% [~rA(w+vﬂ)—erngK+—erxovp’—vdfpﬂ]dz (3-1)
(-]
where

o 1is the average compressive stress on the column
I, is the polar moment of inertia of the section
and x,and Y, are the distances from.the C.G. of thé section
to the shear center in the )X and Y directions respec-
tively.
Considering only bending about the weak-axis and twist
of the axially loaded doubly-symmetric I-section column, Eq.

3-4 reduces to
_L L l" J' 12
Uy = =% ] QUi pLrp)as (3-5)
[+]

"where P is the axial load on the column.

Energy B, due to shear in the diaphragm. The relative

movement of the girts causes shear in the diaphragm, and
this shear is transferred through the girts as resistive
forces to the lateral movement of the column when the latter
is under load. Therefore, the energy due to shear in the

diaphragm is given by

I+
— L .
BS - Z 2_ Rlﬂu’l,bq (3—6)
L=0
where
. : : L
L is the spacing of girts ( =<3 )

gwis the resistive force on the column at 2z = il
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and W,y is the lateral deflection of the. column parallel to
X, axis at Z,=7 = 10
The resistive force offered by a girt, due to shear in
the diaphragm, to the lateral movement of the column can be

expressed as

|}

!q£> =~

{[uhbi-uqxvoﬂ'+[uNW'““gu+pﬂ}

ZUy 0 = Wy - - U”:,(L'H)i} ( )
3-7

where @Q is the shear rigidity(S)

of the diaphragm contribut-
ing to the support of one column. (Note: W,.p and U, (j+2)f
should be taken as equal to zero).

Energy B3 due to bending of the girts. The bending

stiffness of the girts offers twist restraints m to the
column under load. The energy due to bending of the girts

is given by
J+4

2-
B, = 2= T M P (3-8)

£=0
where
m 1is the stiffness of the girts bracing the column at
Z=4l, for €= 0,1, .., f4l
Thus, the total energy for an axially loaded doubly
symmetric ideal I-section column braced by girts which in

turn are braced by a diaphragm is given by

U = -'-S (Er u" T erp™ ek ™o Pul T—plrp) de

3+l it
+EY Ry Wy +52 m P

=0 4 =0

(3-9)
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(Note that W,y and Uy jaaye Should be taken as zero).
Case b. Imperfect Columnsg. The total energy expres-
sion given by Eq. 3-9 can be modified for the case of an im-

perfect column to be

L 2
U =+ f {EIYU."z+ El"p"z+ GK[S'l“P(l/L't”UL:;l) —-P%P(P;:“ F;Lﬂdi

.

-+ ¥+ g

tE2 Rt **‘;:’Z*”Fu (3-10)
=0 =0

where
; Wy is the total deflection of the column in the X-

direction

w, is the initial lateral imperfection of the column
in the X-direction

p. 1s the total twist of the column

"~ and Po is the initial imperfection of the column in

twist.
Further, it may be noted that
Uy = U +1 (3-11)
and , Pt = Potp (3-12)
Using Egs. 3-11 and 3-12, Eq. 3-10 may be simplified and ex-

pressed as

L
U= 2§ {enurer gt an g —r (W 2uli)—rae (9 2 ) b

J+| et
L R, W ;p 4L ﬁ ’ z
T = Z £8 48 2 L ™ Pee (3-13)

{=0

Note t .
(Note that W, - and\ﬁﬂﬂu

Ehould be taken as zero).
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It may be observed that when the column is perfect; i.e.
W,=0 and p =0 , Eq. 3-13 reduces to Eq. 3-9 as expected.
The connection between the columns and the girts is

assumed to be such that, prior to the connection of the dia-
phragm to the assembly, the column could sway along with the
girts in the plane of the assembly with negligible shear re-
.straint compared to that of a light-gage steel diaphragm.
The expression of total energy U given by Eg. 3-13 will be
used in the following to derive the load-deflection relation-
ships of imperfect columns braced by one or two intermediate
girts and a diaphragm. The buckling loads of ideal columns
will be derived from the load-deflection relationships by
letting the initial imperfections equal zero. The ends of the
columns are assumed to be "hinged", i.e. flexurally hinged,
twist is zero and warping is unrestrained at the ends.

3.1.2 Load-Deflection Relatioﬁships for Imperfect

Columns

Case a. With Sidesway. The most general deflection

pattern to obtain a conservative estimate (i.e. an upper

limit) of the additional deflections of the column under load

may be expressed as

O
io = 2 EnSin BE2 40,0 -3)
Initial Imperfections: - (3-14)
By —-Z Fn Stn “E%
n=)
>
w, = Z C,\SLn Y\L\'i‘ + A(l-—_?_
n=1
Additional Deflections: o (3-15)
B, = 2_ D, ScnMIZ
n=| L

(Note that at every cross section of the column Z=% )
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wherelklo and @10 are the initial imperfections correspond-
ing to the deflections u, and p, 5 E,_ F, » and A, are the
amplitudes of the initial imperfections; and €,, D, , and A
are the unknown amplitudes of the additional deflections.

Knowing the deflections W,,p,>%, and p, the deflections

Wgs Poru and B of the C.G. of the column can be expressed

as
$_
= = > F, S¢n B2
&o g)lO e n (3 ¢) L (3_16)
Oo
W, = W+ep :%‘(En+er—n) Sin I‘_E?— +Ao(“%)
and ’
= Nz
p = B = 2 D,Sin —-Z
n= L
o (3-17)
. z
W = u,+ep, = %::_'(Cn—r—eDn)Sm .“_S,? "“A<"“f_‘
where

€ is the distance between the C.G. of the column section
| and the plane of the diaphragn.
The total energy U of the column is obtained by substituting
the values given by Eqs. 3-16 and 3-17 for w,, g, , w, and
P in Eq. 3-13. The unknown amplitudes C_, D, » and A can
be determined by minimizing the total energy VU and solQing |

the resulting linear simultaneous equations in ( D

n 2 n 3

and A .

An approximate solution of the problem is obtained in
the following by using the Rayleigh-Ritz technique. It is
observed from the solutions of some practical problems using

different values for n in Egs. 3-14 and 3-15 that the con-
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vergence of the solutions is quite fast. Therefore, to ob-
tain approximate solutions of the problems with one and two
intermediate girts certain values of n are chosen in the
following depending on the number of intermediate girts in
the problem and the type of accuracy needed,

Column with One Intermediate Girt. The assumed deflec-

tion pattern is given by

3
W, = %_ E“Stnl%; + A, (V-2
=1
Initial Imperfections: 3 - (3-18)
/3.‘0 = Z. F Sin .

3
w, = % Cp Sin nnz +a(-£)

T
|
Additional Deflections: 2 (3-19)
n=\

(Note ; L =20 ),
Minimization of the total energy U using Eg. 3-13 gives

" the following load-deflection relationships:

(o] {xn} = pivu} (3-20)
[pzl] {XZI} = P{V?—l} . (3-21)
(@-7)a = P4,

(3-22)



where

EI*%Y’P eieggdiP} ~8R/m* 0
+ 8Q/n*
e{e1,(T,V-Pl EPGEY+6K—P%P 0 - and /x>
+e"§ EIY%)L—' P
a + 4mt/m>
(o =
-3 o ERE-P efergy
+ BasTw”
0 —4ml/g eiaxy(%:)ip} EP(\%E)Z@K—P%P
+ €{er,30y-rl
+ 4md g
4 C' T
b=yt
D3
rE‘-feFl
(Lr +e™)F +ek,
{V”}:.ﬁ Es+eF3 e
(%\p + c")F3+c53J
F T\* T\* ]
ELy(r) P e{en(y) -}
p2i - .
elenfy-r}  Erfeaesrd
+ e {EL, 7[)1“P]:J
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CZ-
{xz%z o,

and
‘Ez+€F2

) {VZ!;:: (%_g«-ﬁ") F, + e,E?_

It can be observed from Eqs. 3-20 through 3-22 that the
deflections.{X|Q s {xz@ s and A are not coupled. Eqgs.
3-20 through 3-22, hereafter, will be known as the equations
corresponding to the first mode and modified first mode,
second mode, and sidesway mode respectively because of the
deflection pattern associated with each of the above equa-
tions (refer to Fig. 3-2; a through c and e). Further, Egs.
3-20 through 3-22 could have been obtained by using the follow-
ing deflection pattern:

First Mode and Modified First Mode:
W = E,Stn Hi% + E 4 Sin %_Lfg

Initial Imperfections: (3-23)
F, Sin T2 4 F. scn 372
2L 3 20

=y
o
I

w, = C SinTTZ L C,Sin 3nz
20 2¢
Additional Deflections: (3-24)
= D, Sn -5 + D, Stn 372
P ' 20
Second Mode:
_ . T2
| W = By St ==
Initial Imperfections: (3-25)
p pIO = Fz_ SCY\—E
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- Tz
LL, = C2.. SLY\ T
Additional Deflections: - (3-26)
Pi 2. l
Sidesway:
u,o — AO Cl"'%)
" Initial Imperfections: < (3-27)
’ P’lo = 0
-
w, = & (wi)
Additional Deflections: 1- (3-28)
pp =0

Minimization of the total energy U for the deflection
pattern of first mode and modified first mode., second mode,
and sidesway individually in each case gives Egs. 3-20 through
3-22 respectively.

Column with Two Intermediate Girts. As in the problen

with one intermediate girt, the load-deflection relationships
can be obtained in each mode separately by assuming the follow-
ing deflection pattern (refer to Fig. 3-3; a through d and f).

First Mode and Modified First Mode:

R . Tz . w7
Wio= E; S —F + Eg Sin EALE 2

3
Initial Imperfections: (3-29)
L TME . 5ME
Po= F Singg =+ F5 St 20E
: . 5T
w, = C, Stn T_gf + Cg Sin 32
Additional Deflections: (3-30)

1l

P

. IrE ‘A BTT2
D, Sin —= + D Sin 2 Y7
' 3¢ > EYa
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Modified Second Meode:

L 27T .
. Wp = Ezva\ 37 + E4 Scn fg%i
Initial Imperfections: o aTe (3-31)
e|o= FQ_ Sgngf +F4 SLn._3E
_ o 2TE . 4TZ
Additional Deflections: (3-32)
= D. Stn 2% 4+ D. Scn AT
F’u 2 =N 30 4 30
Third Mode:
We = E3 Sen 1;_
Initial Imperfections: (3-33)
£
' _ - T2
| w, = C‘3 SmT
~Additional Deflections: (3-34)
' B, = D, Sin %
{J' 3 7
Sidesway:
- - Z
Wo = A°(' EY
Initial Imperfections: (3-35)
fio =0
— _Z
w,= a( §E>
Additional Deflections: (3-36)
P = 0

(Note: L =32 ).
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Minimization of the total energy U, for each mode

tion relationships:

[pr2] {xi2] = P {viz}

where.

(g

i

[p22] {x22}

3-13 gives the following load-deflec-

P {v22]

)

[P32] {x32} = P {vs2}

(-P)A = PA,

—

2-
EL(1)—P
+a/T*

e{u,@tﬂy— P}

-8 (2517

eif’;ly(%‘i)l- P} -9/ *

Er@tl)ﬂr ex-pLe 0
+ e‘ﬁ&r,@i{-)z— P}
+ 9wl /-n'"
I

4—9&/25WV

~Iml /25 T e{EIYg_EF ‘L—-P] EP(—S—3~{—"~)L+ 6K - P%P

(3-37)
(3-38)
(3-39)

(3-40)

—q m[/ﬂz.

e{ Ely g-;f)’— Pl

referz-r]

+aml /25>
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ELET efEnEl -wesw 0
+ 278/4T"
e{Ely{%}”—Pf Er(%’{f} or-pXy 0 ~qul /g™
rELen e
[D22] = +Ime/am*

- 218/ x> 0 Ery(ﬁgﬁ"#? e{EIy%Eaz—_P}

+ 27Q /i _
o} —amnl /4> ef Ex,(%‘”)tpi Ep(%zfji 6k—PIp
refen o)1

+ Iml /1™

@32] = EDZJ]

o} -

Il
A\
vn_cn

L "

'
E, + €F,

G\f +e")F, + €E,

fviz} = < o ier g

(;Al’ +e‘)F5+eE5
L /
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i
A
A~
~
v—

{x22} c
D#J

(Ez*'e‘:z W

\

1

Zrren)F, + @E,
E,+€F,

T 2
Q£+Q)Q+GE4

{x32} = {;z}

E3+ Cry

(_I;E +€1)F3 +653

fvaz]

4
A

and {VSZ}:z

It can be observed from Eqs. 3-37 through 3-40 that they
are respectively the load-deflection relationships for the
first mode and modified fifst mode, modified second mode,
-third‘mode, and sidesway for the’column with two intermediate
girts.

The behavior of the column in sidesway described by Eq.
3-40 (same as Eq. 3-22) may be better understood by deriving
the same load-deflection relationship in a different way. It
can be observed from above that the sidesway of the column is
not coupled with either bending or twisting, or bending and
twisting of the column. The columns and girts may be imagined
to form the framework of a shear diaphragm to which a load

P

5. 1is applied as shown in Fig. 3-% to produce an additional

deflection A . The load P,; , neglecting any minor bending

effects in columns or girts and assuming the shear restraint,
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if any, of the bare frame to be equal to zero, is given by

Pie = 264t w /L (3-41)

where
6@5 is the effective shear modulus of the diaphragn
3
t is the thickness of the diaphragn

and L and w are the dimensions as shown in Fig. 3-i4,

Now, the equilibrium of one column is described by

P(a+ng) =LrpL = Geﬁ‘tW’A = QA
or @-f)a = Pa,
where
Q = Gt w

It can be observed from the above derivation that the
column is able to carry load only by virtue of the shear in
the diaphragm in the case éf sidesway of the column.

The deflection of the column is described by one of the
Eqs. 3-20 through 3-22 for the column with one intermediate
girt o» one of the Egs. 3-37 through 3-40 for the column with
two intermediate girts depending on the characteristics of
the bracing - shear rigidityq , twist restraint m, and the ec-
centricitye - for a particular‘spacing of the girts. The equa-
tion which corresponds to that mode in which an identical
ideal column buckles gives the load-deflection relationship
of the column.

The investigation of the buckling mode of an ideal column

will be treated in Section 3.1.3.
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In general, if the rolled steel sections deflect in the
(¥+)V) th mode, where y is the tofal number of intermediate
girts,rthe deflections will be primarily flexural. For the
( ¥+' ) th mode, the following assumption of deflection pat-
rtern, a better deflection pattern than the ones given by Egs.
3-25 and 3-26 or 3-33 and 3-34, will be used to obtain the

load-deflection relationship of the column:

~

W= E, stn JZ_ E;p Sin IE?L

+ ,H
(J+)4 ¥
Initial Imperfections: < (3-42)

L o = ©

-

= ¢ sta T2 Y Sen TZ
w, = C, Stn (d'»-fl)Q + Cd"” Scn -

Additional Deflections: 3 _ (3-43)
Pr =0 ‘

“~

Minimization of the total energy U corresponding to the
. above deflection pattern gives the following load-deflection

relationship:

—

3 1
Ery { Sl -P +kz;Q 0 ch €,
< (= P L (3-u44)

0 ELy (F) - PG Ej

where t the number of the mode of deflection and KZJ is
given in Section 3.3,

Case b. Without Sidesway. If the column is prevented
from swaying sidewards, for example by'providing X-bracing

as shown in Fig. 1-1, then, the assumed deflection pattern is
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given by Egs. 3-23 through 3-26 for the column with one inter-

mediate girt and by Egs. 3-29 through 3-34% for the column with

two intermediate girts. The corresponding load-deflection re-

lationships are given by Eqs. 3-20 and 3-21 for the column with
one intermediate girt and by Egqs. 3~37 through 2-3% for the

column with two intermediate girts.

3.1.3 Critical Loads for Ideal Columns

Case a. With Sidesway. The critical load of an ideal
column will be derived from the abcve load-deflection relafion—
ships by letting the initial imperfections equal zero.

al. Column with One Intermediate Girt. The deflection
pattern, in this case, is shown in Fig. 3-5. By letting the
initial imperfections equal zero the critical loads will be

obtained from Eqs. 3-20 through 3-22 as:

First Mode and Modified First Mode: [on] {xu} = o (3-45)
- Second Mode: [Du]{xzﬂ = 0 (3-46)
Sidesway: (a-p)n =0 (2-47)

Each one of the above equations describe an eigenvalue
problem. The smallest value P of the nontrivial solution of
each of the above equations gives the critical load for each
of the particular modes of buckling. Hernce, the critical

loads are given by

First Mode and Modified First Mode: ID\II = 0 (3-48)
Second Mode: IDZd = 0 (3-49)
Sidesway: ‘ (@-p» =0 (3-50)
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The critical load F.,, of the column is the smallest
of the critical loads obtained from Egs. 3-48 thréugh 3-50
and the column buckles in that mode from which the critical
load of the column 1is obtained.

The possible types of behavior of the colunn given by
Egs. 3-48 through 3-50 under different values of stiffnesses
Q@ and wm and the value of € are represented graphically
in Fig. 3-6.

The behavior of the column at the limiting values of
stiffnesses Q and wm and the value e 1is discussed in the
following.

al-l. Critical Load given by Eq. 3-50. When Q=20

there is no diaphragm bracing of the column. As expected,
Eq. 3-50 predicts that the column fails by sidesway and it
cannot carry any load.

al-2., Critical Load given by Egs. 3-48 and 3-49,

al-2.1 € =0 and Q=0 . This corresponds to no
diaphragm and girts connected to the column at the center of
gravity of its section. It is shown in Appendix III-a that
single half sine wave flexural buckling is predicted by Eq.
3-48, as expected.

al-2.2 e =0 and Q >-Q% . This corresponds to

"full bracing" ("full bracing" is defined as the bracing which

makes an ideal column reach its Euler buckling load, P, = L‘-J)
where QL is the minimum stiffness so as to obtain the Euler

: ’
buckling load Ff, of the column. The value of @Q,, 1is ob-

tained by solving Eq. 3-48 for Q;, after letting Q - Q%
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and P:l% .

A graphical representation of the above solu-
tion is shown in Fig. 3-7. It is shown in Appendix III-a
that when € =0 the tegms corresponding to flexure separate
out from the terms corresponding to torsion in Eq. 3-48, indi—
cating pure torsional or pure flexural buckling, and the be-
havior of the column in flexure does not depend on the value
of wm .
/
al-2.3 e>»>o0 , Q =0, and wm =0 ., This corresponds

to no diaphragm and girts. As expected and shown in Appendix

III-b, the critical load is given by Eq. 3-48 as the first

2
. T EL
mode pure flexural buckling load, P, = ——Efél .
al-2.4 €>0 , § =0 and m >0 . This corresponds

to the case with no diaphragm. As expected and shown in
Appendix III-b the critical load is given by Eq. 3-48 as the

first mode pure flexural buckling load F,, .

al-2.5 €>0 , Q>0 , and wW=0 . This corresponds
to the case where the connection between the girts and the
column is not moment resisting. There are two possible types
of behavior of the ideal column as shown in Fig. 3-8, depend-
ing on the problem.

al-2.6 e>0 , Q7> Q: () , and wm > rn:(é) 5 wﬁere
L =1, ... . This corresponds to "full bracing", where

Q:UJ and w,({) are such a combination of minimum stiff-

nesses so as to obtain the maximum possible buckling load of

the column with restraints. The values of combinations of

Qz(i) and ™ (¢) are obtained by solving for combinations
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of minimum values of ¢ and m from Eq. 3-48 by putting
P=Te ; Q = Q\" () and r.'.\ = m) (L) . A graphical
representation of the above solution is shown in Fig. 3-9.
As intermediate cases consider € >0, 0<Q < Qﬁ(i),
and 0<m< M{) for L= 1,.. . . Critical load lin”

for these cases is less than the Euler buckling load F, .

It also can be observed from the numerical computations
e
of particular problems that the greater the value of e, the
larger the values of Q:(i) and ™M ({) must be to provide

"full bracing".

a?. Column with Two Intermediate Girts. The deflection
pattern, in this case, is shown in Fig. 3-10. By letting the
initial imperfections equal zero the critical loads will be

obtained from Egs. 3-37 through 3-40 as:

First Mode and Modified First Mode: EDQJ {xu} = 0 (3-51)
Modified Second Mode: [P22] {x22} = 0 (3-52)
Third Mode: [P32] {x32] = 0 (3-53)
Sidesway: (§-P) & =0 (3-54)

Each one of the above equations describe an eigenvalue
problem. The smallest value of P - of the nontrivial solution
of each of the above equations gives the critical load for
each of the particular modes of buckling. Hence, the critical

loads are given by
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First Mode and Modified First Mode: |miz| = o (3-55)
Modified Second Mode: IDzzl = 0 (3-56)
Third Mode: | 32| = o (3-57)
Sidesway: (@-p) = © (3-58)

The critical load P
-

e g ©Ff the column is the smallest
]

of the critical loads obtained from the Egs. 3-55 through
3-58 and the column buckles in that mode from which the criti-
cal load of the column is obtained.

The possible types of behavior of the column given by
Egs. 3-55 through 3-58 under different values of stiffnesses g
and m and the value of €& are represented graphically in
Fig. 3-11.

The behavior of the column with two intermediate girts
at the limiting values of stiffnesses @ and wm, and the
‘value of e is discussed in the following.

a2-1. Critical load given by Eq. 3-58. When Q=0

there is no diaphragm bracing of the column. As expected
Eq. 3-58 predicts that the column fails by sidesway and it
cannot carry any load.

a?-2. Critical load given bv Egs. 3-55 through 3-57,.

az2-2.1 € =0 and @ =0 . This corresponds to
no diaphragm and girts connected to the column at the center
of gravity of its section. It is shown in Appendix III-c
that Eq. 3-55 predicts single half sine wave flexural buckling

as expected.
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az2-2,2 € =0 and Q ~ Q;o . This corresponds to
"full bracing" where Q;o is the minimum stiffness so as to
obtain the maximum possible buckling load of the celwnan F, .
The value of Q;O is obtained from Eq. 3-5% or 3-56, which-
ever is controlling, by letting P=Fe and Q = Q;o . A
graphical representation of thé above solution is shown in
Fig. 3-12. It is shown in Appendix III-c that when e=20
the terms correspg;ding to flexure separate out from those
corresponding to torsion in Eqs. 3-55 and 3-56, indicating
either pure flexural or pure torsional buckling, and the be-
havior of the column in flexure does not depend on the value
of m .

a2—2;3 €e>0, Q =0, and m =0 . This corresponds
to the case with no diaphragm and girts. As expected, and
shown in Appendix III-d the critical load Qn,z is given by
Eq. 3-55 as the first mode pure flexural buckling load ¥,

az-2.4 e>0, @a=0, and m >0 . This corresponds
to the case with no diaphragm. As expected, and shown in
Appendix III-d, the critical load is given by Eq. 3-55 as the
first mode pure flexural buckling load Fg_ .

a2-2.5% €e>0 , & >0, and m =0 . This corresponds
to the case where the connection between the girts and the
column is not moment resisting. There are four possible types
of behavior of the column as shown in Fig. 3-13 depending on
the problem.

a2-2.6 e>o0, Qg - Q’z(i) , and m > my () for ¢ =},

This cofresponds to the case of "full bracing" where Q;(C)
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and vﬂ;(i) are such a combination of minimum stiffnesses
so as to obtain the maximum possible buckling load F of
the column with restraints. The values of combinations of
Q;ﬂ) and m;(i)' are obtained by solving for combinations
of minimum values of @ and m from either Eg. 3-55 or 3-5%6
depending on the particular problem, by letting F= P ,
Q = Q;(Q) and m = ngi) . A graphical representation
of the above solution is shown in Fig. 3-14% for the two dif-
ferent possibilities.

As intermediate cases consider e >0, 0< Q< Q;(L),

/ . ’ . .
and 0 < m <« M, (¢v) where < =1,... . The critical
load F... for these cases is less than F, .

b

It can be observed from numerical computations of partic-
ular problems that the greater the value of € , the larger
the values of Q;UU and rn;QQ must be to provide "full
bracing". |

Cése b. Without Sidesway. If the column is prevented
from swaying sidewards, for example by providing X-bracing
as shown in Fig. 1-1, then, the assumed deflection pattern
is given by Egs. 3-23 through 3-28 for the column with one
intermediate girt and by Eqs. 3-29 through 3-36 for the
column with two intermediate girts by letting A , and the
initial imperfections equal zero. The critical load corre-
sponding to the above deflection pattern will be given by
Egs. 3-48 and 3-49 for the column with one intermediate girt
and by Egs. 3-55 thfough 3-57 for the column with two inter-
mediate girts because Egs. 3-50 and 3-58 become trivial when

A =0 .
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The possible types of behavior described by Eqs. 3-u48
and 3-49 for the column with one intermediate girt and by
Eqs. 3-55 through 3-57 for the column with two intermediate
girts for different values of ¢ , m, and € are represented
graphically in Figs. 3-8 and 3-13 respectively.

The discussion éf the behavior of the column at the
limiting values of § , m, and e described by Eqs. 3-48 and
3-49 and Egs. 3-55 through 3-57 is given in Case a, and the
same is applicable in this case also.

The method of analysis presented above is quite general
and can be eﬁ%loyed for a column with end conditions other

than "hinged" end conditions described here.

3.2 Inelastic Theory

For stocky columns the average compressive stress may
exceed the proportional 1limit of the stress-strain relation-
ship of the entire cross section prior to buckling. As a
result buckling will occur in the inelastic range (i.e. at
stresses beyond the proportional limit) at a stress lower
than that given by the elastiec theory in Section 3.1. 1In
contrast to the elastic buckling solution, no rigorous theory
for obtaining the inelastic torsional-flexural buckling load
exists at present. The available literature on the subjeét
is mainiy limited to the methods which use the elastic equa-
tions with the modulus of elasticity E and shear modulus g
replaced by effective modulii E't and 6. Bleich suggests
uging the tangent modulus, E, = 4 ; for E¥, and 6\/75:7;

de
or G(EJC/ED for @ .



68

In most cases of torsional-flexural buckling the critical
load depends more on E* than on G*.(13> This is due to the
fact that only the last of the fhree deformations - bending,
warping, and twistiﬁg - depends on the torsional stiffness 6K,
The choice of a value 6° is therefore less critical than that
of E.

To describé the behavior of the columns braced by girts
which in turn are braced by a diaphragm in the inelastic
range E will be replaced by E* = Ey and g will be replaced
byAGr = G (E%/%). Further, the diaphragm and the ¢girts will
be assumed to be in the elastic range even if the column is
in the inelastic range.

It is known that E, depends on the effective stress-
strain relationship of the entire cross section. A stress-
strain curve typical of those obtained for the entire cross
section of hot rolled steel members is shown in Fig. 3-15.

' The existence of a gradual yielding region in the curve is
caused by the distribution of residual cooling stresses over
the cross section.

If the relation between the inelastic buckling stress
and slenderness ratio is assumed to be a quadratic parabola,
tangent to the abscissa, o = Ty (yield stress), at slenderness
ratio equal to zero and intersecting the elastic curve at

=0} (proportional 1limit), then the relation between

tangent modulus and stress is shown by Bleich to be given by

E¢ (7y—o) o
= (3-59)
E (V—r - VP) vp
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where ¢- is the average compressivez stress %- on the cross

section.

The above relation will be used in the inelastic range
to obtain E* and G%.once the average stress on the column is
known and the application will be demonstrated in two examples

in Appendix I1II.

3.3 Investigation of Load Carrying Capacity of Imperfect

Columns

In this section the load carrying capacity of an axiaily
loaded imperfect I-section column braced by girts which in
turn are braced by & diaphragm is determined considering that
the load carrying capacity is based on either the failure of
the column by yielding, or failure of the diaphragm in shear,
or failure of the girts in bending. The criteria of the above
failures established for the purposes of investigation presented
Ain this section are discussed in the following.

1. Failure of the column by yielding. The criterion of
failure established here is that of failure in combined bend;
ing and axial stresses. A column is considered as failed if

any one of the following inequalities is violated:

$a
Between girts: — t L < ! (3-60)
a Fy

At braced points:

(i.e. at intermediate

%+

A

girts and ends) (3-61)
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where
§. is the computed axial stress
3, 1s the computed bending stress at the section under
consideratidn including the effect of additional
deflections under axial load
, £, is the buckling stress

and F, is the yield stress.

24

Nofé that the above inequalities are ultimate strength equiv-
alehts to Eqs. 7a and 7b in the AISC manual(ls). Further,
'since the column is bent about the V¥ axis, there will be no
lateral torsional flexural buckling; and therefore, on the
‘basis of ultimate strength, Fy is substituted for ¥ in Egs.
7a and 7b of the AISC manual. It is also to be noted that con-
tribution of twist towards the failure of the column is not in-
cluded in the above.

2. Failure of the diaphragm in shear. The criterion of
failure of the diaphragm bracing the girts which in turn brace
a column is similar to that described in 2 on page 29 for
diaphragm braced beams. The diaphragm is considered as failed
if the maximum shear strain Ypax computed using & = €4 in
the required equations, exceeds the shear strain Y . Vmax
can be computed from the load-deflection relationships knowing
the deflected shape of the column.

3. Failure of the girts in bending. Twist of the columns
produces bending of the girts about their strong axis. Fig.

3-16 shows the bent shape of a girt bracing an imperfect column.

It is seen from Fig. 3-16 that the compression flange in one
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half length of the girt between the columns is not braced by
the diaphragm. Therefore, to be conservative, a girt is con-

sidered as failed if any one of the follewing inequalities is

violated:
%
M < M.
(3-62)
! M, <. MY
where

M, is the moment on the girt at the connection to
the column due to the twisting of the column
Mztis the critical moment of the girt of length w
subjected to uniform moment
and Mz is the yield moment of the girt.

The deflection pattern of the column used for the analy-
sis in this investigation contains, in general, only one term
~in flexure and one term in torsion as against two terms in
flexure and two terms in torsion, that were used in the theopy
presented in the previous sections. These two approximations
seemed to differ by only about 5% to 10% in critical loads.
The analysis in this section is intended to enable one to com-
pute the load-deflection relationships and the critical loads
by hand. All the assumptions used in the theory presented in
the previous sections are also applicable in this section.

The necessary constants for the investigation in this

section are derived for a column whose ends are flexurally

hinged and torsionally simple (i.e. warping is unrestrained
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and twist is zero at ends) using the following deflection

pattern:

For y intermediate girts and L th mode:

L = E. Sin 272
~ 1o <

Initial Imperfections: (3-63)

3

"BIO = F¢ Sin AWZ

&~
N
o,

A

Additional Deflections:

(3-64)

-

Initial Imperfections:

A:::}-H<

Additional Deflections:

~ {LL N schTi + E; . Scn IZ
{:pl =0
The above deflection pattern gives the following load-

deflection relationships after minimizing the total energy U

~ ~3 - ~

l:g} 3 r = P r
e (kiR "-7) (a*—P{.Y)+cL(K|3 PE%_P) D{J G +E¢’-’)Fc
+ ek,
N L [FeEe )

(3-67)
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\ %X 1
KIS PPy 2 0 ¢ E
¢°© Q ‘ (3-68)

I
-

N %

0 (P;*—P/'J C&-H EJA\

(Note that effective modulii,'Ef'and G, are substituted for
elastic modulii, E and & , after minimization of the total
energy.)
where
E: is the buckling load of an ideal column determined
by using Euler's equation in the elastic range and

the CRC formula in the inelastic range

P o= 4=y ; E° depends on the average axial stress
level in the column
Ké N Kzg , and Ksi are the constants K], K2 ,
and k3 respectively for the column with éf inter-
mediate girts and in the { th mode and are given at
the end of this section
and d = Klg E*r*(}r.)”Jr 6Tk + K33 m
o, . . / / % 14-
The additional deflections C,» Dy » ¢ , and C}“

are derived from Eqs. 3-67 and 3-68 and are given by

E. +eF, c(m; P P)

G%f + e")ﬁ +€E ¢ (_Q*~PI;?>+6'L(KIS PJEP)
cC. = - (3-69)

L (9

DD}




¢ xx y
Kl} £, —-F ’\'KZJQ E, + CF;
P
e (i RF oy e )F; 4+ CE;
. R G
L
.D_DJ
o E\P (3-71)

| LI T !

and  Cf,, = (P;i“—PP (3-72)
where
pvj = (ki =R =TI + KRR R P + (@ P30
Critical load ﬁ;vj of a column with } intermediate

girts in the i th mode will be derived from Eq. 3-67 by letting

the initial imperfections egual zero when << ; , and is given

by
P:w,é { f( ~c* } (3-73)
where
b = mj- A KZE-Q ( +-~~) + __L—:’(
and ¢ = {Kz Q(a+m Po ¥e*) +a” KICP**}
When @ = f+ o, Pi . 1s given by

en,)
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{ ih £l
ey PCN.)(} = Te (3-74)
Then, the criticel load of a column Pen with ¢ inter-
, :
mediate girts is given by
— . (P' PR PJ-’-' .
Ry = Min (Fpyn-oo oy C,L,é) | (3-75)

Note that the mode of buckling of an ideal column depends on

the values of @, m,e, and the spacing of girts, {.
(
L&)}

Further, the shear rigidity Q required for an ideal

column with } intermediate girts so that the column could

in the t th mode is given by

reach the buckling load Q?

. 3 * i
Eq. 3-73 by letting FL%! = F and Q = QC&,J . Thus

) e ¥ 3 * T
(ki &7 B) (-1 F)

“4yd kg | S (RIGERT) v (& -0 D)

e
!
—

(3-7¢)

D
i

The shear rigidity Qid,} required for an ideal column
to reach the critical load Qf s irrespective of the mode,
is given by
, ¥
Qg ; = Max (Qug, 2o s Q) (3-77)
The difficulty in using the above Eq. 3-73 lies in the
fact that one does not know the value of E before obtaining
L
Fon,j

After obtaining

\ . *
. Therefore, one has to use a trial value for E .

R; i one can calculate E" corresponding
) .

to the load level ﬂ; ; . If this E" agrees with the trial
: ) . .

[

value then the computation of Pe is correct; otherwise

?L,J‘
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the process has to be repeated with a new rational trial value
until the trial value becomes correct.

The above procedure is tedious. Therefore an approximatc
and eacier procedure described in the following may be adopted

A

to obtain i%n,j .
Two values of Q namely @, and @, such that & and &,
are in close neighborhocod of & and 8, < Q< &, may be

calculated from Eq. 3-76 corresponding to two assumed values

with ﬁ or Fz and

of loads P, and F, by replacing Ef

o .
QC&J with @, or Q, , respectively. Then the critical

L
load iny is obtained by linear interpolation as
P .= {P L (-P) (Q--Ql)} (3-78)
Cny ! .
(Qz'QD ¢+ th mode

The initial displacement E;, of the C. G. of the column
section is taken as the tolerance limit of sweep specified in
the AISC manual for a column length of L/i. The imperfection
of the column in twist F; is arbitrarily taken as #; = 0.01
radian (=0° 34' 22.6"). Knowing E, and F; the value E;
at X, axis can be computed as E = Ew - efF; .

The following procedure is adopted to determine the load
carrying capacity of an imperfect column braced by girts which
in turn are braced by a diaphragm,

1. The shear characteristics éQd and [y (refer to page
29) of the diaphragm used to brace the girts which in turn

brace a column are determined. The stiffness yn is determined

from the bending stiffness of the girts and the type of con-
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nection of the girts to the column. The evaluation of m
for two different types of girt-column connections is shown
in one of the examples worked out in Appendix III.

2. The flexural buckling stress ¢, for the slender-
ness ratio ﬁ/ﬁy is determined using Euler's equaticn in the
elastic range or the CRC formula in the inelastic range de-
pending on whether @ > ?lé or </31£ The critical load Ef
for the ideal column is given by: = O, A -

3. The smallest value of shear rigidity Qid,} , which

in comblnatlon with the twist restraint m gives the criti-

cal load Pk

> 1s determined. In some cases there may not exist

any real positive value for QC&} because the column may never
)
* :
reach the critical load F, for particular values of m what-
ever may be the value of Q . In such cases the critical load

F,

en,y critical load of the column with shear rigidity 64

and twist restraint m is determined.
| 4. If Qu,} < Q4 the procedure given in Ya through
4d is followed, otherwise the procedure given in 5a through
S5e is followed.

ta. Since the column is imperfect the load carrying
capacity P of the column will be less than Qf . There-~

fore a trial value for P of about 0.7 a: is assumed.

Ub. The stress level o (=E) is computed and the ratio

*
%% is determined from Eq. 3-58. The additional deflections
CT and Cﬁ; are determined from Eqs. 3-71 and 3-72.

4e. Knowing the values of ¢,”, ;ﬁ« > By, and Ejy

and the deflection pattern the failure of the colmmn by yield-



ing in combined bending and axial stresses is checked using

the inequalities 3-60 and 3-61. If the inequalities arc satis-

fied, increase the value of P and repcat the procedure from

4b until the inequaiities are just satisfied., If the inequali-

ties are not satisfied reduce the value of P and repeat the

procedure from 4b until the inequalities are just satisfied.
bd. Knowing the additional deflections C:* and C;ﬁ,,

and the deflection pattern, the maximum shear strain Yp.x in

the diaphragm can be computed. For the diaphragm not to fail

in shear the following condition must be satisfied.

Cmox < V) (3-79)

-~

If the inequality is satisfied the load carrying capacity of
the column is P . Note that the failure of the girts need
not be checked because there is no twist of the column in
this case. If the inequality 3-79 is not satisfied the dia-
_phragm fails before the column does. Therefore the trial
value of P 1s reduced and the above procedure is repeated
from 4b until the inequality is just satisfied.

S5a. If Q‘Jv}‘> Qg or Q&%} is not a real positive
number, a trial value for the load carrying capacity P of

-

the column is assumed to be 0.7 P, .
1
5b. The additional deflections C; and 1% are deter-
mined using Egs. 3-69 and 3-70.
5¢c. Knowing C; ,Dg y E; and F. , and the deflection
pattern the column is checked for failure by yielding in

combined bending and axial stresses using inequalities 3-60

and 3-61. Note that the inequalities are, in general, con-
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(33

servative regarding the failure of the coluun, 3) However,
in the above, the contribution of the stresses due to the
twist of the column is neglected. If the inegualities are
satisfied the value of P is increased, otherwise decreased,
and the procedure is repeated from 5b until the inequalities
are just satisfied.

5d. Knowing the value of CE and the deflection pattern,
the maximum shear strain in the diaphragm can be computed. If
the inequality 3-79 is satisfied, the diaphragm does not fail
before the column does; the failure of the girts in bending
is checked in 5e. If the inequality 3-79 is not satisfied,
the trial value of P is decreased and the procedure is re-
peated from 5b until the inequality is satisfied.

Se. Knowing JDQ and the deflection pattern, the twist
of the column &t the connection to the girts can be computed.
Knowing the nature of the girt-column connection, the maxi-
mum moment M. on the girt, due to the twist of the column,
can be computed. If the inequalities 3-62 are satisfied the
load carrying capacity of the column is P ; otherwise the
trial value of P 1s reduced and the above procedure is re-
peated from 5b until the inequalities 3-62 are just satisfied.

It is to be noted that any increase in § above Q&%}
would, in general, result in an increased value of the load
carrying capacity P of the column. However, this increase
is, in general, not considerable because the column might

fail in between the braced points.
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The constants Kl, Kz, and k3 for the column with one,

two, and three intermediate girts are given in the following:

Kl Kz K3
¥ ¥
) 2 3 . .
1 b ) 2. 3 i f A 3
N e 9 32014 40 9Lt
i _‘l‘; q 1% | N2 T “_‘n”:;_ YZ-) > - o
4 A 274> 8
: CR 2 ' s 4t
q’ﬂ _rr‘lp
3 4 32 (L))
6 3 ="z’ 3 1L
at 94>

Two examples are worked out in Appendix III to illustrate

the above procedure, the results of the examples are presented

and discussed in the following.

Summary of Results

(1) (2) (3) (4)

(5) _
Investigation Example Type of Shear Twist Restraint,
No. Column Rigidity, .
- girt Q4 (kips) M(k-in/rad)
Connection
1 1, L=16" I(fully 413 2325
rigid)
2 1, L=16' TII(fully 413 0
flexible)
3 2, L=12' I(fully 413 2900
rigid)
Y 2, L=12' TI(fully 826 2300
rigid)

(Continued on next page)
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Summary of Results (Continued)

(6) (7 (8) (9 (10) (11)
Shear Critical Mode of Load Failure by (8)Y/7C7)
Rigidity, load, F | Buckling Carrying Yielding at

Quy(kips) (kips) Capacity
(kips)
> 413 296.7 lodified 245 at braced 0.83
Second point
Mode
- 182.6 Modified 12y between 0.68
First girts
Mode
4oy 305.5 Third 230 at braced 0.75
Mode point
Loy 305.5 Third 240 between 0.79
Mode ‘ girts
Discussion:

(1) The load carrying capacity of an imperfect column is

always less than the critiéal load of the corresponding ideal
‘columh. In the above two examples, the load carrying capé—
cities varied from 68% to 83% of the corresponding critical
loads.

(2) It may be observed from investigations 3 and 4 that
an increased value of diaphragm rigidity shifted the location
of failure from a braced point to a point between the girts.
This shows that at higher values of diaphragm rigidity the
failure of the column takes place between the braced points
before the critical load of the ideal column is reached, and
this is expected in the case of an imperfect column.

(3) The load carrying capacity in investigation 3 should
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have been higher than that in investigation 1 but for the
fact that the assumption of initial imperfections in the
third mode is more conservative than in the modified second

mode.,

3.4 Tests on Columns

3.4.1 Description of Tests

To corroborate the theoretical predictions of load-deflec-
tion relationships and buckling loads of axially loaded columns
braced by girts which in turn arc braced by a diaphragm, three
tests were performed on the specimens shown schematically in
Fig. 3-17. All test assemblies consisted of two equally and
axially loaded 8Jr6.5 I-section columns, made of ASTM A-hul
low alloy high strength steel, braced by two intermediate girts
which in turn are braced by a 26 gage standard corrugated
steel diaphragm. The diaphfagm was attached to the girts with
#1h scfews at every third valley. In tests 1 and 3 wherein
an unusual connection between the girts and the columns was
provided (refer to Fig. 3-17), to simulate known twist re-
straints on the columns, the girts were 6 [ 13 rolled steel
sections whereas in test 2, where the girts were welded to
the columns, the girts were 6 [ 2.26 light-gage steecl sections.
An unusual column-girt connection was provided in tests 1 and
3 because it was desired to have fully flexible and semi-
rigid (with known restraints) connections, respectively, in
these tests. The column-girt connection in test 2 is, in

general, considered as a fully rigid connection. Note that
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the connection in test 3 was designed to provide an inter-
mediate case between the two extremes (fully flexible and
fully rigid). The total length of each column between knife
edges was 12' 7" and the spacing of columns in all the tests
was 6'. |

The column assemblies were tested in a frame constructed
for the purpose. The test frame consists of two 6 WF 25
columns spaced 12' apart. Rolled steel channel sections,
18" deep, were connected to the columns one on each side of
the‘flanges and perpendicular to the longitudinal axes of the
columns, one pair of channels at the bottom and the other at
the top such that there was a clear height of 15' 8" between
the top pair and bottom pair of channels. Two 50 ton hydraulic
jacks with hydraulic load cells were connected to the top chan-
nel beams such that the center lines of the jacks coincide
with the longitudinal axes of the test columns. The test col-
‘umn assemblies werc always situated at the center of the space
between the columns of the test frame. Tﬁe two jacks were
connected to a common pump so that the loading on both columns
would be equal at all times. The test columns were individual-
ly supported on knife edges parallel to the web. The jacks
apply load on the top knife edges whereas the bottom knife
edges rest on the bottom channel beams of the test frame.
The load was read on an Emery console.,

The plane of the test frame was in the north-south direc-
tion. The weight of the girts and the diaphragm tend to tilt

the assembly to the west. The assembly was tied at the top
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to the wall beam of the laboratory and thus the tilt of the
assembly in all the tests was avoided.

A minimum of seven dial gages on each column reading to
0.001" were used in each test to measure the deflections of
the columns at both the flanges parallel to the X-axis of the
section. Twist of the columns can be computed from the above
measurement of deflections. In all the tests, one dial gage
at the top knife edge of each column was used to measure its
movement parallel to the plane of the assembly. All the dial
gages were supported by an independent framing system.

A total of eight electrical resistance strain gages were
located at mid height of the column on the inside of each
flange tip.

A suitable centering procedure developed in connection
with this type of test was used in an effort to obtain con-
‘centricity of loading on each column(B). However, the center-
ing procedure was not carried up to high load levels, com-
pared to the buckling loads of the columns, because the warp;
ing stresses due to precritical twist of the column form a
considerable proportion of the average axial stress on the
column in tests GT-1 and GT-3.

After centering the columns, the position of the flanges
of the columns was noted by taking readings on a horizontal
scale held perpendicular to the flange at the tip of the
flange with the help of a transit in a vertical plane. The
ipitial imperfections of the column (i.e. initial lateral

deflection and twist) can be computed from the above readings.
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In test 3 two springs were arranged on each side of the
hinges at the connection of the girts to the columns. Springs
were calibrated before use in the test and each has an aver-
age stiffness of k= 0.626 kip/in. The springs were 3 1/h4"
long and they were precompressed by 1/4#" before they fit in
between the plates of the connection arrangement. The distance
between the springs on either side of the hinges is 7 3/8".
This provided a value of twist restraint wm = 26 kip-in./
radian.

In test 2 the girts were 6 [ 2.26 light gage steel scc-
tions. By virtue of their bending stiffness they provided a
value of twist restrainf m = 7750 kip-in./radian.

3.4.2 Predicted Load-Deflection Relationships and

Critical Loads for Columns

The ends of the columns were flexurally hinged. Twist
.is zero and warping is restrained at the ends. For these end
conditions the assumed deflection pattern is given by

First Mode and Modified First Mode:

Wiy = B, sin T
Initial Imperfections: (3-80)
Bro = F (1 cos 208)
. . 51r:
w, = C,Scn% + Cg Stn “5_%2—':
Additional Deflections: (3-81)

P =D, (1-cos ZF) i, (1 - %%Z)
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Modified Second Mode:

We =0

Initial Imperfections: (3-82)
Bio =0
W, = C, Stn 212

Additional Deflections: (3-83)
B, = D, Cos T2 _%% (_%_2)

(It will be seen that buckling of the columns in tests 1 and
3 occurs in the modified first mode and the buckling of the
columns in test 2 occurs in the third mode. Therefore the
load-deflection relationships in the modified second mode are
not of practical importance and the initial imperfections are
assumed to be zero in the above.) Minimization of‘the total
energy U associated with fhe above deflection pattern gives

-the foilowing load-deflection relationships for the column:

First Mode and Modified First Mode: [Dwiz}{xwiz]= P{vwiz} (3-84)

Modified Second Mode: | Pwaz}{xw22} = 0 (3-85)

(Note that buckling of columns in all the three tests occurs

in the elastic range.)
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The load-deflection relationships of a column with two
intermediate girts in the third mode are the same as those
given by Eq. 3-44 whether warping is restrained or unrestrained
at the~ends because the buckling is purely flexural. Further,
‘the load-deflection relationships in sidesway are the same as
given by Eq. 3-40. The load-deflection relationships may be’

restated as

Third Mode: [Pm32] {xm32} = P {vmsz} (3-86)
Sidesway: (Q-P) A = Pa, (3-40)
where
%
E.IYK:?E%) ——P+3_;§1_ o
BLERN

p
0 Er, (P -F
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w X

fxm32} = {C

I

and {vmsz]

By setting the initial imperfections equal to zero in
Eqs. 3-84, 3-86 and 3~u40, the critical loads will be obtained
from Egqs. 3-84 through 3-86 and 3-40 as

First Mode and Modified First Mode: [DW12) {anz} =0 (3-87)

Modified Second Mode: owaz] {xwz2} =0 (3-88)
Third Mode: [DM32] {xm32] = 0 (3-89)
Sidesway: ’ (a-P) A =0 (3-5u4)

Each one of the above equations describe an eigenvalue
problem. The smallest value of P of the nontrivial solution
of each of the above equations gives the critical load for
each of the particular modes of buckling. Hence, the critical

loads are given by

First Mode and Modified First Mode: D\MlZI =0 (3-30)
Modified Second Mode: IDW22| =0 (3-31)
Third Mode: |pM32| =0 (3-92)

Sidesway: (a-P) =0 (3-58)
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= %

awox

fxm32l = {C

i

aﬁd | {VMBZ}

By setting the initial imperfections equal to zero in
Egs. 3-84, 3-86 and 3-40, the critical loads will be obtained
from Egs. 3-84 through 3-86 and 3-40 as

First Mode and Modified First Mode: [pwi2] {anz} =0 (3-87)

Modified Second Mode: Pwz7] {szz} =0 (3-88)
Third Mode: [oM32) §xM32] =0 (3-89)
Sidesway: ' (a-P) Ao =0 (3-54)

Each one of the above equations describe an eigenvalue
problem. The smallest value of P of the nontrivial solution
of each of the above equations gives the critical load for
each of the particular modes of buckling. Hence, the critical

loads are given by

First Mode and Modified First Mode: ])w\zl =0 (3-90)
Modified Second Mode: Dwa2z| =0 (3-91)
Third Mode: | [PM32| =0 (3-92)

Sidesway: (a-P) =0 (3-58)



The critical load T¢,,, of the column is the smallest
of the critical loads obtained from the Egs. 3-90 through
3-92 and 3-58, and the column buckles in that mode from which
the critical load of the column 1s obtained.

Computations in evaluating critical loads and load deflec-
tion relationships of columns braced by girts which in turn
are braced by a diaphragm were performed on a digital computer
whenever necessary.

3.4.3 Column Test Results

The description and the results of the three tests are
given in Table 8. The predicted critical loads and the experi-
mental failure loads are shown in Figs. 3-18 through 3-20.

The experimental failure loads of columns ranged from 84% to
34% of the corresponding critical loads.

In all the three tests the in-plane shear deflection of
the diaphragm was very small and almost no damage to the dia-
.phragm was observed even after the columns had failed. Photo-
graphs of the column assembly before and after test GT-1 are
shown in Figs. 3-21 and 3-22. A photograph of failure of the
column assembly in Test GT-2 is shown in Fig. 3-23,

In test 2, because of the large twist of the columns
the precompressed springs on one side of the girt-column con-
nection hinges were found to be released when a load of 25
kips was reached on each column. But the columns could take
an additional load of 0.5 kip before they failed. This shows
that before the column failed the twist restraint was reduced

to 13 kip-in/radian from 26 kip-in/radian because the springs
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on one side of the girt-column connection hinges were released.
Therefore, the failure load of the column is compared with the
éritical load of the column having a twist restraint of 13 kip~
in/radian. The initial imperfections, deflection pattern at
23 kips load (the last load level at which the deflection
measurements of the columns were taken with the springs on
both sides of the girt-column connections operative) on each
column, and the load-deflection curves for the north column
in test 3 are shown in Figs. 3-24% through 3-27 respectively.

3.4.4 Discussion of Column Test Results

The buckling modes of failure in all the three tests were
the same as predicted by the theory. As mentioned in Section
3.4.3 the experimental failure loads of columns ranged from
84% to 94% of the corresponding critical loads. The maximum
amplitudes of initial imperfections used in the computations
of the theoretical load-deflection relationships were the
‘maximum values of the initial imperfections along the length
of the column, so that the theoretical deflections would be
a conservative estimate of the actual experimental deflections.
Figs. 3-26 and 3-27 show a comparison between the theoretical
load-deflection curves and the actual experimental load-deflec-
tion curves. It can be seen from the figures that the theoret-
ical deflections are a conservative estimate of the actual
experimental deflections except at very high load levels. At
very high load levels the deflections of the column become

large and certain portions of the cross section of the column

might have yielded even if the average stress level on the
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column is in the elastic range. At thése high load levels
the assumption of small deflection theory in the analysis
may not be valid. The above reason probably explains why
the experimental deflections at very high loads are larger

than the theoretically predicted values.



4., SUMMARY AND CONCLUSIONS

4.1 Summary of Current Investigation

4.1.1 Diaphragm-Braced Beams Under Uniform Moment

The critical moment for I-beams continuously braced by a
diaphragh on the compression flanges and subjected to uniform

(8)

moment was obtained by Errera using an energy method. In
the present investigation, the solution for a more general prob-
lem--the load-deflection relationships of an imperfect Z-beam
continuously braced by a diaphragm on the compression flange
and subjected to uniform moments--was obtained by using the equi-
librium method. The load-deflection relationships for diaphragm-
braced imperfect I-beams and channel beams, the critical moment
for a diaphragm-braced ideal Z-beam, and the critical moment for
diaphragm-braced ideal I-beams and channel beams were derived
as particular cases from thevload—deflection relationships of
a diaphfagm—braced imperfect Z-beam.

The principal axes of the Z-beam are inclined at an angle
o to the vertical and horizontal planes. In the theoretical
analysis, uniform moment in the horizontal plane was applied in
addition to the uniform moment in the vertical plane in such an
amount that a diaphragm—braced'ideal Z-beam bends vertically be-
fore it buékles. The uniform moment in the horizontal plane
vanishes for diaphragm-braced I-beams and channel beams. The

load-deflection relationships for a diaphragm-braced Z-beam are

given by
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E%IY‘@‘}‘) + Qeos’®  QSin Coset Q¢ Cosel ~ KM c) K'Sﬁ,
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Q Sens Goset Enx|lx'@r“> + Qsink Qe sk 4+ KM KE, r:MJ ~KaSp 0

- € S¢ K, M - nw De” "
Qe Cate — KM Qe sinx + K, E»y|r1(—f>+ a,k+Qe || D, e,
. E . _J . J . y
. (4-1)

where the term containing the flexural rigidity F of the dia-
phragm is dropped (refer to page 18) and
n = 1 if the ends are simply supported (i.e. twist
is zero and warping is unrestrained at the ends)
n = 2 if the ends are "fixed" (i.e. fixed about the
vertical and longitudinal axes)

(I&) elastic portion of the cross section

E = . .
% E (tx,) total cross section
(IYJ elastic portion of the cross section

E = .

Y E k;ﬂ) total cross section

Ex
Y
(3“ - G‘(}ifw—>
Enm Ix, is the flexural rigidity of the beam about the
'

principal axis X,

E 1 is the flexural rigidity of the beam about the

principal axis %Y,
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EnYP is the warping rigidity of the beam

3

6,k is the torsional rigidity of the beam

Q is the shear rigidity of the diaphragnm

e . is the distance from the C.G. of the beam to

the plane of the diaphragm

K, - I, Sin*e
s, + H 77
lecng
K, - !
. Iy, Cosx
sine -+
Iy‘ sine
S R S , and $ are the amplitudes of the ini-
u":\ Vl,l ?u

tial imperfections (refer to Egs. 2-28 and 2-31)
and C, , D, , and E, are the amplitudes of the additional de-
flections (refer to Eqs. 2-29 and 2-32).

The load-deflection relationships of diaphragm-braced im-

a,

"

perfect I-beams and channel beams were derived by letting o«
and Eny\ = B,y 5 in Eq. 4-1. After simplification the am-

plitudes of the additional deflections are given by

Msp{Exyf‘@g): oK + Qe'”} + Msu (M-Qe) (4-2)
(B Iy () al{ €, G‘E“_j".,, 6, + Qe"} —M-q9"
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(4-3)

where $, and SP are the amplitudes of initial imperfections
of either an I-beam or a channel beam corresponding to Sub;
and | S&‘ of a Z-beam.

The critical moment for a diaphragm-braced ideal Z-beam was
derived from Eq. 4-1 by letting the initial imperfections equal
zero and solving for the nontrivial solution of the resulting

eigenvalue problem. The critical moment is given by

. 4
E)W Iy, @Lﬂ) + QCos’BL Q Stne €oset Qe Coset — KM
R \
> .
Q Scnol Coset E,,X,Ix,\rftﬁ) + Qsin'x Qe Sin + KM =0
Q€ Coset — KM Qe sinx + XK, M Eny'PL“_LE): enKJrQe:‘ (4-4)

The critical moment for diaphragm-braced ideal I-beams and
channel beams was derived from Eq. 4-4 by letting <« = 0 and
Em% = E”Y . After simplification the critical moment is
given by

Mo = /{6 Ty ()% Q) {Enym () Gk Q<]+ e



g7

The load carrying capacity of diaphragm-braced imperfect
I-beams and channel beams was determined on the basis of one of
the two failures described below, whichever occurs first.

1. Failure of the beam by yielding. The beam 1s considered
as failed if the uniform moment on the beam reaches the yield
moment My of the beam.

2. Failure of the diaphragm in shear. The diaphragm is
considered as failed if the maximum shear strain Mmax - ©f the
diaphragm in the diaphragm-braced beam assembly exceeds the
shear strain Y3 of the diaphragm determined in an independent
cantilever or simple beam shear diaphragm test described in
Appendix IV. The maximum shear strain Ymax can be calculated
by using Eqs. 4-2 and 4-3 and knowing the deflected shape of the
diaphragm-braced I-beams and channel beams. |

A comparison between the theoretically predicted critical
moments and experimental failure moments from four diaphragm-
braced double 10B17 I-beam tests conducted by Errera is pre-
sented in Fig. 2-34. The predicted critical moments underesti-
mate the fallure moments of the beams in the elastic range by
about 20% to 24%. This can be attributed, probably, to the fact
that the cross-bending rigidity of the diaphragm 1s not considered
in the predicted critical moments. However, in the inelastic
range the moments sustained by the beams were smaller than the
predicted critical moments by about 3% to 5%.

Three diaphragm-braced 6[8.2 double-beam tests were made
and the comparison between the theoreticélly predicted critical

moments and the experimental failure moments are shown in Fig, 2-35.
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The moments sustained by the beams in the above tests ranged
from 75% to 99.6% of the predicted critical moments of the
beams.

A comparison befween the theoretically predicted critical
moment and the experimental failure moment for a diaphragm-
braced beam assembly comprising of four 8Jr6.5 I-beams 1is pre-
sented in Fig. 2-36. The moment sustained by the beam assembly
was 90% of the predicted critical moment.

The load carrying capacities of two different diaphragm-
braced I-beams were calculated in Appendix II to exhibit the
behavior of the imperfect beams and the diaphragm under load.

In one of the examples the beam fails before the diaphragm does
whereas in the other example the diaphragm fails before the beam
does, It is seen that the type of failure which determines the
load carrying capacity of the diaphragm-braced beam assembly de-
pends on the relative strength and stiffness of the diaphragnm
énd the beam.

4.1.2 Axially Loaded I-Section Columns Braced by Girts

Which in Turn are Braced by a Diaphragm

The load-deflection relationship of an axially loaded im-
perfect I-section column with "hinged" (i.e. flexurally hinged,
twist is zero and warping is unrestrained) ends braced by one
or two intermediate girts which in turn are braced by a diaphragm
was obtained by minimizing the total energy U (given by Eq. 3-13)
associated with one column of the assembly, using the Rayleigh-
Ritz technique. The assumed deflection pattern of the column

is given by Eqs. 3-18 and 3-19, and 3-29 through 3-36. The load-



deflection relationships of an axially loaded imperfect I-section
column are given by

Column with one intermediate girt:

First Mode and Modified First Mode: ) {xn] = P{VH§ (4-5)
Second Mode: [p2){x21} = p{vai] (4-6)
Sidesway: (Q—P>A = PA, (4-17)

Column with two intermediate girts:

P{Vlz} (4-8)

First Mode and Modified First Mode:  [miz] {xi2} =

Modified Second Mode: [Dz2] fxz2} = P{vaz](u-9)
Third Mode: {DBz]{xsz} = P{vsz}(u—lc)
Sidesway (@-P)a = Pa, (4-11)

(Refer to Section 3.1.2 for the matrices D s b2t , D2,
D22, D3z, Xl x21s  Xi2> X225 X325 VIl s V2
Viz, v22, and V32 )

It was seen in Section 3.1.3 that when the column sways it
neither bends nor twists, and, also, if the column bends or
twists, or bends and twists, it does not sway. The deflection
mode for an imperfect column braced by girts which in tufn are
braced by a diaphragm is the same as the buckling mode for an
identical ideal column with the identical bracing. If the column
is prevented from swaying in the plane of the diaphragm, for ex-
ample, by using X-bracing (refer to Fig. 1-1), then, the load-

g

deflection relationships are given by Egs. 4-5 and 4-06, and Eqgs.

4-8 through 4-10,
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The critical load of an axially loaded ideal column braced
by girts which in turn are braced by a diaphragm was obtained by
letting the initial imperfections equal zero in Egs. 4-% through
4-11 and solving the resulting eigenvalue problem for the non-
trivial solution. The critical load is obtained from:

Column with one intermediate girt:

First Mode and Modified First Mode: |DH\ =0 (4-12)
Second Mode: ,|1)2|| =0 (4-13)
Sidésway: (Q-P) =0 (4-14)

Column with two intermediate girts:

First Mode and Modified First Mode: Diz| =0 (4-15)
Modified Second Mode: D22| =0 (4-16)
Third Mode: | ' D32 =0 (4-17)
| Sidesway: (Q"P) =0 (4-18)

The critical load is given by the smallest value of P ob-
fained from Egs. 4-12 through u-14 for the ideal column with one
intermediate girt and from Eqs. 4-15 through 4-18 for the ideal
column with two intermediate girts. The ideal column buckles
in that mode from which the smallest value of P is obtained.

If the sidesway is prevented, the critical load is given by Eqgs.
4-12 or 4-13 for the column with one intermediate girt and by
Egqs. 4-15, 4-16, or 4-17 for the column with two intermediate

girts.
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In the inelastic range the above equations are modified by

replacing the modulus of elasticity E and the shear modulus G

Cy —
by E‘e = E :ZS_Z_:iZ and Gf = G ( E ) , where o,
Tp (o —03) ' E

op s and oy are the average axial stress on the column, pro-
portional limit of the stress-strain relationship of the cross
section, and the yield stress of the material. The proportional
limit was assumed to be equal to _%} in the analysis herein.

The load carrying capacity of an axially loaded imperfect
I-section column was based on one of the three failures given
below, whichever occurs first.

1. Failure of the column by yielding. The criterion of
failure established here is that of failure in combined bending

and axial stresses. A column is considered as failed if any one

of the following inequalities is violated:

1,
Between girts: = —fﬁ =< | : (4L-13)
F F
a Y
At braced points: o + 5y < (4-20)
Fy, -

(i.e., at intermediate
girts and ends)

where

§ is the computed axial stress

§, is the computed bending stress at the section under
consideration including the effect of additional
deflections under axial load

is the buckling stress

p'n
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and F, 1is the yield stress.

Note that the above inequalities are ultimate strength equiva-
lents to Egs. 7a and 7b in the AISC manual. Further, since the
column is bent about the Y axis, there will be no lateral tor-
sional flexural buckling; and therefore on the basis of ulti-
mate strength F, is substituted for F, in Eqs. 7a and 7b of
the AISC manual. It is to be noted that contribution of twist
towards failure of the column is not included in the above.

2, Failure of the diaphragm in shear. The criterion of
failufe of the diaphragm bracing the girts which in turn brace
a column is similar to that described in 2 on page 29 for dia-
phragm-braced beams. The diaphragm is considered as failed
if the maximum shear strain lwox computed using Q = Q4
in the required equations, exceeds the shear strain Y, .

Ymax can be computed from the load-deflection relationships

knowing the deflected shape of the column.

3. Failure of the girts in bending. Twist of the columns
produces bending of the girts about their strong axis. Fig. 3-16
shows the bent shape of a girt bracing an imperfect column. It

is seen from Fig. 3-16 that the compression flange in one half
length of the girt between the columns is not braced by the dia-
phragm. Therefore, to be conservative, a girt is considered as

failed if any one of the following inequalities is violated:

T
MC < M Cr
(4-21)
M. < M?
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where
M. is the moment on the girt at the connection to the
column due to the twisting of the column
Nfi is the critical moment of the girt of length w
subjected to uniform moment (refer to Fig. 3-16)
and M3 is the yield moment of the girt.

Three tests‘were conducted on 8Jr6.5 I-~section columns
braced by girts which in turn were braced by a 26 gagé standard
corrugated steel diaphragm. The variable in the three tests was
the twist restraint ¥ on the column. The ends of the column
were flexurally hinged. Warping was restrained and twist was
zero at the ends of the columns. Load-deflection relationships
and the critical loads were derived in Section 3.4.2 for the
column in the three tests using the general procedure given in
Section 3.1. A comparison of theoretically predicted critical
loads aﬁd experimental failure loads of the columns are shown
in Figs. 3-18 through 3-20. The axial loads sustained by the
columns in the tests ranged from 84% to 9u4% of the critical
loads. The theoretical and experimental load-deflection rela-

tionships are shown graphically in Figs. 3-26 and 3-27.

4.2 Conclusions

Present theory and test results demonstrate conclusively
that shear-rigid diaphragms properly attached can effectively
brace slender beams against lateral buckling, and can increase

the critical moments of ideal beams to their plastic moments.,
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It was shown that the theoretical failure loads of imperfect
beams subjected to uniform moments can be computed analytically
for assumed criteria of failure of the beams and the bracing,
and the theoretical failure load of the beam assembly is always
less than the critical moment of the corresponding ideal beam
assembly. In the case of particular examples worked out in
Appendix II the theoretical failure loads of the beam assemblies
were smaller than the corresponding critical moments by about
15% to 20%.

further, present theory and test results demonstrate that
properly attached diaphragms can brace girts which in turn can
effectively brace columns i1f proper moment resistant column-
girt connections are provided. Such diaphragms and girts can
reliably increase the critical loads of columns to the Euler
buckling loads of the columns of a length equal to the spacing
of the girts. It was shown that the failure loads of axially
ioaded imperfect I-section columns braced by girts which in
turn are braced by a diaphragm can be computed analytically for
assumed criteria of failure of the column and the bracing, and
the theoretical failure load of the assembly is always less than
the critical load of the corresponding ideal column assembly.
In the case of particular examples worked out in Appendix III
the theoretical failure loads of the column assemblies were small-
er than the corresponding critical loads by about 17% to 32%.

Where present forms of construction provide adequate dia-
phragm bracing to beams or columns, or where minor modifications

in construction practice would accomplish this, the above infor-



105

mation could serve as the basis for increased design load capacity,

or elimination of other types of bracing.



APPENDIX I

NOTATION
A cross-sectional area
By energy due to ‘shear in the diaphragm
B¢ energy of bending of the girts
c amplitude of additional lateral deflection
D ‘amplitude of additional twisf

Dij,DWLj, DM(j matrices

(L=t 4= 1)

E | modulus of elasticity

Eg tangent modulus

g effective modulus for weak-axis buckling

E, reduced modulus in bending

Ei By oo amplitudes of initial lateral deflection of
column

F : flexural parameter of diaphragm

F. buckling stress

Fy yield stress

FisFyos e amplitudes of initial twist of column

G ' shear modulus

Gy effective shear modulus of diaphragm

ey shear stiffness of diaphragm

G reduced shear modulus

G* inelastic shear modulus

1 moment of inertia

Ip ' polar moment of inertia

K torsional constant
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constants
constants
length

moment

critical moment

end moment

plastic moment
yield moment

number of corrugations between successive

connectors

load

effective shear rigidity of diaphragm
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resistive force on the column due to the girts

elastic section modulus about X-axis
shear force of the diaphragm

total potential energy in a system
potential energy of external loads
internal strain energy of column

column matrices
coordinate axes

column matrices

plastic section modulus about X-axis

length of shear panel perpendicular to load

direction

: i
Ki ET (@) + 6k + K3; ™
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length of shear panel parallel to load direc-
tion

L %% ( A A A%
KRS + k2 (i ) +_fpa

)

A ¢ % Kl{ prXe %, L K%
IF{KZJQ(Q+ jfe )+ & K Pe}

depth of beam section

‘distance between the plane of bracing and

C.G. of member section

average axial stress of the member
bending stress at the extreme fiber of the
member

mode number

number of intermediate girts

spacing of girts

twist restraint

equivalent distributed force for shear of
diaphragm

weak-axis radius of gyration

thickness of diaphragm

deflections of member parallel to X and X1
axes respectively

deflections of member parallel to Y and Yl
axes respectively

width of diaphragm contributing to bracing of
one member

distances from center of grévity to shear

center of a section along X and Y principal

axes -respectively.
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angle between the principal and horizontal
or vertical axes for a Z-beam

twist of member

sheér strain

warping constant

initial imperfection or deflection of Z-section
sidesway or shear deflection

axial strain

average axial stress

proportional limit

yield stress

shear stress



APPENDIX TI1I

~ ABOUT DIAPHRAGM~BRACED BEAMS

Deflections in the directions of the principal axes of

a Z-beam are given by

Deflection in +ve Vv, direction due to M, Sy = K33%?5X
i xl
Deflection in +ve Y, direction due to Mg S?S=:k3 Ms Coset
| IX|
Deflection in -ve X, direction due to M , S? - Kajﬁsmﬁ
\ Iyl
M .
Deflection in -ve X, direction due to M, , Sxf= Ky N?smx
. "
where K, is a constant.
The total deflections S and § in the X, and Y,

Xy )"

directions respectively are as shown in Fig. 2-3 and are given

by

M Mg
-+ Sx\

N
x
i
oA
x

M Mg
Sy = SX -+ S”

For no horizontal deflection before buckling the follow-

ing condition should hold:

Sxi _ Sinx 111
SY' COSOC
But,
M M
SXq. _ $X| - SX, — }:' MSL‘“O(._MSCOSO(I
°, S?|ﬂ—$$? 1y, M cox + MgStns)
(I1-2)

Using Egs. II-1 and II-2, Mg can be computed as
110
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M Siﬂo(COO({Ix‘ - Iy&r
{IX‘Cosﬁx +-1ylsiﬁmx}

Mg

Example 1. The roof of a building is spanned by 14 x UuB
x 17.2# I-section beams 12' long. The beams are braced by:a
22 gage wide rib roof deck (12' long sheets) welded as shown
in Fig. I1I-1. It is required to determine the moment carry-
ing capacity of an end beam. Beams are made of A36 steel.
Beams can be éonsidered as "simply supported" (simply supported
about the horizontal and vertical axes, twist is zero and warp-
ing unrestrained) at ends.

Shear Diaphragm Characteristics (refer to page 29 and

" Fig, II-2):

it

80% of ultimate shear load 0.8 x 3.43

2.74 kips
Shear deflection at 80% of ultimate load (neglecting bend-

ing effect of the frame) = 0.,5u"
= Z;Zi(}o
T 0.4 17
Shear rigidity, Q4 (Considering that 3' width of diaphragm

. ’ .
Shear stiffness, G, ) = 4,24 K/in

contributes to the support of an end beam) = 4.24 x 36

152.5 kips

_0.54
S 10 x 12

Critical Moment M., u of the Beam (no bracing):

Shear strain Y} 0.0045

Q = 0 and F =0

Using Eq. 2-46, Men,y = 329 K-in
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Critical Moment M™Mcn of the Beam with &4 = 152.5 kips:
My = 36 x 21.0 = 756 K-in
Mpl = 36 x 24.7 = 889 K-in

Using Eq. 2-Ul, &y = 30.2 kips

Using Bq. 2-45, Qu= 63.5 kips
Qa > Qpt
Therefore, MQL = Mpt = 889 K-in
Failure Moment of the Bean:
Maximum Shear Strain Ymax at My
Initial lateral imperfection %, = % X %% = 0.15"

Initial twist SF = 0.01 radian

Using Eq. 2-36, €, = 0.0232"
Using Eq. 2-37, D, = 0.0102
Using Eq. 2-38,  VYpayx = 0.00206 < Ty

Therefore, moment carrying capacity of the beam =

My = 756 K-in.

Vertical Deflection at Midspan of the Beam at M,

s
My LY |
8EI,

0756 x 1hb x 1uly
8 x 29000 x 1u7.3

H

Vertical deflection at midspan

o.u58"

Allowable deflection at failure moment:

_ 1hy _
* Y50 x 065 0.606 > 0.u458

Result:

' The beam fails before the diaphragm does and the mo-

ment carrying capacity of the beam = ™, = 756 K-in.
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Example 2. The roof of a building is.spanned by 18 x 6
x 70# I-beams 18' long. The beams are braced by a 22 gage wide
rib roof deck (12' long sheets) welded as shown in Fig. II-1.
It is required to determine the moment carrying capacity of an
end beam. Beams are made of A36 steel. Beams can be considered
as "simply supported" (simply supported about the horizontal
and vertical axes, twist is zero and warping unrestrained) at
the ends.

‘Shear Diaphragm Characteristics:

Same as in Example 1.
Qa = 152.5 kips, and Yy = 0.00u45

Critical Moment M, ,of the Beam (no bracing):

Q =0 , and F = 0
Using Eq. 2-46, M = 2780 K-in

cnu

Critical Moment M¢n ©of the Beam with Qg = 152.5 kips:

My = 36 x 101.9 = 3668 K-in
Mpt = 36 x 123.8 = 4456 K-in
Using Eq. 2-U4, Qy = 42.6 kips
Using Eq. 2-u45, Qpe = 247 kips

Now, Q7 < Q < QPQ

Therefore, the beam buckles in the inelastic range
and Mg, > My .

Using Eq. 2-47, for

M

M

3823 K-in, Q 109 kips

1
11

3867 K-in, Q 200 kips

Using Eq. 2-u8, M., = 38u4%4 K-in,
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Failure Moment of the Beam:

Maximum Shear Strain Yraax

n

8 1"
o 0.225" .

il

Initial lateral imperfection $, = %—X
Initial twist %p = 0,01 radian
It is found that the maximum shear strain Yiax > 12
at My . Therefore, the moment carrying capacity of the bean
is smaller than M, .
Using Egs. 2-36 fhrough 2-38, Yiax A&t moment M = 3063

K-in is found to be: Yeax = 0.00u45 = Yy -

"

Therefore, the moment carrying capacity of the beam 3063
K“in .

Vertical Deflection at Midspan of the Beam:

Allowable vertical deflection at failure moment =

18 x 12
360 x 0.66

= 0.9089"

Vertical deflection at ™M = 3063 K-in:

3063 x (18 x 12)72

1" "
§ x 29000 x 917.5 - °0-871" < .908

Result: The diaphragm fails before the beam does and the

moment carrying capacity of the beam = 3063 K-in.



APPENDIX III
ABOUT COLUMNS BRACED BY GIRTS WHICH IN TURN ARE BRACED

BY A DIAPHRAGM

III-a Column with One Intermediate Girt, Cases al-2.1 and

When € =0, Egqs. 3-48 and 3-49 give

oul < et e+ 2] [ 48] - (B9
{[erayo-ry 4] [evn%fw—ﬁ o]t

and

IDznl = [EIY((TEC)"_P] [EFG—L—)L-PG!(—PZI?] =0

It can be observed from the above equations that buckling
will be either purely flexural or purely torsional and the crit-
ical load for a rolled steel column is, generally, given by

(for case al-2.2)

esther {[en, (7 -+ B8] 1,60 r+ 28] - (29) (58]
or LEI T—g‘_"— -—P:,

whichever gives the smaller value of P .

When Q = 0 (Case al-2.1),the critical load is given by

(=2, B~ 7]

115
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III-b Column with One Intermediate Girt, Cases al-2.3 and

When € = 0, Eqs. 3-48 and 3-49 give

IDn] = H:[EIYL; ~P] {[EF[T’) + 6k —PIr +w£] . [E:I P]}
-e¥ [e1,(%, —-Pjﬂ ﬂ:{—;zk 7] {[ar‘ + 6k- Plf+§—'“1j
+e [e1, (?ﬂr)_ﬂ}—e [FI SOk P]:ﬂ Lax,(;r —P_]
[=2(58)] [-*M‘Z] E wg] o

and

l Dzll = [EIVC—T)L—P:[ {[gp:rf_)”+6k_ >3 +e*[517(41)“:,>]}

-e*[E1,(] ) ‘“"]

After simplification and rearranging the terms the above equa-

tions reduce to

-IDHI = [EI T’z)—P] [EI PJ [EP(—Q_—T‘—E)L-FGK—PKIP +.%T_rv¥j
= sk—Ple %%]f: 0
- [ 4] ]
and
ul = [en @ [ergrece-rp] o

From the above equations, for m # ¢ (Case al-2.4) or
m = 0 (Case al-2.3), the critical load for a rolled steel

column is, generally, given by

[5‘17(»5)1— P] =0
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III-¢ Column with Two Intermediate Girfs. Cases a?2-2.1 and

az2-2.2

When € =0, Egs. 3-55 through 3-57 give
- > ST 94 ?Q _
| = fErfar 8] it ]}
{[EP(T)+GK~F14’+W I:EP£5_T£)+GK Flz = qmd 9m£ =0
3¢ L 7_5"Tr
|Dzz| = {[FI ’-'“{] [EL NN sz fl‘lQ [ 19
lom? T

{EEP(;”) + Gk—PI +‘74’_"7';~ [EP{%F) Gl ~P2t _m?r [ J[[mﬂ}

and'

|D32| = [EI,(}{«"—P] [Er‘({‘—)”»r GK—P%{’] = 0

it can be observed from the above equations that buckling
will be either purely flexural or purely torsional and the crit-
ical load for a rolled steel column is, generally, given by

(for Case a2-2.2)

tener [5G e o) B ) - e [38] -0
o EE e R [ B -
or [T =]

whichever gives the smallest value of P .

When @ =0 , (Case a2-2.1) the critical load is given by
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2

1,3y -F =0

ITTI-d Problem with Two Intermediate Girts? Cases a?2-2.3 and

az-2.u

When Q =0, Egs. 3-55 through 3-57 give

I DI Zi = [[E 1 \—._T;,%)L— P] {[E r‘(g«%)?:r 6K~ P%? + 3#%] + e%’[EIYgL)L« P:l}—— e* [Elygff_ F}}J
{[:Elygg)t F] {[E r‘g—)ﬁ— ex~PZr .. Amd T4 & [EIVE_‘LT)E P:l}- e* [ET_),@%T)L— Pﬁ]

- [nty=r] [engp-e] [=oat] Fomt

[Dzz[ = [[[517(%%)3& {[ﬂ@%)i Gr-pIe 4 33791] + c”[ay@f“)’: P:,}—— e” [EI,@}DE P]iﬂ
[lex o] {Erggy s v o 328 + leniiR A} lenlf) - |
~[E1, &%)Eﬂ [er,@)? P] [—’j?%] [—% =0

and

|D32| = [EI,{.EE)E—P] {]}.r‘@{)ﬂ 6K — P%,e] + e [Elyg)tﬂ} —e* [EI){_’IF).:EIV =0

After simplification and rearranging the terms the above equa-

tions reduce to

|Dl2| = [EIY(SLDL_ P] [Ery(%r)”_P] r[t—:ﬁ@)ﬂsg -ple +=1;rm_§ :l

= nSM*
{[CP@—LJHGKJ%? +_Z_%EFJ L =0
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)
[pe] = Er)-] [en D] | [engteenri « o]

[Er(ED %+ ok - P + ?b“;‘f =0

)

4T 16T ™ )

.

and

o3| = fen,@mel{frgy ex —p2f] «S Lol —<ELE) A

From the above equations, for m # O (Case a2-2.4) or
m =0 (Case a2-2.3) the critical load for a rolled steel

column is, generally, given by
[E1,G) -7 =0

Example 1. The 1% W 30 columns in a building are 19'4y"
apart and 16' high. Three 6"x1-1/2"[14 gage intermediate girts
spaced at 4' intervals brace the columns. The girts are braced
by a diaphragm, whose shear characteristics are: Q4 = 413 kips
tfor the end column), and ry = 1,103 x 10—2 (refer to page 29
for {4 and Yy ). It is desired to determine the load carr&—
ing capacity of an end column in the case of two types of girt-
column connections shown in Fig. III-1. The ends of the column
may be considered as flexurally hinged and torsionally simple
(i.e. twist is zero and warping unrestrained). A36 steel is
used for all the members. E = 29000 ksi. Refer to Fig. III-1

for a sketch of the problem.

Properties of 14 W 30 Column Section and Other Constants:
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IF o= 935 in®
K = 0.343 in"
I

—XE = 34,9 in2

T Ry
EQ%?Z 116300 K-in '~
GK = 3830 K-in2

Torsional Restraint m :

(a) Connection Type-I (refer to Fig. III-1)

Bending stiffness of the girt at the end column =

6 x 29000 x 3.10

535 = 2325 X-in/rad

In order to ascertain rigidity of the connection a model
of the connection shown in Fig. II1I-1 is considered.
Assume 100 K-in moment on the connection due to the twist

of the column., This means a twist of %%%? = 0,043 rad.

Force in 6"x1-1/2"[ = %9%§-= 11.28K (Tension)

Force in 3"x3"x3/8L = (11.28) {2 = 15.96K (Compression)

. . _ 11.28 x 8.86 _ |
Extension in [ section = TE5 % 75000 © 0.0053

. . 15.96 x 12.52 _ -
Compression in L section = I oh % 930500 = 0-00478

Twist of I-section due to axial stresses in [ and L

sections = (0:0083 ; géoou78/ J2) = 0.001093 pad.

Note that 0.001093 rad. is negligible compared to the twist
of 0.043 rad. of the column. Therefore, this type of connection

is considered as fully rigid, and the twist restraint m on the
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column is given by

‘m = 2325 K-in/rad

}

(b) Connection Type-II (refer to Fig. III-1)
This type of connection, in general, is considered as

fully flexible. Therefore, wm = 0O .

%
Flexural Buckling Load Fe

Referring to page 73, ﬁ: can be computed as

%
£, = 305.5 kips

Load Carrying of the Column with Connection Type-I1:

Using Eq. 3-76, : Qea s = 337 kips

2

f:),z_

It can be seen from the above values of Qs that
pl

the critical load is not given by the modified first mode.

Q= 413 kips and w = 2325, and using Eq. 3-73,

For
?— .
Fn,s = 296.7 kips
3 “— ¥
Ferns = Fo = 305.5 kips

2

Therefore, the critical load is given by the modified

2

second mode, and fons = Fena = 296.7 kips.

The column deflects in the modified second mode because

the buckling load of the ideal column 1s obtained from the

modified second mode.
16/2 0.1"

20
Initial Imperfections:

o ool
k]
o
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Therefore, e, = 0.1 -8 x 0.01 = 0.02"

Assume the load carrying capécity P = 245 kips.
Using Eq. 3-69, ¢ = 0.ouy"

Using Eq. 3-70, . D, = 0.004

The failure of the column is checked at the critical loca-

tions (1) and (2) as shown in Fig. III-2,

Using Eq. 3-61 at (1), 5, + 4§, = 35.87¢36.0
Using Eq. 3-60 at (2), Jo .35 —0.9852 < 1.0
F Fy
. } . B / _ T
Diaphragm shear strain vY,., = sz_gi = 0044,3E

= 0.144x107 % 0Q

Pﬂgof 6 [ 14 gage girt = 36 x 1.03 = 37.1 K-in

NTRL ’
Mzn of 6 [ 14 gage girt of length l27i~ can be computed

using the conventional theory of lateral buckling.
Mc"_ = 8-0 K"in
Using Eq. 3-62, M, = MJ% = 8.0 K-in.
Allowable slope of bending of the girt before it buckles =

8.0 x 116
2 x 29000 x 3.10

0.00515

Note that D, < 0.00515

It can be seen from the above computations that the column
is very near to failure, and the diaphragm and the girts do not
fail before the column does. Therefore, the load carrying ca-
pacity of the column will be taken as 245 kips.

Further, it was seen from the computations (not included
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here) that increcase of P beyond 245 kips would bring about the

failure of the column at (1).

mode

I'oad Carrying Capacity of the Column with Connection Type-

II

Because m = 0 , the column buckles in the modified first

in this problen.

Using Eq. 3-76, for P = 180 kips, Q, = 139.2 kips
Using Eq. 3-76, for P, = 190 kips, R, = 1181 kips
- A ‘ -
Using Eq. 3-78, for Q4= 413 kips, P Peny = 182.6 kips
. ’ H
Initial Imperfections: = L, 16 . "

1al Imperfe ns E . g X 15 0.2
F, = 0.01

Therefore, E, = 0.2 -8 x 0.01 =0.,12"

Assume P = 125 kips.

/
Using Eq. 3-69, C,

0.0553"

/

Using Eq. 3-70, D, 0.0332

The failure of the column is checked at the critical lo-

cations (1) and (2). Refer to Fig. III-3.

Using Eq. 3-61, at (1), .+, = 26.52 <36
Using Eq. 3-60, at (2), e O |- 1.001 > |
. Fy
Diaphragm Shear Strain Ymox = ¢ I _9:0553xW
44 192

= 0.089x1072 < Y4

Because M = 0 , the girts are not loaded by the twist of

the column. Therefore, there is no failure of the girts.

It is seen in the above computations that the column just

fails at (2).
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If P = 124 kips the column will not fail at (2). The com-
putations for this case are not included here. Therefore, the
load carrying capacity of the column = 124 kips.

Example 2. The 1% W 30 columns in a building are 15'6G"
apart and 12' high. Two 6" x 1-1/2" [ 14 gage intermediate
girts spaced at 4' intervals brace the cblumns. The girts are
braced by a diaphragm whose shear characteristics are: Qq =
413 kips (for the end column), and Y, = 1.103 x 10—2 (refer
to page 29 for Qy and ¥y ). It is desired to determine the
load.carrying capacity of an end column when the column-girt
connection is connection type-I. The ends of the column may
be considered as flexuraily hinged and torsionally simple (i.e.
twist is zero and warping is unrestrained). A36 steel is used
for all the members., E = 29000 ksi. Refer to Fig. III-u.

Properties of 14 w 30 column section and other constants
are the same as given in Example 1.

Twist Restraint m: It was seen in Example 1 that the con-

nection type-I can be considered as fully rigid.

Therefore, M (for an end column) = 6 x Qgggg X 3‘10~:

2900 K-in/rad

*

From Example 1, P, = 305.5 kips
1

Using Eq. 3-76, Qa2

350 kips < &4

2

Q(aﬂ_= LOU kips < QQ

Therefore, buckling occurs in the third mode.
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Load Carrying Capacity of the Column ( Q = 413, m = 23900)

1 12
. . . E = bl g e = R 1
Initial Imperfections : { ' g > 10 0.15
E = l L} - "
3 —8- X 1—0- = 0.05
Assume P = 230 kips.
/
Using Eq. 3-71, ¢, = 0.1018"
. 63
Using Eq. 3-72, , = 0.00768"

The failure of the column was checked at locations (1),
(2), and (3) (refer to Fig. III-5). It was found that locca-

tion (2) was more critical than location (3).

Using Eq. 3-61, at (1), Lt 5 35.75 < 36

Using Eq. 3-60, at (2), e+ 0.9915 < 1.0

a F)’
Diaphragm Shear Strain Y, __ = C:*é%f + c;* %F

=0.27x107% <y = 1.103x10"2

There is no twist of the column because the column buckles
in a pure flexural mode. Therefore, there 'is no failure of the
girts.

It is seen from the above computations that the column is
about to fail at (1). Therefore, the load carrying capacity
of the column will be taken as 230 kips.

Further, if the load P 1is increased it will be seen that
the column fails first at (1).

Load Carrying Capacity of the Column ( § = 826, m = 2900)

Assume P = 245 kips

/%
Using Eq. 3-71, C, 0.05u2"

1%
3

Using Eq. 3-72, . C 0.00962"

"
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Similar to the above case, when = 413, it was found that
(1) and (2) (refer to Fig. III-5) are the critical locations

for failure of the column.

Using Fq. 3-61, at (1), f,+ £, = 35.57 «30

Using Eq. 3-—60, at (2), :_f‘g + _-_f_.b_ = 1,104 > |
F, ¥

Diaphragm Shear Strain ¥ = % ar * T

phree mox ST |

= 0.181x1072r; = 1.103x1072

‘There is no twist of the column because the column buckles
in a pure flexural mode. Therefore, there is no failure of the
girts.

It is seen from the above computations that the column
fails first at location (2) if P = 245 kips. It was seen, by
making a similar computation (not included here), that the col-
umn does not fail at VP = 2ub kips. Therefore the load carry-

ing capacity of the colum will be taken as 2u40 kips.



APPENDIX IV

DETERMINATION OF MATERIAL PROPERTIES

IV-a Diaphragm Rigidity: Double-Beam Shear Tests

The distinguishing feature of the diaphragm bracing dis-
cussed in this report is that the increased buckling loads and
load-deflection relationships are a function of the shear rigid-
ity and the shear strength of the bracing, rather than the stiff-
neés.and strength of an elastic spring, or Winkler, support.
The effective shear rigidity & of the diaphragm has been defined

as

Q= AG, (1v-1)

where A 1is the cross sectional area of the diaphragm (normal

to the column or beam axis) contributing to the support of one
member and Ge@ is the effective shear modulus of the dia-
phragm for given width, thickness, corrugation form, and con-
nector details. As indicated in the above definition the effec-
tive shear modulus appears to be a function of the width, thick-
ness and the cross sectional shape of the diaphragm, as well as
the type, number and location of the fasteners used in connecting
the diaphragm to the edge members. In this investigatioﬁ, double-

(6)

beam shear tests as developed by Fisher and Pincus and shown
in Fig. IV-1 were used to determine Gey and Q experimentally.
The shear rigidity of a given diaphragm can be obtained from the

double-beam shear tests using the following expression, also ob-

tained from energy considerations:

127
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qQ = 4Mo _ TWEI,
mA >

where M, and A are the appiied end moments and midspan deflec-
tion of the beams, respectively. Gy is obtained from Eq.
IV-1. Table 2 contains the pertinent results from tests of 30
gage plenum form cross-corrugated steel diaphragm material. The
corrugations of the plenum material are 17/32" deep, with a pitch
of 1-13/16" (measured values). The diaphragms were attached
to the rolled shapes with 1/4-inch Pow-R-Set pins at the junc-
tion of the flange and web, in the valley of the sheet.

" The 30 gage plenum material has a nominal thickness of 0.012".
The measured thickness was 0.0129 and was used in the calculations.
The strong influence of fastener spacing N and the diaphragm

width w on the effective shear modulus may be noted from Table 2.

IV-b Diaphragm Rigidity: Simple Beam Shear Test

Several shear diaphragm tests have been conducted by Nilson(l7),

and Luttrell(lu)

to determine the shear stiffness and strength
of light gage steel diaphragms. They were either simple beam
shear tests or cantilever shear tests. Luttrell defined the

shear stiffness & as
6 = & (IV-3)

where
P is the 0.4 (ultimate shear load of the diaphragm)

A is the shear deflection of the diaphragm at 0.4 (ulti-



128

mate shear 1oad)along the load direction.( A =
-%{ D, +Dy -D, =D, } , where D, , D, , D, , and
P, are the deflections of the diaphragm in the direc-
tions indicated in Fig. IV-2)
o. is the shear span of the diaphragm perpendicular to

the load direction (refer to Fig. IV-2)

and b is the diaphragm length along the load direction (refer
to Fig., IV-2).

Now the diaphragm rigidity(8) Q may be defined as

Q = 6w (IV-4)

where 6’ and w are respectively the shear stiffness and width
of the diaphragm perpendicular to the member (beam or column)
contributing to the support of one member.

Shear rigidity used in computations to evaluate the criti-
cal loads of columns braced by girts which in turn are braced
by a diaphragm was obtained experimentally using a simple beam
shear test as shown in Fig. IV-2. Table 2 shows pertinent re-
sults from the test of a 26 gage standard corrugated steel dia-
phragm. The diaphragm was attached to the rolled steel channels

with #14 screws in every third valley of the sheets.

IV-c Diaphragm Shear Rigidity: Cantilever Shear Test

The end shear panels of a simple beam shear test are actu-
ally cantilevers. The middle panel does not carry any shear be-
cause of the symmetry of loéding. Therefore, the shear rigidity

Q of a diaphragm can also be obtained by testing a single can-
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tilever panel. The plan of an inverted 26 gage Armco Econorib
shear panel in a cantilever shear test is shown schematically
in Fig., IV-3. The frame members were connected in such a way
that the frame offers né restraint to in-plane shear loads be-
fore it is connected to the diaphragm. The diaphragm is connect-
ed by #1l4 screws to the frame as shown in Fig. IV-3., Neglecting
any minor bending effects of the frame the shear deflection 1is

given by
A = Dy~ { D, + % (Dz+D4J} (IV-5)

where D, D, , D3 , and D, are the deflections of the dia-
phragm at the locationsrl, 2, 3, and 4 and in the directions in-
dicated in the Fig. IV-3.

Shear rigidity Q of the diaphragm can be computed using
Egs. IV-3 through IV-5., The details and results of the canti-
lever shear test on an inverted 26 gage Armco Econorib diaphragm
is described in Table 2 and the value of the shear rigidity ob-
tained in the test was used in the analysis of a four-beam teét

described in Section 2.4,

IV-d Residual Stress Measurements

(8)

Residual stress measurements were made by Errera on the
8Jr6.5 sections used in the column test program and 10Bl17 sec-
tions used in the beam test program. Both shapes were ASTM A-L4il

(18) was

low alloy high strength steel. The method of sectioning
used to determine the residual stresses; readings were measured
with a 10-inch Wittemore gage.

Residual stress measurements made on the 8Jr6.5 sections
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gave consistent and smooth residual stress patterns, as indi-
cated in Figs. IV-4 and IV-5. The stresses are shown in two
parts, those that were observed when the 11" section was freed
from a longer length, and the totai measured residual stresses
upon final sectioning of the member into strips. It will be
noted that the flanges of the 8Jr6.5 sections are in residual
tension, and the webs are mostly in residual compression, with
a maximuwn measured value of 20 Ksi tension in the flanges, and
20 Ksi compression in the webs. This 1s in contrast to most
rolled shapes which usually have some residual compressive
stresses in the flanges, particularly in the flange tips(lg).
The residual stresses measured in the 10B1l7 sections are
shown in Figs. IV-6 and IV-7. It will be noted that some parts
of the flanges are in residual tension, and the webs are mostly

in residual compression, with maximum measured values of 8.5

Ksi tension in the flanges, and 8 Ksi compression in the webs.

IV-e Stub Column Tests

Stub column tests were made by Errera(S) on the 8Jr6.5
sections. The dimensions of the 8Jr6.5 sections are such that
(20)

the recommendaticns for stub column tests regarding require-
ments to avoid local buckling and end effects cannot be satis-
fied simultaneously. If this shape is tested in the usual man-
ner premature buckling of the slender web occurs. To avoid
this, an arrangement as shown in Fig. IV-8 was used. The test
section, with waterproofed resistance strain gages in place,

was well greased and placed within a steel tube formed by weld-

ing two channels toe to toe. Hydrostone, often used as a cap-



ping material for concrete test cylinders, was pourcd betwoen

the test picce and steel channels, and allowed to harden.  The
test picce protruded from the stecl tube 1/4 inch et cach cond.,

A similar arrangement, dcvcloppd at Cornell, is often uscd for
compression tests of light gage stecel scctions when the basic
compressive properties of the material, rather than the buckling
properties of the section, are under investigation. Typical
results of stub column tests of 8Jrf.5 scctions without and with
hydrostone encasement are shown in tigs. IV-8 and IV-¢., An c¢las-
tic limit of about 45 Ksi is indicated for the secticn with hy-

drostone encascnent.,

IV-f Tension Coupon Tests

Tension coupon tests were made on 10B17 section by Errcre,
and on the €[8.2 section by the author as part of the precsent
investigation. The results, together with the mill reporis and
chenical enalysis, are given in Tablces 1 and 5. The 10 1inch and
6 inch shapes showed average yiecld points of 64,8 Ksi and $7.7

Ksi, respcctively.
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Table 1 10B17 Tension Coupon Test Results and Mill Report

Tension Coupon Test Results

Beam Coupon Yield Point Tensile Strength

(ksi) ) (ksi)
a 1 61.4U 82.8
2 69.1 87.5
g
y 61.6 g82.1
g 1 6Y4.0 83.3
2 67.9 87.3 :"é;“?:j
3 66.8 84.5 Location of
Coupons
L 64.8 81.5
Average 64.8 84,2
Mill Report 67.35 90.23
Chemical Analysis
C Mn P S Si Cu v

0.20 1.22 0.010 0.035 0.082 ° 0.25 0.077



Table 2 Summary of Shear Tests

Double-Beam Shear Tests

137

Material Width Area Connector Shear Effective Shear
(in.) (in2?) Spacing,N Rigidity, Q Modulus,Geff
(kips) (ksi)
30 g.
Plenum
Galv.Steel 28 0.361 L 62.7 173.6
" " " 2 181.2 '502.0
" " " 6 27.5 76.2%
3
" 17% 0.229 4 27.7 120.8
" " " 2 60.2 263.0
Simple Beam and Cantilever Shear Tests
Material Size of Type of Shear Ultimate Strength
Shear Connection Stiffness Load (p1lf)
Panel G' (1bs)
(length (1bs/in)
x width)
Simple Beam Shear Test
26 g. L' x 6' #14 screws 6000 2740 us57
Standard at every
Corrugated third
Galvanized valley
Steel
Cantilever Shear Test
26 gage 12'x10' #14 screws 6320 2980 248

Armco Econ
Rib Panels
(inverted)

] at every
8"

* Extrapolated from the other two tests having the same width.
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Table 3 Description of 10B17 Double-
Beam Flexure Test Specimens

Beam Section: 10B17, A441 Steel, d = 10.12”,'Af = 1.318 in.z,
< = 7.67.
f
Diaphragm Material: 30 gage Granco Plenum Cross-Corrugated
Steel.
Test No. Test Ld/nAf“ Diaphragm Connector Q
Length,L Width Spacing, (kips)
(in) (in) N
1 : 360 1381 None 0
2 " " 28 6 13.8
3 " " None 0
4 " " 28 y 31.4
) " " None 0
6 " " - 28 2 90.6
7 " " None . 0
8 " " 28 Ly 31.4
* Beams were "fixed" against lateral buckling, hence n = 2

was used to obtain Ld/nAc ratios shown.
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Table 4 Summary of 10B17 Double-Beam
Flexure Tests, Predicted Critical
Moments and Actual Failure Loads
Beanm Section: 10B17, Aull Steel

Diaphragm Material: 30 gage Granco Plenum Cross-Corrugated

Steel
Test Test Ld/nAf Q Predicted Max.Test Test/Pred
No. Length, (kips) M (1) Load :
L (in) : cr (in-kips)
(in-~kips)
1 360 1381 0 6(?) 240 0.90(2)
(246%)
2 " ? 13.8 Lly 498 1.20
3 1" 1" i 0 268(2) 233 0. (2)
L n " 31.4 5388 570 0.95
5 n " 0 266¢2) 252  0.95(®)
6 " " 90.6 1056 1019 0.97
7 n 0 266¢2) 257 0.97(2
8 " " 31.4 588.1 740 1.24

L M = j/{E&v I, (3~ + } {E r(—w) + G_K+Qe i + Qe<M

(2) Tests of unbraced beams were arbitrarily stopped to avoid
beam damage and permit use of same beams with diaphragm
bracing.

N

Critical Moment obtained from Southwell Plot.
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Table 5 6 [ 8.2 Tension Coupon Test Results and Mill Report

Tension Coupon Test Results

Beam Coupon Yield Point Tensile Strength

(ksi) (ksi)
a 1 54.8 77.5
2 61.2 82.1
3 60.5 81.0
y 55.7 79.8
d 1 55.6 78 .4
2 54.1 75.0 Location of
Coupons
3 59.0 75.8
L 56.5 77.6
Average 57.2 78.4
Mill Report 59.43 ’ 81l.64
Chemical Analysis
c Mn p S Si Cu v

0.20 1.12 0.013 0.025 0.066 0.22 0.059
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Table 6 Description of 6 [ 8.2 Double-
Beam Flexure Test Specimens

2

Beam Section: 6 [ 8.2, A44l Steel, d = 6.00", Ao = 0.658 in®,
g =911
f
Diaphragm Material: 30 gage Granco Plenum Cross-Corrugated
Steel
Test No. Test Ld/nAfx Diaphragm Connector Q
Length, Width Spacing (kips)
L (in) (in) N
Connectors: Power Driven Pins
1l 288 1311 None 0
3
2 " " 17% Y 13.9
3 " " None 0
3
Y " " 17% 2 30.1
Connectors: #1lu4 Screws
5 288 1311 None 0
3 X
6 " " 17% 2 30.1
* Beams were "fixed" against lateral buckling, hence n = 2

was used to obtain Ld/nAf ratios shown.
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Table 7 Summary of 6 [ 8.2 Double-Beam
Flexure Tests, Predicted Critical
Moments and Actual Failure Loads

Beam Section: 6 [ 8.2, Aulil Steel

Diaphragm Material: 30 gage Granco Plenum Cross-Corrugated
Steel
Test Test Ld/nAf Q Predicted Max.Test Tes‘t/P ed
No. Length, (kips) M (1) Load red.
L (in) cr (in-kips)
: (in-kips)
Connectors: Power Driven Pins
1 288 1311 0 89 66¢2)  0.74(2)
2 " " 13.9 190.8 143 0.75
3 " n 0 89 66(2)  0.74(2)
Yy " " 30.1 253.1 227 0.90
Connectors: #14 Screws
5 " " 0 89 72(2)  g.81(2D)
6 " " 30.1 253.1 252 0.996

(1) M__ = {E 1 (2“)2+ E_ T (2“>2+ G _K+Q 2} +Q <;M
cr ry "y L Q} ry L r < Y )

(2) Tests of unbraced beams were arbitrarily stopped to
avoid beam damage and permit use of same beams with
diaphragm bracing.

B

Critical Moment obtained from Southwell Plot.
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Table 8 Description of Test Specimens and Summary of Test
Results of Columns Braced by Girts which in Turn
are Braced by a Diaphragm

Column Section: 8JR6.5, AlLl Steel

Diaphragm Material: 26 gage Standard Corrugated Galvanized

Steel
Girt Section: 6 [ 13 %or GT-1 and GT-3; and 6 [ 2.26 (1% ga.)
}for GT-2
Connection of Diaphragm to Girts: #1l4 Screws at evéry.third

valley

Width of Diaphragm
(for two members) : ©b'

Diaphragm Rigidity Q: Q = 216 kips
Column End Conditions: Flexurally hinged, warping restrained,
twist is zero.

Total Length of Column L: L = 12' - 7"

. Number of Intermediate Girts: 2

Ave. Unbraced Length of Column: 4' - 2 173"

Test Twist Failure Distance, Predicted Max. Test/P d
Restraint, Mode e (in) Critical Test red.
m(kip-in/ Load Load
rad.) (kips) (xips)

GT-1 0 - Modified 6 21.4 17.7 0.84

First Mode
(Tor.Flex)
GT-2 7750 Third 10 39.9 37.3 0.9y
Mode
(Flexural)

GT-3 13 Modified 5 29.6 25.5 0.86

~ First Mode

(Tor..Flex)
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Table 9 Description and Summary of Test Results
of a Diaphragm-Braced four-Beam Assembly

Beam: 8JR6.5. I-section; Alhl Steel

Diaphragm: 26 gage Econorib Panels, Inverted

Connectors: #1lu4 Screws at every 8"
Spacing of Beams: 3' - 8"
Test Test Ld/nAf Shear Predicted Max.Test TeSt/Prea
No. Length, Rigidity (1) Load )
L (in) Q (kips) (ingﬁips) (in.-kips)
1 240 2232 0 47.7¢2) 35,8 0.75(%
2 240 2232 212.0 290 259.8 0.90

A(l) Mop =/ Brny —--— }{E ) + G_K+Qe } + Qe < MpR,

(2) Test of unbraced beams was arbitrarily stopped to
avoid beam damage and permit use of same beams with
diaphragm bracing.
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FIG. 2-37 FOUR-BEAM ASSEMBLY AFTER FAILURE



FIG. 2-38 LOCAL BUCKLING OF EAST BEAM IN THE FOUR-BEAM ASSEMBLY TEST
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	Problems in structural diaphragm bracing 1. Beams continuously braced by diaphragms 2. I-section columns braced by girts and a diaphragm
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