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FREQUENCY RESPONSE STUDIES FOR A WEDCE PROBE IN VISCOELASTIC FLUIDS*

J. M. R odriguez**, C. K. Pa tterson *, end J. L . Zakin** 
Department o f  Chemical Engineering 
U n ivers ity  o f  H leeourl - R o lla  
R o lla , M leaourl

ABSTRACT

The response o f  s h o t - f l lm  wedge probe In v i s c o e la s t i c  f lu ids  has been 

In ves t iga ted  by Imposing on the probe s s inusoidal v ib ra t ion  o f  known amplitude 

and frequency. Root-mean-square (rms) v e l o c i t i e s  ca lcu lated  from the d i s ­

placement o f  the probe were compared to rms v e l o c i t i e s  obtained with a constant 

temperature anemometer. The te s ts  were performed under turbulent flow 

cond it ions and a lso  at f low ra tes  where v i s c o e la s t i c  e f f e c t s  ( l . e . ,  decrease 

o f  heat transfer ra tes from the probe to the f lu id  and drag reduct ion) were 

observed.

The frequency range covered was narrow (<  100 c p s ) . This l im ita t ion  was 

imposed by the dec is ion  to superimpose the sinusoidal v ibra tions on the tu r ­

bulence signa l ,  in  order to have dynamic conditions similar to those encountered 

in  actual turbulence measurements. Measurements were performed in mineral o i l  

and four so lutions of poly isobutylene (Vistanex L-200) In mineral o i l .

The experimental technique was establ ished by measuring the response o f  

the probe in mineral o i l .  These are the f i r s t  data ava i lable  In which the 

frequency response of a h o t - f i lm  probe In a purely viscous l iqu id  has been 

observed to be correct  in  the range studied. The ratica o f  v e l o c i t i e s  

ca lcu la ted  using the two d i f f e r e n t  methods were approximately 1.0. The resu lts  

fo r  v i s c o e la s t i c  f lu ids  are s im i lar  with ra t ios  ranging from 0.90 to 1.10.

These resu lts  es tab l ish  the v a l i d i t y  o f  In tens ity  measurements In v i s c o e la s t i c  

f lu id s  performed with h o t - f i lm  wedge probes. They Indicate that object ions 

ra ised  in the l i t e r a tu r e  concerning the use o f f i lm  probes In this type o f  

f lu id  are not correct  o r ,  at le a s t ,  not applicable to wedge probes.

INTRODUCTION

Metzner  and A s t a r l t s 1 have ra i s ed  o b j e c t i o n s  to the use o f  v e l o c i t y  

s e n s i t i v e  p robes ,  such as h o t - f l l m  and h o t -w i r e  probes , to  measure tu r ­

bu lence  i n t e n s i t i e s  in  v i s c o e l a s t i c  f l u i d s .  T h e i r  o b j e c t i o n s  are  based on 

an e lem entary  a n a ly s i s  o f  the e f f e c t  o f  v i s c o e l a s t i c i t y  on the heat t r a n s f e r  

r a t e  from heated su r fa ces  in  v i s c o e l a s t i c  f l u i d s .  T h e i r  ana lys is  p r e d i c t s  

that at high v e l o c i t i e s  h o t - f i l m  probes w i l l  l o s e  a l l  s e n s i t i v i t y  to v e l o c i t y  

due t o  a s ta gn a t ion  r e g i o n  deve loped  in  fr on t  o f  the probe . Based on t h i s  

l o s s  o f  s e n s i t i v i t y  p r e d i c t e d  f o r  the probes , they  quest ioned  the use o f  hot-  

f l l m  probes in  v i s c o e l a s t i c  f l u i d s .  I t  is  obv ious  that  i f  th e re  i s  a complete 

l o sa  o f  s e n s i t i v i t y  w i th  a cons tan t  temperature  anemometer the va lue  o f  the 

roo t -mean-square  v o l t a g e  ob ta in ed  w i l l  be z e ro  ( o r  a lmost  z e r o ,  s ince  th e r e  

I s  always  a c e r t a i n  amount o f  anemometer n o i s e ) .  The I n t e n s i t y  o f  turbu lence  

cannot be dete rmined when lo a s  o f  s e n a l t l v l t y  o f  the probe occurs  because

U ' m e 1

U d£

dIT

and both e '  and dE/dU are equa l  to z e r o .  Th la  type o f  behav ior has been 

obse rved  in c e r t a i n  polymer s o lu t i o n s  fo r  c y l i n d r i c a l ^  and w e d g e ^  f i l m  probes.
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• *  Department o f  Chemical E n g in e e r in g ,  U n i v e r s i t y  o f  Tennessee , K n o x v i l l e ,  
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Moreover, one might a lso  question whether in te ns i t ie s  o f  turbulence in 

v i s c o e la s t i c  f lu id s  calculated from D.C. vo l tage  versus v e l o c i t y  ca l ib ra t ion  

curves o f  unusual shape fo r  wedge probes are correc t ,  or i f  there are v i s c o ­

e la s t i c  e f f e c t s  on the c a l ib ra t ion  curves which make in te n s i t i e s  Incorrect.

I t  is a lso  v a l id  to question whether root-mean-square vo ltages  obtained from 

the constant temperature anemometer are representative o f  v e l o c i t y  fluctuations 

in  the f l u i d ,  or I f  there are v i s c o e la s t i c  e f f e c t s  on the vo l tage  f luctuations. 

These are the two questions that need to be answered in order to establish 

the v a l i d i t y  o f  the ho t- f l lm  wedge probe as a measuring dev ice In v i s c oe la s t i c  

f lu id s .  The ob jec t  o f  th is  paper Is  to provide answers to these questions.

The exper imental technique used consisted o f  applying a sinusoidal v ibration  

' to the probe In a steady flow and ca lcu la t ing the resu lt ing r e l a t i v e  v e lo c i t y
j

f luctuation  by two independent methods: (1 )  by obtaining a vo ltage  signal 

from the anemometer and (2 )  by measuring the displacement o f  the probe and 

assuming a pe r fe c t  sinusoidal v ib ra t io n .  This type o f  measurement has not 

been reported In the l i t e ra tu re  fo r ho t - f i lm  probes in l iq u id s ,  although 

measurements have been performed with a wedge probe in a i r  and with a hot-wire 

2 3in water.  *

Bellhouse and Schultz^ measured the frequency response o f  a ho t- f i lm  wedge 

probe In a i r  by applying a sinusoidal motion to the probe. They observed a 

frequency response drop at a frequency close to 200 cps, and attr ibuted this  

I to a loss at higher frequencies o f  unsteady heat transfer  from the probe to 

j the a i r  through the substratum on which the f i lm  was deposited . Their mache- 

| matlcal ana lysis predicts that th is  e f f e c t  w i l l  be very small for li qu ids,  due 

to the d i f f e ren ces  In the thermal impedance between l iqu ids and gases.

However, no measurements were obtained in l iqu ids.

Delleur , Toebes, and Lln^ performed experiments very s im ilar to chose 

reported in th is  paper with a hot-w ire probe which was vib rated mechanically 

In a water j e t .  The authors indicated  that experiments with a fi lm  probe 

were also performed, but no resu lts  were shown. They measured the response 

of the hot-w ire In the frequency range 2-38 cps and indicated  that there was 

a drop In the response as frequency increased at these low frequencies.

Values o f the ra t io  o f  the ca lculated v e lo c i ty  to that obtained from the 

probe displacement f e l l  to 0.30. I t  i s  d i f f i c u l t  to be l ie v e  that this drop 

in response occurred, fo r one would not expect thermal in e r t ia  e f f e c t s  at 

these low frequencies based on the results o f Bellhouse and Schultz and

L
measured energy spectra .

Thus, faw results are ava i lab le  on the frequency response of  ho t - f l lm  

probes In l iqu ids ,  and none In v i sc oe la s t ic  f lu ids .

EQUIPMENT

The experimental equipment consisted of a 16-ohm,30 watt loud speaker 

which was used to v ib ra te  the wedge f i lm  probe inside a v e r t i c a l  1-lnch 

tube, a constant temperature anemometer, and a capacit ive  transducer system 

used to determine the displacement o f  the probe. The tes t  flu ids were pumped 

past the probe at a s u f f i c i e n t l y  high flow rate to prevent the probe from 

moving through i ts  heated boundary layer.

The pumping unit used Is  shown In Figure 1. The unit  consisted o f an 

B-lnch diameter re se rvo ir ,  a 200 gpm gear pump, a v e r t i c a l  1-lnch I.D.  test 

sec t ion ,  and auxi l ia ry  equipment to monitor the flow and maintain a constant
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FIGURE I. PUMPING UNIT

p o s s ib i l i t i e s  o f  end e f f e c t s ,  which could a f fec t  the exper imental  results .

The wedge probe was connected through a 5 a coaxial cable to a DISA 

model 53A01 constant temperature anemometer. Overheat ra t io s  in the range 

1.OS-1.10 were used in these experiments. The anemometer was equipped with 

a D.C. vo l tage  suppressor which permitted D.C. voltages to be read accurately. 

This was required to es tablish accurate vo ltage versus v e l o c i t y  ca l ibrat ion  

curves.

The displacement o f  the probe was determined with a capac i t iv e  transducer. 

The transducer consisted of two sensing surfaces,  one f ix ed  and one movable.

The capacitance between two surfaces is  given by:

C * ! A  
a

where € is the d ie le c t r ic  constant o f  a i r ,  A is  the area o f  the sensing 

surfaces,  and a is the separation between the surfaces. The sensing surfaces 

were connected to a reactance converter  that converted capacitance to vo l tage .

A ca l ib ra t io n  curve o f  D.C. vo l tage  versus displacement was established, 

and from th is  curve values o f  root-mean-square (rms) v e l o c i t i e s  were ca lcu lated  

from the rms voltage measured by the reactance converter.

In order to establ ish the D.C. vo l tage  versus displacement ca l ibration 

curves, the sensing surface o f  the capacitance transducer that remained 

atationary during the frequency response raeaaurements was moved with respect 

to the sensing surface attached to the probe holder, the pos i t ion  of which 

remained f i x e d .  The stationary surface was mounted on a frame with two 

micrometers which were used to determine the displacement o f the frame.

The speaker was driven with a signal generator that imparted a sinusoidal 

»o t io n  to the probe. The probe displacement was given by £ sin 2*nt, where n 

corresponds to the frequency at which the probe was v ib ra ted .  The instantaneous 

v e l o c i t y  o f  the probe was given  by 2*n£cos 2r.nt. Addit ional de ta i ls  o f the 

experimental equipment are given elsewhere**.

f lu id  temperature. Expansion jo in ts  were u6ed to i s o la t e  the reservoir and 

tes t  sec tion froa the pump and e lim inate v ibrations. The flow was monitored 

by using a turbine flow ae le r  in conjunction with a d i g i t a l  counter. A 50 

a icron  f i l t e r  was used to remuve l in t  and d ir t  from the l iq u id .  Constant 

l iqu id  temperature was aaintained by a heat exchanger placed inside the 

rescrvo l r • Fluid temperature could be control led to ’*O.05°C.

The rese rvo ir  and test sec tion are shown in Figure 2. The test section 

consisted o f  a 1-inch I.D. seamless carbon stee l  tube which was placed inside 

the re s e r v o i r .  The length to diameter ra t io  o f the tube was 51. A l- inch 

to 3-inch expanJer was welded to the top of the test s e c t ion .  The threads 

o f the expander were removed and tha inside surface smooched. The expander

and teat sec tion  were centered with respect to  a flange welded to the top 

o f  the rese rvo ir ,  and were held in pos it ion  by three struts welded to the 

expander.

SPEAKER

FIGURE 2. RESERVOIR AND TEST SECTION FOR THE 
VIBRATING PROBE

The speaker was bolted  to a netal plate and the speaker and p la te  were 

bo lted to the flange on top of  the re s e r v o i r .  The bottom o f the metal plate 

consisted o f  a parabo 1ic-shaped piece,  e s p e c ia l l y  designed to f i t  inside the 

expander. The metal p late  was used to d iv e r t  the f lu id  into the reservo ir .

A 0.337-inch hole In the bottom of the parabolic  piece was used to introduce 

the probe into the tes t  section. The sensing surface uf the prube was centered 

inside the tube, 1 -k Inches from the end ot the tube. The length to diameter 

r a t io  of the entrance nectlon was approximately 50, which Is considered suff ic ient  

to develop the p r o f i l e  in the tube tor pure ly viscous f lu ids . The probe was 

connected to a specia l ly-des igned probe holder which also provided the e lec tr ica l  

connections fo r the displacement transducer and the anemometer svstem. The 

f lu id  was not subjected to a rapid dece lera t ion  as i t  le f t  the 1-lnch tube, 

since the expander had an inside diameter o f  1-k Inches for a length o f  approxi­

mately 1.5 Inches (measured from the end o f  the tube).  This minimized the

EXPERIMENT DESICN

Performance o f  the  f requency response s tu d i e s  under c o n d i t i o n s  s im i la r  

t o  those encountered under actual  tu rbu lence  measurements in  v i s c o e l a s t i c  

f l u i d s  was the o b j e c t i v e .  The fundamental v a r i a b l e  was the v e l o c i t y  o f  the 

f l u i d  moving past the  probe s ince the r a t e  o f  defo rmation o f  the  v i s c o e l a s t i c  

f l u i d  in f r on t  o f  the  probe depends on v e l o c i t y .  I t  is  known that  l a r g e  rates 

| o f  change o f  the r a t e  o f  de format ion  such chat the c h a ra c t e r i s e  lc tim e  for 

the  change o f  r a t e  o f  de fo rm at ion  approaches the  r e la xa t ion  t im e  o f  the  

v i s c o e l a s t i c  f l u i d ,  w i l l  induce v i s c o e l a s t i c  e f f e c t s .

The measurements were performed under turbulent flow cond it ions ,  since 

the experiments were performed in the s e w  • i c e  tube (1-inch I . D . )  end et the
123



■■me v e l o c i t i e s  (7-15 f t / » e c )  u»ed In other turbulence measurement*. Ctaly 

I f  a much smaller tube or a much more viscous f lu id  had been used could the 

ex p e r ie n c e  have been performed under laminar condit ions.  Laminar f low  would 

have s im p l i f i ed  the dat* analysis s ince the s inusoidal signal due to  the 

motion o f  the probe would not have been superimposed on the turbulent s ignal 

sensed by the anemometer. However, i t  was not possib le to use a smaller tube 

since the diameter o f  the probe was 0.275 Inches, and a smaller tube would 

have created experimental d i f f i c u l t i e s .  The v is c o s i t y  o f the f lu id  would 

have had to  be Increased by factor  o f  10(*= 50 cp) In order to  maintain lam­

inar flow in the 1-lnch tube at the des ired  v e lo c i t y .

Since the sinusoidal s ignal due to  the probe motion was superimposed on 

the turbulent s igna l ,  i t  was necessary to separate the two contr ibutions to 

the to ta l  signal obtained from the anemometer. One a l te rna t iv e  was to use 

a band-pass f i l t e r  with an extremely narrow band width. However, th is  was 

not ava i lab le  and the sinusoidal component was determined by measuring 

the root-mean-square vo ltage  due to the turbulent signal and that due to 

the sinusoidal s igna l .  From the d e f in i t i o n  o f  root-mean-square quant i t ies :

4

% —

( e^turb + sin) *  ( e turb + 2eturbesin  + e sin)

Thus,

2 2 2 
e turb + sin “  e turb e sin

I f  the co r r e la t ion  between the turbulent signal and the sinusoidal signal  

i s  neglected. For a p e r fe c t ly  random turbulent s igna l ,  the co rre la t ion

e turb e sin should be equal to zero .

I f  there i s  a cer ta in  p e r io d ic i t y  to the f low, and i f  i t  is  assumed 

that the p e r iod ic i ty  has a frequency n*. a contr ibution to e turb e sin would 

be obtained only i f  the probe were v ibra ted  at th is  frequency. I f  the t o ta l  

turbulent signal i s  o f  the same order o f  magnitude as the sinusoidal s igna l ,  

the contr ibution from one part icu lar  frequency to the to ta l  turbulent s ignal 

w i l l  be much smaller than the s inusoidal s ignal, and thus the co rre la t ion  

4turb e si'n w111 be much smaller than e^8 ln - (Furthermore, the co rre la t ion  

can be a p os i t i v e ,  zero ,  or negative va lue depending on the phase angle 

between the per iod ic  fluctuation  in  the turbulent signal and the sinusoidal 

s i g n a l ) .  Thus, i f  there is p e r io d ic i t y  in the flow, the er ror introduced 

should be small and random. Based on these considerations, the co r r e la t ion  

term was ignored in ca lcu la t ing  e ' g^n from:

e ,2
sin e 2

turb + sin
,2

e turb

There were experimental l im i ta t ion s  on the frequency range and the 

maximum v e lo c i t y  that could be Inves t iga ted .  The l im it  on the v e l o c i t y  

was due to v ib ra t ions  in the exper imental system caused by the f lu id  s t r ik ing  

the metal place on top o f  the re s e r v o i r .  Vibrations were g rea t ly  damped 

by the mass o f  the f lu id  in the re se rv o ir  at v e l o c i t i e s  below approximately 

15 f t/sec .  The l im it  on the frequency was due Co the superposit ion o f  the 

sinusoidal  s ignal on the turbulent s igna l .  Since the amplitude o f  the sinu­

so ida l signal was proport ional to (1/n^) for a given power input to the 

speaker, at high frequencies the amplitude o f  the probe motion was g rea t ly  

decreased, and che sinusoidal  signal could not be dist inguished from the 

turbulent s igna l .  I t  was found exper imentally that the l im it  on the f r e ­

quency was approximately 100 cps fo r  the power o f  the speaker used.

Thus, the frequency response o f  a wedge ho t - f i lm  probe was invest igated  

under dynamic conditions s im i lar  to those encountered under actual turbulence 

measurement*. Frequencies below 100 cps were Investigated with the f lu id  

v e l o c i t y  in the range 7-15 f t/sec .  The v is c oe la s t ic  so lutions used

£ IB  L-200 in  mineral o i l )  were drag reducing in the 1-lnch 

tube at che v e l o c i t i e s  inves t iga ted .

RESULTS AHD DISCUSSION

In order to determine the frequency response o f  the probe, the roo t-  

mean-square v e l o c i t y  o f  the sinusoidal f luctuations ca lcu la ted  from che 

anemometer data were compared to the root-mean-square v e l o c i t y  calculated 

from the known displacement o f  the probe. The rms v e lo c i t y  calcula ted 

from the probe displacement is g iven  by:

pd 0.707 p (2 «n )

where P is  half the peak-to-peak displacement of the probe in feet. The 

rms velocity from anemometer data is  given by:

sin

dE

dU

where dE/dU is the slope o f  the D.C. vo l tage  versus v e l o c i t y  ca l ib ra t ion  curve. 

The r a t i o  R, def ined by:

pd

was used as an ind ica t ion  o f  the response o f  the probe. The value o f  R should 

equal 1.0 fo r a pe r fec t  response.

In ten s i t ie s  o f  turbulence, defined by , were obtained at the same time
U

the probe response studies  were performed fo r mineral o i l  and the polymer 

so lu t ions .  I t  should be noted that v ' i s  the rms v e lo c i t y  associated with 

the sinusoidal motion o f  the probe, while u' is  the rms v e l o c i t y  o f  turbulent 

fluc tuations .  Turbulence in te ns i t ie s  were calculated from:

U dE

dU

The reason fo r  per forming the frequency response studies was to determine 

whether in tens i ty  values obtained with ho t - f i lm  probes in v is c oe la s t ic  

f lu id s  were c o r r e c t ,  and i f  not , what correct ions should be applied. 

In t en s i t i e s  o f  turbulence for mineral o i l  and 0.028, 0.05, 0.20, and 0.40L 

FIB in  mineral o i l  obtained in  th is  system are given in Figure 3. The 

turbulence in te n s i t i e s  at the center o f  the tube for mineral o i l  were in 

the range 0.043-0.045, which agree s a t i s f a c t o r i l y  with previous In tensity

7 9

N . t  * 'O '*

FIGURE 3. TURBULENCE INTENSITY VERSUS REYNOLDS NUMBER
4

measurements in the 1-lnch tube in th is  Reynolds number range . The data 

fo r  the polymer solutions show in tens i t ie s  higher than fo r  the so lvent at 

low flow ra te s .  Thus, the re su l t *  o f  the response studies should es tab l ish  

whether these In tens i ty  values are correct or are due to v is c oe la s t ic  e f f e c t *  

on the probe.
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Figure 4 shows the experimental re su l ts  fo r mineral o i l ,  presented as R 

versus frequency. These measurements were performed to es tab l ish  the r e l i a b i l i t y  

o f  the experimental techniques used. Values o f  R at the highest frequencies 

investigated were mostly In the range 1.05-1.10. In tens i ty  o f  turbulence
9

measurements using constant temperature anemometry are usually good to +5% .

Thus, i t  Is reasonable to expect a 5% error  in v ' anem. Considering the 

assumptions made in the ca lcu la t ion  o f  v '  j ,  a to ta l  e r ro r  o f  only 10X can 

be considered to be qu ite  good.

At the lowest frequencies inves t iga ted ,  p a r t icu la r ly  at 5 cps, extremely 

large values o f  R were obtained. The values o f  R were 1.70 and 1.46 at 5 cps, 

and 1.26, 1.22 and 1.10 at 10 cps. These high values o f  R are due to experimental 

er ror  caused by a tendency o f  the probe movement to become unstable at low 

frequencies,  the t ip  o f  the probe was observed to move in a la t e r a l  motion 

when the probe was vib rated in a ir  at low frequencies.  Results below 20 

cps are, the re fo re ,  in va l id .

The re su l ts  obtained in mineral o i l  provide confidence in the experimental 

techniques. The drop in frequency response observed by Del leur et  a l .^  in 

th e i r  measurements with a hot-wire  probe in water at very  low frequencies 

is  not observed in these data, and indicates that experimental error must

, 2
have been introduced in the ir  measurements. In  accordance with Bellhouse s 

pred ict ions,  the drop in frequency response at low frequencies observed for 

a v ib ra t ing  hot- f i lm  wedge probe in a i r  was not observed in these l iqu id  

measurements.
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James6 and Friehe and Schwarz6 have obtained D.C. vo l tage  versus v e lo c i t y  | 

ca l ib ra t ion  curves fo r polymer so lutions d i f f e r e n t  from those obtained for 

purely viscous f lu ids .  These results were obtained with cy l inder  hot- f i lm  

probes. James observed a complete loss o f s e n s i t i v i t y  to v e lo c i t y .  Friehe ’

observed a similar e f f e c t , but a regain  in s e n s i t i v i t y  was observed to occur 

at high v e l o c i t i e s .  These results  appear to be ch a rac te r is t ic  o f  cy l inder 

probes and are due to the development o f  a stagnation region in front o f  the 

cy linder.  The regain  in s e n s i t i v i t y  observed by Friehe and Schwarz was probably 

due to the "washing away" o f  this stagnation region at very high v e l o c i t i e s  

and not to "vortex  shedding" as suggested by them. F r iehe 's  energy spectra 

did not regular vortex shedding, which would appear as peaks at character is t ic  

frequencies. The stagnation region appears to develop from a balance between 1

normal stresses and the impact pressure o f  the f lu id  against the cy l inder .  I

The normal stress developed in front o f  the cy l inder may Increase r e l a t i v e l y  

s lowly with v e lo c i ty  and since the impact pressure depends on the square of  

the v e lo c i t y ,  the stagnation region in front o f the cy l inder  is not formed 

at high v e l o c i t i e s .

Figure 5 shows a typical ca l ib ra t ion  curve for a v i s c o e la s t i c  f lu id  obtained 

with a wedge probe. The f lu id  fo r this ca l ib ra t ion  curve was 0.028X FIB in 

mineral o i l .  This ca l ib ra t ion  curve does not conform to the equation "

Ai +  BjU which ca l ib ra t io n  curves fo r pure ly viscous f lu id s  usually

fo l l ow .  This type o f  ca l ib ra t io n  curve is a lso  not predicted by Metzner 's  

s im p l i f ied  ana lys is .  Dimensional analysis considerations Indicate that the 

c a l ib ra t ion  curves obtained fo r  the wedge probe re su l t  from normal s tress  

e f f e c t s  on Che thickness o f  Che boundary layer developed over Che sensing 

surface o f  the probe^.
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FIGURE 5 CALIBRATION CURVE

I t  is  known from experimental measurements^’ ® that v e lo c i t y  p r o f i l e s  

in  v i s c o e la s t i c  f lu id s  under drag reducing condit ions d i f f e r  from those 

fo r  purely viscous f lu id s .  These d if fe rences  occur mainly because o f  a 

thickening o f  the boundary layer under drag reducing condit ions. The 

maximum value o f  the ra t io  UacCual/UpV at the center  o f  the tube obtained 

by Florez^ in his v e l o c i t y  p r o f i l e  measurements with highly drag reducing 

so lutions was approximately 1.10. The e f f e c t  o f  v i s c o e la s t i c i t y  on the 

v e l o c i t y  p r o f i l e s  was not considered in the present invest iga t ion  since 

they are not wel l established. However, the e r ro r  Introduced is probably 

less  than 10X, assuming that values o f U d^ can be obtained accurately
dlT

from loca l curve slopes. I f  U , /U„„ remains constant over a shortactual Pv

v e l o c i t y  range, no er ror is  introduced in ca lcu la t ing  U — , even i f  there
dU

is  an uncerta inty in the v e l o c i t y .

Results for the frequency response studies in the PIB in mineral o i l  

so lutions are given  in Figures 6 and 7. The resu lts  fo r 0.05X and 0.20X 

PIB in mineral o i l  are representa t ive  o f the resu lts  obtained for a l l  

so lutions and only these w i l l  be discussed. Measurements were also performed 

f o r  0.028X and 0.40X PIB in mineral o i l .

A t o ta l  o f  5 runs are shown in these f igu res .  The resu lts  for a l l  runs 

were s im i lar .  Values o f  R at the highest frequencies investigated were close 

to 1.0, and no trends ex isted  fo r  the dev iat ions observed, indicating that 

these were due to experimental e r r o r .  The low frequencies show the same trend 

observed at low frequencies fo r mineral o i l .  In the mineral o i l  resu lts ,  

dev iat ions becmse s ign i f ic an t  at 10 cps. In the polymer so lution data, large 

values o f  R were observed at 20 cps. The only d i f f e ren ce  observed between 

the mineral o i l  and the polymer solutions re su l ts  is  the small sh i f t  in frequency 

at  which the large values o f  R s ta r t  to occur. I t  is  possib le  that the 

tendency o f  the probe to be unstable at low frequencies is  enhanced by Che 

v i s c o e la s t i c i t y  o f  the polymer solutions.
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These high va lues o f  R were considered in  d e t a i l .  The values o f  R 

were independent o f  the l e v e l  o f turbulence in te n s ity  measured. Values 

o f  u'/U given in  Figures 6 and 7 and shown in  Figure 3 in d ica te  that in te n s it ie s  

a t  »  11,120 ( f o r  the 0.05X so lu tion ) and at H ^  -  4,900 and 5,820 ( f o r  the 

0.20X so lu tion ) were n early  normal, while in te n s it ie s  at N ^  *  9,320 ( f o r  the 

0.051 so lu tion ) and at -  3,760 ( f o r  the 0.20X so lu tion ) were nuch higher 

than normal. However, the large values o f  R occur fo r  both high in te n s it ie s  

and normal in te n s it ie s . Thus, i t  i s  not p oss ib le  to  associate la rg e  values 

o f  R with high in te n s it ie s  o f turbulence. F i l t e r in g  the turbulence signals 

a t 20 cps ind icated  that approximately 101 o f  the signal was under 20 cps.

Th is indicates that the h igh values o f R obtained a t low frequencies cannot 

account fo r  the h igh in te n s it ie s  o f  turbulence observed in  the PIB solutions 

which were approximately twice the normal va lues.

One might question whether low frequency vib ra tion s might tra n s fe r energy 

to  h igher frequencies w ith  the resu lt that high in te n s it ie s  o f turbulence might 

re su lt  from low frequency v ib ra tion s. Energy spectra were measured fo r  the 

turbulent s igna l and fo r  the turbulent s ig n a l w ith  the sinusoidal v ib ra tion s 

superimposed. I t  was observed that the low frequency (as w e ll as the high 

frequency) s inusoidal v ib ra tion s had no e f f e c t  on the energy sp ectra , exoept 

in  the bands covering the frequency at which the probe was v ib ra ted . This 

ind icated  that there was no energy tra n e fe r  mechanism taking energy from one 

frequency and tra n s fe r r in g  i t  to  other frequ en c ies .

OONCUJSIONS

I t  is  concluded that the response o f  h o t - f i lm  wedge probes in  v is c o e la s t ic  

flu id s  is  c o rrec t and that in te n s it ie s  o f  turbulence can be measured, even 

when the ca lib ra t io n  curves fo r  D.C. v o lta g e  versus v e lo c ity  d i f f e r  from those 

obtained fo r  purely viscous f lu id s ,  provided the value o f  dE/dU can be determined 

accu rately . The ob jections ra ised  by Hetsner and A s ta r lta 1 have been shown 

not to be v a lid  fo r  wedge h o t- film  probes, and high in te n s it ie s  o f  turbulence 

observed fo r  d reg  reducing v is c o e la s t ic  f lu id s  e re  not due to anomalous probe 

response.

SYMBOLS

A area o f  sensing su rface in  capacitive  transducer
_2 ~0 .50

Aj constant in  the equation  E ■

a separation  between sensing surfaces o f cap ac itiv e  transducer

—2 -0 .5 0
Bj constant in  the equation  E ■ A^ + B^D

E D.C. vo lta g e  from the anemometer

a instantaneous value o f  the flu ctu a tin g  vo ltage

e > root-mean-square value o f  the flu c tu a tin g  vo ltage

n frequency, cps

n* frequency o f flow  p e r io d ic ity ,  cps

R ra t io  o f  v ' ^ / v ' ^

t tim e9 seconds

ui root-mean-square value o f  turbulent v e lo c ity  flu c tu a tion , ft/ sec

0 average point v e lo c i t y ,  ft/sec

v > root-mean-square value o f  sinusoidal v e lo c ity  flu c tu a tio n , ft/sec

3 one h a lf  o f  the peak-to-peak displacement o f  the probe

e d ie le c t r ic  constant o f  a ir

SUBSCRIPTS

anem obtained from the anemometer

pd obtained from probe displacement

pv re la ted  to a pu re ly  viscous f lu id

s in  re la ted  to s in u so id a l fluctuations

curb re la ted  to turbulent flu ctuations
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