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ABSTRACT

Shear-resistant light-gage metal diaphragms can be very

effective in increasing the load carrying capacity of beams

continuously braced by diaphragms, or of columns braced by

girts which in turn are braced by diaphragms, if proper con

nections are made between the individual elements. In this

thesis, behavior of diaphragm-braced I-beams, channel beams,

and Z-beams under uniform moments, and the behavior of axially

loaded I-section columns braced by girts which in turn are

braced by diaphragms are investigated.

Load-deflection relationships of diaphragm-braced beams

are obtained taking into consideration the initial imperfec

tions of the beams and using the equilibrium method. Critical

moments of diaphragm-braced beams are derived from the load

deflection relationships by letting the initial imperfections

equal zero and solving the resulting eigenvalue problem. A

procedure to determine the load carrying capacities of dia

phragm-braced beams is given using an assumed criteria of fail

ure for beams and diaphragms. Using the above procedure, load

carrying capacities of diaphragm-braced beams are calculated

in two examples; they range from 80% to 85% of the correspond

ing critical moments.

A test was conducted on an assembly of four diaphragm

braced I-beams, and the moment sustained by the beams was 10%

smaller than the predicted critical moment. Three tests were

conducted on assemblies of two diaphragm-braced channel beams,

vi



and the moments sustained by the beam assemblies ranged from

75% to 99.6% of the corresponding critical moments. Tests con

ducted on assemblies of two diaphragm-braced I-beams are also

reported here. In general, th~ experimental and predicted load

deflection relationships are in fairly good agreement for both

diaphragm-braced I-beam and channel beam assemblies.

Load-deflection relationships of columns braced by girts

and diaphragms are obtained taking into consideration the ini

tial imperfections of the columns and using the energy method.

The Rayleigh-Ritz technique is used to obtain an approximate

solution. Similar to the case of beam assemblies, critical

loads of column assemblies are derived from the load-deflection

relationships. A procedure to determine the load carrying ca

pacity of columns braced by girts and diaphragms is given using

assumed criteria of failure of columns, girts, and diaphragms.

Using the above procedure, load carrying capacities of two dif

ferent wall columns are calculated and they.range from 68% to

83% of the corresponding critical loads.

Three tests were conducted on columns braced by two inter

mediate girts which in turn were braced by diaphragms, and the

failure loads of the column assemblies ranged from 84% to 94%

of the corresponding critical loads. Fully flexible, fully

rigid, and semi-rigid girt-column connections were used in the

. three tests. The experimental and theoretically predicted

load-deflection relationships are in fair agreement.

Theoretical solutions for diaphragm-braced beams and for

vii



columns braced by girts and diaphragms were developed first in

the elastic range and then extended to the inelastic range by

suitably modifying the elastic modulii. The plastic moment of

the beams or the Euler buckling load of the columns between

successive girts appears to be theoretically attainable by us

ing the diaphragm bracing.

viii'



1. INTRODUCTION

In many structures, shear-resistant light-gage metal

diaphragms, such as wall cladding, roof decking, or floor

panels are connected directly to beams or columns, or to

girts which in turn are connected to columns. Therefo~e,

the beams are continuously braced by the diaphr~grn, and the

columns are either continuously braced by the diaphragm or

discretely braced by the girts which in turn are braced by

a diaphragm (refer to Figs. 1-1 and 1-2). The investigation

reported in this thesis had the objective of determining (1)

the buckling strength of ideal members, (2) the load-deflec-

tion relationships of imperfect members, and (3) the load

carrying capacities of imperfect members, when the members

are directly or indirectly braced by a diaphragm. The light

gage steel wall cladding on a metal building frame can brace

the girts which in turn brace the columns against buckling

about their weak axes if adequate connections are provided.

Similarly, light-gage steel roof decking can oppose lateral

buckling of truss chords, roof beams and purlins. This in-

vestigation is directed towards the determination of the

effectiveness and reliability of such bracing.

(1)*
Timoshenko has discussed the buckling of bars on

elastic foundations, where the foundation consists of closely

* Superscripts in parentheses indicate reference numbers in
.the Bibliography.

1 ,
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spaced, independently acting elastic springs whose reactions

are proportional to the lateral displacement of the bar. He

also considered the buckling of bars supported on several

interior elastic point supports. Bleich(2) extended the

theory and considered further cases of bars elastically sup-

ported at various points.

Green(3) and Winter(4) determined the behavior of columns

braced by elastic supports either discretely or continuously

at the center of gravity of the cross section or symmetrically

about the flanges. In Ref. (4) the magnitude of the lateral

forces in bracing is determined and two characteristics of

lateral support are distinguished: strength and stiffness;

and "full bracing" is defined as equivalent in effectiveness

to immovable lateral support. Full bracing, or full lateral

support, therefore, is that restraint which increases the

critical load of a member from that for the unbraced mode to

that corresponding to the next higher failure mode, such as

attainment of full plastic moment in a beam, or strong axis

critical load in a column. For discrete spring-type bracing,

Winter concluded that to provide less than "full bracing"

for a member generally would be uneconomical.

Larson(S), in a discussion of Ref. (4), extended Winter's

analysis to shear type lateral supporting media, including

diaphragms continuously connected to columns or beams. In

this case, the restraint is a function of the slope, or the

rate of change of lateral deflection of the member, rather than

the lateral deflection itself. Pincus and Fisher(6) have
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presented an independent analysis for beams and columns

braced by continuous shear-rigid diaphragms, and introduced

the concept of "partial lateral support" for this type of

bracing. Partial lateral support is defined as that restraint

which results in member failure at a load higher than that for

the unbraced condition, but in the same mode. For example, a

partially braced column may fail by weak-axis buckling, but

at a load which is intermediate between the unbraced weak-axis

failure load and the strong-axis failure load, and which may

be called the "increased or augmented weak-axis buckling load".

In many present forms of construction, such partial restraint

may be available, and if accounted for, may result in more

economical design.

In 1961, an investigation of diaphragm-braced members was

initiated at Cornell University under the direction of Profes-

.. h b p. (7)sor Gordon P. Flsher, leadlng to doctoral t eses y lncus

in 1963 and by Errera(8) in 1965. From the general energy ex-

pression for a beam-column, and using Euler-Lagrange condi-

tions from the calculus of variations, Pincus obtained a theo-

retical solution to the problem of a centrally loaded elastic

column braced by shear-resistant diaphragms symmetrically 10-

cated with respect to the centroid; that is, with a diaphragm

on each flange of the column. An approximate solution was ob-

tained by Pincus for the case of bracing on one flange only,

by neglecting twist of the column. Pincus showed that his

approach could be used to determine the critical moment to

cause lateral buckling of a simply supported elastic beam
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with diaphragm bracing. Ref. (9) includes four tests in

addition to those presented in Ref. (7) and summarizes the

progress to that date. Ref. (6) is a summary of Refs. (7)

and (9).

Errera(8) corrected and modified some of the solutions

presented by Pincus using the same general procedure. In ad

dition, he presented, (1) the solution for the problem of

lateral buckling of diaphragm-braced beams with ends fixed

about the vertical and longitudinal axes and subjected to uni-

form bending moment, using the Rayleigh-Ritz technique; (2)

a solution giving the critical buckling load for diaphragm

braced columns with an enforced axis of rotation; and (3) a

consideration of the behavior of diaphragm-braced beams and

columns in the inelastic range. Theoretical results were com-

pared with experimental results.

DooleY's(lO) solution for the problem of an axially loaded

column attached at finite intervals to sheeting rails and shear-

stiff cladding became known to the author after the author had

already obtained a much more general solution for the problem

of an axially loaded column braced by girts which in turn are

braced by a shear diaphragm. The solution to the above problem

obtained by the author is presented in the following as a part

of this thesis. This solution (1) permits the movement of the

flange at the points of attachment to the intermediate girts

relative to- the ends of the column (Dooley's solution does

not permit this movement), (2) uses a better approximation of

the deflection functions, (3) considers the initial imperfec-
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tions of the column, and (4) includes the case of sidesway

of the column. Further, the load carrying capacity of an

imperfect column braced by girts which in turn are braced by

a diaphragm is determined basing the failure of the column

girt-diaphragm assembly on either (1) yield failure of the

column, or (2) shear failure of the diaphragm, or (3) failure

by bending of the intermediate girts.

The investigation reported in this present thesis com

prises the following:

A) For diaphragm-braced beams either "simply supported"

(i.e. flexurally simply supported twist is zero and warping

unrestrained at ends) or "fixed" (i.e. fixed about the verti

cal and longitudinal axes and simply supported about the hori

zontal axis at ends) subjected to uniform bending moment using

the equilibrium method,

1. a solution for load-deflection relationships for

imperfect Z-beams, I-beams and channel beams,

2. a solution for buckling loads of ideal Z-beams, 1

beams and channel beams,

3. an investigation of the load-carrying capacity of

imperfect I-beams and channel beams based on failure by yield

ing of the beams or failure by shear of the diaphragm.

B) For an axially loaded I-section column with "hinged"

ends (i.e. flexurally hinged; twist is zero and warping is

unrestrained at ends) braced by girts which in turn are braced

by a diaphragm using an energy method and the Rayleigh-Ritz

technique,
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1. a solution for the load-deflection relationships of

an imperfect column,

2. a solution for the buckling load of an ideal column,

3. an investigation of the load-carrying capacity of

an imperfect column based on failure by yielding of the column,

or failure by shear of the diaphragm, or failure of the girts

in bending.

C) For an axially loaded I-section column, with the

ends flexurally hinged and torsionally "fixed" (i.e. twist

and first derivative of twist are zero and warping restrained),

braced by two girts which in turn are braced by a diaphragm,

1. a solution for the load-deflection relationships of

an imperfect column,

2. a solution for the buckling load of an ideal column.

D) Consideration of inelastic behavior of diaphragm-

braced beams, and of columns braced by girts which in turn

are braced by a diaphragm.

Three tests on diaphragm-braced 6 [ 8.5 double-beam as-

semblies, and three tests on 8Jr6.5 I-section columns braced

by girts which in turn are braced by a diaphragm were con-

ducted to verify the respective theories developed for the

behavior of the members.

The theory for predicting the buckling loads of dia-

phragm-braced ideal I-beam assemblies has been developed by

Errera (8) and ·f· db· t d· h b dverl le y experlmen s on lap ragm- race

double 8Jr6.S I-beam assemblies. Tests conducted by Errera
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on diaphragm-braced lOBI? double I-beam assemblies are re

ported in this thesis to verify the theory developed by the

author for the prediction of load-deflection relationships

in addition to the comparison of the failure loads of the

beam assemblies with the theoretically predicted buckling

loads. Further, a test was conducted on an assembly of four

diaphragm-braced 8Jr6.5 I-beams and a comparison of the

failure load of the diaphragm-braced beam with its theoreti

cally predicted buckling load is presented ln this report.

Notation: The symbols adopted for use in this thesis

are defined where they first appear and are listed alphabeti

cally in Appendix I.



2. DIAPHRAGt1-BR1\CED BEN1S UNDER UNIFORM HOHENT

2.1 Elastic Theory

2.1.1 General Formulation of the Problem by Equilibrium

Method

A model of the diaphragm-braced beams chosen for the pur

poses'of the theoretical analysis is shown in Fig. 2-1. It

consists of two beams braced at their compression flanges by a

diaphragm. For the case of uniform moments applied at the ends

in a plane parallel to the planes of the webs of the beams, the

critical moment of the double-beam assembly is obtained by us

ing an equilibrium approach. The following forces are considered

to describe the equilibrium of one of the beams when the assem

bly is under load:

1. Components of uniform moments applied at the ends in

the directions of the principal axes ~, ~ , and 'g of the de

flected beam at the particular section under consideration.

The deflected shape of the beam assembly under load is shown ~n

Fig. 2-2 along with the coordinate axes. The vectorial compo

nents of the uniform moments are shown ln Figs. 2-3.

2. Distributed force on the beam perpendicular to its lon

gitudinal axis at the level of the diaphragm due to shear in the

diaphragm in the deflected beam assembly. To evaluate this

force consider the deflected shape of the diaphragm ln plan as

shown in Fig. 2-~. At the cross section AA the net force on

the beam due to shear in the diaphragm is the difference in the

shear forces contributed by the two adjacent shear panels 1 and

8
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2 as shown in Fig. 2-4. In obtaining a continuous distributed

force per unit length of the beam the difference in the above

forces can be treated as the first derivative of the shear

force at the particular cross section. Shear force Sb on one

bemn at the cross section is given by

(2-1)

where

-c 1.S the shear stress in the diaphragm

-t is the thickness of the diaphragm

and w- is the vlidth of the diaphragm contributing to the brac-

ing of one beam.

Further,

where

:0 6~ r
(2-2)

G " h ff . h d 1 f h d" h (8)~1.s tee ect1.ve s ear rna u us ate 1.ap ragm

and r 1.S the shear strain at section AA.

Therefore,

= Qr (2-3)

where Q - (2-4)
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N h ° h h ° °do (8) f' h dO h °bate t at Q 1S t e sear r1gl 1ty ate lapl ragm contr1 u-

ting to the bracing of one member. Hence the distributed force

~ on one beam perpendicular to its longitudinal axis and ln

the plane of the diaphragm due ~o shear in the diaphragm is giv-

en by

Qr I

(2-5)

The di.rection of the force is shovm in Fig. 2 _l~ • It can be ob-

served from Fig. 2-4 that the longitudinal component of the com

plementary shear in the diaphragm balances in itself if the to

tal length of the beam is considered.

3. Distributed twist restraint on the beam due to the cross

bending rigidity(8) F of the diaphragm. F is defined as the re-

straining moment per unit twist of the beam.

4. Internal resistance of the beam.

Th 1 °f °lob ° (1) f b be genera equatl0ns a equl 1 rlum or a earn ent

about both the principal axes and twisted may be written as

IV
£l~".

IV

~J ~ u"1

II

= (M~ ') ;- 1-~

(2-6)

(2-7)

and (2-8)
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~]here

EI~ is the strong-axis bending rigidity

El~ is the weak-axis bending rigidity

E r 1.S the vlarping rigidity

G k. is the torsional rigidity

M~, M ~ , and M ~ are the vectorial components of the

externally applied end moments at the particular

cross section under consideration

e is the distance from the center of gravity (C.G.)

of the beam to the plane of the diaphragm

~ , 1> ,and
~

are the equivalent distributed loads

and I. ,r
"'" I , ",

as shown in Fig. 2-5.

, and ~ are the displacements 1.n the directions

shown in Figs. 2-3 and 2-5.

Approximations which are consistent with the small deflec-

tion theory are used wherever necessary without explicit state-

mente

The quantities on the right hand side of Eqs. 2-6 through

2-8 are evaluated explicitly for the problem of diaphragm-braced

Z-beams in the following, and the solution for the behavior of
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diaphragm-braced Z-beams under uniform moments is obtained.

The behavior of diaphragm-braced I-beams and channel beams will

be derived from the above solution as a particular case.

Case a. Ideal Z-beams. To realize a pure buckling prob-

lem of ideal Z_beam~(ll) braced by a diaphragm on one flange only,

i.n addition to the uniform moments parallel to the webs of the

beams at the ends, moments in the horizontal plane at the sup-

ports have to be applied in such an amount that the beams bend

vertically until they buckle. Moments in the horizontal plane

are required because the principal axes of a Z-section are not

parallel and perpendicular to the plane of its web.

The horizontal moment Ms to be offered by the support

for each beam at its ends so that the beams bend vertically be-

fore they buckle is worked out in Appendix II and is given by

M-& =
M Sin ct Ccs 0<. (Ix.!.. - I Y, )

Ix. Cos1.-"" + I y, S':n 1-~

(2-9)

where M is the moment applied at the ends on each beam in a

plane parallel to the plane of the web, XI and Y. are the

principal axes, X and yare respectively the axes perpendicu-

lar and parallel to the web of the Z-section as shown in Fig. 2-2,

and oC. is the angle between X and X.. The components of M

and Ms in the principal directions are given by

M Cos c<.. + Ms, s~n c(,

M{ I
CoSO< +- (2-10)
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and

(2-11)

Fig. 2-4 shows the deflected shape of one of the Z-beams

along with the direction of measurement of displacements ~,

and ~ along the principal axes. ~ and ~ represent the prin-

cipal axes of the Z-section in its deflected shape. The shear

strain r in this case is given by

'( - t'l. { lA l CoSOC + V;Stno( + e ~ }

or

(2-12)

r _
(2-13)

Therefore,

(
11 II.' II)q lA, Co S 0<. + V; S Ln c<. + e ~

considering the deflected shape of the beam shown in

distributed forces <=t; ~ and ~'l may be written as

~~ - ~ uS C"'-~) }

and t'1 - t SLV'I (0( - ~)

(2-14)

Fig. 2-5,

As an approximation, letting sin p = and cos p = 1, and

neglecting f3 sino<. and pcos eX. because they are smaller

order terms compared to sin oc and cos 0( , 1--~ and e:t ~ may



be approximated as

and (2-15)

The components of moments at the ends along the principal

axes of the Z-beam may be obtained, by referring to Fig. 2-3, as

(2-16)

M'Yl Mx, St"n f T My, CoS F

and
I

MyV;
I

(2-17)

(2-18)

After substituting the above values, simplifying and rearrang-

ing the terms, Eqs. 2-6 through 2-8 may be written as

'" ('/ " II) IIE 1,.; ,V; - G( UI cos c<.. +- v;- S":no<. + e ~ st'Y\o( - M Y, ~ - 0

IV ('I " ,,) IIEIy,U, -Q. Lt, Coso( + V; SLOe<. + e~coso( + "':lx, ~ = 0

(2-19)

(2-20)
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and

(Note that l~ is replaced by and r~ by 1 . )
y

It may be observed that Eqs. 2-19 through 2-21 are coupled

in ~I' ~ ,and p , and they describe a pure buckling prob

lem as desired.

Case b. Imperfect Z-beams. The equations describing the

load-deflection relationships of a diaphragm-braced imperfect

Z-beam can be obtained from Eqs. 2-19 through 2-21 by modifying

the terms containing the components of applied moments as fol-

lows:

I V (" II It) (" 'IElx,V; 6( Lt. C05e<. -1- V; SLl'\ c{. + e ~ Sl.no<- - M Y, ~ + (60) == 0 (2-22)

(2-23)

~ IV (" 1/ II" ('I /1 )G K ~ - E r ~ + Q. e u1 ~ c( + Vi Sen 0< + e p./ - F P - M.x I U, + U. 10

( " ") 0+ My V; + ";0 =
1 (2-24)

Where \,(" 10 , V'IO ,and ~o are the initial imperfections cor-

responding to the displacements lA, , v;- , and ~ respectively.

2.1.2 Load-Deflection Relationships for Diaphragm-Braced

Imperfect Beams

Case a. Z-Beams. The load-deflection relationships for

Z-beams are obtained for the following end conditions by solv-
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ing Eqs. 2-22 through 2-24.

a-l. "Simply Supported" ends. (i.e. ends of the section

are free to warp and free to rotate about the Xl and Y. axes

but cannot rotate about the Z aXlS or deflect in the X, and Y,

directions.) For this case,

u" = If. = ~
-;;:: 0 at 7:. = 0 and ~:L}

dt.lA., - J~V7 -
J'2-p_

=0 at :a =0 and z. =L (2-25)
et :z:" d ~t- c:;{ 'C,...

The general solution for Eqs. 2-22 through 2-24 and the

above end conditions is given by

u", - Ct\ S~V\ Y\11~

L

V; -:::: En 'Set"\. 'YlK.:z: (2-26)
l-

and f-> - J)o S(Y\. 'YlT[ 'l:

L

(where en' D"{\ , and En are the amplitudes of the unknmm

additional deflections) when the initial imperfections are of

similar form, and given by

b S ~Y\ 'Yl IT c
v.. ',n L

V;-o = ~ $ln~
Y, Y\ L

>

and
~o :: £~n S~l'\ 'YllT-r.--c-

(2-27)

where ~
LL1YI.•

, , and £ are the amplitudes of
~n
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the initial imperfections. Hhen there are no intermediate equl-

distant supports and when the initial imperfections are given by

l)."o = b SLY'\
1\1::

U ll L
~

V;o 'b s. 1T~ (2-28)== 11'\~

Vj,1 L

~o 'f;t>I

1[-c
and = SCn-

L

the solution to Eqs. 2-22 through 2-24 and the above boundary

conditions is given by the additional deflection pattern:

ll, c, S. If-1;-- 1.1'\ -
L

V; ::::; E, SlY' "1/.:e-
L

(2-29)

D S · If.:cI 1.1'\--
L

a-2. "Fixed" ends. (i.e. the ends are free to rotate

about the XI axis but are fixed about the Y 1 and Z axes and

cannot deflect in the XI direction.) For this case,

at ~ = 0 and l:=L

(2-30)

at ~ == 0 and
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Similar to case a-l, when there are no lateral intermediate

equidistant supports and when the initial imperfections are given

by

and

V;o - b ,r- (1- CoS 2..1(~)
, .1~1 L-

(2-31)

the solution to Eqs. 2-22 through 2-24 and the above boundary

conditions is given by the additional deflection pattern:

v; ( 2L1I-l:)E, I - CoS

D, ( , - 0:6 2~'r )

(2-32)

if the term containing the cross bending rigidity F of the dia

phragm is dropped. This may be justified by considering two

facts: (1) the spacing of the connectors may be considerable

and therefore the effective bending rigidity will be small, and

(2) the flanges of the beams may rotate with respect to the webs

of the beams. Note that because the initial imperfection pat-
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tern is affine to the additional deflection pattern, the addi-

tional deflections determined will be a conservatively high esti-

mate.

The total deflections u., It , Vii ,and Pt. of the beam

are given by

U'i: = u., 10 + Lt.)

and

V';-l: _. Vi o -t V; (2-33)

Considering the deflection pattern glven by Eqs. 2-29 and

2-32, the maximum shear strain

en by (using Eq. 2-13)

rmo....x. of the diaphragm is gi v-

(2-34)

where Yl = I if the ends are "simply supported", or n = 2. if

the ends are "fixed".

Substitution of the values of u vI' I po, U. 10 ' ","0 ,

and ~o either from Eqs. 2-28 and 2-29 or from Eqs. 2-31 and

2-32 ln Eqs. 2-22 through 2-24 gives the load-deflection rela-

tionships of a diaphragm-braced Z-beam as

"1-

E. I (!!JI) + Q Cos~
Y1 L

(2-35)
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where the term containing the flexural rigidity of the diaphragm

is dropped, and

C.oS 0<.

and

+
Ix Cos 2-0<,,

Eq. 2-35 enables one to evaluate the amplitudes of the

addi tional deflections C1 , D, , and E, for a diaphragm-braced

Z-beam if the amplitudes of the initial imperfections

~ and
~,

1

Case b.

~ ~ are known.

I-beams and Channel beams. The load-deflection

,

relationships of diaphragm-braced I-beams and channel beams can

be derived from Eq. 2-35 by letting c(, = 0, where oG is the

angle between the XI and X axes. Consequently, k, = I, K2,. =0 ,

SLY\.o( = 0 ,and U-SoC; = I. After simplification the amplitudes

of additional deflections C, and D. can be expressed as

and 1>,

M bpi Er(¥-)7-+ 6K. + Qe,'2-} i- M bll. eM - Qe)

tEl y ~~lTt+ ex } t E r (~)~+ GIZ + Qc."2-1 - (M - Re)7-

(2-36)

(2-37)
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where bu. and 'j)~ are the amplitudes of initial imperfections

of either an I-beam or a channel beam corresponding to b
u-', I

and ~ (3, of a Z-beam.

Note that the amplitude of the uncoupled deflection E,

cannot be derived from Eq. 2-35 using the above approach, but

can be readily evaluated as the vertical deflection of a beam

under uniform moment.

When there is no diaphragm bracing, i. e. when Q. = 0

Eqs. 2-36 and 2-37 check with those obtained by Massey(12)

for imperfect I-beams and channel beams under uniform moment.

Maximum shear strain rm~x of the diaphragm can be derived

from Eq. 2- 3 4 by letting c.<. = 0 and is given by

nlf (c, + eD,)
L

(2-38)

2.1.3 Critical Moment for DiaPhragm-Braced Ideal Beams

Case a. Z-Beams. The critical moment for diaphragm-braced

'Z-beams can be derived from Eq. 2-35 by setting the amplitudes

of the initial imperfections ~u, , '~v ,and ~o. equal
I J I I:> I '-I

to zero and solving the resulting eigenvalue problem for a non-

trivial solution. Then the critical moment is given by

QSlt'\o<.. coso(

Qe $l'y\o( + Kz.M = 0

When there is no diaphragm bracing, i. e. when Q = 0 ,

Eq. 2-39 checks with that obtained by Hill(ll) for the criti-

cal moment of ideal Z-beams.
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Case b. I-Beams and Channel Beams. The critical moment

for diaphragm-braced ideal I-beams and channel beams can be de-

rived from Eq. 2-39 by letting ~ = 0 After simplification,

the critical moment tvl"n. is given by

(2-40)

(8)
The above equation agrees with the equation developed by Errera

for diaphragm-braced ideal I-beams using an energy method.

When there is no diaphragm bracing, i.e. when q = 0 ,

Eq. 2-40 checks with that obtained in the conventional theory

for the critical moment in lateral buckling of ideal I-beams and

channel beams.

2.2 Inelastic Theory

The bilinear stress-strain relation shown in Fig. 2-6 is

assumed for the inelastic theory presented in this section.

Further, residual stresses are not considered. Therefore the

inelastic theory is concerned with the beams subjected to mo-

ments M greater than the yield moments My and smaller than

the plastic moments Mp( • The diaphragm bracing is assumed

to be in the elastic range even if the beams are in the inelas-

tic range or have attained the plastic moment.

a. Diaphragm-Braced I-Beams and Channel Beams

The modulus of elasticity E and the shear modulus 6 are

replaced by the reduced modulii E.n.y and 6", respec-

tively in all the equations of the elastic theory given in the
.

previous sections, to describe the behavior of the diaphragm-
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braced beams ln the inelastic range. The reduced modulii E. ,
/Lox.

E"'y
, and G are defined as

'"
(Ix)

elastic portion of the section
E.rLlC. - E (2-41)

(Ix) total section

(ly) l' .
sectionE.n..y E e _astlc portlon of the (2-42)-

( IY)total section

and G - 6 (;1) (2-43)n.

where Ix and ly are the moments of inertia of the cross sec

tion about the X and Y axes respectively. E is replaced by

E.n..x in the term E Ix and £ is replaced by in the

terms Ely and E r because bending about the Y axis and twist-

ing of the beam are coupled in the lateral buckling of beams.

Bleich uses Gn. = 6 (E-t/E) in the inelastic range of

lateral buckling of beams. However, in most cases of lateral

torsional-flexural buckling the critical moment depends more on

E,.,.y than on <3 n.' This is due to the fact that only the last

of the three deformations--bending, warping, and twisting--de-

d h . 1 . f f ( 13 ) Th h' f 1pen s on t e torslona Stl ness GK • e c Olce 0 va ue

G~ is therefore less critical than that of For the

purposes of simplicity the expression for G in Eq. 2-43 is
TL

used in the inelastic range.

To determine the critical moments of diaphragm-braced

ideal I-beams and channel beams the following procedure is fol-

lowed.
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Depending on the value of the shear rigidity Q of the

diaphragm the beam buckles either elastically or inelastically

or it reaches its plastic moment. The minimum value of shear

rigidity Qy required for a beam to reach the yield moment

can be obtained from Eq. 2-40 as follows:

(2-44)

The minimum value of shear rigidity Q~ required for a

beam to reach its plastic moment is obtained from Eq. 2-44 by

letting E = 6 = 0 and replacing My by M "e ' and is given

by

(2-45)

Then, for

the beam buckles -in the elastic range,.

M c.'l. ~ My

the beam buckles ln the inelastic

range, My < Mc.n. < M pQ.

the beam attains its plastic moment,

where ~ is the shear rigidity of the diaphragm contributing

to the support of one beam. If the beam buckles in the elastic

range its critical moment is evaluated straightforward by using

Eq •. 2-40.
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But if the beam buckles 1n the inelastic range its critical

moment is given by

and a trial and error procedure has to be used because the values

En.y and 6", are unknovlD until the critical moment Mc.n.. is

known. The trial and error procedure of determining the criti-

cal moment will be tedious. Therefore, an approximate and sim-

pIe procedure to determine the critical moment is suggested in

the following.

The shear rigidity ~ can be expressed as (from Eq. 2-46)

q - (2-47)

Now, a particular depth of penetration of yielding (1- Y) (re-

fer to Fig. 2-7) may be assumed and the moment M, E.n.y , and

G~ can be calculated for this particular case. Then, ~ is

computed for the moment M us ing Eq. 2-4 7 and replacing Mc..T\-

by M. If the critical moment is required for a particular value

of q , two values ('\ and
"'(\ Q~ are obtained from Eq. 2-47 such

that Q I .$ Q ~ Q~ , and Q and, Q2.. are in the close neigh-

borhood of q Let the moments corresponding to Q, and Q~ be

M, and M
L

respectively. By linear interpolation, the criti-

cal moment M for the shear rigidity Q is given by
(.n..
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(2-48)

This type of procedure to obtain the critical moments in

the inelastic range 1.S illustrated in the examples of the follow-

ing section.

Also, the additional deflections C, and D, of imperfect

diaphragm-braced beams under uniform moment M 1.n the inelastic

range are given by (refer to Eqs. 2-36 and 2-37)

and

(2-49)

M~IAIEn.yly~Y-+Ql +Mb~ (M-Qe)

~EJ1.yly ~n~)~+ q1t EJ\yr'l¥)'\--+ ~k -+ ~e'1-~

b. Diaphragm-Braced Z-beams

"1.-
- (M-Qe)

(2-50)

The procedure for determining the behavior of diaphragm-

braced Z-beams in the inelastic range is similar to that pre-

sented above and the load-deflection relationships of a diaphragm-

braced imperfect Z-beam are given by
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Q SCYI c<. Co5 ex:.

QC Coso( - k, M

E,

(2-51)

where the term containing the flexural rigidity F of the dia-

phragm has been dropped (refer to page 18). In Eq. 2-51,

n = I if the ends are simply supported (i.e. twist

is zero and warping is unrestrained at the ends)

n = 2- if the ends are "fixed" (i.e. fixed about the

vertical and longitudinal axes)

(IxJ elastic portion of the cross section

Ert. x , = E (IXI) total cross section

(I y') elastic portion of the cross section

Eny. = E
(lYI) total cross section

6t1t. = ~ ( :ftYt)

is the flexural rigidity of the beam about

the principal axis XI

is the flexural rigidi~y of the beam about

the principal axis Y,
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E r is the warp1ng rigidity of the beam
It.y.

Gk 1S the torsional rigidity of the beam
TL

bl is the shear rigidity of the diaphragm

e is the distance from the C.G. of the beam to

the plane of the diaphragm

=
Cos 0<. + I y, St'n"l-c(

l.x l
Co so<:

-
5 ~Y'\ 0< +

Ix, Cos'1-c.C.

I y• SC1\C{

~v. ' and ~~, are the amplitudes of the ini-
\, I ,...

tial imperfections (refer to Eqs. 2-28 and 2-31)

and C" D, , and E, are the amplitudes of the additional de-

flections (refer to Eqs. 2-29 and 2-32).

The critical moment for a diaphragm-braced ideal Z-beam

can be derived from Eq. 2-51 by letting the initial imperfec-

tions equal zero and solving for the nontrivial solution of the

resulting eigenvalue problem. The critical moment is given by

- 0
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2.3 Investigation of Load Carrying Capacity of Diaphragm-Braced

Imperfect I-Beams and Channel Beams

In this section the load carrying capacity of diaphragm-

braced imperfect I-beams and channel beams is determined consider-

ing that the load carrying capacity is based on either the fail-

ure of the beam by yielding or the failure of the diaphragm in

shear. The criteria for both of the above failures established

for the purposes of investigation in this section are described

in the following.

1. Failure of the beam by yielding. For the purposes of

the following investigation a beam is considered as failed when

the moment M ln the vertical plane of the beam reaches the

yield moment My of the beam. In fact, a beam could carry its

plastic moment MrQ if it bends only in the vertical plane.

However, the effect of lateral bending and twist of an imperfect

beam contributes towards the failure of the beam by yielding.

To account for this the beam is considered as failed if the mo-

ment about the strong axis of the beam reaches its yield moment

2. Failure of the diaphragm in shear. To establish the

failure of the diaphragm in a diaphragm-braced beam assembly the

individual characteristics of the diaphragm in shear must be

known. From experience in testing shear diaphragms at Cornell

. . (14,15). b d h . d . 1 d 1Unlverslty lt can estate t at two 1 entlca an re a-

tively flexible shear diaphragms may give considerably different

load-deflection relationships at higher load levels, say, beyond

80% of ultimate load. Therefore, the shear rigidity Q c:l and
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at 80% of ultimate shear load of

the diaphragm are taken as the characteristics to be used for

the purposes of investigation in this section in the computations

for the failure of all types (whether relatively flexible or

rigid) of diaphragms in shear. ~J. and ret are determined from

the load-deflection curve (refer to rig. 2-8) and the geometry

of the shear diaphragm as follows:

Shear stiffness

where

6J(14) is defined as, Ej d. =

p~ is 80% of the ultimate load

A~ is the shear deflection at 80% of the ultimate load

~ is the dimension of the shear panel perpendicular to

the direction of the applied shear load

and b is the dimension of the shear panel along the direction

of the applied shear load.

(Note that the subscript 'd' refers to the values at 80%

of the ultimate load)

Then,

Sh
... ( 8)

ear r1g1d1ty

Shear Strain

where

and

~ 1S the width of the shear diaphragm contributing to

the bracing of one member.

Now, the diaphragm in a diaphragm-braced beam assembly 1S con-

sidered as failed if the maximum shear strain (computed

using Q = QJ in the equations) in the diaphragm at a certain
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moment M on the assembly exceeds the shear strain (J-

All the assumptions made in the elast.ic and inelastic 1.11e-

ories, presented in the previous sections, are also applicable

~n this section.

In evaluating the additional deflections C, and PI , the

amplitude of lateral imperfection ~~ is taken as the tolerance

limit of sweep for a length L ·of the beam as specified 1n the

AISC manual(16) and the amplitude of initial twist ~~ 1S arbi

trarily taken as equal to 0.01 radian (0 0 34'22.6").

The following procedure is used to arrive at the load car-

rying capacity of diaphragm-braced I-beams and channel beams.

1. The individual shear characteristics Qcl and 'rcl of

the diaphragm employed in the beam assembly are determined from

an independent shear diaphragm test as described above.

2. The critical moment MG~ of the diaphragm-braced ideal

beam 1S determined for the shear rigidity

and 2-48.

QJ. using Eqs. 2- Lf7

3. If MGt\. > My the maximum shear strain yo tnc:>.x. of

the diaphragm at yield moment My on the beam is determined.

If , then, the moment carrying capacity of the

diaphragm-braced beam is My and the beam fails before the dia

phragm does. Otherwise, the moment carrying capacity is less

than My and the diaphragm fails before the beam does. In

this event, the moment carrying capacity 1S the moment M at

which just reaches the value r~

does.

If M < M the diaphragm fails before the beam
C7I. y

The moment carrying capacity is the moment tv1 at which
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just reaches the shear strain

Two examples are worked out in Appendix II to illustrate

the above procedure. The results of the two examples are pre-

sented and discussed in the following.

Summary of Results

Example

(1) Shear Rigidity
QJ.. (kips)

(2) Yield Moment
My (kip-in)

(3) Plastic Moment
Ml>t (kip-in)

(4) Shear Rigidity
Qy(kips)

(5) Shear Rigidity
QrL (kips)

(6) Critical Moment
Mc,'\, ~ M pt

(kip-in)

(7) Critical Moment
Mc.x u.(wi thout brac

J

ing) (kip-in)

(8) Load Carrying
Capacity (kip-in)

(9) Failure

(10) (8)
T6T

1. l4x4Bx17 . 2#
I-beam,12' long,
6' spacing of
beams, 22g. roof
deck

152.5

756

889

30.2

63.5

889

329

756

Beam

0.85

2. 18x6x70#
I-bemn, 18' long,
6' spacing of
beams, 22g. roof
deck

152.5

3668

4457

42.6

247

3844

2780

3063

Diaphragm

0.80

Discussion: Diaphragm bracing being the same, the heavier

the beams are the more critical will be the failure of the dia-
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phragm. In other words, the heavier beams requlre stronger

bracing to reach their maximum moment carrying capacities.

2.4 Tests on I-Beams and Channel Beams

2.4.1 Description of Tests'

The general arrangement for the double-beam flexure tests

made as part of this investigation is shown in Fig. 2-9. Each

test assembly comprises either two 10Bl7 I-beams or two 6[8.2

beams of A_Lflfl steel, and a 30 gage plenum form cross:""corrugated

steel diaphragm attached to the compression flanges, with the

corrugations transverse to the longitudinal axes of the beams.

Loads were applied to the beams two feet inboard from each end

support. The two beams were rigidily battened together in the

two feet end lengths with 1/4 inch steel plates welded in place.

The length of the beam between applied loads thus is subjected

to uniform moment, with its ends "fixed" against lateral tor

sional buckling, but free to rotate about the major bending

axis. This arrangement was selected as the simplest one to

give well-defined and controllable conditions of loading and

support as related to the theoretical assumptions. In the ab

sence of diaphragm bracing, such an arrangement provides an ef

fective laterally unsupported length of half the distance be

tween the load points.

Each palr of beams was tested first with no diaphragm brac

ing, and then with diaphragm bracing of glven width and connector

spacing. Power driven pins of l/L~-inch diameter were used in

all the double-beam flexure tests except in one test where #14

screws were used. A span of 30 feet was used for iOBl7 beam
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assemblies, glvlng an effective l~terally unsupported length of

15 feet, and Ld./nAt ratio of 1381. In the case of 6[8.2 beam

assemblies a span of 24 feet was used, glvlng an effective lat

erally unsupported length of 12 feet, and L~h\Aj ratio of 1311.

Diaphragms used were 28 and 17-3/4 inches wide, with distances

between the pins of 25-3/4 and 15-7/8 inches, for 10B17 and

6[8.2 beam assemblies respectively. A description of the double

beam flexure test specimens is given in Tables 3 and &.

Lateral deflections were measured at several points at the

levels of top and bottom flanges along the length of each beam

using a surveying transit and scale, and vertical deflections

were read with a level and a scale. The lateral deflections

taken at zero load level enable one to compute the initial lat

eral imperfections and the initial twist of the beams. Level

bars were used to measure web rotations at each end, each quar

ter point, and midspan of both the beams. In the case of 10B17

beam assemblies a total of eight r~sistance strain gages were

mounted on the flange tips of both the beams at midspan. In the

case of 6[8.2 beam assemblies resistance strain gages were mounted

on the flange tips and on outside corners of flange and web in

tersections for both channels at midspan. Readings of all instru

ments were taken at several increments of load before failure.

The diaphragm-braced four-beam assembly similar to the two

beam assembly is shown ln Fig. 2-10. The beams were 8Jr6.5 I

sections made of A-441 steel and the diaphragm is 26 gage steel

panels (inverted) connected by #14 screws to the beams at every

rib· (8" spacing), A span of 20 feet was used for the 8Jr6.5
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beam assembly glvlng an effective laterally unsupported length

of 10 feet and Let/nAt ratio of 2232. The beams were 3'8" apart

giving a total diaphragm width of (3'8") x 3 + 2-1/4" = 134-1/4".

It is assumed that a Hidth of (134-1/4")/4 -- 33.5" of the dia-

phragm contributes towards the shear rigidity for each beam.

This assumption would give a larger value of the predicted criti-

cal moment for a diaphragm-braced beam than when a diaphragm

width of (3'8")/2 = 22" contributing towards the shear rigidity

for an end beam is assumed.

Strains were measured at the flange tips of each beam at

midspan· using resistance strain gages. The lateral deflections,

vertical deflections, and twist of the webs were rneasured for

the outer beams similar to the procedure in a double-beam assembly

test.

2.4.2 Predicted Load-Deflection Relationships and Criti-

cal Moment for Diaphragm-Braced Beams; and South-

well Plot for Unbraced Beams

The load-deflection relationships for either diaphragm-

braced I-beams or channel beams used to predict the behavior of

the beams in the tests are given by

and .1>,

(2-36)

(2-37)

( Note that 2 is substituted for n. )
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The critical moments for either diaphragm-braced I-beams

or channel beams used for comparlson with the failure loads of

beams in the tests were derived from

(2-46)

Computations in evaluating the critical moments and load-

deflection relationships for unbraced or diaphragm-braced beams

were performed on a digital computer whenever necessary.

(12)A Southwell plot suggested by Massey for the elastic

lateral instability of I-beams can be used in the case of tests

on unbraced I-beams and channel beams. The following derivation

indicates the basis of the Southw~ll plot.

The amplitude of additional twist D, of either an unbraced

I-beam or channel beam in the elastic range can be derived from

E.q • 2- 3 7 by 1 e tt i ng Q = 0 and may be written as

M~ - M2-
C. It,. U

I

where

The above equation may be rearranged ln a form suitable for

a Southwell plot as follows:
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tv, (DI+$~)
M~

c"",u-

In the above equation the term 1.S

constant within the elastic range so that a plot of

against p,
M

will produce a straight line with a slope equal

to the square of the critical moment.

The above type of Southwell plot was used to obtain the

critical moments of unbraced I-beams and channel beams from ex-

perimental data from tests which were not carried to failure.

2.4.3 Beam Test Results

(a) Double I-beam or channel beam assemblies. Results of

the tests with and without diaphragm bracing are summarized In

Tables 4 and 7. For the unbraced beams, failure always was by

elastic lateral buckling at very low stresses, and the test was

arbitrarily stopped before the lateral deflections and stresses

became excessive, in order that the same beams could be used

for the braced beam tests. Upon removal of the load, the beams

returned almost exactly to their no-load condition. Buckling al-

ways occurred in the direction of initial crookedness, if such

crookedness was at all pronounced. Figs. 2-11 and 2-12 illustrate

the lateral deflection of the centroid of typical unbraced beams

at zero load and at or near the maximum applied load. The test

arrangement was designed to simulate the condition of full fixi-

ty against lateral buckling, and Figs. 2-11 and 2-12 indicate
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that the deflected shape of the unbraced beams reasonably approx1

mates a displaced cosine curve. Figs 2-13 and 2-14 show typical

plots of load versus lateral deflection of the top an? bottom .

flanges of unbraced beams at mid span, and Figs. 2-15 and 2-16

show moment versus midspan vertical deflections. Figs. 2-17

through 2-20 show moment-deflection relationships for the un

braced beams. Southwell plots for the lateral instability of

the unbraced beams are shown in Figs. 2-21 and 2-22.

Figs. 2-23 through 2-32 present similar information for the

same beams discussed above with diaphragm bracing (except for

the Southwell plots). Comparing a braced beam with an identi

cal unbraced beam, the maximum load and vertical deflections

before failure are much larger, and the lateral deflections are

much smaller. It should be noted that the compression flange

(braced flange) deflects more than the tension flange (unbraced

flange) in agreement with the assumption made in the analysis.

For failure moments below the yield moment the diaphragm

failS by tearing or popping of the pins before the beam fails

by yielding (refer to Section 2-3), therefore, there was a sud

den lateral deflection of the beams after the failure of the dia

phragm. For failure moments higher than the yield moments the

beams fail initially by yielding. After yielding the beams de

flect laterally much faster than before yielding until the dia

phragm fails suddenly in shear. A photograph of a double-beam

assembly after failure 1S shown 1n Fig. 2-33. Figs. 2-34 and

2-35 show a comparison of the critical loads of the beams and

their experimental failure loads.
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(b) Four-beaJ.1 assembly. The behavior of the four-beam

assembly was similar to that of a double-beam assembly. Failure

occurred above the yield moment at 90% of Mpi ,and was by

local buckline at a quarter point, which is also the location

of a #14 screw, of the east beam. rig. 2-36 shows a comparison

of the critical load and the experimental failure load of the

four-beam assembly .. A photograph of the four-beam assembly

after failure and the local buckling are shown in Figs. 2-37

and 2-38 respectively.

2.4.4 Discussion of Beam Test Results

a. Unbraced Beams

The maximum moments applied to the unbraced beams with

their initial imperfections were 3% to 12% lower than the pre

dicted critical moments for 10B17 I-beams, 19% to 26% lower than

the predicted critical moments in the case of 6[8.2 beams and

25% lower than the predicted critical moment in the case of

8Jr6.5 I-beams. The predicted critical moments are based on

the classical lateral buckling theory for ideal beams. As in

dicated in Section 2.4.3 these tests were arbitrarily stopped

before a true maximum load was reached, in order that the same

beams could be used with diaphragm bracing. It can be seen that,

in the case of an unbraced I-beam, the load (240 in-kips) at

which the test 1S arbitrarily stopped was very close to the

critical moment (246 in-kips) given by the Southwell plot shown

in Fig. 2-21. However, in the case of an unbraced channel beam

test, the load (66 in-kips) at which the test was arbitrarily

stopped was not as close to the critical moment (8~.7 in-kips)
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glven by the Southwell plot (refer to Fig. 2-22) as 1n the case

of an unbraced I-beam. The reason lies in the fact that in the

case of channel beam tests the precritical deflections increased

faster with the increase of load than in the case of I-beams.

The above indicates that the test setup functioned better for

the case of I-beams than for the case of channel beams, but for

both sections the behavior was considered satisfactory.

b. Diaphragm-Braced Beams

In Tables 4, 7 and 9, and in Figs. 2-34, 2-35, and 2-36

the maximum moments sustained by beams are compared with the

predicted critical moments from Eq. 2-46. In the case of 10B17

I-beams the predicted critical moments underestimate the failure

moments of the beams in the elastic range by about 20% to 24%.

This can be attributed, probably, to the fact that the cross

bending rigidity of the diaphragm 1S not considered in the pre

dicted critical moments. In the case of lOB17 I-beam tests the

moments sustained by the beams in the inelastic range were smaller

than the predicted critical moments by about 3% to 5%. Similarly,

in the case of channel beam tests the. moments sustained by the

beams were smaller than the predicted critical moments by about

0% to 25%. In the case of 8Jr6.5 I-beam test the moment sus

tained by the diaphragm-braced beam was smaller than the pre

dicted critical moment by 10%. The following reasons may be given

for the moments sustained by the beams at failure being smaller

than the predicted critical moments:

1. Eq. 2-46 was developed assuming the response of the

diaphragm bracing remains elastic until failure. This is probably
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not true at very high moments.

2. Eq. 2-46 gives the critical moment for an ideal beam.

Actually imperfections exist and it is shown in Section 2.3

that these imperfections cause the failure of the beam assembly

at lower moments than the critical moments.

3. Any deviation o£ the plane of the applied uniform mo

ment (refer to Fig. 2-9) from the vertical 1S more critical in

the case of channel beams than in the case of I-beams because

of the unsymmetry of the channel section.

"Figs. 2-27 and 2-28 indicate that the theoretical and actual

vertical deflections of the beams agreed quite well. The theo

retical vertical deflections of the braced beams were computed

neglecting the small contribution of the diaphragm, which acts

as a very flexible cover plate.

Theoretical lateral deflection of the C.G. of the cross

section and the twist of the beams at midspan were computed at

the desired moment levels using the elastic theory. The initial

imperfections were computed from the measurements of the posi

tions of the beams at zero load level. The amplitudes of the

initial imperfections used in the computations of load-deflection

relationships were the maximum values of the average initial im

perfections of the two beams, so that the computed deflections

should usually give a high estimate of the actual deflections.

Figs. 2-17, 2-18, 2-29, 2-30, and 2-32 show that the theoreti

cally predicted deflections of the beams were larger than the

actual experimental deflections. But, Figs. 2-19, 2-20, and 2-31

show that the theoretically predicted deflections are smaller
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than the actual experimental deflections. This, probably, may

be attributed to reason 3 on page Ill.



3. AXIALLY LOADED I-SECTION COLUMNS BRACED BY

GIRTS ~'lHICH IN TURN ARE BRACED BY A DIAPHRAG~'1

3.1 Elastic Theory

3.1.1 General Formulation of the Problem by Energy

Nethod

A model consisting of two columns braced by girts which

in turn are braced by a diaphragm will be considered for the

purposes of analysis of the above problem. A sketch of the

above model is shown in Fig. 3-1 along with the sets of axes

X, Y, Z and Xl' Yl , Zl' and their corresponding displacements

~, v, p and ~l' ~l' ~I respectively. In the following analy

sis the total energy U related to one column with ~ inter

mediate girts is formulated and the Rayleigh-Ritz technique

is used to obtain an approximate solution. The analysis is

based on small deflection theory.

The total energy U related to one column can be expressed

as

(3-1)

where

V is the internal strain energy of the column

u~ is the potential energy of the axial load

Bs is the energy due to shear ln the diaphragm

and .Bt is the energy of bending of the girts due to twist

of the column.

Case a. Ideal Columns. Internal strain energy of the

column. The general expression for the internal energy of

43



44

an elastic column bent about both the principal axes, and

. d • (2)tvllste , 1S

where

l.

I S( "'L "... 'Z-- ~ 1.-)V = 2. Ely U. T EI)(V + EP ~'I T Gk.f->' + EA£ cI. 1:
o

E~ 1S the weak-axis bending rigidity

E~ 1S the strong-ax~s bending rigidity

EP is the warping rigidity

6K is the torsional rigidity

·E is Young's Modulus

A 1S the cross sectional area of the column

t is the axial strain

L is the total length of the column

(3-2)

and ~,v, and ~ are the displacements as shown in Fig. 3-1.

Considering only the change 1n energy from the stable

compressed position to the unstable compressed and deflected

position, the term in € can be omitted from Eq. 3-2, and in

subsequent expressions. Further, in this problem, the strong-

axis flexural buckling is independent of bending about the

weak axis and twisting of the column. The strong-axis flexur-

al buckling load can be evaluated using Euler's equation.

Bending about the weak axis and twist of the column are con-

sidered 1n the following. Eq. 3-2 then reduces to

Potential Energy of an Axial Load. The general expres-

sion for the change in potential energy of an axial load from
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the compressed stable position to the compressed and deflected

bl .. F • 1 1 .. (2)unsta _e pos1t1on, ~or an upsymmetr1ca. co umn sectlon, lS

L

V w = ~ S[- erA (u.':t.v,"l-) - 2. erA Yo u.' ~' +- 2..rr A Y-.. o V-'f/ - cr ll" p'"l-] d i'.
o

where

r is the average compressive stress on the column

I~ is the polar moment of inertia of the section

and ><'0 and Yo are the distances from· the C. G. of the section

to the shear center in the~ and Y directions respec-

tively.

Considering only bending about the weak-axis and twist

of the axially loaded doubly-symmetric I-section column, Eq.

3-4 reduces to

(3-5)

where P is the axial load on the column.

Energy Bs due to shear in the diaphragm. The relative

movement of the girts causes shear in the diaphragm, and

this shear is transferred through the girts as resistive

forces to the lateral movement of the column when the latter

is under load. Therefore, the energy due to shear in the

diaphragm is given by
.
d+ ,

Bs - L -} R it LL,,~~
L=O

where

.t is the spacing of girts ( ::: 1, )
R",eis the re.sistive force on the column at

(3-6)
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~~! 1S the lateral deflection of the. column parallel toI, ()..

)(, axis at f:-1:e I;.=. i£.

The resistive force offered by a girt, due to shear in

the diaphragm, to the lateral movement of the column can be

expressed as

(3-7)

where Q. is the shear rigidity ( 8) of the diaphragm contribut--

ing to the support of one column. (Note: lll,-t and It I, (J+2.)l

should be taken as equal to zero).

Energy Bi due to bending of the girts. The bending

stiffness of the girts offers twist restraints m to the

column under load. The energy due to bending of the girts

is given by

where

J+i .
~, "2~

-- ~ 2. m fie
1. :0

(3-8)

m is the stiffness of the girts bracing the column at

~ =if. , for i = 0, I , •••• , t + J

Thus, the total energy for an axially loaded doubly

symmetric ideal I-section column braced by girts which in

turn are braced by a diaphragm is given by

J +,

Rit LL"iJ. + -k L. m ~~
i. :.0

(3-9)
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(Note tha:t: Uv l,_ Land Uqi+,.)Q. should be taken as zero).

Case b. Imperfect Columns. The total energy expres-

sian given by Eq. 3-9 can be modified for the case of an im-

perfect column to be

where

t ..tI

L "l.-
-t..L m·

:L --- fa
L=O

(3-10)

Ut is the total deflection of the column in the x-

direction

U o is the initial lateral imperfection of the column

in the X-direction

p~ is the total twist of the column

and is the initial imperfection of the column ln

twist.

Further, it may be noted that

and

-u..+Lto (3-11)

(3-12)

Using Eqs. 3-11 and 3-12, Eq. 3-10 may be simplified and ex-

pressed as

L

V - ~ So i E..l t U.'I'-,... E.r ~'(2-+ Gk ~''- - r(u. fL+ 2.u.~tt')-P-fJ' (f?>/~2.(o~')}d-z

if-I

t- t ~ R.d It 1)£
{,O=o

~
·+I.

+1..
2-

i=-o (3-13)

(Note that U.,-l and u. . should be taken as zero).
1,(J+2..)t
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It may be observed that when the column is perfect; i.e.

Ll o :; 0 and ~o == 0 , Eq. 3-13 reduces to Eq. 3-9 as expected.

The connection between the columns and the girts is

assumed to be such that, prior to the connection of the dia-

phragm to the assembly, the column could sway along with the

girts in the plane of the assembly with negligible shear re-

.straint compared to that of a light-gage steel diaphragm.

The expression of total energy U given by Eq. 3-13 will be

used in the following to derive the load-deflection re1ation-

ships of imperfect columns braced by one or two intermediate

girts and a diaphragm. The buckling loads of ideal columns

will be derived from the load-deflection relationships by

letting the initial imperfections equal zero. The ends of the

columns are assumed to be "hinged", i.e. flexura11y hinged,

twist is zero and warping is unrestrained at the ends.

3.1.2 Load-Deflection Relationships for Imperfect

Columns

Case a. With Sidesway. The most general deflection

pattern to obtain a conservative estimate (i.e. an upper

limit) of the additional deflections of the column under load

may be expressed as

Initial Imperfections:
{

u'IO

P, (0

l>"

:: z= E. nSty\ 1\LTf l'. + 6. 0 (I -:L)
"::1 L

== f. F" SCn~
L

n=\

(3-14)

Additional
{

ttl

Deflections:

f> I =

(3-15)

(Note that at every cross section of the column ~ :'Z:\ )
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where lllO and ~ 10 ar'le the initial imperfections correspond-·

ing to the deflect ions u. and ~ ,; En' Fy\ ' and flo are the

amplitudes of the initial imperfections; and en' Dn , and A

are the unknown amplitudes of the additional deflections.

Knowing the deflections u',o' ~IO ,Lt. and f!>. the deflections

U o ' 0'0 ,u. and ~ of the C. G. of the column can be expressed

as

= ~IO (3-16)

and

where

~,

=

c>O
~ ,.... S' Yl1T~c- Vn Ly\--

l'\".\ L
(3-17)

e ~s the distance between the C.G. of the column section

and the plane of the diaphragm.

The total energy U of the column is obtained by substituting

the values given by Eqs. 3-16 and 3-17 for \Ao' Po' tt, and

~ in Eq. 3-13. The unknown amplitudes en' D" ' and !::. can

be determined by minimizing the total energy U and solving

the resulting linear simultaneous equations in en' Dn ,

and ~ .

An approximate solution of the problem is obtained in

the following by using the Rayleigh-Ritz technique. It is

observed from the solutions of some practical problems using

different values for n in Eqs. 3-14 and 3-15 that the con-
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vergence of the solutions is quite fast. Therefore, to ob-

tain approximate solutions of the problems with one and two

intermediate girts certain values of n are chosen in the

following depending on the number of intermediate girts in

the problem and the type of accuracy needed.

Column with One Intermediate Girt. The assumed deflec-

tion pattern is given by

Initial Imperfections: (3-18)

3 'l111l.
u./ - L en S~y\

L
+D.(I--?C)

n=J

Additional Deflections: 3 (3-19)

f>1 L. D h
S· 'nT{"l.-- 1..)\--

t\::.\ L

(Note; L ::: '2..e. ).

Minimization of the total energy U using Eq. 3-13 gives

. the following load-deflection relationships:

(3-20)

- (3-21)

(3-22)
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where

ElY\-;tf'- l' e i E l yt,¥-;)- P1 -8Q/1T'2- 0

+ 8Q/lf'Z-

e{EIJ(fS'-p1 Er(:lI)+61<. -p!.p 0 - 4mt hr'2.-
2.P. A

'Z-

+e%-{ Ely{f£) - P~

[D Ia=:

+ 4 mthr'J-

- 9 Q$11 ')- 0 Elr@:~) - P e{EI~rr-p}

T 8Q./"l1l'J-

0 _ 4 mt 191i'2- etEIy~~r-pl E r~[)?-+ GK-Pj[

+ e"~ Er~irr-p1

+ 4-mt /q Tf~

c.

{XII}
D1

:::.

Cs
D3

E, + eF.

(!.p+e')...)F. +eE,

lvI11
A.

= E
3

+ e F3

(~p + c·~) F3 +eE 3

£ra-t+ ~k- PI!
+ e"1.T EI~eI-f-p}
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and

It can be observed from Eqs. 3-20 through 3-22 that the

deflections {x III {XLI} ,and Il are not coupled. Eqs.

3-20 through 3-22, hereafter, will be known as the equations

corresponding to the first mode and modified first mode,

second mode, and sidesway mode respectively because of the

deflection pattern associated with each of the above equa-

tions (refer to Fig. 3-2; a through c and e). Further, Eqs.

3-20 through 3-22 could have been obtained by using the follow-

ing deflection pattern:

First Mode and Modified First Mode:

Initial Imperfections:
{

LL,o -

~IO ==
(3-23)

'U.., = C t '5("" T[2' + C Sln 31ft:
:2R.. 3 zQ

Additional Deflections: (3-24)

~I
D S· lice + D3 Sln :?2f-lI t-n--

:l..i 2.t
Second Mode:

{Lt,o E.2- Stn
lH;

::::
T

Initial Imperfections: S . 1l=r. (3-25)
~IO - F2.. In-

i
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LJ... 1 = C 2- Sly\ 1f~
R.

Additional Deflections: (3-26)

t'. S' 1r~= D2.. Ln-
l

Sidesway:

ll10 = 110 (I-E-.)
2.!

Initial Imperfections: (3-27)

(110 == 0

Additional Deflections:
(l. =:: 0n

(3-28)

Minimization of the total energy U for the deflection

pattern of first mode and modified first mode: second mode,

and sidesway individually in each case gives Eqs. 3-20 through

3-22 respectively.

Column with Two Intermediate Girts. As in the problem

with one intermediate girt, the load-deflection relationships

can be obtained in each mode separately by assuming the follow~

ing deflection pattern (refer to Fig. 3-3; a through d and f).

First Mode and Modified First Mode:

Initial Imperfections:

S · lrc E S 5 Tr :LLY\ - + 5 (n II ...

3t 3R.
(3-29)

fi. F S' 1ft:
.10 = , 1.1\ 31

f'
c, St:Y\ ifi. + C s Sin 51fT- 3Q. 3.t

Additional Deflections: (3-30)

f>, D, S' llr + D Sly') 51T~- l.n - 5" --3t 3L



Modified Second Mode:

Initial Imperfections:

Additional Deflections:

Third Mode:

E S · 4-1\~+ 4- In ---3t

f'1 == D 2. SCn '2.TIl. + D Sen 4-1f i':
39.. 4 3i.
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(3-31)

(3-32)

Ll 10 :=. E 3
St:y\ 1fi:

R.--
Initial Imperfections: (3-33)

~'O = F3 $Ln lfl..

t

(3-34)

Sidesway:

Initial Imperfections:

u'IO :::: Ao (I - :t.. )3e.
(3-35)

Additional Deflections:

(Note: L = 3e. ).

~IO = 0

U = !J.. (I-E.)
I 3t

(3-36)
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Minimization of the total energy U, for each mode

separately, using Eq. 3-13 gives the following load-deflec-

tion relationships:

[:01'-] {XI2.}· ::::. P {VI2.} (3-37)

[D:!.]] {X2.2} - P {V22.1 (3-38)

[J>32-] {x 3 2.) - P {V32.} . (3-39)

(Q - p) ~ - P A o (3-40)

where

EIy(iD2-- P el Ely(~)'1-_ p} --9 Q/1T '1- 0
+- 4~/Tr~

e {E I y(giY-- p} Er®-y+ GK-Pit 0 -9 rot /rr'1-

+e"l.~EIy~r-pl

+ 9 m.Q.lrr '1-

(DI?J -
-9Q.!:zS"rr"l- 0 Ely(~i)~- P Ct El y(;ry-- pJ

+ 9 a./2.5"lr').oo

- ~ ffit/2.5TT"l-
'J-

rr~-1I.t-t- GK. - pIr0 el Ely(~r) - r} 3l A

+e~{ EIl~{t-pJ

+ 9mL/251f ,-
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Efy(jtt- P e{ ~I)'~·.tf-F ~ - 2-"1 Q/4112.- 0

T 2.7'{/4-rr'1-

ei El/[~It-P 1 Er(21J.Y--r &K-pb 0 - c1T<\ ~/4-l\ '-
3L A

+e~1 E-:r~~1t-p5
[Dn] - + '1 mQ/4-111-

- 2.1 Q;';(, if '1- 0 EIYt~Tj-f - P ei EIy~-D'2.-Pl

+ 27 QIIb1f 'l-

O· - 9 m e./ \(,11"l- ei E"l A~ft-P1 £r\~1i)~ 6k-pl~
3£. A

+e?f EI~~~t-l'J

+ Qm.Q./lb1\'1-

ll)32] - ~2.,]

C.

. {X'2.1
D.

:::.
Cs
1'5"

E. + Cr,

G-r + e2.-) F, + eE I

E s +eFs-

(¥ +e2-)Fs +eE s
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and

It can be observed from Eqs. 3-37 through 3-40 that they

are respectively the load-deflection relationships for the

first mode and modified first mode, modified second mode,

third mode, and sidesway for the column with two intermediate

girts.

The behavior of the column in sidesway described by Eq.

3-40 (same as Eq. 3-22) may be better understood by deriving

the same load-deflection relationship in a different way. It

can be observed from above that the sidesway of the column is

not coupled with either bending or twisting, or bending and

twisting of the column. The columns and girts may be imagined

to form the framework of a shear diaphragm to which a load

~~ is applied as shown in Fig. 3-4 to produce an additional

deflection ~. The load Psi ' neglecting any minor bending

effects in columns or girts and assuming the shear restraint,
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if any, of the bare frame to be equal to zero, 18 given by

where

GeM is the effective shear modulus of the diaphragm

-t is the thickness of the diaphragm

and L and \.1J are the dimensions as shm.;Tn in Fig. 3 _L! •

Now, the equilibrium of one column is described by

P (I" +- A o) == ~ ?si. L = GeM-t LV ~ ;= QL\

or (Q - p) L\ ::: ? 6,0

where

It can be observed from the above derivation that the

column is able to carry load only by virtue of the shear in

the diaphragm in the case of sidesway of the column.

The deflection of the column is described by one of the

Eqs. 3-20 through 3-22 for the column with one intermediate

girt o~ one of the Eqs. 3-37 through 3-40 for the column with

two intermediate girts depending on the characteristics of

the bracing - shear rigidity Q , twist restraint YY\, and the ec

centrici tye - for a part icular spacing of the girts. The eoua

tion which corresponds to that mode in which an identical

ideal column buckles gives the load-deflection relationship

of the column.

The investigation of the buckling mode of an ideal column

will be treated in Section 3.1.3.
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In general, if the rolled steel sections deflect in the

( t -+ I ) th mode, where ~ is the total number of intermediate

girts, the deflections will be primarily flexural. For the

(r+ 1 ) th mode., the follmving assumption of deflection pat-

tern, a bette~ deflection pattern than the ones given by Eqs.

3-25 and 3-26 or 3-33 and 3-34, will be used to obtain the

load-deflection relationship of the column:

U,IO::: E, SLy\ lT~_ -r E~+I SLy') ~:c
U+I)t 11 ..l.

Initial Imperfections: (3-42)

p., == 0110

= c'" Sly..~ + c7~, SLY\ IT'l::
LL I I (J-tI)Q \I' i.--

Additional Deflections: (3-43)

~, = 0

Minimization of the total energy U corresponding to the

. above deflection pattern glves the following load-deflection

relationship:

o

o E,

p. (3-44)

.
where ~ the number of the mode of deflection and

given in Section 3.3.

.
(,

k2.· is
d

Case b. Without Sidesway. If the column is prevented

from swaying sidewards, for example by providing X-bracing

as shown in Fig. 1-1, then, the assumed deflection pattern lS
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given by Eqs. 3-23 through 3-26 for the column with one inter

mediate girt and by Eqs. 3-29 through 3-34 for the column with

two intermediate girts. The corresponding load-deflection re

lationships are given by Eqs. 3-20 and 3-21 for the column with

one intermediate girt and by Eqs. 3-37 through 3-39 for the

column with two intermediate girts.

3.1.3 Critical Loads for Ideal Columns

Case a. With Sidesway. The critical load of an ideal

column will be derived .from the above load-deflection relation

ships by letting the initial imperfections equal zero.

ale Column with One Intermediate Girt. The deflection

pattern, in this case, is shown in Fig. 3-5. By letting the

initial imperfections equal zero the critical loads will be

obtained from Eqs. 3-20 through 3-22 as:

First Mode and Modified First Mode:

. Second Node:

Sidesway:

CDI\] {XII} == 0

[DLI] {X2.11 :: 0

(Q-p).6. ==0

(3-45)

(3-47)

Each one of the above equations describe an eigenvalue

problem. The smallest value P of the nontrivial solution of

each of the above equations gives the critical load for each

of the particular modes of buckling. Hence, the critical

loads are given by

First Mode and Modified First Hade: ID 1\ I = 0 (3-48)

Second Mode: IDlil = 0 (3-49)

Sidesway: U~-p) - 0 (3-50)
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The critical load

of the critical loads obtained from Eqs. 3-48 through 3-50

and the column buckles in that mode from which the critical

load of the column is obtained.

The possible types of behavior of the column given by

Eqs. 3-48 through 3-50 under different values of stiffnesses

Q and rn

in Fig. 3--6.

and the value of e are represented graphically

The behavior of the column at the limiting values of

stiffnesses Q. and m and the value e is discussed in the

following.

al-l. Critical Load given by Eq. 3-50. When Q = 0

there is no diaphragm bracing of the column. As expected,

Eq. 3-50 predicts that the column fails by sidesway and it

cannot carry any load.

al-2. Critical Load given by Eqs. 3-48 and 3-49.

al-2.l e = 0 and Q == 0 • This corresponds to no

diaphragm and girts connected to the column at the center of

gravity of its section. It is shown in Appendix III-a that

single half sine wave flexural buckling is predicted by Eq.

3-48, as expected.

al-2.2 e =0 and
IQ > QIO • This corresponds to

"full bracing" ("full bracing" is defined as the bracing which
7-

makes an ideal column reach its Euler buckling load, P = rr t~)
e .c-

where Q~ is the minimum stiffness so as to obtain the Euler

buckling load ~ of the column. The value of
,

Q10 is ob-

tained by solving Eq. 3-48 for
,

after lett ing Q::: Q{O
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A graphical representation of the above solu-

tion" is shown in Fig. 3-7. It is shown in Appendix III-a

that vlhen e = 0 the terms corresponding to flexure separate

out from the terms corresponding to torsion in Eq. 3-48, indi-

eating pure torsional or pure flexural buckling, and the be-

havior of the column in flexure does not depend on the value

of m .

al-2.3
/

e>o , Q = 0, and m == 0 This corresponds

to no diaphragm and girts. As expected and shown in Appendix

III-b, the critical load is given by Eq. 3-48 as the first
1\"1-£1

mode pure flexural buckling load, PeL - y .
L:

al-2.4 e>o , Q = 0 and m :7 0 This corresponds

to the case with no diaphragm. As expected and shown ln

Appendix III-b the critical load is given by Eq. 3-48 as the

first mode pure flexural buckling load PeL

al-2.5 e>o, Q >0 and Yl1 = 0 This corresponds

to the case where the connection between the girts and the

column is not moment resisting. There are two possible types

of behavior of the ideal column as shown in Fig. 3-8, depend-

ing on the problem.

This corresponds to "full bl"'acing", vlhere
.
t =

al-2.6

I .,,

, where

and m~ (i) are such a combination of minimum stiff-

nesses so as to obtain the maximum possible buckling load of

the column with restraints. The values of combinations of
I

. Q,(i) and are obtained by solving for combinations
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of minimum values of Q and m from Eq. 3-48 by putting
I 0

0..= 0..,(.<.) and r,'\ "" m~ (i) A graphical

representation of the above solution is shown in Fig. 3-9.

As intermediate cases consider e"7 0 , 0 <. Q. .( ~I (~) ,

and o <. m <. n< (if for .i -:::: I •. .
) Critical load ~1L ,

I

for these cases is less than the Euler buckling load ~

It also can be observed from the numerical computations
/

of particular problems that the greater the value of e, the

larger the values of

"full bracing".

Q~ (.i) and 1TI~(i) must be to provide

a2. Column with Two Intermediate Girts. The deflection

pattern, in this case, is shown in Fig. 3-10. By letting the

initial imperfections equal zero the critical loads will be

obtained from Eqs. 3-37 through 3-40

First Mode and Modified First Mode:

Modified Second Mode:

Third Mode:

Sidemomy:

a c·e> •

[DI2] {XI2-1 = 0 (3-51)

[D2.L} {XL"2..} == 0 (3-52)

[?32J {)('32. ~ == 0 (3-53)

(Q. -1') A -- 0 (3-5l~)

Each one of the above equations describe an eigenvalue

problem. The smallest value of P of the nontrivial solution

of each of the above equations gives the critical load for

each of the particular modes of buckling. Hence, the critical

loads are given by



First Mode and Modified First Mode:

Modified Second Mode:

Third 1'1ode:

SidesVlay:

6 l t

IDILI == 0 (3-55)

ID2.21 ::= 0 (3-56)

ID32./ == 0 (3-57)

(Q.- r) == 0 (3-58)

The critical load
../

Pen. 2.. of the column is the smallest
I

of the critical loads obtained from the Eqs. 3-55 through

3-58 and the column buckles in that mode from which the criti-

cal load of the column is obtained.

The possible types of behavior of the column given by

Eqs. 3-55 through 3-58 under different values of stiffnesses a
and m and the value of e are represented graphically in

Fig. 3-11.

The behavior of the column with two intermediate girts

at the limiting values of stiffnesses Q and m, and the

value of e 1S discussed in the following.

a2-l. Critical load given by Eq. 3-58. \.Jhen Q::::O

there is no diaphragm bracing of the column. As expected

Eq. 3-58 predicts that the column fails by sidesway and it

cannot carry any load.

a2-2. Critical load glven bv Eqs. 3-55 through 3-57.
~----"-'-~- -- '

a2-2.l and Q, = 0 This corresponds to

no diaphragm and girts connected to the column at the center

of gravity of its section. It is shown in Appendix III-c

that Eq. 3-55 predicts single half sine wave flexural buckling

as expected.
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lIfull bracing" wher'2
I

n is the minimum stiffness so as to"\ Z. 0

obtain the maximum possible buckling load of the column ~

The value of
IQw 1S obtained from Eq. 3-55 or' 3-56, which-

ever is controlling, by letting p= Pc and
I

Q =: Qz.o A

gl"'aphical reppesentation of the above solution is shm·;n in

Fig. 3-12. It is shown ln Appendix III -c that when e::: 0
/

the terms corresponding to flexure separate out from those

corr'esponding to torsion in Eqs. 3-55 and 3-56, indicating

either pure flexural or pure torsional buckling, and the be-

havior of the column ln flexure does not depend on the value

of m .

a2-2.3 e > 0 ~ Q:= O} and This corresponds

to the case with no diaphragm and girts. As expected, and

shown in Appendix III-d the critical load ~n ~ is given by
I

Eq. 3-55 as the first mode pure flexural buckling load PeL

a2-2.4 e > 0, Q. = 0, and m >0 This corresponds

to the case with no diaphragm. As expected, and shown in

Appendix III-d, the critical load is given by Eq. 3-55 as the

first mode pure flexural buckling load

a2-2.5 e > 0 ) Q > 0, and m = 0 This corresponds

to the case where the connection between the girts and the

column is not moment resisting. There are four possible types

of behavior of the column as shown in Fig. 3-13 depending on

the problem.

a2-2.6 e > 0 , rn »- m ~ (i) for i == I,.' .

This corresponds to the case of "full bracing ll Hhere Q~ (i)
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so as to obtain the maximum possible buckling lO2.d Pe of

the column with restraints. The values of combinations of

Q~(i) and m~(i) are obtained by solving for combinations

of minimum values of Q and m from either Eq. 3-55 or 3-56

depending on the particular problem, by letting f = Pe

and r •
l"r1 = n12. (A.) A graphical representation

of the above solution is shown in Fig. 3-14 for the two dif-

ferent possibilities.

As intermediate cases consider e > 0, 0 < Q < Q~ (i,,),

and

load

I • •o < rn <:. TY\:l. «(,) vJhere -(, = I •...

F:.:.n. 2.. for these cases is less than Pe,

The critical

It can be observed from numerical computations of partic-

ular problems that the greater the value of e , the larger

the values of

bracing".

Q~U) and TY/:z.(i) must be to provide "full

Case b. Without Sidesway. If the column is prevented

from swaying sidewards, for example by providing X-bracing

as shown in Fig. 1-1, then, the assumed deflection pattern

is given by Eqs. 3-23 through 3-28 for the column with one

intermediate girt and by Eqs. 3-29 through 3-36 for the

column with two intermediate girts by letting ~ , and the

initial imperfections equal zero. The critical load corre-

sponding to the above deflection pattern will be given by

Eqs. 3-48 and 3-49 for the column with one intermediate girt

and by Eqs. 3-55 through 3-57 for the column with two inter-

mediate girts because Eqs. 3-50 and 3-58 become trivial when
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The possible types of behavior described by Eqs. 3-48

and 3-49 for the column with one intermediate girt and by

Eqs. 3-55 through 3-57 for the column with two intermediate

girts for different values of Q, m, and e are represented

graphically in Figs. 3-8 and 3-13 respectively.

The discussion of the behavior of the column at the

limiting values of Q, rt\, and e described by Eqs. 3 -4 8 and

3-49 and Eqs. 3-55 through 3-57 is given in Case a, and the

same is applicable in this case also.

The method of analysis presented above is quite general
.,

and can be employed for a column with end conditions other

than "hinged" end conditions described here.

3.2 Inelastic Theory

For stocky columns the average compressive stress may

exceed the proportional limit of the stress-strain relation-

ship of the entire cross section prior to buckling. As a

result buckling will occur in the inelastic range (i.e. at

stresses beyond the proportional limit) at a stress lO~ver

than that given by the elastic theory in Section 3.1. In

contrast to the elastic buckling solution, no rigorous theory

for obtaining the inelastic torsional-flexural buckling load

exists at present. The available literature on the SUbject

is mainly limited to the methods which use the elastic equa-

tions with the modulus of elasticity E and shear modulus G

replaced by effective modulii E~ and G*. Bleich suggests

using the tangent modulus, E
t

clll , for Ell;, and 6) Et/E
dE

or for El .
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In most cases of torsional-flexural buckling the critical

load depends more on E!( than on 6*.(13) This is due to the

fact that only the last of the three deformations - bending,

warping, and twisting - depends on the torsional stiffness GK.

The choice of a value G'" is therefore less critical than that

of E.i'>.

To describe the behavior of the columns braced by girts

which in turn are braced by a diaphragm in the inelastic

range E will be replaced by E* = Et and G will be replaced

by (i,.* = ~ (E-t:/E). Further, the diaphragm and the girts Vlill

be assumed to be In the elastic range even if the column is

in the inelastic range.

It is known that E t depends on the effective stress-

strain relationship of the entire cross section. A stress-

strain curve typical of those obtained for the entire cross

section of hot rolled steel members is shown in Fig. 3-15.

The existence of a gradual yielding region in the curve is

caused by the distribution of residual cooling stresses over

the cross section.

If the relation betVlcen the inelastic buckling stress

and slenderness ratio is assumed to be a quadratic parabola,

tangent to the abscissa, cr::: fry (yield stress), at slenderness

ratio equal to zero and intersecting the elastic curve at

rr =-0-., (proportional limit), then the relation betT,veen

tangent modulus and stress is shown by Bleich to be given by

~ =
E

(o-y - 0-) II

(o-y - 0-1") tr"r (3-59)
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section.

the average compressive stress .E.
A
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on the cross

The above relation will be used 1n the inelastic r~nge

to obtain E* and G* once the ave::r'age stress on the column is

known and the application will be demonstrated in two examples

in Appendix III.

3.3 Investigation of Load Carrying Capacity of Imperfect

Columns

In this section the load carrying capacity of an axially

loaded imperfect I-section column braced by girts which in

turn are braced by a diaphragm is determined considering that

the load carrying capacity is based on either the failure of

the column by yielding, or failure of the diaphragm in shear,

or failure of the girts in bending. The criteria of the above

failures established for the purposes of investigation presented

in this section are discussed in the following.

1. Failure of the column by yielding. The criterion of

failure established here is that of failure in combined bend-

ing and axial stresses. A column is considered as failed if

anyone of the following inequalities is violated:

Between girts:

At braced points:

(i.e. at intermediate

girts and ends)

f ...
+

Fa..
(3-60)

(3-61)
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where

~ is the computed axial stress

\ 1S the computed bending stress at the section under

consideration including the effect of additional

deflections under axial load

~ is the buckling stress

and Fy is the yield stress.

"'
Note that the above inequalities are ultimate strength equiv-

. (16)
alents to Eqs. 7a and 7b 1n the AISC manual • Further,

'since the column is bent about the ;r axis, there will be no

lateral torsional flexural buckling; and therefore, on the

basis of ultimate strength, Fy is substituted for f"b in Eqs.

7a and 7b of the AISC manual. It is also to be noted that con-

tribution of twist towards the failure of the column is not in-

eluded in the above.

2. Failure of the diaphragm in shear. The criterion of

failure of the diaphragm bracing the girts which in turn brace

a column is similar to that described in 2 on page 29 for

diaphragm braced beams. The diaphragm is considered as failed

if the maximum shear strain Irno. x computed using in

the required equations, exceeds the shear strain 'fa • Y""'ma.)(.

can be computed from the load-deflection relationships knowing

the deflected shape of the column.

3. Failure of the girts in bending. Twist of the columns

produces bending of the girts about their strong aX1S. Fig.

3-16 shows the bent shape of a girt bracing an imperfect column.

It is seen from Fig. 3-16 that the compression flange in one
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half length of the girt between the columns is not braced by

the diaphragm. Therefore, to be conservative, a girt is con-

sidered as failed if anyone of the following inequalities is

violated:

where

<.M~y
} (3-62)

Me is the moment on the girt at the connection to

the column due to the twisting of the column

M' is the critical moment of the girt of length ~
c~

subjected to uniform moment

and M' is the yield moment of the girt.
y

The deflection pattern of the column used for the analy-

sis in this investigation ciontains, in general, only one term

. in flexure and one term in torsion as against two terms in

flexure and two terms in torsion, that were used in the theory

presented in the previous sections. These two approximations

seemed to differ by only about 5% to 10% ln critical loads.

The analysis in this section is intended to enable one to com-

pute the load-deflection relationships and the critical loads

by hand. All the assumptions used in the theory presented ln

the previous sections are also applicable in this section.

The necessary constants for the investigation in this

section are derived for a column whose ends are flexurally

hinged and torsionally simple (i.e. warping is unrestrained
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and twist 1S zero at ends) using the following deflection

pattern:

For ~ intermediate girts and L th mode:

tJ~ 10 = E· SLI'\ -i.lf~
I.

(j-t!) e.
Initial Irnperfec;:tions: (3-63). .

~IO ::::: F· SCY) ~_11_~_
I.

\j+I)t
. .

.L ~ t

, ·{.lIC
lL. -- C. SLf)

.(. (J+l) £.
Additional Deflections: (3-6 l })

t

~I - D. S(n .en ~

I.
{J+r)f

Initial Imperfections:

Additional Deflections:

(3-65)

I ~ • l1':C Itt"

LL = C S l-Y\ --- ;- CJ.-+1 SLn Jlr't:-
I I (J +\)1.

A __ 0
rl (3-66)

The above deflection pattern gives the following load-

deflection relationships after mininlizing the total energy U

c'.
L

D~
L

:::: p.

f,J;r + e')Fi
+ e E(

(3-67)
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l'" , o l I.".

KI j. Pc - P + K7_ i Q C, E,
= P (3-68)

(f\

0 (P;~-P)J CJ-+I EJ-t\

(Note that effective modulii, -* ....E and G , are substituted for

elastic lliodulii, E and 6 , after minimization of the total

energy. )

vlhere

*~ 1S the buckling load of an ideal column determined

by using Euler's equation in the elastic range and

the CRC formula in the inelastic range

** 1t"£*1Pe = ---Y
£'l-

level 1n the.
~l

Kl· , K2.· , and
et cr

E* depends on the average axial stress

column
.
~

K3· are the constants kl, 1<2. ,
} .

and k3 respectively for the column with 0 inter-

mediate girts and in the i th mode and are given at

the end of this section

","I: l * (lr)..... '* Land u.- = kl j E. r T + G k. + K3 ~ rn
f I 11("

The additional deflections C i. ' Dl , C. , and

are derived from Eqs. 3-67 and 3-68 and are glven

I
c· -

.(.

p ..

) (
l ~ * >\

( Q.'* - P ~.r + e"l- k.l J Pe. - p)

(3-69)
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I
D·(,.

Elf-- _._-----_._~---------

I ** ,kl. Pe - f + K1_· 0-J j

(3-70)

(3-71)

and

\-lhere

1*
Ci tt (3-72)

Critical load
t

P . of a column with i.,. intermediateen-/J <l

girts in the t th mode will be derived from Eq. 3-67 by letting

the initial imperfections equal zero \·;hen .(, ~ J- ,and is given

by

where

* t 'It* l ( Ae.'L- /-0...-'(
b - kl j Pc + k2j C\ 1+---) +

If' -if
1t : {k2-j q (a* -+-

L P. +t- '*,..) * l tE-*}
and c = }<.\j E?_ e + Cl KI,i Pe

f'

vlhen
t

is given by(, =' J+I F .
GIL }J

(3-73)
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= f::-¥';
e (3-74)

Then, the cpi t iea.l load of a column

mediate girts is given by

(3-75)

Note that the mode of buckling of an ideal column depends on

the values of Q, Tf\, e, and the spacing of girts, .(,.

Further, the shear rigidity

column with ~ intermediate girts so that the column could

reach t:he buckling load p.~ in the t. th mode is give.n bye
l. "* i.

Eq. 3-73 by letting P = Pc and Q = a 'J. . Thus"I'L, i l. )Q

.
L

q" .
~ ..." J-

(3-76)

The shear rigidity Q Ld, i- required for an ideal column

to reach the critical load p* , irrespective of the mode,e

is given by

J'
Max (Q' 'J ., • • • • ) Q.. I .)

Lu.. ) ~ (,"'- , J (3-77)

The difficulty in using the above Eq. 3-73 lies in the

tt

fact that one does not know the value of E before obtaining

~

Therefore, one has to use a trial value for E .

M-
If this E agrees with the trial

one can calculate E* correspondingAfter obtaining

is correct; otherwise

l.

p~J}
(

to the load level P .
Ol-)J'

value then the computation of
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the process has to be repeated with a new rational trial value

until the trial value becomes correct.

The above procedure is tedious. Therefore an approximate

and eaSler procedure described, in the following may be adopted

to obtain

Two values of q namely Q 1 and Qz. such that b<, and Q2..,

are in close neiGhborhood of Q and may be

calculated from Eq. 3-76 corresponding to two assumed values

of loads f'1 replacing
)I(-

~and P2. by Pe with or Pz_ and
L

QLcl' tvith Q, or Q2- , respectively. Then the critical
" )}

i,
load P. . lS obtained by linear interpolation asG'tl-,cr

t.

P .
G7\,,J {~ T ( pz. - p, ) (Q -- Q,)

(Q2- Q.J th mode
(3-78)

The initial displacement E~o of the C. G. of the column

section is taken as the tolerance limit of sweep specified in

the AISC manual for a column length of L/i. The imperfection

of the' column in twist F~ is arbitrarily taken as F~ = 0.01

radian (=0 0 34 1 22.6"). Knm",ing and F· the value
t.

at XI axis can be computed as E· .'"(,- -

The following procedure lS adopted to determine the load

carrying capacity of an imperfect column braced by girts which

ln turn are braced by a diaphragm.

1. The shear characteristics (refer to par;e

29) of the diaphrap.Ll used to brace the girts \-:11ich in turn

brace a column are determined. The stiffness rfl. is determined

from the bending stiffness of the girts and the type of con-
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nection of the girts to the column. The evaluation of m

for two different types of girt-column connections is shown

in one of the examples worked out in Appendix III.

2. The flexural buckling stress (lc.rt. for the slender-

t/)1.y 1S determined using Euler's equation in the

elastic range or the eRe formula in the inelastic range de-

pending

for the

on Vlhether -t "7!!:.!r.~f:.'or ):::.~~"\.
h. y Fy F'Y

ideal column is given by: P;
P-l"t

The critical load e

3. The smallest value of shear rigidity Q . I • ,which,,, ) J-

in combination with the twist restraint m gives the cI'iti-

D~
cal load f e is determined.

any real positive value for

reach the critical load

ever may be the value of Q

In some cases there may not exist

Q., . because the column may never
'c?. J.r

for particula~ values of m what-

In such cases the critical load

Fc;.>1./ j. , crit ical load of the column with shear rigidity ~J

and twist restraint m is determined.

4. If Q ~et)~ ~ QJ. the procedure given in 4a through

4d 1S followed, otherwise the procedure given in Sa through

4a. Since the column is imperfect the load carrying

capacity p of the column will be less than P *e • There-

fore a trial value .for P *of about O. 7 Pe 1S assumed.

4b. The stress level ~ (=~) 1S computed and the ratio

18 determined from Eq. 3-59. The additional deflections

determined from Eqs. 3-71 and 3-72.

E"I(

E

d*', and

4c.

'*CJ+ 1 are

Knmving the values of E I , and E J.+l ,

and the deflection pattern the failure of the colMmn by yield-
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ing ln combined bending and axial stresses is checked using

the inequalities 3-60 and 3-61.. If the inequalities arc satis-

fied, increase the value of P and rep::~at the procedure frc;ll

4b until the inequalities are just satisfied. If the inequali-

ties are not satisfied reduce the value of P and repeat the

procedure from 4b until the inequalities are just ..t..... • .r:. ,:tSdL1S.i1Cu.

4d. Knowing the additional deflections
/1.-

(I and
'1'<

C(~I ,

and the deflect ion patter-n, the maXlrilUIil sh(;ar strain '( fl\o..x in

the diaphragm can be computed. For the diaphragm not to fail

in shear the following condition must be satisfied.

(3-79)

If the inequality is satisfied the load carrying capacity of

the column is P Note that the failure of the girts need

not be checked because there is no twist of the column 1n

this case. If the inequality 3-79 1S not satisfied the dia-

phragm fails before the column does. Therefore the trial

value of P is reduced and the above procedure is repeated

from 4b until the inequality is just satisfied.

Sa. If q ~J.Jj > QJ., or QU)~ is no·t a real positive

number, a trial value for the load carrying capacity P of

the column is assumed to be 0.7 Pen' •
It

5b. The additional deflections

mined using Eqs. 3-69 and 3-70.

, ..... ~c. and .v!.
.i,.

are c1eter-

5c. Knovling
/ /

C~ , Di ' £. i and PL" and the deflect ion

pattern the column is checked for failure by yielding in

combined bending and axial stresses using inequalities 3-60

and 3-61. Note that the inequalities are, in general, con-
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t ' ,'1- r '} r '1 1 (33)serva-lve regarolng tllC ralure 01 Y18 co uun.

in the above, the contribution of stresses due to the

twist of the column is neglected. If the inequalities are

satisfied the value of p is increased, otherwise decreased,

and tIle procedure is repeated from 5b until the inequalities

are just satisfied.

Sd. Knowing the value of
,

C~ and the deflection pattern,

the maximum shear strain in the diaphragm can be computed. If

the inequality 3--79 is satisfied, the diaphragm does not fail

before the column does; the failure of the girts in bending

is checked in 5e. If the inequality 3-79 is not satisfied,

the trial value of P is decreased and the procedure is re-

peated from 5b until the inequality is satisfied.

5e. KnoHing
I

D~ and the deflection pattern, the twist

of the column at the connection to the girts can be computed.

KnoHing the nature of the girt-column connection, the maxi-

mum moment Me on the girt, due to the twist of the column,

can be computed. If the inequalities 3-62 are satisfied the

load carrying capacity of the column is P ; otherwise the

trial value of P 1S reduced and the above procedure is re-

peated from 5b until the inequalities 3-62 are just satisfied.

It is to be noted that any incl"'ease in q above Q.ld).}

would, in general, result in an increased value of the load

carrying capacity P of the column. However, this increase

is, in general, not considerable because the column might

fail in between the braced points.
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The constants KI, 1<'2 J and ~(3 for the coluriln v7ith one,

two, and three intermediate girts are given in the following:

KI K2. K3
----

2- 3 !
32- 2- .3{,

_L I -'- B Cj 32.(I-J· ) '4·~ 99- J("t
9" -1("2- 1T~

--- yi rr'1- 1f~4- It 1\" 1r"J-

± .l. ")..71T~ 8 qf. 4·Q
9 4- 2.

4- 'T"J- 2-
4 1T2- -rr1.-

'1
37. (H--L ')/(, '3 -- 'Vi :3 ld.
q1T~ 91\"').-

Two examples are worked out in Appendix III to illustrate

the above procedure, the results of the examples are presented

and discussed in the following.

Summary of Re~ul~

(1)
Investigation

No.

(2)
Example

(3 )
Type of
Column
- girt
Connection

(4)

Shear
Rigidity;
~J. (kips)

(5)
Tvlis t Restraint,

mCk-in/rad)

--------
1 1, L=16' I(fully 413 2325

rigid)

2 1, L=16' II(fully 413 0
flexible)

3 2 , L=12' ICfully 413 2900
rigid)

2 , L=12' I(fully 826 2900
rigid)

(Continued on next page)
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( 6 )
Shear
Rigic1j ty;

qtA;l( kips)

;> 413

(7 )

Critical
load, f'0\, j
(kips) ,

296.7

182.6

305.5

305.5

( 8 )
Mode of
Bucklin€;

Modified
Second
~lode

Modified
First

Mode

Third
Mode

Third
Mode

(9 )

Load
Carr.ying
Capacity

(kips)

245

230

240

(10)
Failure by
Yielding at

at braced
point

betv.'een
girts

at braced
point

between
girts

(11)
(9)/(7)

0.83

0.68

0.75

0.79

---_._---.__._------_.----
Discussion:

(1) The load carrYlng capacity of an imperfect column is

always less than the critical load of the corresponding ideal

. column. In the above two examples, the load carrying capa-

cities varied from 68% to 83% of the corresponding critical

loads.

(2) It may be observed from investigations 3 and 4 that

an increased value of diaphragm rigidity shifted the location

of failure from a braced point to a point between the girts.

This shows that at higher values of diaphragm rigidity the

failure of the column takes place between the braced points

before the critical load of the ideal column is reached, and

this is expected in the case of an imperfect column.

(3) The load carrYlng capacity in investigation 3 should
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have been higher thall that in investigation 1 but for the

fact that tlle assumption of initial imperfections ln the

third mode is more conservative thaTI in the modified second

mode.

3.4 Tests on Columns

3.4.1 Description of Tests

To corroborate the theoretical predictiollS of load-deflec-

tion relationships and buckling loads of axially loaded columns

braced by girts which in turn arc braced by a diaphragm, three

tests were performed on the specimens shown schematically in

rig. 3-17. All test assemblies consisted of two equally and

axially loaded 8JrG.5 I-section columns, made of ASTM A-44l

low alloy high strength steel, braced by two intermediate girts

which in turn are braced by a 26 gage standard corrugated

steel diaphragm. The diaphragm was attached to the girts with

"#14 screws at every third valley. In tests 1 and 3 wherein

an unusual connection between the girts and the columns was

provided (refer to Fig. 3-17), to simulate known twist re-

straints on the columns, the girts were 6 [ 13 rolled steel

sections whereas in test 2, where the girts were welded to

the columns, the girts were 6 [ 2.26 light-gage steel sections.

An unusual column-girt connection was provided in tests 1 and

3 because it was desired to have fully flexible and semi-

rigid (with known restraints) connections, respectively, in

these tests. The column-girt connection in test 2 is, in

general, considered as a fully rigid connection. Note that
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the connection in test 3 \-.JaS designed to provide an inter

mediate case between the two extremes (fully flexible and

fully rigid). The total length of each column between knife

edges was 12' 7 11 and the spacing of columns in all the tests

\-las 6'.

The column assemblies \-le1'8 tested in a fralile constructed

for the purpose. The test frame consists of two 6 WF 25

columns spaced 12' apart. Rolled steel channel sections,

18" deep, were connected to the columns one on each side of

the flanges and perpendicular to the longitudinal axes of the

columns, one pair of channels at the bottom and the other at

the top such that there was a clear height of 15' 8 11 betvleen

the top palr and bottom pair of channels. Two 50 ton hydraulic

jacks with hydraulic load cells were connected to the top chan

nel beams such that the center lines of the jacks coincide

with the longitudinal axes of the test columns. The test col

umn assemblies were always situated at the center of the space

between the columns of the test frame. The two jacks were

connected to a common pump so that the loading on both columns

would be equal at all times. The test columns were individual

ly supported on knife edges parallel to the web. The jacks

apply load on the top knife edges whereas the bottom knife

edges rest on the bottom channel beams of the test frame.

The load was read on an Emery console.

The plane of the test frame was in the north-south direc

tion. The weight of the girts and the diaphragm tend to tilt

the assembly to the west. The assembly was tied at the top
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to the wall beam of the laboratory and thus the tilt of the

assembly in all the tests was avoided.

A minimum of seven dial gages on each column reading to

0.001 11 were used in each test to measure the deflections of

the columns at both the flanges parallel to the X-axis of the

section. Twist of the columns can be computed from the above

measurement of deflections. In all the tests, one dial gage

at the top knife edge of each column was used to measure its

movement parallel to the plane of the assembly. All the dial

gages were supported by an independent framing system.

A total of eight electrical resistance strain gages were

located at mid height of the column on the inside of each

flange tip.

A suitable centering procedure developed in connection

with this type of test was used in an effort to obtain con

( 6 )
centricity of loading on each column . However, the center-

ing procedure was not carried up to high load levels, com-

pared to the buckling loads of the columns, because the warp-

ing stresses due to precritical twist of the column form a

considerable proportion of the average axial stress on the

column in tests GT-I and GT-3.

After centering the columns, the position of the flanges

of the columns was noted by taking readings on a horizontal

scale held perpendicular to the flange at the tip of the

flange with the help of a transit in a vertical plane. The

initial imperfections of the column (i~e. initial lateral

deflection and twist) can be computed from the above readings.
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In test 3 two springs were arranged on each side of the

hinges at the connection of the girts to the columns. Springs

were calibrated before use in the test and each has an aver-

age stiffnes s of k = 0.626 kipl in. The springs were 3 II L~ "

long and they Here precompressed by 1/4" before they fit in

between the plates of the connection arrangement. The distance

between the springs on either side of the hinges is 7 3/8".

This provided a value of twist restraint m = 26 kip-in.1

radian.

In test 2 the girts were 6 [ 2.26 light gage steel scc-

tions. By virtue of their bending stiffness they provided a

value of twist restraint m = 7750 kip-in./radian.

3.4.2 Predicted Load-Deflection Relationships and

Critical Loads for Columns

The ends of the columns were flexurally hinged. Twist

is zero and warping is restrained at the ends. For these end

conditions the assumed deflection pattern is given by

First Mode and Modified First Mode:

Initial Imperfections:

U-,o '=

~JO -

E $,'y\ 1f~
, " 3Q.

( :2.rr~)f I - c.O'5 ----
I 31.

(3-80)

(3-81)

~I == D.:L (I - (os ~~3) + Db (\ - Cc';:, bit0
Additional Deflections:

C S' S"n.:c.+ S" L Y"\ -i"r
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Modified Second Mode:

l)...o = 0

Initial Imperfections:

~IO =- 0

(3-82)

Additional Deflections: (3-83)

(It will be seen that buckling of the columns ln tests I and

3 occurs in the modified first mode and the buckling of the

co]umns in test 2 occurs in the third mode. Therefore the

load-deflection relationships in the modified second mode are

not of practical importance and the initial imperfections are

assumed to be zero in the above.) Minimization of the total

energy U associated with the above deflection pattern gives

the following load-deflection relationships for the column:

First Mode and Modified First Mode:

Modified Second Mode: (3-85)

(Note that buckling of columns ln all the three tests occurs

in the elastic range.)
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The load-deflection relationships of a column with two

intermediate girts in the third mode are the same as those

given by Eq. 3- l l4 whether warping is restrained or unrestrained

at the ends because the buckling is purely flexural. Further,

'the load-deflection relationships in sidesway are the same as

given by Eq. 3-40. The load-deflection relationships may be-

restated as

Third Hode: (3-86)

SidesHay:

where

[DM32.J =

( Q. - p) b..

\
JL)"J- 9 QEly 3t - P + -- '1-, If

o

D

(3-40)
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By setting the initial imperfections equal to zero in

Eqs. 3-84, 3-86 and 3-40, the critical loads will be obtained

from Eqs. 3-84 through 3-86 and 3-40 as

First Mode and Modified First Mode: [DW\2.] {XW\21 = 0 (3-87)

Modified Second Mode: [DW2.L] {XWz.zl -= 0 (3-88)

Third Mode: (DM32J {XM32.1 == 0 (3-89)

Sidesway: = 0 (3-54)

Each one of the above equations describe an eigenvalue

problem. The smallest value of P of the nontrivial solution

of each of the above equations gives the critical load for

each of the particular modes of buckling. Hence, the critical

loads are given by

First Hode and Modified First Mode: !nWI2-\ - 0 (3-90)

Modified Second Mode: IJ)W2.2 \ ::: 0 (3-91)

Third Mode: ·I DM32 1 = 0 (3-92)

Sidesway: lQ. - r) =: 0 (3-58)
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By setting the initial imperfections equal to zero in

Eqs. 3-84, 3-86 and 3-40, the critical loads will be obtained

from Eqs. 3-84 through 3-86 and 3-40 as

First Mode and Hodified First Mode: [DW\2.] {XWI2} = 0 (3-87)

Modified Second Hode: [DW2.2.] {XWz.z.} -== 0 (3-88)

Third Mode: [DM32J {XM32.1 :::: 0 (3-89)

Sidesway: (Q.-?) 6. == 0 (3-54)

Each one of the above equations describe an eigenvalue

problem. The smallest value of P of the nontrivial solution

of each of the above equations gives the critical load for

each of the particular modes of buckling. Hence, the critical

loads are given by

First Hode and Hodified First Hode: In W 12-1 - 0 (3-90)

Modified Second Hode: I:DW2.2! == 0 (3-91)

Third Mode: ·IDM32.1 = 0 (3-92)

Sidesway: (Q. - p) = 0 (3-58)
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r of the column is the smallestC.'tW.L.

of the critical loads obtained from the Eqs. 3-90 through

3-92 and 3-58, and the column buckles in that mode from which

the critical load of the column is obtained.

C~mputations ln evaluating critical loads and load deflec

tion relationships of columns braced by girts which in turn

are braced by a diaphragm were performed on a digital computer

whenever necessary.

3.4.3 Column Test Results

The description and the results of the three tests are

given in Table 8. The predicted critical loads and the experi-

mental failure loads are shown ln Figs. 3-18 through 3-20.

The experimental failure loads of columns ranged from 84% to

94% of the corresponding critical loads.

In all the three tests the in-plane shear deflection of

the diaphragm was very small and almost no damage to the dia-

phragm was observed even after the columns had failed. Photo-

graphs of the column assembly before and after test GT-1 are

shown in Figs. 3-21 and 3-22. A photograph of failure of the

column assembly in Test GT-2 is shown in Fig. 3-23.

In test 3, because of the large twist of the columns

the precompressed springs on one side of the girt-column con-

nection hinges were found to be released when a load of 25

kips was reached on each column. But the columns could take

an additional load of 0.5 kip before they failed. This shows

that b~fore the column failed the twist restraint was reduced

to 13 kip-in/radian from 26 kip-in/radian because the springs
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on one side of the girt-column connection hinges were released.

Therefore, the failure load of the column is compared with the

critical load of the column having a twist restraint of 13 kip

in/radian. The initial imperfections, deflection pattern at

23 kip~ load (the last load level at which the deflection

measurements of the columns were taken with the springs on

both sides of the girt-column connections operative) on each

column, and the load-deflection curves for the north column

in test 3 are shown in Figs. 3-24 through 3-27 respectively.

3.4.4 Discussion of Column Test Results

The buckling modes of failure in all the three tests were

the same as predicted by the theory. As mentioned in Section

3.4.3 the experimental failure loads of columns ranged from

84% to 94% of the corresponding critical loads. The maximum

amplitudes of initial imperfections used in the computations

of the theoretical load-deflection relationships were the

maximum values of the initial imperfections along the length

of the column, so that the theoretical deflections would be

a conservative estimate of the actual experimental deflections.

Figs. 3-26 and 3-27 shew a cOffiDarison between the theoretical

load-deflection curves and the actual experimental load-deflec

tion curves. It can be seen fro~ the figures that the theoret

ical deflections are a conservative estimate of the actual

experimental deflections except at very high load levels. At

very high load levels the deflections of the column become

large and certain portions of the cross section of the column

might have yielded even if the average stress level on the



column is in the elastic range. At these high load levels

the assumption of small deflection theory in the analysis

may not be valid. The above reason probably explains why

the experimental deflections at very high loads are larger

than the theoretically predicted values.
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4. SUMMARY AND CONCLUSIONS

4.1 Summary of Current Investigation

4.1.1 Diaphragm-Braced Beams Under Uniform Boment

The critical moment for I-beams continuously braced by a

diaphragm on the compression flanges and subjected to uniform

moment was obtained by Errera(8) using an energy method. In

the present investigation, the solution for a more general prob-

lem--the load-deflection relationships of an imperfect Z-beam

continuously braced by a diaphragm on the compression flange

and subjected to uniform moments--was obtained by using the equi-

librium method. The load-deflection relationships for diaphragm-

braced imperfect I-beams and channel beams, the critical moment

for a diaphragm-braced ideal Z-beam, and the critical moment for

diaphragm-braced ideal I-beams and channel beams were derived

as particular cases from the load-deflection relationships of

a diaphragm-braced imperfect Z-beam.

The principal axes of the Z-beam are inclined at an angle

~ to the vertical and horizontal planes. In the theoretical

analysis, uniform moment in the horizontal plane was applied In

addition to the uniform moment in the vertical plane in such an

amount that a diaphragm-braced ideal Z-beam bends vertically be-

fore it buckles. The uniform moment in the horizontal plane

vanishes for diaphragm-braced I-beams and channel beams. The

load-deflection relationships for a diaphragm-braced Z-beam are

given by

93
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c,

£, ;:::,,,,

E r f!lTf)'I--+ 6 k+ Ile.j D
A~ ~L ~ ~ I

(4 -·1)

where the term containing the flexural rigidity F of the dia-

phragm is dropped (refer to page 18) and

n = 1 if the ends are simply supported (i.e. twist

is zero and warping is unrestrained at the ends)

n = 2 if the ends are "fixed" (i. e. fixed about the

vertical and longitudinal axes)

( Ix,) elastic portion of the cross section

E = E.n,x. --rq total cross section

(I~) elastic portion of the cross section

E.n.y. = E --,
l~total cross section

Gtt, =

E In.,x I )<.,

E I yrt.'1. J

is the flexural rigidity of the beam about the

principal axis XI

is the flexural rigidity of the beam about the

principal axis 'fa
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is the warp1ng rigidity of the beam

1S the torsional rigidity of the beam

is the shear rigidity of the diaphragm

is the distance from the C.G. of the beam to

the plane of the diaphragm

1

=

b ,and'bll., are the amplitudes of the 1n1-
\'"1,1 r

tial imperfections (refer to Eqs. 2-28 and 2-31)

and C \ , D 1 ,and E I are the amplitudes of the additional de-

flections (refer to Eqs. 2-29 and 2-32).

The load-deflection relationships of diaphragm-braced 1m-

perfect I-beams and channel beams were derived by letting 0( = 0

and cn.y\ = E. n.y , in Eq. LI-l. After simplification the am-

plitudes of the additional deflections are given by

=
Mb ~ rE>t.Yr'(¥)~+ 0n k. i- Qe'L- L+ tv1 ~lA. (M -qe)

{ En-y 1 y (¥),...+ ~1t E",y r C~·)c~'l-+ GTI-k.. + Q.e~} -(M -Q.~~
(4-2)
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and

=
f t:.)t,yI y (!i-2I)~+ Q1{E.1l-yr l~T\)~ b7\.-k + Qe1-I_(M_Qe)2

(4-3)

where b v.. and ~f are the amplitudes of initial imperfections

of either an I-beam or a channel beam corresponding to S~I I
)

and S~\ of a Z-beam.

The critical moment for a diaphragm-braced ideal Z-beam was

derived from Eq. 4-1 by letting the initial imperfections equal

zero and solving for the nontrivial solution of the resulting

eigenvalue problem. The critical moment is given by

The critical moment for diaphragm-braced ideal I-beams and

channel beams was derived from Eq. 4-4 by letting ~ = 0 and

= E~y' After simplification the critical moment is

-t- Qe
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The load carrY1ng capacity of diaphragm-braced imperfect

I-beams and channel beams was determined on the basis of one of

the two failures described below, whichever occurs first.

1. Failure of the beam by yielding. The beam is considered

as failed if the uniform moment on the beam reaches the yield

moment My of the beam.

2. Failure of the diaphragm in shear. The diaphragm is

considered as failed if the maximum shear strain rm~x of the

diaphragm in the diaphragm-braced beam assembly exceeds the

shear strain ~ of the diaphragm determined in an independent

cantilever or simple beam shear diaphragm test described in

Appendix IV. The maX1TIlUm shear strain Y"mo.x can be calculated

by using Eqs. 4-2 and 4-3 and knowing the deflected shape of the

diaphragm-braced I-beams and channel beams.

A comparison between the theoretically predicted critical

moments and experimental failure moments from four diaphragm

braced double 10B17 I-beam tests conducted by Irrera 1S pre

sented in Fig. 2-34. The predicted critical moments underesti

mate the failure moments of the beams in the elastic range by

about 20% to 24%. This can be attributed, probably, to the fact

that the cross-bending rigidity of the diaphragm is not considered

in the predicted critical moments. However, in the inelastic

range the moments sustained by the beams were smaller than the

predicted critical moments by about 3% to 5~.

Three diaphragm-braced 6[8.2 double-beam tests were made

and the comparison between the theoretically predicted critical

moments and the experimental failure moments are shown in Fig. 2-35.
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The moments sustained by the beams ln the above tests ranged

from 75% to 99.6% of the predicted critical moments of the

beams.

A comparison betVleen the theoretically predicted critical

moment apd the experimental failure moment for a diaphragm

braced beam assembly comprising of four 8Jr6.5 I-beams is pre

sented in Fig. 2-36. The moment sustained by the beam assembly

was 90% of the predicted critical moment.

The load carrying capacities of two different diaphragm

braced I-beams were calculated in Appendix II to exhibit the

behavior of the imperfect beams and the diaphragm under load.

In one of the examples the beam fails before the diaphragm does

whereas in the other example the diaphragm fails before the beam

does. It is seen that the type of failure which determines the

load carrying capacity of the diaphragm-braced beam assembly de

pends on the relative strength and stiffness of the diaphragm

and the beam.

4.1.2 Axially Loaded I-Section Columns Braced by Girts

Which in Turn are Braced by a Diaphragm

The load-deflection relationship of an axially loaded im

perfect I-section column with "hinged" (i.e. f1exura11y hinged,

twist is zero and warplng is unrestrained) ends braced by one

or two intermediate girts which in turn are braced by a diaphragm

was obtained by minimizing the total energyU (given by Eq. 3-13)

associated with one column of the assembly, using the Ray1eigh

Ritz technique. The assumed deflection pattern of the column

is given by Eqs. 3-18 and 3-19, and 3-29 through 3-36. The load-
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[])lIJ {x'1 3 .== P {VII! (4-~»)

[.DZ!]{A2.I} == P i V2.I} (ll-6)Second Mode:

deflection relationships of an axially loaded imperfect I-section

column are given by

Column with one intermediate girt:

First Mode and Modified First Mode:

Sidesway: (4-7)

Column vJi th two intermediate girts:

First Mode and Modified First Mode:

Modified Second Mode:

Third Mode:

Sidesway

[DI2.] fXI2.1 = p 1VIZ.} (4-8)

[D2.2.] fx2.2.} := rf V2.?_}(4-9)

[D32.JfX32.} == prV3z1(!~-lC)

(q-p) 6. = P.6. o (4-lJ.)

(Refer to Section 3.1.2 for the matrices DII, ])2\ , Dt2,

J) 2 2. , D 32. , X II, X 2.1 , X 12, x:n , )( 32 , VII, V 21 ,

V 12 , V22., and V3 L • )

It was seen in Section 3.1.3 that when the column sways it

neither bends nor twists, and, also, if the column bends or

twists, or bends and twists, it does not sway. The deflection

mode for an imperfect column braced by girts which in turn are

braced by a diaphragm is the same as the buckling mode for an

identical ideal column with the identical bracing. If the column

is prevented from swaying in the plane of the diaphragm, for ex

ample, by using X-bracing (refer to Fig. 1-1), then, the load

deflection relationships are given by Eqs. 4-5 and 4-6, and Eqs.

4-8 through 4-10.



100

The critical load of an axially loaded ideal column braced

by girts which in turn are braced by a diaphragm was obtained by

letting the initial imperfections equal zero in Eqs. 4-5 through

4-11 and solving the resultirtg eigenvalue problem for the non

trivial solution. The critical load is obtained from:

Column with one intermediate girt:

First Mode and Modified First Mode:

Second Mode:

Sidesway:

'DII \ = 0

1J>2.11 =0

(Q-p) == 0

(4-12)

(4-13)

(4-14)

Column with two intermediate girts:

First Mode and Modified First Mode: IDl21 0 (4-15)

Modified Second Mode: ID 2Z1 =0 (4-16)

Third Mode: ID3Z1 - 0 (4-17)

Sidesway: (Q-p) =0 (4-18)

The critical load is glven by the smallest value of P ob

tained from Eqs. 4-12 through LI-14 for the ideal column with one

intermediate girt and from Eqs. 4-15 through 4-18 for the ideal

column with two intermediate girts. The ideal column buckles

in that mode from which the smallest value of P is obtained.

If the sidesway is prevented, the critical load is given by Eqs.

4-12 or 4-13 for the column with one intermediate girt and by

Eqs. 4-15, 4-16, or 4-17 for the column with two intermediate

girts.
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In the inelastic range the above equations are modified by

replacing the modulus of elasticity E and the shear modulus ~

by '"E = E
(Ie c-y -cr)
crt' (cry -err)

and *q =
0\-

(_E_)
E

, where (I,

err ' and u-y are the average axial stress on the column, pro

portional limit of the stress-strain relationship of the cross

section, and the yield stre~s of the material. The proportional

in the analysis herein ...!!:.y
2-

The load carrying capacity of an axially loaded imperfect

limit was assumed to be equal to

I-section column was based on one of the three failures given

below, whichever occurs first.

1. Failure of the column by yielding. The criterion of

failure established here is that of failure In combined bending

and axial stresses. A column lS considered as failed if anyone

of the following inequalities lS violated:

Between girts: (4-19)

At braced points:

(i.e., at intermediate
girts and ends)

(4-20)

where

f lS the computed axial stress
Cl-

~ is the computed bending stress at the section under

consideration including the effect of additional

deflections under axial load

~ is the buckling stress
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and ~ 1S the yield stress.

Note that the above inequalities are ultimate strength equlva-

lents to Eqs. 7a and 7b in the AISC manual. Further, since the

column is bent about the Y axis, there will be no lateral tor-

sional flexural buckling; and therefore on the basis of ulti-

mate strength Fy is substituted for Fb in Eqs. 7a and 7b of

the AISC manual. It is to be noted that contribution of twist

towards failure of the column is not included in the above.

2. Failure of the diaphragm in shear. The criterion of

failure of the diaphragm bracing the girts which in turn brace

a column is similar to that described in 2 on page 29 for dia-

phragm-braced beams. The diaphragm is considered as failed

if the maximum shear strain r"",G'.X computed using Q = Q~

ln the required equations, exceeds the shear strain y~

rm~x can be computed from the load-deflection relationships

knowing the deflected shape of the column.

3. Failure of the girts in bending. Twist of the columns

produces bending of the girts about their strong aX1S. Fig. 3-16

shows the bent shape of a girt bracing an imperfect column. It

is seen from Fig. 3-16 that the compression flange in one half

length of the girt between the columns is not braced by the dia-

phragm. Therefore, to be conservative, a girt is considered as

failed if anyone of the following inequalities is violated:

~
M <. Mc 1'1.-c

(11-21)

Mea
y
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where

Me 1S the moment on the girt at the connection to the

column due to the twisting of the column

M1r is the critical moment of the girt of length \ven,

subjected to uniform moment (refer to Fig. 3-·16 )

and M'A' 1S the yield moment of the girt.y

Three tests were conducted on 8Jr6.5 I-section columns

braced by girts which in turn were braced by a 26 gage standard

corrugated steel diaphragm. The variable in the three tests was

the twist restraint m on the column. The ends of the column

were flexurally hinged. Warping was restrained and twist was

zero at the ends of the columns. Load-deflection relationships

and the critical loads were derived in Section 3.4.2 for the

column in the three tests using the general procedure given in

Section 3.1. A comparison of theoretically predicted critical

loads and experimental failure loads of the columns are shown

in Figs. 3-18 through 3-20. The axial loads sustained by the

columns in the tests ranged from 84% to 9 Lf% of the critical

loads. The theoretical and experimental load-deflection rela-

tionships are shown graphically in Figs. 3-26 and 3-27.

4.2 Conclusions

Present theory and test results demonstrate conclusively

that shear-rigid diaphragms properly attached can effectively

brace slender beams against lateral buckling, and can increase

the critical moments of ideal beams to their plastic moments.
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It was shown that the theoretical failure loads of imperfect

beams subjected to uniform moments can be computed analytically

for assumed criteria of failure of the beams and the bracing,

and the theoretical failure load of the beam assembly is always

less than the critical moment of the corresponding ideal beam

assembly. In the case of particular examples worked out 1n

Appendix II the theoretical failure loads of the beam assemblies

were smaller than the corresponding critical moments by about

15% to 20%.

Further, present theory and test results demonstrate that

properly attached diaphragms can brace girts which in turn can

effectively brace columns if proper moment resistant column

girt connections are provided. Such diaphragms and girts can

reliably increase the critical loads of columns to the Euler

buckling loads of the columns of a length equal to the spacing

of the girts. It was shown that the failure loads of axially

loaded imperfect I-section columns braced by girts which in

turn are braced by a diaphragm can be computed analytically for

assumed criteria of failure of the column and the bracing, and

the theoretical failure load of the assembly is always less than

the critical load of the corresponding ideal column assembly.

In the case of particular examples worked out in Appendix III

the theoretical failure loads of the column assemblies were small

er than the corresponding critical loads by about 17% to 32%.

Where present forms of construction provide adequate dia

phragm bracing to beams or columns, or where minor modifications

in construction practice would accomplish this, the above infor-
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mation could serve as the basis for increased design load capacity,

or elimination of other types of bracing.
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APPENDIX I

NOTATION

cross-sectional area

energy due to ·shear in the diaphragm

energy of bending of the girts

amplitude of additional lateral deflection

amplitude of additional twist

matrices

modulus of elasticity

tangent modulus

effective modulus for weak-axis buckling

reduced modulus in bending

amplitudes of initial lateral deflection of

column

flexural parameter of diaphragm

buckling stress

yield stress

amplitudes of initial twist of column

shear modulus

effective shear modulus of diaphragm

shear stiffness of diaphragm

reduced shear modulus

inelastic shear modulus

moment of inertia

polar moment of inertia

torsional constant

106
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L

constants

constants

length

moment

critical moment

end moment

plastic moment

yield moment

number of corrugations between successive

connectors

107

P load

~ effective shear rigidity of diaphragm

R resistive force on the column due to the girts

Sx elastic section modulus about X-axis

Sb shear force of the diaphragm

U total potential energy in a system

Uw potential energy of external loads

V internal strain energy of column

VlJ 1 VWi.~,Vt,,(j column matrices

(i =',"'j i = 1",.·--)

x , y ,:z. 1 coordinate axes
X(1)y"l,~

xii, XWtJ)XMij column matrices
(i =1, .. ; i=-I, ..• )

~~ plastic section modulus about X-axis

length of shear punel perpendicular to load

direction
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length of shear panel parallel to load direc-

tion

depth of beam section

distance between the plane of bracing and

C.G. of member section

average axial stress of the member

bending stress at the extreme fiber of the

member

mode number

number of intermediate girts

spacing of girts

twist restraint

equivalent distributed force for shear of

diaphragm

weak-axis radius of gyration

thickness of diaphragm

deflections of member parallel to X and Xl

axes respectively

deflections of member parallel to Y and Yl

axes respectively

width of diaphragm contributing to bracing of

one member

distances from center of gravity to shear

center of a section along X and Y principal

axes·respectively.
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angle between the principal and horizontal

or vertical axes for a Z-beam

tvlist of member

shear strain

warplng constant

initial imperfection or deflection of Z-section

sidesway or shear deflection

axial strain

average axial stress

proportional limit

yield stress

shear stress



APPENDIX II

ABOUT DIAPHRAGM-BRACED BEANS

Deflections in the directions of the principal axes of

a Z-beam are given by

Deflection in +ve ~ direction due to M ,

Deflection ln +ve direction due to

Deflection ln -ve x, direction due to N\ M \(.3 M SinD<, ~ =
):\

I y ,

Deflection in direction
Ms k 3

Ms sioo(
-ve XI due to M~ SoX, =,

ly,

where K 3 is aeons tant.

The total deflections '£)( I and by, in the X, and Y I

directions respectively are as shown in Fig. 2-3 and are glven

by
...,

SMs
bx.. - Sx, + . XI

b~ Ms
'by, - y. + by,

For no horizontal deflection before buckling the follow-

ing condition should hold:

case<
(11-1)

But,

M Ms
~x, . ~)(I + $x I. x , { M SCT\C( - MscoSjJ- -
~y ~"" + ~M .. I Y1 M Co~ + Ms~tv\

I Y, y,
(11-2)

Using Eqs. 11-1 and 11-2, Ms can be computed as

110
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Msc:.'l\o(coC< {I x1 - ly,l
-----------~--
{Ixl cos~<x + l. y, S~y\'l-",-}

Examp1p:__1. The roof of a building is spanned by 14 x l~B

x 17.2# I-section beams 12' long. The beams are braced by a

22 gage wide rib roof deck (12' long sheets) welded as shown

in Fig. 11-1. It is required to determine the moment carry-

ing capacity of an end beam. Beams are made of A36 steel.

Beams can be considered as "simply supported" (simply supported

about the horizontal and vertical axes, twist is zero and wa~p-

ing unrestrained) at ends.

Shear Diaphragm Characteristics (refer to page 29 and

Fig. 11-2):

80% of ultimate shear load = 0.8 x 3.43

= 2.74 kips

Shear deflection at 80% of ultimate load (neglecting bend-

ing effect of the frame) = 0.54"

Shear stiffness, (/J = 3.-:...~(~~) = 4.24 K/in
a. 0.54 12

Shear rigidity, q~ (Considering that 3' width of diaphragm

contributes to the support of an end beam) = 4.24 x 36

= 152.5 kips

Shear strain Yet.

Critical Moment

= 1~·~41i = 0.0045

M(..7l., l.t of the Beam (no bracing):

q = 0 and F = 0

Using Eq. 2-46, = 329 K-in
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Critical Homent M(.~ of the B$am hlith Qd = 152.5 kips_ :

My = 36 x 21.0 = 756 K-in

M p9. = 36 x 24.7 = 889 K-in

Using Eq. 2-44,

Using Eq. 2- 1f5,

Qy = 30.2 kips

Qft= 63.5 kips

Therefore, Me-n,. = Mpt = 889 K-in

Failure Moment of the Beam:

Maximum Shear Strain

Initial lateral imperfection 1= - x8 0.15"

Initial twist ~~ = 0.01 radian

Using Eq. 2-36, C. = 0.0232"

Using Eq. 2-37, D. = 0.0102

Using Eq. 2-38, , yoMG\X = 0.00206 .(. ret

Therefore, moment carrying capacity of the beam =

My = 756 K-in.

Vertical Deflection at Midspan ~f the Beam at My

Vertical deflection at midspan = M -'.-"1-
~ =
8El x

.756 X 14 1l x 144 0.458"=8 x 29000 x 147.3

Allowable deflection at failure moment:

Result:

= 144
360 x 0.66 = 0.606 '> 0.458

The beam fails before the diaphragm does and the mo

ment carrying capacity of the beam = My = 756 K-in.
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Example 2. The roof of a building is spanned by 18 x 6

x 70# I-beams 18' long. The beams are braced by a 22 gage wide

rib roof deck (12' long sheets) welded as shown 1n Fig. II-I.

It is required to determine the moment carrying capacity of an

end beam. Beams are made of A36 steel. Beams can be considered

as "simply supported" (simply supported about the horizontal

and vertical axes, twist is zero and warping unrestrained) at

the ends.

Shear Diaphragm Characteristics:

Same as in Example 1.

QJ = 152.5 kips, and

_C_r_i__t_i_c_a_l__M_o_m_e_n_t_--:.M-:c !intl., 0 f the Beam (n 0 b rac i ng) :

q = 0 ,and F = 0

Using Eq. 2-46, Mcn,u.. = 2780 K-in

Critical Moment Men.. of the Beam V-lith Qa = 152.5 kips:

My = 36 x 101.9 = 3668 K-in

Mpt = 36 x 123.8 = 4!~56 K-in

Using Eq. 2 _!~ 4 , Qy = 42.6 kips

Using Eq. 2-45, Qpt = 247 kips

Now, Qy <:. ~ ~ Q.~t

Therefore, the beam buckles 1n the inelastic range

and Men. >- My

Using Eq. 2 _!~ 7 , for

M = 3823 K-in, Q = 109 kips

M = 3867 K-in, Q = 200 kips

Using Eq. 2-48, Men. = 384 1f K-in.



Failure Moment of the Beam:

Maximum Shear Strain

Initial lateral imperfection ~ 1 18 0.225" .u. = '8 x 10 =

Ini tial twist ~ ~ - 0.01 radian

It is found that the maximum shear strain '("mo." > r:t.
at My. Therefore, the moment carrying capacity of the beam

is smaller than My.

Using Eqs. 2-36 through 2-38, ~ at moment u = 3063I 1'1-\0..)1. ."\

K-in is found to be: 1 Yv\.Q.)( = o. 0 0 4 5 = IJ'

Therefore, the moment carrying capacity of the beam = 3063

K-in.

Vertical Deflection at Midspan of the Beam:

Allowable vertical deflection at failure moment =

18 x 12
360 x 0.66 = 0.909"

Vertical deflection at M = 3063 K-in:

3063 x (18 x 12)2 = 0.671" ..t:... .909"8 x 29000 x 917.5

Result: The diaphragm fails before the beam does and the

moment carrying capacity of the beam = 3063 K-in.



APPENDIX III

ABOUT COLUI1NS BRACED BY GIRTS \'lHICH IN TURN ARE BRACED

BY A DIAPHRAGH

III-a Column with One Intermediate Girt, Cases al-2.1 and

al-2.2

When e = 0, Eqs. 3-48 and 3-49 glve

and

::: {[Ely(~r- p + ~~J [EIYt~i)~- P+ ~~J -(-~~)(-<f~~)}

{[Er(i~r-+ Gk - P1! + 4.:;~J [er(;rt+ G k -PJ + ~~~-t~~)t~~~j~o

- 0

It can be observed from the above equations that buckling

will be either purely flexural or purely torsional and the crit-

ical load for a rolled steel column is, generally, given by

(for case al-2.2)

either

or

whichever glves the smaller value of P •

When Q = 0 (Case al-2.l) J. the critical load 1S glven by

115



116

III-b CQ1UInn "vi til One In.!el"J.!:l.'::diate Girt, Cases al-2. 3 and

al-2.4----
When Q = 0 , Eqs. 3-48 and 3-49 glve

11ml

and

[ [EI y Ir.t-rJ {[u li.r~ G k - f f -r ~~] + e~ [EI,l:,f--r]}
-c'- [~I,(rlr- pJ] [[£.I1l~,;r- p] {[E.rt~I)+ Gd~f + W-J
+ e"J- [e! Y(;p- r]} - e"J- [F-1YChiL)"\--- ~1- [Lly(?it- pJ
[EIy(~f/-~l'] [~~QJ [-~;~J = 0

[Ely(fr--pJ {[Erlfr+ Gk - Pfr] -re'~lEly(fr:pJ}

- e'2.. [c I y tFt- ~ ~ ~ 0

After simplification and rearranglng the terms the above equa-

tions reduce to

- [4.;!J [-\~~J

and

From the above equations, for m ~ 0 (Case al-2.4) or

m = 0 (Case al-2.3), the critical load for a rolled steel

column lS, generally, given by



117

III-c Column \vi th T"lO Intermediate_ Gi~ts, Cases a2-2.l and

a2-2.2

When e = 0) Eqs. 3-55 through 3-57 glve

and

_ 0

it can be observed from the above equations that buckling

will be either purely flexural or purely torsional and the crit-

ieal load for a rolled steel column is, generally, given by

(for Case a2-2.2)

either

or

or

fEI £'2.1r)'t._ r + 27Ql rEIy (1-1[)'l-- p + 2lSJ- ~2'7~J r'2.7Q J-= 0
l' Y\.31 4-ir:j L -sr IbTI j r41r~ L~

whichever gives the smallest value"of P .

When Q = 0 ) (Case a2-2.1) the critical load 1S glven by
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III-d Problem Hith '£\<70 Intermediate Girts ,__Sases a2-2. 3 and

a2-2.4

When Q = 0, Eqs. 3-55 through 3-57 glve

1])121 = [~r)Jit-r] {~r(lft-t-G~<- P~ + :;!] +e~[Er~t-pJ}-e~[EI~)~~1]

[~I~:)~fJ{~rm"L-+6K-P~ + d~~]+C[EI'IWI):P J}-e~ ~I7~{r-~~

rDLLI ~ [[Ely(;rr~- {[Er~)~+ Gk-Pte + :m;~] + e~[Eli~D~ ~}- e7. [El~~ij:prJ

[[Ely(:lJ~?] {~ri1f)~+ (;k-1'f + ~~:] + e~[Ery~V=p]}- e7.[EIy~~r_~~]

-[EI>,~~l=-~ [EIylM):-P] [-~~~J [-ibr;~J =0

end

After simplification and rearranging the terms the above equa-

tions reduce to

[Er{21f)~+ 61< - ph + qrn.e. J = 0
\.3l. A 251f~
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rEr(b7[)')...+GK.-P~ + 'lmQ J
L '0U A 4-1f>--

[fr~~3JI)'-+ Gt - ph i- 3r'ltJ - (j
;.) A Ib1f .....

- [~~~J [;~.]

and

From the above equations, for m # 0 (Case a2-2.4) or

\'Y\ = 0 (Case a2-2.3) the critical load for a rolled steel

column is, generally, given by

Example 1. The lL~ v-F 30 columns in a building are 19' 4"

apart and 16' high. Three 6"xl-l/2"[14 gage intermediate girts

spaced at 4' intervals brace the columns. The girts are braced

by a diaphragm, whose shear characteristics are: Qcl = 413 kips

(for the end column), and r~ = 1.103 x 10-2 (refer to page 29

for QJ and ret ) • It is desired to determine the load carry

lng capacity of an end column in the case of two types of girt-

column connections shown in Fig. 111-1. The ends of the column

may be considered as flexurally hinged and torsionally simple

(i.e. twist is zero and warping unrestrained). A36 steel is

used for all the members. E = 29000 ksi. Refer to Fig. III-I

for a sketch of the problem.

Properties of 14 YF 30 Column Section and Other Constants:
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r 935 6- ln

K 0.343 4-- ln

~ = 3l } • 9 in 2
A

1- I:+?Er{f) = 116300
K .. _.
-In

&K. = 3830 K-in 2

Torsional Restraint m :

(a) Connection Type-I (refer to Fig. III-I)

Bending stiffness of the girt at the end column =

6 x 29000 x 3.10
232 = 2325 K-in/rad

In order to ascertain rigidity of the connection a model

of the connection shown in Fig. 111-1 is considered.

Assume 100 K-in moment on the connection due to the twist

of the column. 100
This means a twist of 2325 = 0.043 rad.

Force ln 6"xl-l/2"[ :: 100 = 11.28K (Tension)"8-:86

Force ln 3"x3"x3/8 L =

Extension ln [ section

(11.28) [2 = 15.96K (Compression)

= 11~28 x 8.86 = 0 0053"
0.65 x 29000 .

Compression in L section 15.96 x 12.52= =1.44 x 29(m-(j~-
0.00478"

Twist of I-section

0.001093 rad.sections = (0.0053

due to axial stresses ln [ and L
+ 0.00478/ [2)
8.86

Note that 0.001093 rad. is negligible compared to the twist

of 0.043 rad. of the column. Therefore, this type of connection

is considered as fully rigid, and the twist restraint rn on the



column 1S glven by

om :: 2325 K-in/rad
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(b) Connection Type-II (refer to Fig. III-I)

This type of connection, in general, is considered as

fully flexible. Therefore, YY\= 0 .
*Flexural Buckling Load Pe

Referring to page 73, pk can be computed ase

l:* - 305.5 kipse -

Load Carrying of the Column with Connection Type-I:

Using Eq. 3-76, 337 kips

2.

~ 454 kips
"r tel I 3 -

It can be seen from the above values of that

the critical load is not given by the modified first mode.

For Q.J.= 413 kips and 'm = 2325, and using Eq. 3-73,

296.7 kips

0*
Ie- = 305.5 kips

Therefore, the critical load is glven by the modified

second mode, and =
2

r
C-:n..,3 = 296.7 kips.

The column deflects in the modified second mode because

the buckling load of the ideal column is obtained from the

modified second mode.

16/2 =10Initial Imperfections:

1aX
0.01

0.1"
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Therefore, E.2. -- 0.1 - 8 x 0.01 - 0.02"

Assume the load carrYlng capacity r = 2 L~ 5 kips.

Using Eq. 3-69, I o. 0 It It "C2- -
Using Eq. 3-70,

I o. 00 l~1)2- -

The failure of the column lS checked at the critical loca-

tions (1) and (2) as shown in Fig. 111-2.

Using Eq. 3-61 at (1),

Using Eq. 3-60 at (2),

t.... +f l> = 35. 87 < 36 . 0

fCL- + -t.. = 0 . 9852 < 1.0F:. Fy

Diaphragm shear strain I 1\ . If"= C:z- x :2..2... = 0.04-4- C}{,

-2
0.14 LtxlO "'- I'd

M;Of 6 [14 gage girt = 36 x 1.03 = 37.1 K-in

't 19'4"
~ of 6 [ 14 gage girt of length --2·--- can be computedc.1t

using the conventional theory of lateral buckling.

'}
MCIL = 8.0 K-in

Using Eq. 3-62, M =c. = 8.0 K-in.

Allowable slope of bending of the girt before it buckles =

8.0 x 116
2 x 29000 x--~fO = 0.00515

Note that
I

])2.. ~ 0.00515

It can be seen from the above computations that the column

is very. near to failure, and the diaphragm and the girts do not

fail before the column does. Therefore, the load carrYlng ca-

pacity of the column will be taken as 245 kips.

Further, it was seen from the computations (not included
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here) that increase of P beyond 245 kips would bring about the

failure of the column at (1).

Lbad Carrying Capacity of the Column with Connection Type-

II

Because m = 0 , the column buckles ln the modified first

mode ln this problem.

Using Eq. 3-76, for P, = 180 kips, Q1 = 139.2 kips

Using Eq. 3-76, for P2 = 190 kips, Qz = 1181 kips

Using QJ. = kips,
I

Eq. 3-78, for 1~13 PC.)t./~== PCJL )3 = 182.6 kips

Initial Imperfections:
{ E"

1 16 0.2"- 1f x 10 =

F1 == 0.01

Therefore, E, = 0.2 - 8 x 0.01 = 0.12"

Assume p = 125 kips.
I

Using Eq. 3-69, CJ = 0.0553"

Using 3-70,
/

0.0332Eq. D, =

The failure of the column is checked at the critical 10-

cations (1) and (2). Refer to Fig. 111-3.

Using Eq. 3-61, at (1), - 26.52 L... 3b

Using Eq. 3-60, at (2), fa. + -h _ 1. 001 > I
Fe:>.. Fy

Diapbragm Shear Strain c'I
1+£

0·05"53 )(1\
I~ 2-

-2 ./ v-- 0.089x10 ~ I~

Because n, = 0 , the girts are not loaded by the twist of

the column. Therefore, there is no failure of the girts.

It is seen ln the above computations that the column just

fails at (2).
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If P = 124 kips the column will not fail at (2). Thc com-

putations for this case are not included here. Therefore, the

load carrying capacity of the coluffiR = 124 kips.

Example 2. The 14 v.F 30 columns in a building are 15' G"

apart and 12' high. TVlo 6" x 1-1/2" [ 14 gage intermediate

girts spaced at 4' intervals brace the columns. The girts are

braced by a diaphragm Vlhose shear characteristics are:

413 kips (for the end column), and ret = 1.103 x 10 -2 (refer

to page 29 for Qa and r~ ). It is desired to determine the

load carrying capacity of an end column when the column-girt

connection is connection type-I. The ends of the column may

be considered as flexurally hinged and torsionally simple (i.e.

twist is zero and warping is unrestrained). A36 steel is used

for all the members. E = 29000 ksi. Refer to Fig. 111-4.

=

Properties of 14 ~F 30 column section and other constants

are the same as glven in Example 1.

Twist Restraint m: It was seen ln E~ample 1 that the con

nection type-I can be considered as fully rigid.

6 x 29000 x 3.10
Therefore, ~ (for an end column) = 186

2900 K-in/rad

From Example 1,

Using Eq. 3-76,

*Fe = 305.5 kips
I

Qlcl.)2. = 350 kips <. Qc{

::I..

Qlet. 2. = 404 kips < QJ
)

Therefore, buckling occurs in the third mode.
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{ E,
1 12 0.15"

Initial Imperfections = - x 10- =8
E3 = 1 4 0.05"'8 x 10- =

AssuHle P = 230 kips.

Using
Ii/>

Eq. 3-71, Cl = 0.1018"

Using Eq. 3-72,
/'"

C = 0.00768"
3

The failure of the column was checked at locations (1),

(2), and (3) (refer to rig. 111-5). It was found that loca-

tion (2) was more critical than location (3).

Using Eq. 3-61, at (1), fa. + f b = 35.75 <.. 36

Using Eq. 3-60, at (2), fo.. + 2Ja = 0.9915 <.. 1.0
F~ F'j

Diaphragm Shear Strain v
1l'V'\.C'-X

I~ 1I~ '* 11- C, -- 1- C -
3Q.. 3 1..

-2 -2= 0.27xlO < ro\ = 1.103xlO

There is no twist of the column because the column buckles

in a pure flexural mode. Therefore, there "is no failure of the

girts.

It is seen from the above computations that the column is

about to fail at (1). Therefore, the load carrying capacity

of the column will be taken as 230 kips.

Further, if the load P 1S increased it will be seen that

the column fails first at (1).

Load Carryin~ Capacity of the Column (Q = 826, m = 2900)

Assume P = 245 kips
Ill;

Using Eq. 3-71, C, = 0.05 1f2"

1*
Using Eq. 3-72, C = 0.00962"

3
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Similar to the above case, when Q = 413, it w~s found that

(1) and (2) (refer to Fig. 111-5) are the critical locations

for failure of the column.

Using Eq. 3-61, at (1),

Using Eq. 3-60, at (2),

.fo.+fJ> = 35.57 <..3(;,

tel. -/_ f.b = 1. 104 > I
Fe>. -Fy

Diaphraoom Shear Strain '("mo..x
f-}t, IT 1* 7i

C, 31 + C3 T

-2 " -2
_ O.18lxlO < ~ = 1.103xlO

"There is no twist of the column because the column buckles

in a pure flexural mode. Therefore, there is no failure of the

girts.

It 1S seen from the above computations that the column

fails first at location (2) if F = 245 kips. It was seen, by

making a similar computation (not included here), that the col-

umn does not fail at P = 240 kips. Therefore the load carry-

lng capacity of the colum will be taken as 240 kips.



APPENDIX IV

DETERMINATION OF MATERIAL PROPERTIES

IV-a Diaphragm Rigidity: Double-Beam Shear Tests

The distinguishing feature of the diaphragm bracing dis-

cussed in this report is that the increased buckling loads and

load-deflection relationships are a function of the shear rigid

ity and the shear strength of the bracing, rather than the stiff

ness and strength of an elastic spring, or Winkler, support.

The effective shear rigidity ~ of the diaphragm has been defined

as

(IV-I)

where A lS the cross sectional area of the diaphragm (normal

to the column or beam axis) contributing to the support of one

member and is the effective shear modulus of the dia-

phragm for given width, thickness,corrugation form, and con

nector details. As indicated In the above definition the effec-

tive shear modulus appears to be a function of the width, thick

ness and the cross sectional shape of the diaphragm, as well as

the type, number and location of the fasteners used in connecting

the diaphragm to the edge members. In this investigation, double

beam shear tests as developed by Fisher and Pincus(6) and shown

in Fig. IV-l were used to determine and Q experimentally.

The shear rigidity of a glven diaphragm can be obtained from the

double-beam shear tests using the following expression, also ob

tained from energy considerations:

127
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'I-
1\ £1

- Y
L:

where Mo and ~ are the applied end moments and midspan deflec-

tion of the beams, respectively. 1S obtained from Eq.

IV-I. Table 2 contains the pertinent results from tests of 30

gage plenum form cross-corrugated steel diaphragm material. The

corrugations of the plenum material are 17/32" deep, with a pitch

of 1-13/16" (measured values). The diaphragms were attached

to the rolled shapes with l/4-inch Pow-R-Set pins at the junc

tion of the flange and web, in the valley of the sheet.

The 30 gage plenum material has a nominal thickness of 0.012".

The measured thickness was 0.0129 and was used in the calculations.

The strong influence of fastener spacing N and the diaphragm

width w on the effective shear modulus may be noted from Table 2.

IV-b Diaphragm Rigidity: Simple Beam Shear Test

Several shear diaphragm tests have been conducted by Nilson(17)~

and Luttrell(14) to determine the shear stiffness and strength

of light gage steel diaphragms. They were either simple be~~

shear tests or cantilever shear tests. Luttrell defined the

shear stiffness

where

,
G as

,
(; - Pa.

Ab
(IV-3)

P 1S the 0.4 (ultimate shear load of the diaphrag~

~ 1S the shear deflection of the diaphragm at 0.4~lti-
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mate shear load)along the load direction.( A =

, where "l-.. " D , D , an d
J,J ~ 3

~4 are the deflections of the diaphragm in the direc-

tions indicated in Fig. IV-2)

d is the shear span of the diaphragm"perpendicular to

the load direction (refer to Fig. IV-2)

and b lS the diaphragm length along the load direction (refer

to Fig. IV-2) .

N h d · h . ·d· (8)ow t e lap ragm rlgl 1 ty Q

,
Q ::::: G W"

may be defined as

(IV-4)

/

where 6 and \.IT are respectively the shear stiffness and Hidth

of the diaphragm perpendicular to the member (beam or column)

contributing to the support of one member.

Shear rigidity used in computations to evaluate the criti-

cal loads of columns braced by girts which in turn are braced

by a diaphragm was obtained experimentally uSlng a simple beam

shear test as shown ln Fig. IV-2. Table 2 shows pertinent re-

suIts from the test of a 26 gage standard corrugated steel dia-

phragm. The diaphragm was attached to the rolled steel channels

with #14 screws in every third valley of the sheets.

IV-c Diaphragm Shear Rigidity: Cantilever Shear Test

The end shear panels of a simple beam shear test are actu-

ally cantilevers. The middle panel does not carry any shear be-

cause of the symmetry of loading. Therefore, the shear rigidity

Q of a diaphragm can also be obtained by testing a single can-
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tilevel' panel. The plan of an inverted 26 gage Armco EconoY'ib

shear panel in a cantilever shear test is shown schematically

in Fig. IV-3. The frame members were connected in such a way

that the frame offers no restraint to in-plane shear loads be-

fore it is connected to the diaphragm. The diaphragm is connect-

ed by #14 screws to the frame as shown in Fig. IV-3. Neglecting

any mlnOl' bending effects of the frame the shear deflection is

given by

(IV-5)

D 3 , and 1)4 are the deflections of the dia-

phragm at the locations 1, 2, 3, and 4 and in the directions in-

dicated in the Fig. IV-3.

Shear rigidity q of the diaphragm can be computed uSlng

Eqs. IV-3 through IV-5. The details and results of the canti-

lever shear test on an inverted 26 gage Armco Econorib diaphragm

is described in Table 2 and the value of the shear rigidity ob-

tained in the test was used in the analysis of a four-beam test

described in Section 2.4.

IV-d Residual Stress Measurements

Residual stress measurements were made by Errera(S) on the

8Jr6.5 sections used in the column test program and 10817 sec-

tions used in the beam test program.

low alloy high strength steel.

Both shapes were ASTM A-441

f
.. (IS)

The method 0 sectlonlng was

used to determine the residual stresses; readings were measured

with a lO-inch Wittemore gage.

Residual stress measurements made on the 8Jr6.5 sections
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gave consistent and smooth residual stress patterns, as indi-

cated in Figs. IV-4 and IV-5. The stresses are shown in two

parts, those that Vlere observed vJhen the 11" section was freed

from a longer length, and the ~otal measured residual stresses

upon final sectioning of the member into strips. It will be

noted that the flanges of the 8Jr6.5 sections are ln residual

tension, and the webs are mostly in residual compression, with

a maximum measured value of 20 Ksi tension in the flanges, and

20 Ksi compression in the webs. This is in contrast to most

rolled shapes which usually have some residual compressive

. h fl . 1 1 . h f . (19 )stresses ln t e anges, partlcu .ar y ln t e lange tlPS .

The residual stresses measured in the 10B17 sections are

shown in Figs. IV-6 and IV-7. It will be noted that some parts

of the flanges are in residual tension, and the webs are mostly

ln residual compression, with maximum measured values of 8.5

Ksi tension in the flanges, and 8 Ksi compreSSlon in the webs.

IV-e Stub Column Tests

St b 1 t t d b E
(8)

u co umn es s were rna e y rrera on the 8Jr6.5

sections. The dimensions of the 8Jr6.5 sections are such that

the recommendations for stub column tests(20) regarding requlre-

ments to avoid local buckling and end effects cannot be satis-

fied simultaneously. If this shape is tested in the usual man-

ner premature buckling of the slender web occurs. To avoid

this, an arrangement as shOvln in Fig. IV-8 was used. The test

section, with waterproofed resistance strain gages in place,

was well greased and placed within a steel tube formed by weld-

ing two channels toe to toe. Hydrostone, often used as a cap-



the test picc~' (,ncl ~;te(:'l CJliJrlneL;, and <1] 10h'ccl to hi\l'c]CI1. '1'1)(>

test piece protn:dccl fl'OI:1 the st('c1 tubv ] /11 inch <:1 each end.

A similar al'l'c::mf,cmcnt, developed at Cornell, is often used for

co~prcssion tests of li~ht gage steel sections when the basic

co:-npre s s i ve propert ies of the me:: tc rial, ra th(~r than the: bu ckl i Tl[,

properties of the section, are under invcsd p,ation. Typical

re s u 1 t s 0 f stub col urn n t est s 0 f 8J r G• 5 sec t ion ~ ...,. i tho 1.1 tan d ...,. i t h

hydrostone encasement are shO'.·m in riBS. IV-8 and IV-9. An clas-

tic limit of about 4S Ksi is indicclted for the s~ctic:) ...,ith tlY-

drostone encasC'ncnt.

IV-f Tension Coupon Tests

Tension coupon tests were m~dc on 10817 section hy Errcra,

and on the 6[8.2 section by the author as part of the prescnt

investigation. The rcsul ts, tozethcr ·~,.i th the rr;ill reports and

chemical analysis, are given in Ta~]es 1 and 5. 'lhc: 10 incJl and

6 inch shapes sllo\.;cd aVCrC1[C yic]() points of £,l\.8 r:5) ",nd S7.L

K
. • ,

51, respcctlve~y.
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Table 1 10B17 Tension Coupon Test Results and Mill Report

Tension C?-upon Test Results

Beam Coupon Yield Point Tensile Strength
(ksi) (ksi)

a 1 6l. 1f 82.8

2 69.1 87.5

3 61f • 9 84.5 I
J:'

II 61.6 82.1

g 1 64.0 83.3

2 67.9 87. 3 ,3
C:L '_c:=::l

4-
3 66.8 84.5 Location of

Coupons
4 64.8 81.5

Average 64.8 84.2

Mill Report 67.35 90.23

Chemical Analysis_.. -

C Mn P S Si Cu V

0.20 1.22 0.010 0.035 0.092 0.25 0.077
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Table 2 Summary of Shear Tests

Double-Beam Shear Tests

Material Width
(in. )

Area
(in 2 )

Connector
Spacing,N

Shear
Rigidity~ Q

(kips)

Effective Shear>
Modulus;>Geff

(ksi)

30 g.
Plenum
Galv.Stee1 28 0.361 4 62.7 173.6

II II " 2 181.2 502.0

II " " 6 27.5 76.2;"
3

" 171; 0.229 L~ 27.7 120.8

" II II 2 60.2 263.0

Simple Beam and Cantilever Shear Tests

Material Size of
Shear
Panel
(length
x width)

Type of
Connection

Shear
Stiffness

G'
(Ibs/in)

Ultimate
Load

(lbs)

Strength
(plf)

26 g. 4' x 6'
Standard
Corrugated
Galvanized
Steel

Simple Beam Shear Test .

#14 screHS 6000
at every
third
valley

Cantilever Shear Test

2740 457

26 gage 12'xlO'
Armco Econo
Rib Panels
(inverted)

#14 scre\-JS 6320
at every

8"

2980 248

* Extrapolated from the other two tests having the same width.
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Table 3 Description of 10B17 Double
Beam Flexure Test Specimens

Beam Section: 10B17, A44l Steel, d :.: 10.12",·Af :.: 1.318 in.
2

d- = 7.67.Af

Diaphragm Material: 30 gage Granco Plenum Cross-Corrugated

Steel.

Ld/nA
f

~t;,

Test Diaphragm Connector
Length,L Width Spacing,

(in) (in) N
----------

360 1381 None

11 11 28 6

II 11 None

11 " 28

" 11 None

" " 28 2

11 II None

" " 28

3 0

7 0

2 13.8

5 0

8 31.4

6 90.6

* Beams were "fixed" against lateral buckling, hence n :.: 2
was used to obtain Ld/nAf ratios shov7n.
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Table 4 Summary of 10B17 Double-Beam
Flexure Tests, Predicted Critical
Mom~nts and Actual Failure Loads

Bean Section: 10B17, A441 Steel

Diaphragm Material: 30 gage Granco Plenum Cross-Corrugated

Steel

Test Test
No. Length,

L (in)

1 360 1381

Q
(kips)

o

Predicted
H (1)
cr

(in-kips)

266(2)

Max.Test
Load

(in-kips)

Test/ p dre .

2

3

4

5

6

7

8

"

"

"

"

"

"

"

"

"

"

"

"

"

"

13.8

o

31.4

o

90.6

o

31.4

414

266(2)

598

266(2)

598.1

498

233

570

252

1019

257

740

1.20

0.88(2)

0.95

1.24

(1) M =cr

(2) Tests of unbraced beams were arbitrarily stopped to avoid
beam damage and permit use of same beams with diaphragm
br~acing.

* Critical Moment obtained from Southwell Plot.
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Table 5 6 [ 8.2 Tension Coupon Test Results and Mill Report

Tension Coupon Test Results

Beam Coupon Yield Point Tensile Strength
(ksi) (ksi)

a 1 54.8 77.5

2 61.2 82.1 I
:~::::l

3 60.5 81.0
2-

4 55.7 79.8
3

d 1 55.6 78.4
' .x:=::=:J

4

2 54.1 75.0 Loca·tion of
Coupons

3 59.0 75.8

4 56.5 77.6

Average 57.2 78.4

Mill Report 59.43 81.64

Chemical Analysis

C Mn P S Si Cu V

0.20 1.12 0.013 0.025 0.066 0.22 0.059
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Table 6 Description of 6 [ 8.2 DoubJ.e
Beam Flexure Test Specimens

Beam Section: 6 [ 8.2, A4 ttl Steel, d = 6. 00", Af = 0.658 in 2 ,

d- = 9.11Af

Diaphragm Material: 30 gage Granco Plenum Cross-Corrugated

Steel

Test No. Test
Length,
L (in)

*Ld/nAf Diaphragm
Width
(in)

Connector
Spacing

N

Q
(kips)

Connectors: Power Driven Pins

1 288 1311 None
3

2 " " 17i;

3 II " None
3

4 " " 17i;

Connectors: #14 Screws

4

2

o

13.9

o

30.1

5

6

288

"

1311

"

None
3

17"4 2

o

30.1

'1; Beams Here "fixed" against lateral buckling, hence n = 2
was used to obtain Ld/nAf ratios shown.
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Table 7 Summary of 6 [ 8.2 Double-Beam
Flexure Tests, Predicted Critical
Moments and Actual Failure Loads

Beam Section: 6 [ 8.2, A441 Steel

Diaphragm Material: 30 gage Granco Plenum Cross-Corrugated

Steel

Test Test
No. Length,

L (in)

Q
(kips)

Predicted
M (1)
cr

(in-kips)

Max.Test
Load

(in-kips)

Test/ p dre .

1

2

3

4

5

6

288

II

II

"

II

II

Connectors: Power Driven Pins

1311 0 89 66(2) 0.74(2)

II 13.9 190.8 143 0.75

" 0 89 66(2) 0.74(2)
(81.7~:)

II 30.1 253.1 227 0.90

Connectors: #14 Screws

II 0 89 72(2) 0.81(2)

II 30.1 253.1 252 0.996

(1)

\

I y (2~/+ Q}{Er / (2~}2+ Gr K+Qe 2} +Qe~Mp~

(2) Tests of unbraced beams were arbitrarily stopped to
avoid beam damage and permit use of same beams with
diaphragm bracing.

* Critical Moment obtained from Southwell Plot.



Table 8 Description of Test Specimens and Summary of Test
Results of Columns Braced by Girts which in Turn
are Braced by a Diaphragm

Column Section: 8JR6.5, A441 Steel

Diaphragm Material: 26 gage Standard Corrugated Galvanized

Steel

Girt Section: 6 [ 13 for GT-l and GT-3; and 6 [ 2.26 (14 ga.)

for GT-2

Connection of Diaphragm to Girts: #14 Screws at every third

valley

Width of Diaphragm
(for two members): 6'

Diaphragm Rigidity Q: Q ~ 216 kips

Column End Conditions: Flexurally hinged, warping restrained,

twist is zero.

Total Length of Column L: L = 12' - 7"

. Number of Intermediate Girts: 2

Ave. Unbraced Length of Column: 4' - 2 1/3"

Test Twist Failure Distance, Predicted Hax. Test/ p d
Restraint, Mode (in) Critical Test re .e
m(kip-in/ Load Load
rad. ) (kips) (kips)

GT-1 0 Hodified 6 21.4 17.7 0.84
First Hode

(Tor_Flex)

GT-2 7750 Third 10 39.9 37.3 0.94
Mode

(Flexural)

GT-3 13 Modified 6 29.6 25.5 0.86
First Mode

(Tor_Flex)



Table 9 Description and Summary of Test Results
of a Diaphragm-Braced four-Beam Assembly

Beam: 8JR6.5 I-section; A44l Steel

Diaphragm: 26 gage Econorib Panels, Inverted

Connectors: #14 ScreHs at every 8"

Spacing of Beams: 3' - 8"

144

Test Test Ld/nA
f Shear Predicted Max.Test Test/ p .

No. Length, Rigidity (1) Load rea.
ML (in) Q (kips)

(in=Iips)
(in.-kips)

1 240 2232 0 47.7(2) 35.8 0.75(2)

2 240 2232 212.0 290 259.8 0.90

(2) Test of unbraced beams was arbitrarily stopped to
avoid beam damage and permit use of same beams with
diaphragm bracing.



FIG. 1-1 BUILDING \-lITH X-BRACING

FIG. 1-2 BUILDING WITHOUT X-BRACING
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FIG. 3-23 COLUMN-GIRT-DIAPHRAGM ASSEMBLY AFTER FAILURE, TEST GT-2
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	Problems in structural diaphragm bracing 1. Beams continuously braced by diaphragms 2. I-section columns braced by girts and a diaphragm
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