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AN EXPERIMENTAL INVESTIGATION IN A TURBULENT CHANNEL FLOW WITH A THICK VISCOUS

SUBLAYER

(Hot-Film Measurements in Oil)

Helmut Eckelmann and Hans Reichardt

Max-Planck-Institut fur Stromungsforschung 
D 34 G'dttingen, Germany

ABSTRACT

In a turbulent channel-flow hot-film measurements have been made. To 

achieve a sublayer thickness of approximately 1 cm at y+ = 10, oil was used.

The Reynolds numbers used for the investigations were 5,600 and 8,200 based on 

the channel-width of 22 cm and the channel center-line velocity.

In the vicinity of the wall, y+ < 0.1, the u'-fluctuations were found to be 

proportional to the wall distance, y+ . The u'-values obtained with a hot-film 

probe for y+ > 0.7 were all greater than those obtained with a hot-film wall 

probe, but extrapolation of the data from the movable hot-film probe to the wall 

gave good agreement with the data from the flush-mounted wall-film probe.

The instantaneous values of the u '-fluctuations in the region 0 < y < 5  

are very similar to the instantaneous values of the wall-gradient, but there 

is a time shift which is proportional to the wall distance, y+ . Disturbances 

in the flow in this region were observed to be convected with a constant velocity 

toward the wall. The mean value of the convection velocity was found to be 

approximately equal to the friction velocity, u .
T

The Reynolds stress was found to be intermittent in the vicinity of the 

wall with high peak to mean ratios.

It was found that the probability density of the instantaneous streamwise 

velocity is skewed for all y+ values except y+ ~ 13. For y+ < 13 the most 

probable instantaneous velocity is less than the mean velocity; for y+ > 13 

the opposite was found.

INTRODUCTION

Investigations in turbulent flow with the available equipment and probes 

are now feasible with a high accuracy. However, problems occur when measurements 

are attempted in the viscous sublayer. Normally this wall layer is very thin so 

that a tiny probe is larger or of the same order of magnitude as the sublayer.

To make measurements possible in the viscous sublayer the conditions have to be 

changed. This can be achieved by using a medium other than the customary air 

or water. With this idea H. Reichardt in the Max-Planck-Institut fur 

Stromungsforschung in Gottingen designed and constructed a channel using oil as 

the testing fluid. The present investigations were conducted at Reynolds numbers of 

5,600 and 8,200 based on the channel width of 22 cm and the channel center-line 

velocity. Under these conditions the sublayer thickness, y+ = yu j v  = 10, 

corresponded for the lower Reynolds number to a normal wall-distance of 0.775 cm 

which is 1.4 times the sublayer thickness H. P. Bakewell'*' achieved in his 

investigations.

THE FACILITY

The experimental investigations were carried out in a fully developed 

channel-flow with an open surface. Fig. 1 shows a sketch of the channel which 

c o n s i s t s  o f  a 6 . 5  m long, 1 m deep and 0.5 m wide tank, filled with oil up to

0.85 m. The tank is divided by a wall (c) into two chambers of nearly the same 

size. At one end stands the pump (a) and at the opposite end the turning vanes (b). 

A honeycomb and fine grids (d) provide a symmetrical velocity profile in the test 

section which is 32 channel widths downstream. Adjacent to the tank is a probe 

support (e) which can be moved for calibrating the hot-film probes.

The total oil volume in the tank is 3,600 liters (-1000 Gallons). The
-  2 2kinematic viscosity at the operating temperature of 25°C is 6 • 10 cm /sec.,

which is 6 times the kinematic viscosity of water and 0.43 times that of air.

With the maximum center-line velocity of U = 22.5 cm/sec and the channelc
width of d = 22 cm, a Reynolds number defined by Re^ = U^ • d/v = 8,200 can be 

obtained. The lowest Reynolds number obtainable where fully developed channel 

flow can still be maintained (no intermittency) is 5,600.

Before the oil was pumped into the channel it was cleaned twice by means of 

filters of the same type usually used for cleaning the fuel of aircraft jet 

engines. All the particles larger than 0.8 (jm in diameter were removed.

The entire facility was installed in a laboratory with a constant temperature 

of 25°C. Three temperature controlled heaters maintain the temperature of the 

room constant to within +0.1°C.

All the measurements were made 10 cm under the free surface.

ELECTRONIC EQUIPMENT

Pressure measurements with high accuracy at low velocities are not easy 

to carry out. Therefore in this investigation all the data were obtained with 

two linearized constant temperature anemometers using hot-film probes of approx

imately 1 mm length and 50 |im diameter and, also, flush-mounted hot-film wall- 

elements. The linearizers provided a linear relationship between the flow 

velocity and the output voltage of the anemometers.
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Figure 2. Mean velocity profiles.

The mean velocity profiles shown in Fig. 2 were obtained by averaging over 

600 sec the linearized output voltage of a single constant temperature anemometer 

for the high Reynolds number of 8,200 and for the low one over 1,200 sec. The 

intensities of the u*-fluctuating velocities were obtained by suppressing the 

high dc-component, which corresponded to the mean velocity, by a bandpass filter 

before squaring.



The turbulence signals were recorded on a two channel paper recorder. Great 

care was necessary in calibrating the probes because there was no other instrument 

against which the results could be compared. For calibration the hot-film probe 

was towed through the quiescent oil over a distance of nearly two meters.

NEW EFFECTS IN THE FULLY DEVELOPED CHANNEL FLOW

Fig. 3 shows the distribution of the u'-fluctuations normalized with the 

local mean velocity in the vicinity of the wall. For both Reynolds numbers 

the values collapse to one curve. A maximum for of approximately 0.37

at a distance y+ ~ 4 and a minimum of 0.24 at the wall is clearly seen in both 

sets of data. From the shape of the curve between the two extremes it follows 

that between _y+ ~ 4  and y+ ~ 0.7 the u'-fluctuations decrease faster than the 

mean velocity u. Below y+ = 0.7 the u'-fluctuations decrease with the same order

as u, which results in the finite value of 0.24 at the wall. This maximum was 
7 2also found by Laufer and Bakewell . The wall values are taken from the readings 

of the flush mounted hot-film probe.

In Fig. 4 , J u'2_ is again plotted, but now normalized with u

= u/u^ noias in tne viscous suDiayer 

< / ^ " / « )  = a that / ^ Z  / n = ay+(y < 5), it follows from the definition 

is valid. The straight line ay+ (with slope a = 0.24) is also plotted in Fig.

4 and is the asymptote for the u'-fluctuations for vanishing distance normal to

hypothesis, it can be shown that the fluctuations of the viscous shearing stress 

t ' = p in the viscous sublayer (y+ < 5) are governed by a differential 

equation of the heat conduction type.

The u'-fluctuations, which are mainly produced in the region y+ = 13, 

travel toward the wall and are damped out. From the theory it can also be 

derived that the higher frequencies of the u'-fluctuations are attenuated more 

than the lower ones, so that primarily the low frequency fluctuations are observed 

at the wall.

This non-linear attenuation can be seen in Figs. 5 and 6 where, for the 

lower Reynolds number, the signal of the flush mounted hot-film probe together 

with that of a hot-film probe in the flow are represented. The hot-film was 

located at the same x- and z-coordinates as the wall probe but at various 

distances from the wall. Although the u' signal increases with distance from 

the wall, for purposes of illustration its amplification was adjusted so that 

both signals became nearly equal in size.

Within the sublayer both signals are very similar. The hot-film probe 

signal leads the wall signal, however, as can be seen from Fig. 5. The similar

ity of the signals in the sublayer of a turbulent boundary layer was also dis-
4 sircovered by A. K. Gupta . Using the mean gradient at the wall ( ^ ) Q for normal

izing the time-shift At of the two signals, the values obtained for both 

Reynolds numbers fit a single curve, when plotted over the wall distance y+ .

the wall. Mitchell and Hanratty8 have also measured this slope and obtained 

a = 0.32, which is the mean slope of the curve near the wall.

Recently Reichardt and Eckelmann9 succeeded in describing the nonlinear 

behavior of /  u'2 with increasing distance from the wall. A more detailed 

paper has also been published by H. Reichardt • Neglecting the convection 

terms in the general equations of motion and introducing the boundary layer
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Figure 5. Simultaneous records of instantaneous (3u'/3y) and u' fluctuations 
at various y+ positions.
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Figure 6. Simultaneous records of instantaneous (3u'/3y) and u' fluctuations 
at various y+ positions.

This is shown in Fig. 7. Within the sublayer the relation between the time-shift 

and the wall distance is linear. For distances greater than y+ = 5, there occurs 

a deviation from this linear relation. The velocity which can be derived from 

the time-shift and the wall distance which is the propagation velocity for the 

u'-fluctuations, equals the friction velocity u , as seen in Fig. 8. A pro-



Figure 7. The delay time necessary for u' disturbances to reach the wall.
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Figure 8. The normalized propagation velocity of the basic flow disturbance.

pagation velocity of 0.8 u can also be derived from Reichardt's theory^ forT
the sublayer.

The fact that the signal at the hot-film probe u'(y) leads the signal at 

the wall-probe (^-)Q is to be expected from the visual data of both Corino and 

Brodkey2 and Kline and Runstadler6. The observations of Corino and Brodkey 

suggest that the "sweep" type motion, which is the incoming high momentum fluid 

that moves toward the wall at a slight angle, would be detected first by a 

probe at y+ > 0  before being detected at the wall. Kline and Runstadler observed, 

by means of dye traces, that fluid at y+ < 0.01, lifts up while moving 

downstream. Such a lifting fluid forms an inclined region which first passes 

the probe at y+ > 0 before affecting the probe at the wall.

The correlation between the wall signal and that of the hot-film probe is 

shown in Fig. 9. The small deviation from unity within the sublayer is mainly 

caused by the time-shift of the two signals. The correlation decreases at 

greater wall distances due to the increasing occurrence of higher frequencies.

Fig. 10 gives the distribution of the turbulent shearing stress -u'v'
2normalized with u from the center-line of the channel to the wall for both

T

Reynolds numbers investigated. The straight line which is also shown corresponds

to:

turb _ 1 ^
T _ ‘ b *

- — / rt, Y ■= -u'v7/ uT ?  T ?In the upper part of Fig. 10, the correlation coefficient, 

is plotted. It is constant over nearly half of the channel width. A given 

value of for example 0.4, can result from two different extremes. First,

Y(t) can fluctuate with high positive and negative values around the mean-value 

and second, Y(t) can sometimes be zero and sometimes unity. Both extremes exist 

obviously in the fully developed turbulent channel flow as can be seen in Fig.

11. At the center-line of the channel, -u'v' is zero because of symmetry.

There occur, however, very high peaks in the instantaneous value of the Reynolds 

stress. As u' and v' do not vanish in the middle of the channel, Y(t) takes 

high positive and negative values. Going from the center toward the wall, the 

positive peaks of -u'v' predominate, so that a relatively small value results. 

Within the log-law region of the turbulent flow the picture is not very different 

from that represented in the fourth record from the top of Fig. 11 which is also 

expressed in the constancy of Y = 0.4 over a wide range of the channel flow 

field. The picture changes as the wall is approached, however. In the viscous

Figure 10. The normalized turbulent shear stress over the channel half width.

Figure 11. Records of the instantaneous turbulent shear stress at various 
y+ positions.

sublayer a different Reynolds stress producing mechanism seems to occur which 

leads to a highly intermittent structure. Long periods of quiescence are 

interrupted by relatively high peaks of -u'v'. The maximum of the ratio 

-u'v'/u'v' reaches a value of nearly 30 as can be seen from the first record 

at the top of Fig. 11. Assuming that in these bursting periods the v'-fluctuations 

toward the wall are equal to u^, as pointed out earlier, an estimation of _u'v'max 

can be made using the u'-fluctuations from other records similar to those in 

Fig. 5. The result is, that in the vicinity of the wall, Y(t) is unity when the 

high peaks of -u'v' are occurring.

The investigation of Kim, Kline and Reynolds'* shows also, for the zone 

0 < y+ < 100, that essentially all turbulence production occurs during inter

mittent bursting periods.



CONCLUSIONS

/ * !  i
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Figure 12. Probability density distribution of the instantaneous streamwise 
velocity at various y+ positions.
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Figure 13. Probability density distribution of the instantaneous streamwise 
velocity at various y"1" positions.

The amplitude of the u'-fluctuations can also be estimated from the 

probability density distributions shown in Figs.12 and 13. It was found that 

the probability density of the instantaneous streamwise velocity is skewed for 

all y+ values except y+ = 13 (which is not plotted here). For y+ < 13 the

most probable instantaneous velocity is less than the mean, whereas for y+>13 the 

opposite was found. This is in good agreement with the observations of Schraub 

and Kline1'*’. They reported, that the low-speed streaks are wider and the high

speed streaks narrower for y+ < 10. Since the location of the streaks is random, 

one must find, if the average is taken over a long enough time, that the most 

probable velocity is less than the mean velocity. For y+ > 10 the high-speed 

streaks are wider and the low-speed streaks narrower yielding the opposite 

skewness of the probability density distribution. Hence, in the case of Schraub 

and Kline, a symmetric distribution would be expected for y+ = 10. In the 

present investigation this was found for y+ ~ 13.

New effects in the fully developed channel flow could be observed.

In the vicinity of the wall the u'-fluctuations decrease faster than the 

mean velocity in agreement with the theory of Reichardt. At y+ * 4 a maximum 

was obtained when normalizing the rms value of the u'-fluctuations with the 

local mean velocity.

The instantaneous u'-fluctuations in the region 0 < y+ < 5 were very

similar to the instantaneous fluctuations of the velocity gradient at the wall.

The u'-fluctuations in the flow, however, lead those at the wall in time. The

propagation velocity for the perturbations travelling toward the wall was found

to be equal to u .
T

Highly intermittent instantaneous values of the Reynolds-stress in the 

vicinity of the wall with peaks of nearly 30 times the mean value were observed.

The probability density of the streamwise velocity was found to be skewed 

except at the wall distance y+ k 13.
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channel half-width

propagation velocity for u'-fluctuations 

channel width d = 2b 

mean gradient at the wall 

gradient fluctuations at the wall 

wall index
ucd
——  Reynolds number

mean time-shift

centerline velocity

local mean velocity

velocity fluctuations in x-direction

u/u

friction velocity

velocity fluctuations in y-direction

spatial Cartesian coordinate in mean streamwise direction 

spatial Cartesian coordinate normal to the wall
y u

spatial Cartesian coordinate in spanwise direction 

fluid dynamic viscosity 

^  fluid kinematic viscosity 

density

-pu'v' turbulent shear stress 

U ̂  laminar shear stress 

correlation coefficient of u' and v'
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DISCUSSION

V. GOLDSCHMIDT (Purdue University): I have the impression that the traces 

you showed for the signals near the wall did not suggest a really noticeable 

intermittency. Maybe the u'v' did, but the u' did not.

ECKELMANN: Yes, that's right. Although u' and v' do not show intermittency 

the product, u'v', of both does in the vicinity of the wall. The u' signal 

has relatively low frequency content and the v' signal has more high frequency 

content, but the product of both signals results in that highly peaked and 

intermittent u'v' signal due to the correlation of only about 40 percent 

between the two.

W. K. BLAKE (Nav. Ship. R 6 D Center): Yesterday, when Dr. Kline and Dr.

Johnson were speaking, there seemed to be some statement about the scaling 

of burst period on inner or outer variables. Yet 99% of the conversation 

that has been going on yesterday and today has to do with viscous sublayer 

type experiments, statistics, and visualizations. Why the apparent emphasis 

on outer scaling of the burst period when the whole thing seems to be gener

ated in a viscous region?

S. KLINE (Stanford University): I think the answer to that is something like 

the following: If you have some large disturbances owing to turbulent 

structure, the large fluctuations hit the wall layers and you get a response. 

So that it is the frequency of the large outer fluctuations that gives the 

correlation that Dr. Eckelmann was just talking about and in the Strouhal 

scaling that Dr. Johnson was talking about. But since it is a certain kind 

of a layer in terras of the structure of the layer, the space structure with 

which it responds is in terms of the inner variables. There is a nonlinear 

calculation made some years ago by Tiederman, who is here, which shows that 

the most preferred response of the wall layers is to random fluctuations

in a transverse wavenumber and I think he got 99. We've been showing 100 

on the slides. We don't believe either that the data or the theory is that 

good, but the agreement is quite clear.

T. HANRATTY (University of Illinois): I should mention another bump that 

has been observed in the transverse velocity fluctuations. These are the 

results of measurements made by Fowles at the Massachusetts Institute of 

Technology. The bump is negative, rather than positive, and it occurs in 

roughly the same place, somewhere around y+ of 3 or 4.

B. JOHNSON (U.S. Naval Academy): I have looked at a lot of slides of 

wiggly lines, but Figures 5 and 6 are the first sets that really impressed 

me with their significance. You seldom see such a strong and well defined 

phase lag between the near wall layer and the surface region. This is 

what Professor Kline and I were talking about in questioning the cascade 

theory.

KLINE: Landau is the only one I know that will say that the cascade theory 

is just plain wrong. All I said is that there were some reasons for doubting 

it.
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