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CURRENT INVESTIGATIONS OF TURBULENT SHEAR
G. R. Offen, S. J. Kline and U. C. Reynolds
Department of Mechanical Engineering 
Stanford University 
Stanford, California

ABSTRACT

The paper covers first a short review of the history of 
research on turbulent shear and second a description of current 
experiments which may lead to further understanding.

The first portion categorizes the kinds of data which have 
been taken and discusses what can be learned from each. It 
then summarizes what is firmly established concerning the nature 
of turbulent shear, mostly from work of the past decade. A 
description of the several interpretations of these data under 
theoretic study by current leading researchers is then given.

The second portion of the paper discusses the extraordinarily 
difficult problem of identifying and measuring the actual 
production of turbulence in a boundary layer. The difficulties 
arise from the fact that production is a partly-coherent, inter­
mittent process buried in relatively high amplitude noise. The 
measurement problems are discussed and a potential solution for 
the measurement of turbulence production with adequate accuracy 
is proposed.

INTRODUCTION

The present paper is divided into two parts. The first part 
is a brief review of the history and current knowledge about the 
mechanisms which create turbulent shear. The second part is a
d iscussion of current thinking conc erning experiments which may
lead to further increa ses in understanding these mechanisms.

The history of this problem is both long and complex, and
rec ent papers by the same group have covered much of wha t will
be presented. Consequ ently, the firs t part of the paper is brief
and gives refer ences to recent works where the reader can f ind
mor e extensive treatments of various aspects of the probiem.

The second part of the paper stems primarily from the work
of the past decade, and involves identifying some of our.past
dif ficulties in the f ield of turbulence measurements more
sharply as a nec es sary forerunner to improved measurements and
understanding. 11 should be clear ly understood that it reports
work still in progress , but may aIso be useful in suggesting
techniques which have other applications in fluid mechanics.

BRIEF HISTORY OF TURBULENT SHEAR RESEARCH

It is now nearly a century since 0. Reynolds discovered 
the set of related phenomena we call turbulence, and derived the 
famous "Reynolds Equations" showing that the time-average effect 
of turbulent fluctuations is to increase the apparent, or 
effective ,stresses in fluid motions. Unfortunately, the averaging 
process inherent in the derivation of the Reynolds equations 
causes a loss in information with the result that one is left 
with more unknowns than equations. This creates what is 
conventionally called the closure problem. During the century, 
successive waves of enthusiasm for various mathematical approaches 
to the closure problem have occurred, but it is only within the 
past ten years or so, that we have begun to unravel any of the

physical details of the complex processes which create and 
maintain turbulent flow.

It is possible to categorize the developments of the past 
century in turbulence in many ways, but for the present purposes 
it is perhaps sufficient to identify four categories:

(i) The collection, and generalization via non-dimensional
correlations, of data in cases of exemplary or engineering 
utility.

(ii) Attempts to create closure by use of data and/or ad hoc 
assumptions concerning defined parameters or terms in 
the governing equations.

(iii) Data and theories founded on the use of conventional 
statistical methods, most typically two-point space 
time correlations, spectra, and Fourier Transform theory,

(iv) Direct attempts to determine "structure" by experimentation.
Category (i) includes the familiar mean-profile and shear 

coefficient correlations for tubes, flat plates, etc. They are 
of great utility as base data for design and for checking theories. 
They are perhaps the firmest data we have. At the same time, one 
must keep in mind that they are all statistics, and in fact never 
exist. Instantaneous profiles, for example see Kim, et al^, 
almost never correspond to the mean. They are as much a figment 
of our statistics as that elusive fellow, the average man.

Category (ii) exists primarily for the purpose of solving 
immediately pressing design problems. A number of "levels" 
of possible closure exist and they are of varying degrees of 
complexity and sophistication. Professor W. C. Reynolds has

2 0recently given an up-to-date discussion of the various schemes 
The work sets the various methods into clearer relations with each 
other and is an excellent starting point for classwork. A recent 
comparison of the success of various semi-empiric theories for 
prediction of two-dimensional incompressible boundary layers is 
also available from the Thermosciences Division at Stanford*^.
Similar work has recently been done for compressible flows
(Langley Lab, NASA Conference, 1968) and for 3-dimensional 

23boundary layers ; however, in these instances the data are 
much less complete.

Category (iii) stems primarily from the work of G. I. Taylor 
and T. Von Karman in the 1930's, and the expansion of these
ideas by G. K. Batchelor'*' for homogeneous turbulence and A. A.

21Townsend for shear flows. These works are extensive and are 
not repeated here. What is essential to a number of comments 
that follow, however, is the foundations, the assumptions, on 
which these methods rest. Basically, they view turbulence as a 
series of eddies of various sizes. They assume further: the 
largest eddies are created by energy transferred from the mean 
flow; energy on the average then is passed to successively smaller 
eddies until the eddy size is reached where viscosity quickly 
damps the fluctuation; the eddies are all more or less of the 
same kind (or form). These ideas are all made very explicit 
in the monographs of Townsend and Batchelor. There are, however, 
some other assumptions that often are not made entirely explicit.
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These are that the process is statistically stationary, and that 
representation of the eddies by sinusoidal decomposition, on the 
average, is illuminating. That is, sinusoids are a useful wave­
form basis set. We shall have more to say about these assumptions, 
particularly in the second part of the paper.

The data in category (iv) are of two distinct types: (a) 
measurements of statistical parameters directly suggested by the 
theoretic framework of category (iii) notably long-time averaged 
two-point-space-time correlation coefficients and spectra;
(b) visual data providing instantaneous mean velocity and 
fluctuation profiles as a function of time. Data of type (b) 
are of recent origin and stem largely from the laboratories at 
Stanford and Ohio State^ thus far. We shall examine some examples 
shortly. These data have the considerable advantage of providing 
an overall view of the structure and also of explicitly displaying 
the time sequences of events; they have the disadvantage of 
relatively large experimental uncertainties.

If we are concerned with understanding how turbulence is 
created and maintained, then categories (i) and (ii) above, 
despite their undoubted practical utility, provide essentially 
no information. Category (iii) initially was erected with the 
idea of providing such information, but over three decades of 
careful and sophisticated experimentation and theoretic 
development have yielded very little advance in either increased 
understanding or predictive capability. Some of the reasons for 
this will appear below. We turn then to some remarks about the 
visual data from category (iv) and what they tell us about 
turbulent shear.

Turbulent flows are classifiable into three broad groups: 
grid turbulence, bound shear flows, and free shear flows. Grid 
turbulence is old, nearly wornout turbulence; it has limitingly 
low values of turbulence production and shear. Hence, it is of 
little interest if we are concerned with turbulent shear. Most 
visual studies to date are for bound shear flows (boundary layers 
and channel flows), and hence we will limit ourselves to that class.

A summary of our ideas about turbulent shear, based primarily 
on the visual studies, but drawing also on other sources is given 
by Kline^; the detailed work is described by Kim.et al^. The 
discussion which follows is restricted to some summary remarks 
about what is known concerning turbulent shear in boundary layers.

1. The layer consists of an inner and outer portion with 
distinct and different scaling laws in both time and space.
These two layers interact with each other in the processes of 
turbulence production. The older idea that the innermost layer, 
the viscous sublayer, is steady, two-dimensional and truly 
"laminar like" is incorrect; the layer has a definable three- 
dimensional structure and is time-dependent; it interacts with 
the outer layer^’® ^ ^ ^ . Elements of fluid marked at y 
values as low as 0.1 are found in the outer layer, at distances 
sufficiently far downstream.

2. Turbulence is not a single state. Rates of turbulence 
production can be varied,of ten downward to zero and upward by 
an order of magnitude>by any of a number of phenomena which can 
affect the "stability" of the flow via the boundary conditions, 
the constitutive equation, or the body forces. These twelve 
phenomena include:

Boundary Conditions
a. roughness
b. streamwise pressure gradient
c. wall curvature
d. blowing or suction
e. moving walls in a channel flow
Body Forces
f. centrifugal
g. coreolis
h. MHD
i. EHD
j. energy release generated by reactions
k. bouyancy
Constitutive Equations
i. polymer additives
3. Correlation coefficients of several kinds appear to have 

wave-like properties. In the inner layers of bound shear flows 
and near the edges of jets, data show that propagation speeds of 
correlation coefficients reach values in excess of several times

18the local flow speed. Cross-Spectral data of Morrison and Kronauer 
exhibit clear "wave-like" bunching in the double spectral plane.

4. While the mean velocity profile in a flat-plate boundary 
layer is stable to not only very small, but also to finite 
amplitude perturbations, according to the best available theory, 
the observed instantaneous profiles often are unstable in form 
(see Fig. 1). What is more, these unstable profiles are often,

0 0.1 0.2 U(y;t)
ft/sec

Figure 1 Instantaneous velocity profiles in flat-plate
boundary layer; from Kim.et al. (Ref. 10):

= 0.25 ft/sec.

although not always, followed by what appears to be growth of 
an oscillating mode and then by "break-up" into smaller, more 
chaotic fluctuations. Motion pictures of these events are 
documented in Kim, et al}^. Moreover, Kim, et alf^***' have 
shown, for two flows studied,that essentially all the net 
turbulence is produced during these events, and that these 
events occupy at most only 40% of the total time. Thus turbulence 
production is intermittent, not quasi-continuous (see Fig. 2).

— * — —1------1------1------1------1------1------1
• ^± 25 %  uncertainty

at 20:1 odds
•

- . •  *  .  V_a *
□ i  □ □ ±10% uncertainty

\  5 at 204 odds

□□□

oN.
7

1 i i i i i___ l___ i-----) |______|______|_____ |______I______I______1_____ 1______I 
O 10 20 30 40  50  60 70 80 90

y+

Figure 2 Fraction of turbulence produced during bursting
time (<*) and fraction of time occupied by bursts 
(y) versus y+ in a flat-plate boundary layer; from 
Kim.et al. (Ref. 10).
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Narahari, et al- have proposed a correlation for the average 
time between zones of high production (called bursts). Their 
data indicate this average time scales on outer layer variables 
in distinction to the wall-layer streak spacing which scales 
on inner layer variables. This further reinforces the importance 
of the interaction of the inner and outer layers in the 
production process.

The results in items 1 to 4 are all data, that is,direct 
observations of nature in some form. However, there are 
currently a number of different ideas concerning the meaning 
of these data and hence in what way they should be used in 
attempting to create further theoretic advance. A few remarks 
on the principal ideas involved follow.

Kim, et al?’̂ ’11 have suggested that the turbulence production 
arises from a local intermittent instability which is part of 
a limit cycle of events in the boundary layer. In particular, 
they suggest that existing large disturbances cause the low- 
speed streaks near the wall to lift, that is migrate into the 
outer flow quite rapidly; this creates a local instability, 
which, in turn, causes creation of large fluctuations which 
subsequently break up into numerous more chaotic fluctuations.
The large fluctuations create further streak-lifting, and so 
the process is maintained.

E. Mollo-Christensen in the 1971 Von Karman lecture of 
the AIAA suggests that a more appropriate model is perhaps a 
series of interlocked non-linear feed-back loops arising from 
secondary and higher order instabilities.

M. Landahl of Stockholm postulates the existence of wave packets 
in turbulent shear flows. He believes that the phase speed of 
higher order disturbances frequently becomes equal to the phase 
speed of the lowest order disturbance and that when this happens, the 
two waves remain locked together, travelling with the same speed. 
According to Landahl the cumulative effect of these two disturbances 
causes a sudden break-up of the wave structure, and this break-up 
is directly related to the rapid production observed during "bursting".

It is still too early to evaluate the merits of these various 
ideas. However, certain other recent data and calculations are 

relevant.
9The data of Hussain and Reynolds show that none of the 

several earlier wave theories are adequate to predict the 
correct trends in turbulent shear flow even for very weak dis­
turbances. The calculations of Ling and Reynolds^ strongly 
suggest that no theory which omits the interactions of the large 
fluctuations with the background turbulence can fully describe 
turbulent shear flows.

The success of Lahey and Kline^ in describing essentially 
all existing two-point space-time correlation data for a wide 
variety of correlations and many kinds of flow suggests that a 
two-part model for the velocity perturbation is appropriate 
(see examples in Figs. 3 and 4). The two parts used are 
respectively Markoff noise and a travelling wave with a stochastic 
jitter on the base wave number and a phase coefficient randomly 
distributed in time. Since several known physical processes 
could give agreement with this type of mathematical representation, 
further experiments are suggested to clarify the many remaining 
questions.

19

Figure 3 Comparison of two part model for space-time corre­
lation (R ) with jet data of Wills (Ref. 24).

= frequency; = streamwise probe separation, 
Ug = jet centerline speed; = fitted parameter;
from Lahey and Kline (Ref. 16). This case is an 
average "goodness" of fit. The symbol * means an 
adjusted (fitted) parameter; others are fixed.

Figure 4 Comparison of two-part model for space-time corre­
lation (R^,) with grid turbulence data of Favre, et al. 
(Ref. 25)for three streamwise separations (£ /m); 
m/Li taken from data; K]̂ fitted; A = macroscale;
T = time delay. (A case of particularly spectacular 
agreement.) The symbol * means an adjusted (fitted) 
parameter; others are fixed.

Thus, we currently are planning two kinds of experiments.
The first by Acharya and Reynolds will study the propagation 
of large amplitude disturbances in a turbulent channel flow in 
order to provide the basis for comparison with improved theories 
of a wave type. The second by Offen will be discussed below.
It is concerned with methods for determining more details about 
the processes which occur during the intermittent periods of high 
turbulent shear and high turbulence production in boundary layers.

A RATIONAL APPROACH TO THE FILTERING PROBLEM IN A TURBULENT FLOW 

1. Introduction
One of the bits of conventional wisdom among turbulence 

researchers is that the velocity trace appears to be very similar 
to the output from a suitably bandwidth-limited noise source.
Much data has been collected which describes the distribution of 
the magnitude of some property, such as the energy of the 
fluctuations, among various values of a parameter called "frequency". 
Recent studies have gone further in this direction by attempting 
to find a relationship between some feature of the fluctuation 
and the associated frequencies. In particular, the velocity 
trace has been filtered, and the output record has been analyzed
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instead of the original trace. Neither the meaning of the word
"frequency" nor the effect of the filter on the shape of the 
output have been seriously questioned in these Investigations. 
However, it now appears necessary to have a clear understanding 
of what is meant by the statement that a fluctuation has a 
certain frequency, phase, and amplitude. Since filters are 
used to discriminate between fluctuations of different frequencies, 
a discussion of the concept of "frequency" is not complete unless 
one considers the manner in which the filter separates the various 
frequencies and the wave-form of the base frequency of the 
decomposition.

This question of definitions and filter characteristics will 
be treated from the frame of reference of someone who is searching 
for a set of waveforms among the velocity fluctuations which can 
be treated as unique, but are quite different from those fluct­
uations usually characterized as noise. It is hoped that this 
set of waveforms can be completely described by a small number 
of parameters, and can be related to the turbulent motion during 
certain visually observed events known as bursts.

Once the word "frequency" has been defined, the implications 
of the choice of a filter on the results will be discussed. At 
the conclusion of the paper a model of the velocity fluctuations 
in a low speed, water turbulent boundary layer will be proposed 
as a basis for the design of filters which are to be used in this 
problem and possibly other turbulent flows. The ideas to be 
presented here ;are currently being used at Stanford to design 
digital filters for research into the mechanisms of turbulent 
bursting.

2. The Meaning of Frequency in a Noisy Signal
There is no ambiguity in the definitions of frequency, 

amplitude, and phase when the signal is stationary and sinusoidal 
in form. However, when the signal consists mainly of noise, or 
a coherent part buried within some form of noise, the meaning of 
these parameters may not be clear. Several interpretations are 
possible, as outlined below, and each one may be the most useful 
for certain purposes. It will be seen that the main differences 
among the various interpretations is the length of time over 
which the signal is analyzed. Naturally this difference implies 
not only variations in the loss of information due to the 
averaging process but also separate techniques for each type of 
signal analysis.

"Eyeball" Frequency. It appears that the most appropriate 
way to specify a definition for these terms is to analyze the 
operation used to detect and isolate the fluctuations of 
differing frequencies. For example, when a person studies a trace, 
such as a velocity record measured in a turbulent shear flow, 
and attempts to specify the frequency of the fluctuation around 
a given instant of time, he usually looks for the time between 
successive peaks. This operation is equivalent to taking a one 
period average of variable length and neglecting changes in the 
DC level, the amplitude of the supposed sinusoid, and its phase.
It is a valid operation, which could be automated, and, therefore, 
one can define an "eyeball frequency" as described above. This 
approach is very similar to the method that assigns a frequency 
to a noisy signal (assuming no DC) by counting zero crossings per 
unit time.

Persistent Frequency. One of the most common methods of 
decomposing a signal into its sinusoidal components is to take 
the Fourier Transform of .the entire record. The resulting function 
in the frequency domain can be thought of as the source of the 
coefficients of a Fourier series representation of the entire 
original signal. This process yields an amplitude and phase 
angle for each "persistent frequency", and the fluctuation 
represented by this frequency is considered to contribute to 
the total signal for the entire length of the data record.
If one were to pass the decomposed signal through an ideal narrow 
band-pass filter, the output would be a constant amplitude, 
constant phase sinusoid; that is the filter output would be 
identical to the signal from a good sinusoidal wave generator.

Temporary Frequency. If one divides the total data record 
into shorter intervals and then performs a Fourier Transform on 
each interval, the coefficients are those associated with a 
"temporary frequency". The interpretation is identical to the 
previous one for the "persistent frequency", but applied to the 
shorter interval. Thus slow variations with time are envisioned.
That is, although the fluctuation represented by a "temporary 
frequency" is assumed to contribute to the total signal for 
the duration of this shorter interval, the contribution from 
each such fluctuation may vary between times which are far apart.
For example, if a signal consists of intermittent pulses of a 
given frequency, f^, superimposed on random background noise, the 
Fourier Transform is a smooth curve except for a spike at f if 
the transform is calculated over an interval containing a pulse. 
Transforms calculated over other intervals will not contain the spike.

Successive Temporary Frequency. The technique mentioned 
above can be extended by taking successive Fourier Transforms 
of the signal over a given interval, which is short relative to 
the total length of the data record, and moving the starting 
time of each transform by a fraction of the interval. Since the 
squared magnitude of a transform is known as a power spectrum, 
the squared magnitude of such successive short interval transforms 
are known as chrono spectra. A bank of conventional analog band­
pass filters would operate on the data in a similar manner, and, 
therefore, the output trace from an analog filter, which we can 
call a "filtered chronology", is essentially an indication of 
the fluctuation of a given "temporary frequency". It is important 
to recognize that the instantaneous amplitude of the "filtered 
chronology" actually represents the magnitude of a fluctuation 
which has retained its periodic structure for some time. One 
must not be misled into thinking that the filter gives an 
"instantaneous frequency" just because it has an output at every 
instant of time.

However, before we discuss the "instantaneous frequency," 
we should note that both chronospectra and "filtered chronologies" 
are subsets of the amp1itude-time-frequency space. Every signal 
can be considered as a surface in this space. Chronospectra 
are the result of cutting this space with planes that are 
parallel to the amplitude frequency axis with each plane inter­
secting the third axis at a different time. The average of all 
such planes is the Fourier Transform of the entire data record. 
"Filtered chronologies" are generated by cutting the space with 
planes that are parallel to the amplitude-time axis and inter-
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where w w + 3 - asecting the other axis at variou 
all these planes is the original 

Instantaneous Frequency. An 
be defined as the frequency of a 
at a given instant of time. Thi 
by the use of an example. Let a 
by the following co-sinusoid dur 
time:

u(t) = m  + A

If one can a s sume that m, A, u.
short time span, then one can i
variables at any given time, t|
three derivatives . That is:

a) = /-u/u

0 * tan 1

s frequencies. The average of 
time record of the signal, 
"instantaneous frequency" can 
sinusoid that "fits" the signal 

s definition is best explained 
signal, u(t), be represented 

ing a very short interval of

cos (oot+0)

and 0 are constant over this
lve for u and the c>ther three
by using u(t) and its first

/•um-v
-  -“Co' UJ

A u_______
tosin((Ot +0) o

3 + a and u), “ d

Thus, the original fixed-frequency cosine wit
and phase has become the sum of two cosines,
different from the original one. If the rate
and phase variation are truly small relative
frequency, then both w and co. are approximat s d
the original expression for u(t) becomes:

h varying amplitude 
each with a frequency 
s of the amplitude 
to the basic 
ely equal to co, and

u(t) “ a cos cot

This discussion can be summarized by stating that one
important part of the problem of generating a filtered time
record is the quest for an averaging time which is larger than
2tt 2it , 2ir—  but smaller than —  and ■=— .co___________________ a______3

"Befrency". One additional frequency, which will be called 
"befrency", is defined as the reciprocal of the period of a 
signal of arbitrary waveform. This concept will be discussed in 
more detail shortly.

m = u - A cos(cot +0) o

where dots above u represent differentiation with respect to time. 
Actually even this result does not give a true "instantaneous 
frequency" because one must average over four times the sampling 
interval in order to be able to calculate the third derivative.

One can certainly question both the utility and the meaning 
of this "instantaneous frequency". Is it valid to talk about 
the presence of a periodic component in a noisy record if such a 
fluctuation doesn't persist for some time? If one believes 
that it must be in evidence during a time interval, how long must 
this interval be and how much variation in amplitude and phase 
does one accept? In other words, is it meaningful to associate 
fluctuations from a random signal with a frequency? What is the 
significance of the difference between the output from a narrow 
band-pass filter and the result one would expect to get from an 
instantaneous type of analysis? As a result of the averaging 
effect, the filtered signal is a continuous signal which only 
passes through zero, but rarely stays there very long. On the 
other hand the "instantaneous frequency" is probably a discontinuous
r ecord with frequent, signif icant gaps (zero values). Because
of questions like these, it is felt that the discussion of an
" instantaneoUS frequency" is useful

In ord er to gain addi t iona1 ins ight into the meaning of the
word f requency, it is instrue tive to explor e the instantaneous
idea one st eP further. Cons ider the case of variable amplitude
and phase ; for simplicity let there be no DC component . That is

u(t) = A (t) cos[iot+0 (t) ]

Fur thermore, assume that A (t) = a cos at and e (t) * 3T, where a
and 3 are sma 11 relat ive to u>. This is the case of slowly varying
amp litude and phas e of a Four ier component and represents what
one might exp ec t to f ind in "real life” over a mod erate interval
of time. Aft er us ing several trigonome trie ident ities, but
wit hout using the assumpltions of a and 3<<<o, 0ne can rewrite the
above expression for u(t) as follows:

u(t) = y (cos “gt + cos

MODEL IMPLICATIONS IN CHOICE OF FILTER

Each of the def initions of frequency which have jusit been
presented was derived by analyzing the opera tion used t:o detect
the presence of a f luc tuation at that frequency. Such an operation
is cailed fiIter ing . Consider for a moment the application of
these ideas to a real problem. Clearly, one would not attempt
to find an isola ted fluctuation of a given frequency wi[.thin a
noisy signal by taking a Fourier Transfo rm of a long data record.
It should also be clear by now that if one did use a long-time 
average Fourier Transform filter, one would analyze the physical 
process incorrectly. The above mentioned isolated pulse would 
be lost in the Transform of the noise. This loss of an Intermittent 
spike is apparently what happens in long-time averaged turbulence 
correlation functions (see, for example, Kline, et al.,1  ̂ and 
Lahey and Kline1**). Thus we return to the comment about the quest 
for an appropriate averaging time and the realization that this 
comment points very directly to the following ideas. The choice 
of filtering technique must be appropriate for the model one has 
of the fluctuating quantity being studied. Conversely, every 
choice of a filter technique implies a model.
1. Model Based on Duration of Coherent Structure.

The simplest difference between various fluctuation models 
is based on averaging time. In the frame of reference of the model, 
the distinction is described by the length of time one expects 
to find a coherent, or nearly coherent, signal superimposed on 
the background noise. A further difference is the rate of change 
from a coherent signal at one frequency to a second coherent 
signal at another frequency, or back to noise. Random noise 
(assumed to be of infinite band-width) is a subset of this class 
of models with zero duration of coherent signal and, hence, 
infinite rate of change between signal structures.

As an example, let us compare the output from a filtered 
noise generator and the signal from a hot wire placed near the 
wall in a turbulent boundary layer. The differences can be 
demonstrated dramatically by listening to the two signals.
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When played through a speaker, the output of the noise generator 
sounds even, or smooth, compared to the turbulence, which crackles 
and pops intermittently. Suitable adjustment of the filter 
causes both signals to have the same power spectra, but they 
certainly sound quite different. This great difference serves 
to remind us that power spectra do not define a unique source; 
different sources not infrequently give the same spectra because 
information about phase and amplitude distribution are lost in 
the squaring and averaging processes required to generate a spectrum.
2. Linear Versus Non-Linear Models.

Almost all filters are used in a manner which implies that the 
original signal is due to the algebraic sum of a set of funda­
mental signals. That is, the assumption of linearity is basic 
to most standard filters, analog or digital. From the viewpoint 
of the model, this linear characteristic of the filter implies 
that the fluctuating phenomenon (e.g., turbulent velocity) is 
the result of the superposition of a set of phenomena which are 
more orderly than the resulting phenomenon. A well-known example 
of such a combination is an FM signal, which is the linear sum of 
a carrier wave plus a message and, therefore, belongs to the large 
class of signals which can rationally be treated by linear devices.

A significant question is whether the use of a conventional 
filter is appropriate in a study of turbulent bursting. Since the 
purpose of a filter is to separate a coherent signal from back­
ground noise, the use of such a linear filter implies that the 
total velocity signal is the result of a simple superposition of 
a coherent motion on top of background noise. However, it has 
been suggested that bursting involves non-linear interactions 
between the fluid which has been lifted away from the wall (the 
part which is postulated to behave in a coherent manner for a 
short period of time) and the fluid which is at some distance 
from the wall (the noise-like part) . Thus there may be a 
contradiction between the model of the flow and the preconceptions 
under which the filter is operated.
3. Waveforms and "Befrency".

Many years ago Fourier® showed that any function which exists 
for a finite length of time can be reproduced by the sum of a set 
of suitably weighted sinusoids. However, he never claimed that 
such a decomposition would yield the most useful information about 
a given signal. Essentially all the standard filter techniques 
assume that valid information can be obtained about the physical 
process by studying the various sinusoidal components separately. 
This is a meaningful statement if one knows that a given waveform 
is present, for then one can calculate the spectrum of that wave­
form. Whenever one sees such a pattern in the frequency domain 
representation of a signal, one can deduce the shape of the 
postulated waveform. Although the use of the standard sinusoidal 
decomposition would not confuse the investigator in an orderly 
situation, as long as he started with the awareness of the existence 
of a particular waveform, the results would still be much clearer 
and easier to understand if the decomposition were presented in 
terms of the postulated waveform. When the situation is less 
orderly, as seems to be the case with velocity fluctuations in 
a turbulent shear flow, the sinusoidal decomposition may never lead 
one to suspect the presence of a non-trigonometric waveform because
Note that one must analyze the Fourier Transform of the signal, 
not the power spectrum, so that one does not lose phase information.

the results would contain significant coefficients for many 
harmonics - i.e., they probably will blur over a possible 
unique structure.

An example of a waveform which may be applicable to 
turbulent boundary layer studies, and particularly to attempted 
decompositions of the Reynolds stress fluctuations, is a skewed 
triangular wave. The rise time during each cycle is significantly 
shorter than the decay time. Let us use the term "befrency" to
designate the reciprocal of the period of such an oscillation,

**as measured at its base - the time axis. Then the decomposition 
would be in terms of skewed triangular waveforms whose "befrencies" 
are multiples of the primary "befrency". If, in fact, the 
Reynolds stress fluctuations oscillate in a skewed triangular 
manner, then such a decomposition would show large contributions 
to spectra at only one, or at most a few, "befrencies," whereas 
with a standard trigonometric decomposition large contributions 
would be indicated for many frequencies. As just mentioned 
above, the higher harmonics displayed in the standard presentation 
could hide the existence of a burst signature. The two most 
important mathematical restrictions on the choice of the 
waveform are that its various harmonics obey orthogonality 
conditions, at least with respect to some specified weighting 
function, and that the set of waveforms be a complete set.

DUAL DOMAIN PERSPECTIVE

Filters are generally described by their characteristics 
in the frequency domain. With this in mind, the statement 
that the choice of a filter implies a model of the fluctuations 
can be separated into two components: (1) the specification
of a filter also means the specification of its characteristics 
in the time domain, and (2) these latter attributes show most 
clearly how the output from a filter is related to the input.
This brings us to the following important point: whenever one 
designs or analyzes a filter, one must consider its behavior 
in both the time and the frequency domain. It is well to recall 
that multiplication in one domain implies convolution in the 
other domain. The most important relationships between filter
characteristics in the two domains are discussed below (see,

3 7for example, Bracewell or Gold and Rader ). The first two 
items are mainly applicable to digital filters.

(1) Square truncation of an infinite record in the time 
domain produces ripples in the frequency domain. That is, 
the Fourier Transform of the time record will contain bumps 
which would not be present if the record had not been truncated. 
Therefore, the output of a filter whose impulse response has 
been truncated is affected at any given frequency by the 
frequency content of the input at adjacent frequencies.

(2) Truncation in the time domain by the use of a smooth 
"window" will still cause ripples in the frequency domain, but 
they will be much smaller than those caused by square truncation. 
However, this improvement is at the expense of frequency selectivity. 
Such a trade-off condition is always present in filter design 
problems.

"befrency" was generated by borrowing an idea on word 
lations from Bogart et al. They use the word "quefrer

The word
transformations from Bogart et al.‘ They use the word "quefrency' 
for the independent variable of a "cepstrum," which is the 
(direct) Fourier Transform of the log of a power spectrum. That 
is, "quefrency" is the Fourier Transform of frequency.
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(3) The better the frequency selectivity, the greater 
the ringing in the time domain. This may not be a problem 
for long-time averages, but it can be intolerable if one 
is either trying to do waveform identification by inspection 
of "filtered chronologies" or trying to trace a certain motion, 
such as bursting in turbulence, in the frequency-time space.
A good example of the problems that can be caused by ringing 
is shown in Fig. 5. The upper trace is a time record of uv(t) 
as measured by a hot-wire x-probe near the wall in a turbulent 
boundary layer. The lower record is the output from a narrow 
band-pass filter whose input is the uv(t) signal. Note that 
the spikes in uv(t) become something like a damped sinusoid in 
the filtered trace.

to be identical to R^; in fact, one has inserted the filter
in order to make R different from R ... But it is necessary oo ii J
to insure that the difference is due to the rejection of 
unwanted elements of the signal and not just to the response 
of the filter to noise. Again the need to design the filter 
system with a model of the fluctuating process in mind is apparent.

(3) The impulse response function of a series of elemental 
filters is usually different from the response function of any of the 
components. Consider, for example, the use of two simple RC 
circuits in tandem, and let both have the same time response 
function, h^(t) = exp(-t/T). Since the mathematical representation 
of a cascade of filters is given by the convolution of the 
impulse response of each filter, the impulse response function 
of the combination is given by:

Figure 5 Effect of ringing in filters on record of uv product.

(4) A narrow function in one domain transforms into a 
wide function in the other domain. This relationship is the 
basis of an important limit on band-pass filtering: the product 
of the bandwidth and the minimum data record length must be at 
least unity. In physical terms this says, a band-pass filter 
cannot detect any changes which occur faster than one period 
of the bandwidth frequency.

h(t) = h1(t) * hi(t) = t exp(-t/T)

for positive times. Note that h(t) has quite a different 
character from the impulse response of the individual RC 
circuit (see Fig. 6).

h(t)

1.0

0.5

Figure 6 Comparison of response of an RC circuit (e-t^T) and
two RC circuits in series (^ e-t^T) .

A PROPOSED MODEL OF THE FLUCTUATIONS IN A TURBULENT BOUNDARY LAYER
OTHER EFFECTS OF FILTERING

Several other effects of a filter on a signal should be 
mentioned briefly.

(1) The probability density function of a "filtered 
chronology", in all but "pathological" cases, is more nearly 
a normal distribution than that of the input signal.

(2) The autocorrelation of the output of a filter is 
equal to the convolution of the autocorrelation of the input 
and that of the filter impulse response function. That is,
if the filter operation is described, in the usual manner, by:

o(t) = h(t)*i(t)

where i(t) represents the input, o(t) the output, h(t) the 
filter transfer function, and * means convolution, then:

(t) 1(T)*Rii(T)

Note that if the input is random white noise, then R (t ) =OO

R, , (t ). As is to be expected, the effect of R,, on R also hh hh oo
becomes more significant as the filter bandwidth is decreased. 
It should be kept in mind, however, that one does not want Roo

The following model is proposed to represent the velocity 
fluctuations observed near the wall in a turbulent boundary 
layer. This model is based partly on the dissertation by R. Lahey^6 
partly on experience with "filtered chronologies" of the stream- 
wise fluctuating velocity component, and partly on the 
limitations imposed by filter theory. Since it makes no sense 
to suggest a filter transfer function which cannot be duplicated 
by any filter, digital or analog, the filter characteristics 
must be considered. Therefore, it is more accurate to call the 
proposed model a hypothesis instead. This model is to be used 
in a first attempt to detect bursts from a set of "filtered 
chronologies". If this approach is not successful, the consequences 
of waveform and non-linearity will be considered. As mentioned 
earlier, the use of a filter to find information which may help 
to describe the turbulence process is equivalent to the suggestion 
of a model of the process.

The fluctuations are represented by Markoff noise with a 
"coherent structure" that appears at random intervals super­
imposed on the background noise. This supposed structure 
consists of a sinusoidal oscillation whose frequency is not
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constant, but rather exhibits a jitter about a center frequency REFERENCES
fQ, within the following band:

|f << f << U3 o 3 o

For our experiment in a low-speed water flow, 0.2fps << << l.Ofps,
reasonable values of f are 2 Hz and 8 Hz, based on the results of o
previous investigators. Furthermore, this structure persists for 
about four cycles, using f as the basis. The amplitude of these 
oscillations remains approximately constant, and is of the same 
order of magnitude as the noise.

Since the purpose of this exercise is mainly to search for 
the presence of coherence in turbulence, a ripple of 5% is quite 
acceptable in both the pass-band and the stop-band, and the 
minimum attenuation in the stop-band need not be greater than 
-26 db, which is equivalent to 5% of the pass-band gain.

A plot of a filter transfer function which satisfies the 
above specifications is given in Fig. 7. It is flat near the 
center frequency and passes through the half-power points at the 
extremities of the postulated jitter band. Beyond these points 
the roll-off is approximately -26 db/octave. The transfer 
function is smooth over the whole band and reaches an attenuation 
of -26 db at frequencies which are 50% further from the center 
frequency than the jitter band. The bandwidth is wide enough

H(f)

Figure 7 A proposed filter for studying the characteristics
of turbulent bursts.

that the duration of the filter impulse response function is 
only as long as four periods of a fluctuation whose frequency 
is fQ. An attempt will be made to design a filter with zero 
phase shift, but it will very likely be necessary to accept 
a linear phase vs. frequency relationship. The linear 
dependency yields a constant time shift for the fluctuations 
at all frequencies. The proposed filter can be used directly 
on u(t) and v(t), but signal conditioning will be required for 
uv(t) prior to filtering in order to remove the impulsive nature 
of this signal.
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DISCUSSION

The discussion of this paper is included after the Johnson- 
Saylor paper.
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