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WAVEVECTOR/FREQUENCY SPECTRUM OF TURBULENT-BOUNDARY-LAYER PRESSURE
David M. Chase
Bolt Beranek and Newman, Inc. 
Cambridge, Massachusetts 02138

ABSTRACT

Knowledge of the wavevector/frequency spectrum of wall 
pressure, P(K,(o) [k = (k^,k^)], for a normal turbulent boundary 
layer has been largely confined to properties depending on the 
mean-convective ridge (k^=w/uc). Recent theoretical work yields 
the wavevector dependence of P(K,io), for flow at low Mach num­
bers, also in the acoustic wave number domain where K<w/c, except 
for undetermined functions of wd/U^. In the nonconvective but 
incompressive domain of wavevectors (important in underwater

2acoustics), apart from the proportionality to K where 
w/c<K<6 , the scaling, dependence and magnitude of P(K,ui)
remain to be established.

This domain is approached here by theoretical modeling
of the velocity-derivative sources of pressure. The expression
for the pressure spectrum derived from the pertinent Poisson
equation is cast so that source models may be formulated as
spectra in frequency and three-component wavevector, and
inhomogeneity normal to the wall treated via dependence of source
strength, correlation scales, and mean convection velocity on
geometric mean wall distance. A model for the frequency dependence
is formulated on the notion of fluctuating local convection.
Convection of a frozen wave pattern ,of the turbulent velocity-
product field generates a disturbance in this velocity product,
and hence in wall pressure, at frequency lb even if the streamwise
wavenumber component of the convected pattern is much smaller
than the minimum mean convective wavenumber, w/U^. Such generation
occurs by virtue of wavenumber components normal to the wall on
the order of the ratio of frequency to probable normal convection
velocities. The effective rms normal convection velocity is argued
to be of the order of the local rms normal turbulence velocity.
(This local-convection model for pressure differs essentially from
one based jointly on assumption of a space-time quasinormal
velocity distribution and application of the local-convection model
to two-component velocity spectra.) The model yields the source
wavevector/frequency spectrum in terms of the pure wavevector spectrum.
A wavevector spectrum constructed to accord with Kronauer-Morrison
wave structure yields, in the nonconvective domain where (o)-u k, ) /c 1
v aK>>1 (v^ = friction velocity) but K6>>1:

P(K,w) = a'B(k1/K)p2v*K(u-u k,)"4 (A)1 * c l

for fl<<l, where a' is a constant, B(k^/K) an uncertain anisotropy
factor, u a convection velocity, and fl = 5(co-u k_)v/v. a viscous- c c l *
sublayer parameter; for fl>>l, an exponential cutoff is predicted.
This sharp cutoff is characteristic of the local-convection model
with a normal distribution of convection velocity. An alternative
source wavevector spectrum yields form (A) with an additional
factor v.K(io-u k. )  ̂. A recent wind-tunnel measurement is * c l
interpreted to provide an upper limit on a' in either case.

Application of the model to the mean-convective domain 
suggests isotropy of the pertinent Kronauer-Morrison wave 
strength and hence an angular dependence of P(K,lo) as

2c +c (k,/K) , where c , c derive respectively from pure-t m l  t m
turbulence and mean-shear source terms and c /c is comparablet m
with or somewhat less than unity.

INTRODUCTION

We discuss a model for deriving the wall pressure beneath 
a turbulent boundary layer (TBL) with regard, to its spectral 
density in wavevector and frequency - particularly at low, 
nonconvective wavenumbers - and also briefly review a recent 
calculation at still lower, acoustic wavenumbers. Explicit 
attention is confined to an equilibrium boundary layer on a 
smooth, stationary, rigid plane in flow at low Mach number 
without mean pressure gradient. Streamwise inhomogeneity 
associated with boundary-layer growth is neglected, so that 
a unique spectral density of pressure in two wavevector components 
and frequency is indeed definable.

In Fig. 1 is roughly represented the wavevector spectrum 
of TBL wall pressure at given frequency. The lower part 
constitutes the trace in the plane k^ = 0, k^ being streamwise.

The spectrum is substantially characterized by four reciprocal 
length scales indicated along the abscissa: (1) acoustic
wavenumber co/c, (2) reciprocal outer eddy scale, proportional

Fig. 1 Wavevector Spectrum of Turbulent-Boundary-Layer
Pressure

to 6 where S denotes boundary-layer thickness, (3) minimum
mean-convective wavenumber, (o/Û , (4) reciprocal viscous-
sublayer thickness, v̂ /yv, where v^ is the wall-friction velocity.
Except as noted, the ordering of these scales will be assumed
as shown in the figure. Also indicated is a wavenumber,u/u ,c
where u^ denotes a mean phase velocity defined by longitudinal 
cross-spectral density. This wavenumber lies near the summit 
of the mean-convective ridge of P(K,w). A hypothetical contour 
of the convective ridge in the k^-k^ plane is displayed in the 
upper part of the slide.



Above the acoustic region (K~<o/c), the dependence of 
2P(K,w) is known to be as K , but above the next characteristic

wavenumber scale, ~26 ^, the dependence is presently uncertain.
2Two possibilities are depicted: (1) the K dependence persists;

(2) the spectrum levels off to become wavenumber-white up to 
the mean-convective domain where k̂ s-w/Û ,

If the TBL pressure were generated purely by "frozen" 
eddies convected downstream at mean velocities not exceeding 
the free-stream velocity, or by fluctuating-velocity waves 
with analogous phase velocities, the spectral density would 
vanish for all k^<a)/Uco

Choice of the wavevector-frequency spectral density for 
the two-point statistical description of the wall-pressure 
field is preferred on account of its domains of distinctive 
behavior characterized by subsets of the wavenumber scales.
In typical applications, moreover, quantities of interest may 
be expressed as the wavevector integral of a simple product 

of the driving spectrum P(K,u>) by a response function.

In underwater applications to flow-induced self-noise 
and radiation, there is a great disparity between the low 
wavenumbers where system response is relatively high because 
of area averaging or peaked because of resonance of the flow- 
bounding wall, and the high wavenumbers where the TBL pressure 
has its convective ridge. Hence the magnitude and dependence 
of spectral density of pressure at low, "non-convective" 
wavenumbers has special importance.

Nevertheless, the bulk of experimental and theoretical 
work on TBL pressure through the years has dealt with proper­
ties dominated by the convective ridge. This implicit emphasis 
in laboratory work is due in part to the difficulty of keeping 
spurious acoustic noise at a sufficiently low level while sup­
pressing high-wavenumber TBL noise by a suitable system response, 
in part to difficulty in sensitively controlling boundary con­
ditions on a pressure transponder to achieve this high-wavenumber 
suppression, and in part, no doubt, to historical accident.

A good deal is known, then about properties of the spectral 
density related to the convective ridge in the instance of a 
normal TBL, and in.recent years most experimental investigation 
has been directed rather to modified TBL's, for example, those 
with rough walls, mean pressure gradients, or polymer injection. 
Among properties of the convective domain established in a 
substantial region of parameter space are the wavevector-integrated 
point pressure spectrum, similarity characteristics, phase 
convection velocity, and principal widths of the convective 
ridge. Even for a normal boundary layer, however, significant 
properties remain undetermined. For example, the shape of 
contours of the ridge in K-space at fixed (j> remains uncertain 
beyond the fact that their extension in the k^ direction is 
about seven times that in k^ (this ratio being inverse to that 
of narrow-band correlation distances in spanwise and streamwise 
directions).

DISCUSSION

1. The Acoustic Domain
In the acoustic domain where Kgco/ 

of P(K,io) was treated by Bergeron1 by
c, the wavenumber dependence 
the method of matched

asymptotic expansions applied to the singular perturbation 

problem represented by the differential equation for the Fourier 
amplitude of pressure as a function of wall distance. For a
strictly incompressible boundary layer, the pressure spectrum 

2varies as K as K6-*-0, but for one with nonvanishing compressibility,
3however small, it remains finite there . Bergeron obtained the 

rather remarkable further result that the (Lighthill) pressure- 
source functions, to lowest order, remain unaltered by compres­
sibility even at the acoustic wavenumber, K = w/c, and that the 
pressure spectral density, under the idealized assumptions, 
consequently has a nonintegrable singularity there. He obtained 
explicitly the K-dependence of P(K,w) in the acoustic domain but 
with 24 undetermined functions of coS/v̂  still involved. In the 
neighborhood of the singularity, in particular, P(K,to) may be 
written as:

P(K,w) = (v4/c) 2p2v̂ O) ^[l—(cK/w)^] J'F (ta)6/v. , cos0)2-i -1 _ (1)
with cos0=k^/K, in which the function F can be written with 
its dependence on the direction variable 6 made explicit in 
terms of eight unknown functions of tofi/v̂ .

This nonphysical result - an infinite point pressure 
spectrum - reflects the assumed infinite extent of the boundary 
layer. For a boundary layer of finite linear dimensions ~L , 
Bergeron found Equation 1 to be valid for K outside a fractional 
interval on the order of (wL/c) 1 near the acoustic wavenumber 
oo/c and estimated the contribution of the acoustic domain to 
the wavevector-integrated pressure spectrum as given by:

/ d2KP(K,w)~(vJk/c)^p2v^u 1f (wfi/v̂  ) In (wL/c) . 
k~w/c

( 2 )

For a likely order of magnitude of the undetermined function f 
in Equation 2, this TBL contribution from the acoustic domain 
is typically small by virtue of the smallness of v4/c.
2. Further Use of Matched Asymptotic Expansions

The method of matched asymptotic expansions may have utility 
also in the incompressive but nonconvective wavenumber domain 
where K6>1 but Kv^/to<<l. In the prior application to the domain 
K5<<1 for compressible (and incompressible) flow, Bergeron could 
derive the wavevector dependence of P(K,w) explicitly, because 
in the outer region the source functions vanished and the form 
of the solution for pressure there was known. In application 
to domains where the outer region lies within the boundary layer, 
on the other hand, we can aspire at most to obtain useful simple 
relations between limiting properties of source functions and 
the resulting dependence of pressure.

Formal application of the method to the differential equation
4for pressure in both the Landahl form (essential to success in 

Bergeron's problem) and the Poisson form5 suggests possible 
relations between limiting forms of four-component and two- 
component velocity correlations.

The method can be pursued also into the viscous sublayer, 
involving new inner and outer scales, with the objective to 
investigate the basis for the approximation (assumed by Bergeron 
and in our work to follow) that the normal derivative of 
pressure at given K,w vanishes at the wall.

3. Approximate Formulation of the Wall-Pressure Spectrum in
Terms of Velocity-Derivative Spectra
The work presented hereafter consists in explicit descrip-95



tive modeling of the TBL pressure sources, grounded on crude facilitates model prescription to imagine an intensity profile
notions of kinematics and current views of boundary-layer wave A(x 2,x 2) to be factored out of 3 and to express the remaining
structure and similarity.^ Deeper dynamic analysis is not normalized source spectrum as a transform over normal wavevector

attempted. component of a spectral density, M, as given by:
Formulation of the model involves three main parts: first, 

approximate relation of the pressure spectrum to a source
5(x 2,x 2,K,u ) = A(x 2,x 2) / dk2 exp(ik2?2)M(£;,k,w) (9)

spectrum of character convenient for source modeling; second, where k«(k^,k2,kj). M is thus the spectral density in frequency
introduction of a local-convection model for the time dependence and in full three-dimensional wavevector of a linear combination
of the source spectrum in a mean convected frame; and, third, of normalized velocity products. It retains a residual dependence
modeling of the source spectrum at fixed time on the basis of on x2 and x2 via a single variable which we choose to be the
experimental properties of fluctuating velocity and pressure spectra. geometric mean wall distance, £. The independent variables

To lay the groundwork, we formulate a convenient approxi­ replacing x2 and xj, are thus £ and the normal separation £2 as
mate relation of the pressure spectrum to velocity spectra, given by:
proceeding in standard fashion from the Poisson equation for 
pressure in incompressible flow in terms of the velocity-

C2Ex ^-x 2> £ = ( x ^ p 1^2 (10)

derivative sources: So far, there is no approximation, since, for the actual

V2p * -p + 2 u'(x2) 31v 2] (3)
8 and any choice of A, M can be defined to satisfy Eq. 9. By
this maneuver, however, we may introduce plausible models for

These sources are separated in Eq. 3 into a set of "pure-
M by regarding M as depending on £ only via the spatial scales

turbulence" terms involving products of fluctuating components,
of the related velocity correlations (and perhaps via a mean

v ^  and a "mean-shear" term involving the product of mean-flow
convection velocity).

gradient, u'(x2), and the normal fluctuating component, a sum
We take the source profile A to have the form given by:

over repeated indices being understood. This equation is Fourier- 
transformed over time and over spatial coordinates in the plane

A(x2,xp = w(£) £cj exp[-(x2+x2)/6j] (11)

of the wall, formally solved in the usual way, and those pure- where the ĉ  are numerical constants and the 6̂  constant length

turbulence terms involving derivatives normal to the wall are scales. The sum of exponentials is specified to approximate

integrated by parts. A product of Fourier amplitudes of pressure the variation of the source profile well outside the sublayer

at the wall is then statistically averaged to yield the wavevector- and the factor w(£) to approximate the variation within and

frequency spectrum P(K,w). This is composed of a pure turbulence just outside the sublayer. Hereafter we retain only a single

term, P , a mean-shear term, P , a cross term, and in addition exponential term scaled by boundary-layer thickness, but

a term proportional to the squared normal derivative of pressure recognize a probable contribution scaled by v/v^ and associated

at the wall and associated cross terms. We neglect the pressure with source points not far outside the sublayer [Ref. 7, Fig. 26]

derivative, as usual, and consider only P^ and P^, proceeding explic­
itly only with P . P is related to a source function 5 by the

61 = 6, «2 <* v/v* (12)

equation: With the model forms to be ascribed to the source spectrum M,

Pt(K,u)) = p2K2oJ°°dx2 o/°°dx2 exp[-K(x2+x2)]5(x2,x2, K,w) (4) the assumed profile (Eq. 11) cannot be expected to hold when x2
and x2 are not both within or outside the sublayer, but this

5 is the spectral density in K and U) of a linear combination limitation is not serious. Use of Eq. 9 and Eq. 11 in the
of two-component velocity products, v^ (x,t)v^(x,t), the corre­ earlier equation for the pressure spectrum yields, by integra­
lated products referring respectively to wall distances x2, x£, 

as expressed by the following equations:
tion over the normal separation ?2, the result:

3(x ,x',K,w) = < S*(x2,K,a>)S(x2,K' ,u)')> / 6 (K'-K) 6 (fc)'-a>) (5)
Pt(K,w) = 4p2K2o/“d££w(£) /°°dk2M(£,k,a>)

s - -(e21T11+29193?13+e2?33) + i2(91T12+e3T32) + ?22 (6)
x Z cjKo(2£[k2+(K+6”1)2]1/2) (13)

i

T i j (x2 ,K,io) = (2it)-3 / d2x / dt exp [ - i (K • X-iot) ] v ̂ (x , t) v^ (x , t) (7)
where K denotes the usual modified Bessel function. For a o

where- x = (x3>x2,x3) X = (x^,x3) 9^ = k./K (8)

plausible spectrum,M, the dependence of the pressure spectrum 
2as K persists at least for K smaller than the reciprocal

scale of the intensity profile.
(Angular brackets here denote a statistical average and integrals With omission of Reynolds-number dependence, the pressure
run over the range -<*> to 00 in each variable unless noted.) spectral density must have the functional form:

The source spectrum 5 may be expected to vary with its wall 
distance arguments x2 and x2 somewhat as the product of the

P(K,w) = p2v̂ o) 3F(Kv ^/u , co6/v)fc, iov/v2) (14)

turbulence intensities at these distances. In any case, it and, with the source profile A defined as dimensionless, M must
have the form

#Part of this work was previously reported in Reference 6. M(£,k,w) - v3£4^(k£, u£/vt, £/6, v*£/v) (15)96



According to a trivial model where source velocity is description (see Fig. 2). A velocity-product disturbance at
time-independent in a frame traveling downstream at mean frequency w can be generated by fluctuating convection of a
convection velocity,uc> M would be given in terms of a pure frozen wave pattern of the velocity-product field even if this
wavevector spectrum by: pattern has a projected streamwise wavenumber component that

M(£,k,w) = M(C,k)6(w-uck^) uc *= uc(C,k) (16)
is <<(o/Uot. For this it is required only that the wavenumber 
component normal to the wall be as large as the frequency divided

To treat the non-convective tail where k,<w/U , however, we1 00 by a normal convection velocity presumed of the order of the
require a more refined description. This brings us to the core rms normal component of turbulent velocity. By the relation
of the present approach.

SCHEMATIC ILLUSTRATION OF LOCAL CONVECTION MODEL
4. Basis and Formulation of a Local-Convection Model for Pressure

The model proposed for the generation of pressure in the PHASE TRACES OF--y — --
CONVECTED WAVE- /  j  ('non-convective domain is based on the notion of fluctuating
VECTOR STRUCTURE /  ^ .F L U C T U A T IN G

local convection. According to this concept, a conditional /  /  LOCAL CONVECTION 
______ /  T VELOCITY

space-time correlation function is defined in a frame moving r  " > — ^  —
with a local convection velocity, w say, that is itself a C / -W A L L

random variable with probability density P(w), but this \

velocity is determined by larger-scale motion from which the 1. Convection of static wavevector pattern generates frequency 
-1 (“ *02*2 ^ *2*!<<“ )

local decorrelating motion is considered statistically in-
2. vc is regarded as spatially varying o«ly vie wavevector

dependent. Neglect of time dependence of the correlation in components S  |kj

the local co-moving frame then constitutes the local-convection Fig. 2 Schematic Illustration of Local Convection Model

approximation and yields the space-time correlation in the
between pressure and derivatives of velocity products, a

laboratory frame, iJj(r,T), say, in terms of the spatial correla-
similarly low-wavenumber component of pressure is generated.

tion at zero time delay, l|/(r,0), as in Eq. 17, or the wave-
vector frequency spectrum, E(k,o>), in terms of the ordinary

5. Interpretations and Alternatives in the Local-Convective 
Formulation

wavevector spectrum, E(k), as in Eq. 18: With acceptance for the moment of the local-convection

i|i(r,T) - /d3 vP(w)i)i(r-WT,0) (17)
equation for the frequency dependence of M, it is essential to 
establish whether the probability of a given local convection

E(k,o>) - E(k)/d3wP(w)6(u-w-k) (18) velocity is simply on the order of the probability of an equal

where E(k) ■ /da)E(k,co) (19)
fluctuating turbulent velocity at the same wall distance £• 
It might be suggested that the only contribution to M(£,Ic,u>)

In the universal domain of homogeneous turbulence, this sensibly estimated by a local-convection approximation is
approximation has a clear, though nonrigorous, basis in that associated with local convection velocities that are
Kolmogorov's principles and has been employed previously relatively uniform over a distance -k^ in each coordinate
(e.g., see Refs. 8-10). In the instance of a boundary layer, direction i - that is, an eddy may be viewed as convected
on the other hand, separation of local convection from develop- without distortion only by larger eddies, not smaller ones -
ment, rotation, distortion, and decay of eddies or wave and hence that P(5,k,vc) should include only the probability
structures presently lacks any heuristic basis. Nevertheless, density for that part of fluctuating velocity associated with
some qualitative effect of the nature of local convection is wavenumber components In the non-convective domain
surely operative, and we expect the true wavevector-frequency where K<<to/ ,  the local-convective contribution, in such
spectra outside the domain accessible to mean convection to be case, would be negligible. This result depends on the fact
at least of the order of that obtained by a suitably constructed that, assuming the correlation scale for the normal component
local-convection model. Provided the pressure spectral density of fluctuating convection velocity to be on the order of wall

yielded by the model proves not to be exponentially small at distance, the part of this velocity component associated with

low wavenumbers, the model may be conjectured to yield not only low wavenumbers, K, in the plane parallel to the wall becomes

a lower limit but even a valid estimate. suppressed at wall distance, £, small relative to their
A local-convection model is formulated for the source spectrum reciprocal, K An estimate based on assumption of a normal

M(£,k,(o) directly by reference to the prototype Eq. 18 and given by: probability distribution of local convection velocity, in

M(£,k,w) - M(£,k)/d3v P(£,k,v )6(oi-u k,- v -k) (20) • C C C 1 c
particular, yields a local-convection contribution to the

2 / Bpressure spectrum that is exponentially small in -(oj/v ^K)

where u£ ■ uc(£,k,(o), represents a fluctuating convection
at non-convective wavevectors (k^<oj/U(o) .

It is argued, however, that the probability density should
velocity in a mean rest frame traveling downstream at an

not be restricted to include only local convection velocities
effective convective velocity uc (CU^), and P the corresponding

at low planar wavenumbers. M, we recall, is formed from
probability density. Both P and u£ at this stage may depend

Fourier amplitudes,T^,that are convolutions of velocity
transforms as given by:

This model in fact yields a credible magnitude for the
pressure spectrum in accord with the following kinematic Tij(x2,K,u) » Jd2K ,/da),vi(x2,K;u,)Vj (x 2,K-k ;(0-u)’) (21)97



Now, for K small relative to the reciprocal velocity correlation the profile function may be considered to be unity, and the
scale at x^, most of the Integral In Eq. 21 will derive from 
K'~(correlation scale) even If this greatly exceeds K. Hence

argument £ is absent from the eijkĵ and eij-̂  To this 
assumption of a space-time quasinormal distribution is adjoined

we should include In the pertinent convection velocity planar the assumption of the local-convection model for the frequency
wavenumbers up to roughly K', not just up to K, and the rms dependence, not of the four-component spectra as before, but
normal component of convection velocity is therefore of the of the two-component spectra, i.e., Eq. 23 rewritten with
same order as that of turbulence velocity. The spatial variation replacing This model leads to the relation between
of convection velocity does modulate the convected wave structures wavevector/frequency spectra and pure wavevector spectra given by:
and hence influences the wavevector composition of T ^  in the 
spatial "beating" process (Eq. 21); still, the modulating wave- % j k 2(^’̂ ,u) “ /d3v’c/d3v^P(C,vc)P(C,v^)/d3k

number apparently may exceed the difference wavenumber,K,without x 6[(0-uck1 -(u^-uc)k|-:7c.k-(v^-vc) .k']
violating the kinematic credibility of convection.

According to a somwhat different view, a local convection x ^ i k ^ . ^ ' V 5’̂ ' )  + "^.k'UjkCl.k-k')] (25)
velocity may be associated with a dynamically distinct, quasi-
periodic primary motion that convects a superimposed random

where u =u (5 ,k-k'), u'=u (?,k'), in contrast to the previously c c  c c
assumed relation given in Eq. 23.

motion.
In the non-convective tail, expression 23 is appreciable

In any case, we assume the probability distribution of
only if the normal component of wavevector is capable ofconvection velocity to be independent of k and given by a
generating frequency o> when convected at a velocity withnormal distribution characterized by the mean turbulence
normal component of the order of the rms normal turbulencevelocity products at wall distance £. This leads to the

explicit frequency dependence of the source spectrum given by: velocity, i.e., |k2 |>b)/v̂ . In contrast, expression 25 yields 
an appreciable contribution from certain domains of the wave-

M(C,k,o>) - M(?,k)(2ir)“1 /2cok “ 1 exp[-(l/2)(u-uck1 )2 /oik2]
(2 2)

vector integral independently of k2, namely from domains of k' 
such that (v'-v )*k'~u) or (u'-u )k, ~<i). Since no kinematic basis

where to. ̂  5 <v,^>k-^ + <v0^>k0  ̂+ <vQ^>k«^ + 2<v.v0>k k0 k 1 1  2 1 5 5 1 1 1 1 is identified for this result, the assumption of space-time

A second 'type of model that embodies local convection may quasinormality, Eq. 24, is suggested to be untenable or at 
least unfounded. Accordingly, we retain the local-convectionbe suggested and compared. In general, four-component (but
model of Eq. 23.two-point) mixed velocity spectra may be defined, analogously
6 . Source Wavevector Spectrato Eq. 5 by:

We have now to formulate an appropriate model for the pure
Eijki(x2 ,x2 ' " <Tij (x2 *^'“)Tk (K'-K) 6 (tri'-w) wavevector spectrum M(£,k), that is, the source spectrum at 

fixed time. The principal model considered conforms to the
and two-component spectra by: picture of boundary-layer wave structure given by Kronauer

Eij (x 2 , x 2 **'’“) “ <v *(x 2 ,K,u )Vj (x2 ,Kja),)>/6(K,-K)6(«,-a)) ,
13 14and Morrison 9 (see Fig, 3). These waves of fluctuating

SCHEMATIC DIAGRAM OF WAVES OF
where v.̂  is the transform of vi(x,t) (cf. Eq. 7). Related FLUCTUATING VELOCITY IN TBL 

W.R.B. Morrison 8 R.E. Kromower, J. Fluid Mech.
spectra, (£ >k>w) and (5 »k,w) , may be defined in terms 
of these just as M is defined in terms of o in Eq. 9. If the

X(J 39,117(1969) 
A

same profile function A(x2 >x2) is factored out for all \ ACx*C/sima, PHASE VELOCITY 
\  \  \  C WAVE SPEEOeijki and M iS Just a linear combination of the • The 

local-convection model described above is thus expressed by:
A \ V \*'ik\  \  ~ C**C/cosa 
V V .  \  T  PHASE VELOCITY

LOCUS OF
■ijk»(«-r -u) " eijkrf5 ,S)Jd vcP(?,vc)6(u-uck1 -vc-k) (23) \  V ' X  \  CONSTANT PHASE

In the second type of model the four-component spectra
are instead assumed to be given in terms of products of the \two-component spectra by the relations that would apply if \
the joint probability distribution of turbulent velocity at

X y s *  CROSS SECTIONtwo points separated in both space and time (at fixed £) were OF WAVE

normal^ ^2 namely: PROJECTED  
MEAN VELOCITY

Eijki<£,k,a>) - /d3k' Ceik (5 »k' ,<!)') (?,k-k’,o>_to *) Fig. 3 Schematic Diagram of Waves of Fluctuating Velocity 
in TBL

+ e±i, (£ >k' »<*>') ejk(5,k-k' ,(o-u)' ) ] . (24) velocity constitute a geometrically similar family for each 
direction of wave propagation in the wall-parallel plane and

(The profile function factored out in the definition of the are coordinated over a range of wall distances. In a simple
£ij in terms the E ĵ as in Eq. 9 is considered to be the approximation for the layer of the log profile in a central
square root of that factored out in the definition of the range of wavenumbers, Morrison and Kronauer exhibit geometri-
j kit * ■̂nL more usual instance of homogeneous turbulence cally similar wave solutions of the linearized inviscid 
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Navier-Stokes equations that conform roughly to experimental The rough plausibility of forms (28) and (29) can be
wave properties. The phase velocity in the streamwise direc- further supported by postulation of definite velocity spectra
tion is found to match the mean velocity at a wall distance and assumption of a spatially quasinormal probability
inverse to the planar wavenumber. For a wave having the distribution.
direction of spatial independence, x, at angle a to streamwise, 7. Results for Hall Pressure
the ratio of the fluctuating velocity component in this direction Using these alternative source spectra, we may perform
to those in the plane of the wave cross section is given by cota. in suitable approximations the final quadratures over geometric

These waves are invariant under a constant convection mean wall distance, £, and normal wavenumber, k2. We insert the
velocity and in this sense compatible with a local-convection source wavevector spectrum characteristic of Kronauer-Morrison
model, provided that the normal component of convection velocity waves, given by Eqs. 27 and 28, in Eq. 22 and substitute the
has the same dependence, if any, on wave direction a as do the result in Eq. 13 for Pt- In the non-convective tail defined by:
fluctuating velocity components in the plane of the wave cross 
section.

(w-Uck1)/vjk>>(K2+6_2)1/2, (30)

Incorporating this wave structure into our model, then, 
we approximate the mean phase convection velocity, uc, as 
independent of wall distance, or more particularly:

we may, in the subject integral, neglect K and 6~3 relative 
2 1/2to k2. Since then ook“<v2> in Eq. 22, we require in Eq. 13 

the dependence of w(5)<v|>-1^2 as well as of <v2>3^2 in the

u = u(1/mK), (26) c
viscous and buffer layers. Near the wall, i.e., for x2,x2«7v/v^,

where the argument of the mean velocity u(y) yielding uc, i.e.,
the four-component, two-point source intensity - and hence, by

2 2Eq. 11, w(£)-presumably varies as x2x2 » and the geometric mean

-1 13with coefficient m ~0.6 . Furthermore, we take the source
of the rms normal component of fluctuating velocity at x2 and x2 
varies as (x^x^2)1^2 [*=x2x2]. This behavior is reflected and a

wavevector spectrum to be the product of, first, a spectrum plausible but convenient transition to the estimated outer values
M(5,K,k2> independent of the direction of K and formed only 
from the fluctuating velocity components in the wave cross

accomplished (with w(£) normalized such that w(°°)=l) by taking:

section (normal to x) , second, a factor K 3 of geometric <v2>1/2/v* = co£2/(52+52), w (C) = 54/(52+C2)2, (31)

origin, and finally an anisotropy factor Bt: £ =a v/v., with c -1, a =5. o o * 0 0
M(£,k) - v^Bt(cos9)K_1M(5,K,k2) , cosS = k ^ K  (27) A dimensionless variable Q defined by:

Bt is identified (within a constant factor) with the fourth- fiEao(u-uck1)v/v2« l  (32)

order two-direction spectrum of wave strength given in terms
characterizes the degree of suppression in the viscous sublayer.

of the function b^(a) defined in Ref. 13, appendix, by:
For S)<<1, this suppression is negligible (C^ negigible in

Bt(cose) = <[b*(n/2-9)]2[b1(Tr/2-e,)]2>/6(e'-e). Eqs. 31), and we obtain a result for P given by:

The cylindrical wave structures can retain spatial independence 
in the x direction for only a finite distance, presumably

Pt (K,w)=atBt (cose)p2v2K(a)-uck1)-4 (33)

scaled by boundary-layer thickness, and product form (27) (in which a i s  a constant). For (J>>1, by evaluation of the

therefore cannot be expected to hold for arbitrarily small K. pertinent double integral by steepest descents, we obtain a

At K less than this reciprocal length, it may crudely suffice result for P given by Eq. 33 multiplied by a cutoff factor

to retain the product form but replace the factor K 3 by a given roughly by:

factor such as (K2+ot26 2) 3^2 (a constant), which is “6 o o
for K6<<1.

0.2S)5/3 exp(-3.78fi2/3) (34)

Consideration of two-dimensional fluctuating flow in the [According to the supposition following Eq. 27, unless K5>>1,

wave cross section suggests assumption of the spectral form: the factor K in Pfc of Eq. 33 should be replaced by K2/(K2+a26-2)3 ^2.]
Using the alternative source spectrum (Eq. 29),we obtain

M(S,K,k2) = Y2YC'2lJ(Y2k2+Y2K2+C‘2)"1",J, (28) results that differ from Eqs. 33 and 34 by a factor:

in which the spatial correlation scales (y23£,y 3? with Y^.Y2 -Kv*/((o-uck1) . (35)

constant) are taken proportional to the geometric mean wall 
distance C* U is an undetermined exponent not of critical

Hell down on the convective tail, we may omit the term u k,c l
in Eq. 33. For the primary source spectrum the result (for

importance but reasonably taken as zero so that the spectrum 
becomes scale-independent at high wavenumbers.

To indicate sensitivity to the assumed source wavevector

7 -4K6>>1) then varies as v*, w , and K. For the alternative
-5 2spectrum, it varies as v^, u) , and K , and is smaller than

spectrum, we consider also a form not based on the presumption
for the previous spectrum.

The main contributions in the quadratures that yield result (33)
of domination by Kronauer-Morrison waves but having the
three wavevector components all entering in a parallel fashion:

derive from wall distances £~k23, and, in the nonconvective
tail, from normal wavenumbers k. ~ (u>-u k,)/2v.. As the

l C 1 *
M(£>k) — v*Ct(cos0)y^Y2Ygs (Ŷ *t2"*"̂r2^2"^3*3"^ ' viscous variable A increases, however, the erstwhile dominant
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range of source distance is driven into the sublayer where 
contributions are suppressed, less on account of the decreasing 
turbulence intensity than by the decreasing local normal 
convection velocity. For fi>>l, the main contributions derive
from distances near the edge of the sublayer, €~£0» and from 

“1/3normal wavenumbers k2 ~8 (w-uck^)/v^. This prediction of a 
strong viscous cutoff in the low-wavenumber pressure spectrum 
above relatively moderate values of & constitutes a characteristic 
consequence of the underlying model of fluctuating local 
convection when coupled with assumption of a probability 
distribution for fluctuating convection velocity, such as the 
normal distribution, that decreases rapidly at large velocities 
(see Appendix).

Thus far we have considered explicitly only the pure- 
turbulence contribution to pressure. He can proceed similarly 
to model also the mean-shear contribution. Explicitly, 
analogously to Eq. 13 we obtain:

Pm (K,aO - 16p2v^cos2e/“d5?X(?)w2(?)/C0dk2e2(C,k,a))

x £c2jKo(2£[k2+(K+62j ) 2 ] 1 / 2  . (36)

Here e2 is a spectrum of the normal component of velocity, 
v2 (x,t), in the same way that M(£,k,b>) is a spectrum of a 
sum of velocity products, vi(x,t)v^ (x,t) (recall Eqs. 5-9), 
and w2 (?), c2j, and fi2j are corresponding analogs of the earlier 
w(£), cj, and (recall Eq. 11). The factor x ( £ )  in Eq. 36 is 
defined by representing the mean-velocity-derivative product 
approximately in the form:

u'(x2)u'(x’) - v 2X(£); (37)

in the log-profile range, in particular, this form becomes correct 
“ 2with X(£) “ (0.4g) . The local-convection model is expressed

now by Eq. 20 with e2 replacing M. The model for e2 (?>k) 
referring to Kronauer-Morrison wave structure is expressed by 
Eq. 27 with e2 replacing M In both members, v2 replacing v£, and 
B (cos0), say, replacing B (cos0). B is identified with the two-m l m

13direction spectrum of wave strength given in terms of b^(a)by : 

Bn(cos0) - <(b*(lr/2-0)b1(ir/2-e,)>/«(e'-0).

The specific functional form analogous to Eq. 28 is given by:

e2 (C.K»fc2> » Y2YK2C“2‘J(Y2k2+Y2K2+C~2)"2‘11. 08)

where, however, the coefficients y2 >Y> and y may differ from those 
in Eq. 28. Similarly, a form analogous to the alternative spectrum 
(Eq. 29) is:

e2 (5,k) - v2Cm (cosO)Y1 Y2Y3K2?-2p ( Y ^ 2+Y22k22+Y2k2+C"2)"5/2',J. (39)

Apart from the angular dependence and a multiplicative constant, 
the structure, dependence, magnitude, and dominant domains of 
integration for the resulting pure-turbulence and mean-shear 
contributions are essentially similar. In the non-convective 
tail, however, we may question the meaningfulness of the mean-shear 
contribution when computed in this way. Specifically, since 
the pressure source for this contribution does not involve a 
convolution of fluctuating velocity transforms, we cannot 
contend on the same grounds as earlier for the pure-turbulence

source that the effective normal convection velocity at given
v»ll distance should include all wavenumbers.

He can extend the previous results to include the domain of
the convective peak as well as the non-convective tail. A
convenient rough approximation that subsumes both domains is
given for the nonviscous limit where 51 v/v £1 by:c *

P„(K,<i>) + P (K,4i)-[c B (cos9) + c B (cos0)cos20]p2v?KK * (40)t b t c m m

where K2 *■ (u>-u k.)2/(sv4)2 + K2 + (b,6) 2 (41)t c l *  1

The two terms in the bracketed factor giving angular dependence
are associated respectively with pure-turbulence and mean-shear

2contributions. The mean-shear term contains an explicit cos 0
factor as well as a factor B (cosO) related to the angularm

distribution of Kronauer-Morrison waves. Further consideration
might indicate that B^ is just the square of B^. In the domain
of the convective ridge, the wavevector-frequency dependence of
result (40) is characterized by a wavenumber K£ formed by adding
in quadrature, first, the wavenumber K, second, a wavenumber
measuring departure of k^ from the value w/uc at the peak, and,
third, a wavenumber “ 6  ̂ characterizing the outer scale of the
turbulent boundary layer. The coefficients s,b,,c , and c arei c  m
not strictly constant but vary only by factors of the order 
of two. Also, though not so indicated, s and b^ may differ 
between the pure-turbulence and mean-shear contributions.
Again, unless k 6>>1, the factor K in Eq. 40 may be replaced 

2 2 2 -2 1/2by K /(K +ot 6 ) . in the instance of the alternative sourceo
“4spectrum, the factors KK£ in Eq. 40 (for all K6) are replaced 

2 -5by KZKt\

8 . Comparison with Measured Properties Dominated by the 
Convective Domain

Calculation of quantities dominated by the convective ridge 
permits some limited check on elements of the model and may 
suggest the presently undetermined dependence on wavevector 
angle. Some such quantities are exactly or nearly independent 
of the source time dependence (or frequency spectrum) in the 
mean convected frame and hence do not at all check the model 
of local convection but do relate to the possible validity of 
the assumed source wavevector spectrum. These quantities 
Include the spatial correlation of wall pressure at fixed time 
and the narrow-band cross-spectrum of point pressure for lateral 
separations (including as a special case the point pressure 
spectrum). The transform giving the spatial pressure correlation, 
Wp^i'Cj.O), for our specific source wavevector spectra, extended 
as required to K6<<1, reduces approximately to:

Wp (?i, S3 , °) sAop2vjk̂ /d2K exp(iK*OK2 (K2+82 6“ 2 ) " 2

x [c^B^(cos0) + cmBm (cos0)cos20], (42)

where $ represents a scale coefficient related to those defined
earlier and A a fixed numerical coefficient. A convenient ratio o
between the outer scale 6  ̂ for intensity in Eq. 13 and the scale

in the discussion following Eq. 27 referring to Kronauer-
Morrison waves has been assumed, possible differences in scales
for P„ and F ignored, and the integral over k. roughly t n a

approximated to yield Eq. 42. He now ask whether, consistent 
with measured results, the intrinsic anisotropy coefficients B̂
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and B can be supposed independent of angle, corresponding to m
isotropic wave strength in the Kronauer-Morrison picture. If 
so, the measured anisotropy of pressure (at fixed time) is due

2only to the mean-shear contribution via the explicit factor cos 0.
With B 21 and B 21, Eq. 42 yields: t m

w (C.,C,,0) - TTA (pv*)2{c [2K (z)-zK.. (z)]+c [K (z)-zK. (z)cos2<f>] p l j  o 75 t o jl m o  i.
(43)

where z2$(C 2+?2)1/2/6, cosi}>2i;̂  (£2+c2)1/2 . This result diverges 
at zero separation; hence a parameter must be introduced to 
characterize a high-wavenumber cutoff not explicitly provided 
in Eq. 40; in fits to available measurements the value of this 
parameter probably reflects mainly sensor size rather than the 
viscous length v/v*.

Fig. 4 shows contours of the normalized spatial correlation 
of wall pressure. Solid lines represent measurements by Bull^^.
Dotted lines represent the result obtained from Eq. 43 when two

2parameters are adjusted but only the cos 0 angular dependence 
is assumed, corresponding to the mean-shear contribution with
isotropy of wave strength. Specifically, the dotted contours

2are obtained from the normalized correlation Wp(Cj_,C3,0)/<p >, 
given by Eq. 43 with ct“0, 6=6/7.16*, TrAocm“<p2>/4.62(pv2)2.

CONTOURS OF NORMALIZED SPATIAL CORRELATION 
OF WALL PRESSURE, RP < Ci, Cs, 0)

Fig. 4 Contours of Normalized Spatial Correlation of
Wall Pressure

(According to present results, the type of plot in Fig. 4 is
2 2 2not universal, since 6/6* and <p >/(pv*) depend on Reynolds 

number.) Inclusion of an isotropic pure-turbulence contribution 
of comparable magnitude but somewhat smaller outer scale (that 
is, more rapid decrease of source intensity with wall distance) 
can improve agreement with experiment somewhat by making the 
contours approach isotropy more rapidly at small separations.

4If a cos 0 dependence is instead assumed, the contours are 
not drastically changed. Nevertheless, this comparison 
demonstrates at least the tenability within present considerations 
of the assumption that the intrinsic wave strength is isotropic.
If this strength of velocity components in the cross section 
of the Kronauer-Morrison waves is isotropic, that of the component 
along the orthogonal direction of spatial independence varies 
in the linear theory as cota, becoming large when this component 
is nearly streamwise.

Fig. 5 shows the normalized magnitude of cross-spectral 
density of pressure for lateral separation vs the usual 
similarity variable. Experimental points are those of Priestley
as given in a paper by Corcos16, and curves representing the

21measurements by Bull and by Willmarth and Wooldridge are also 
shown. The theoretical curves are those obtained from our 
source wavevector spectrum (at large 106/Û ) for total angular 
dependence respectively as a constant, as cos20, and as cos^0.
If the intrinsic wave strength is isotropic, the pure-turbulence
and mean-shear contributions yield a linear combination of the

2curves for a constant and for cos 0; such a result can evidently 
conform to that measured.

NORMALIZED MAGNITUDE OF P R ESSU R E  
CROSS-SPECTRUM FOR LATERAL SEPARAT IO N S

Fig. 5 Normalized Magnitude of Pressure Cross-Spectrum
for Lateral Separations

As for the magnitude of the cross-spectral density for 
streamwise separation, the properties of the convective peak 
implied by our local-convection model for time dependence in 
the mean convected frame become pertinent. Partial computations 
indicate that results will conform well enough to measurement 
but probably not furnish substantial further information.

For skew separations, the magnitude of the predicted cross- 
spectral density will not have a product form for any of the 
assumed source spectra and angular dependences. Depending on 
the explicit form assumed, the magnitude tends to be roughly 
that obtained from the function giving the magnitude for 
purely streamwise or lateral separations by considering the 
two components to be added in quadrature. Curiously, measure­
ments of pressure cross spectra seem never to have been made 
for separation directions chosen so as to test the functional 
form when both separation components are important, namely
when the streamwise separation is about 7 times the lateral 

17one

9. Comparison of Predicted Low-Wavenumber Pressure Spectra 
With a Wind-Tunnel Measurement

Returning to the low-wavenumber tail, we consider a recent
18wind-tunnel measurement by Jameson at BBN using a four-

19microphone array and improving an earlier experiment by Blake . 
This yields an upper limit on the subject low-wavenumber 
pressure spectrum and perhaps actually measures it. Fig. 6 
shows the nondimensionalized fractional-octave spectra vs 
Strouhal number measured at various flow speeds by the array101



NONDIMENSIONAL FRACTIONAL OCTAVE SPECTRA MEASURED AT 
VARIOUS SPEEDS BY ALTERNATING PHASE MICROPHONE ARRAY 
(RW.JAMESON, BBN Rept. 1937,1970) WITH RELATED THEORETICAL SPECTRA

Fig. 6 Nondimensional Fractional Octave Spectra Measured
at Various Speeds by Alternating Phase Microphone 
Array with Related Theoretical Spectra

with alternating phase. In a pertinent high-frequency range 
the measured spectra exceed the estimated convective contribu­
tion from the mean-convective ridge and in a certain range 
decrease with decreasing speed. This decrease may merely be 
due to decreasing relative acoustic contamination; possibly, 
on the other hand, it is due to the viscous suppression of 
the low-wavenumber TBL pressure spectrum predicted earlier, 
since the viscous frequency variable ft becomes large enough at 
the lower speeds to activate this prediction. Under the 
assumption of viscous suppression, a line is drawn tangent 
to the high-speed results with the slope predicted for the
inviscid domain from the local-convection model with Kronauer-

-4Morrison source spectrum ($<*(0 ). In the fitted form, namely:

P(K,a>) » a'p2v*K(w-uck^) , (44)
*this tangent yields an upper limit given by:

a' <5 . (45)

Under the contrary assumption that the high-speed data are 
acoustically contaminated, another line is drawn tangent to 
the lower-speed result, this time with the higher slope predicted 
for the inviscid domain from the alternative source spectrum, 
on assumption - contrary to expectation - that viscous suppres­
sion has not yet entered ((t>au "*). In this second fitted form, 
namely:

P(K,u>) » ap^v^K^ (u)-u(,k1) , (46)

instance). Contributing to inconclusiveness is the further fact 
that the convective contribution may have been larger than 
estimated on account of microphone spatial sensitivity distributions 
different from that assumed.

CONCLUSIONS

In conclusion, a descriptive model of turbulent-boundary- 
layer pressure has been formulated and applied that is intended 
to be valid in the important domain of non-convective but 
incompressive wavenumbers. The objective was to construct a 
model which, if crude and shallow, is potentially useful and 
not totally arbitrary, being partly grounded in kinematics, 
similarity, and semiempirical accounts of boundary-layer 
structure. Whatever the fate of the tentative specific results 
presented for the scaling, dependence, and magnitude of pressure 
at low wavenumbers, the model is intended also to illuminate 
the range of possible results and their relation to assumed 
source properties. Further development is needed to clarify 
and assess the basic formulation and to construct more carefully, 
under competitive assumptions, the source spectra and the 
probability distribution for local convection veloclty. More 
definite experimental investigation of the subject low-wave­
number domain, guided by such analytical modeling, is evidently 
essential to substantial further progress. Current wind-tunnel 
measurements of resonant plate excitation, it is hoped, will 
help to meet this requirement.

APPENDIX

We explore somewhat further here the dependence of Pt(K,<i))
in the non-convective tail on the assumed source spectrum.

Suppose first that the local-convection relation Eq. 22
is retained but that the wavevector spectrum M(£,k) is
obtained from the alternative form Eq. 29 by replacing £ by
6; i.e., consider a possible source spectrum with spatial
correlation scales characteristic of the large-scale eddies of
the outer boundary layer. We obtain for P in the non-convective
tail Eq. 30 and nonviscous domain S2<<1 a dependence like that
given for the previous alternative source spectrum by Eq. 33
and Eq. 35 but with a further factor [ (w-u k,) S/v. . ] - 2 *1 adjoinedc l *
if P/0 in Eq. 29.

Now abandon the local-convection model of Eq. 20 entirely 
and assume, for example, the space/time-isotropic (but 
spatially anisotropic) source spectrum:

M(C,k,oj) - v*Dt(cose)Y1 Y2Y3Y45"2P (Al)

x [Y2k^+Y2k2+'Y3k3+Y4 (“-'ick1 )‘i/v^+5” ]̂2.r-2l-2-V

this tangent yields:

a<200. (47)

The upper limit (45) under hypothesis (44) is smaller than 
the theory suggests, but not in clear conflict. The upper limit 
(47) under hypothesis (46) is reasonable (if one can account 
for the absence of appreciable viscous suppression in this

* _This value refers to P(K,io) go nogmalizgd tha_t mean squared 
pressure is represented by / dw / dk1 / dk^P(K,w).

(Ya constant, ~l)[cf. (29)]. If P<l/2, we obtain in the non­
convective tail Eq. 30 a dependence like that given by Eq. 33 
and Eq. 35 but with a further factor [(w-u k )/v*(K+6 1 ) ] 1 2v 
adjoined. In this instance the dominant domain of integration 
in Eq. 13 is given by £~k2 ,̂ 0<k2<K+6 If p>l/2, we obtain
dependence like that given by Eq. 33 and Eq. 35, and the dominant 
range of k„ extends over 0<k_<(w-u k,)/v*. Viscous suppressionZ Z C 1 *
alters these results somewhat if, for p<l/2 , 5(K+S^jv/v^Jl or, 
for p>l/2, fl>l. In either instance, however, contributions from 
low k^ and hence from great wall distance £ are unsuppressed,102



in contrast to the exponential attenuation where k„<<(io-u k.)/v.Z C l *
in the case (Eq. 22) of the local-convection model with normal 
distribution of convection velocity; therefore, even where J2>>1, 
the source model (Al) does not yield sharp attenuation such as 
displayed by the factor (34) .

For y = -1/2, we note parenthetically, the result given by 
(Al) for P in the nonconvective tail, as described above, 
assumes the form:

Pt (K,u)=Dt (cos0) p2v* (o)-uck1)-3[l+(K6;L)":L] ~2 , (A2)

U (x2) mean velocity profile

Uco free-stream velocity

V* friction velocity
Vc fluctuating convection velocity

vi turbulent velocity components
w total convection velocity
»(£) [w2(£)] factor in pure-turbulence 

source profile describing 
wall

[mean-shear] 
variation near

Wp(Ci,C3,T) space-time correlation of wall pressure

X2,X2 wall distances

which, if D^ = constant, becomes wavevector-white where k̂ <<<i)/uc ^ (x^,Xj)

and K>>6. 3 . a~̂ ~1 o
No kinematic or other basis is proposed for the illustrative

position vector parallel to wall

coefficient of correlation scale in 
direction normal to Kronauer-Morrison 
wave cross section

source form (Al), though it may be approximately consistent with 
the previously discarded expression Eq. 25 derived from an assumed 
space/time-quasinormal velocity distribution (Ref. 10, Sec. 4.2). «[«*]

e2(C,k,o>) [ = e22]

coefficients in correlation scales

boundary layer [displacement] thickness 
mean-shear source spectral density

SYMBOLS (5,k,o) two-component velocity cross-spectra 
for geometric mean wall distance £

A(x2,x2)

B (cosO) [B (co sO)] t m

C (cosS) [C (cosS)] t m

hypothesized pure-turbulence source 
profile_factored out in definition 
of M(£,k,w)

pure turbulence [mean-shear] source 
anisotropy factors for different 
source models.

EijkJl(?,k,“) 

C - ( C ^ V  

^2^=x2~x2^

four-component velocity cross-spectra 
of which M(£,Tc,w) is a linear combination
separation vector parallel to wall

normal separation

ki/K

Dt (cosfl)
U parameter (exponent) in various model

source wavevector spectra (Eqs. 28, 29 
38, 39, Al)

c
cosO

fluid sound velocity 
kx/K

V
£[ = (x2x p 1^2]

kinematic viscosity 
geometric mean wall distance

COS<!> £l/C 50 [ = aov/v*> V 5] viscous sublayer thickness

cj,6j[c2j,62j^ coefficients (cj,C2j) and length scales 
(6j,62j) in factor of pure-turbulence 
[mean-shear] source profile describing 
variation away from the wall

P

a (x2,x2,K,w)

fluid mass density

pure-turbulence source spectrum/profile 
of pressure

E ( k, 0))

k = (k1,k2,k3)

wavevector/frequency spectrum corresponding 
to Ijl
wavevector

T

<f>(w)
time delay

frequency spectral density of wall 
pressure area-averaged by microphone 
or array

K = (kx,k3) 

K

wavevector parallel to wall

basic wavenumber variable that characterizes

iKr.T)

r . 2-1

space/time correlation for statment of 
local-convection approximation

t spectral density of wall pressure (Eq. 4) ft [ = a (u)-u k )v/v.] o c l  * dimensionless viscous cutoff frequency

L linear extent of a turbulent boundary layer 0) radian frequency

M(£,k) = /dwM(£,k,u>) (likewise for other spectra)

M(£,K,k2)[e2(?,K,k2)]

M (£,k,w)

<P

pure-turbulence [mean-shear] source 
spectrum in Kronauer-Morrison wave cross 
section if factorable from M(£,k,io)
[e2 (£ , k, uj) ]
pure-turbulence source spectral density 
in frequency and three-dimensional wave- 
vector related to 5 at geometric mean 
wail distance £
mean squared TBL wall pressure

P (K, u>) wavevector/frequency spectral density 
of wall pressure

P(£,k,v ) probability density for fluctuating
c convection velocity v referring to

wavevector k and geometric mean wall 
distance £

r separation vector

s, bl’"t cm

T.j (x 2 ,K,ui)

uc

nearly constant coefficients in 
calculated spectral density wall 
pressure
wavevector/frequency transform of 
turbulent velocity product v.v. at 
wall distance x2 J
effective convection velocity (^pressure 
phase velocity)
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proved to be comparable, though the mean-shear part, by some 
appropriate measure, is suggested to be larger by a modest factor.
The justification I offered for using that probability distribution, 
however, really fails for the mean-shear contribution. I rather 
suspect that the justification I offered is not the true one, 
but that in fact the assumption I made is roughly correct. In 
any case, if you credit my assumption that the probability 
distribution of the local convection velocity in both instances 
conform roughly to the probability of the local total turbulence 
velocity, the two contributions are of the same order. It is 
just that one might question this assumption in the case of the 
mean-shear contribution in the low-wavenumber tail. In the convective 
region, on the other hand, this difference did not arise, and 
there, with one fewer element of uncertainty, the two contributions 
were concluded to be comparable.

DISCUSSION

W. K. BLAKE (Naval Ship Research and Development 
the low-wavenumber tail was it the mean-shear or 
interaction that dominated?

CHASE: When I formally made the same assumption 
probability of local convection velocity for the 
contribution that I made for the pure-turbulence

Center) : In 
turbulence-type

concerning the 
mean-shear 
term, they

S. J. KLINE (Stanford University): Dick Lahey's results (Ref. 16 
of our paper) correlate not only velocity perturbations but 
perturbations in pressure, density and adiabatic temperature.
It is a different kind of a model, and you might want to look 
at that. It does for example fit Corcos' accepted correlation 
for pressure fluctuations very well. In fact, Corcos' form 
simply drops out of the more general equation. Lahey's 
original form does include your omega, if I read your symbols 
correctly, and Lahey also integrates in a similar way.
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