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OPTICAL STATISTICAL MEASUREMENTS OF
FREE CONVECTION FLOW PATTERNS*

E. F. C. Somerscales**
Rensselaer Polytechnic Institute 
Troy, New York 12181

ABSTRACT

Measurements have been made of the autocorrelation of photographs of the 

flow patterns produced at high Rayleigh numbers in a horizontal layer of 

liquid heated from below and cooled on top. The relation of these measure­

ments to temperature measurements in the fluid are considered. Analogous 
situations in other physical systems are also discussed.

INTRODUCTION

The characteristics of fluid flows are most commonly investigated experi­

mentally by means of velocity measurements. For non-isothermal flows the tempera­

ture distribution is also a quantity which can provide information on the flow. 

Such measurements usually (but not always) require the insertion of a probe 

into the fluid with consequent possible disturbance of the flow. Probing 

techniques may also have a spatial and/or temporal resolution that is limited 

by the physical characteristics of the probe. Optical procedures may pro­

vide a satisfactory means of overcoming these various disadvantages. For 

example certain optical methods (such as that described in this paper) are 

able to provide in a very short time much more information for statistical 

analysis than could be obtained by making measurements at a finite number 

of points. Furthermore, this data is obtained from a two-dimensional 

region in the flow field. This is particularly advantageous in free convec­

tion flows (the type discussed in this paper) where spatial averaging may
2be a more efficient process than temporal averaging. In certain circum­

stances such as the examination of the flows encountered in astrophysics and 

meterology, an optical approach is the only one possible.

There are a number of optical flow measurement methods available but 

of these an Instantaneous photograph of the flow pattern (which is related 

to the fluid velocity) represents one of the simplest of optical measurements.

The data which can be obtained most directly from this measurement would be 

concerned with the characteristic size of the features in the flow pattern.

Where the flow situation under investigation is laminar a direct visual 
examination and measurement should be sufficient to obtain an appropriate 

characteristic scale. If the flow is turbulent or otherwise spatially and/or 

temporally irregular a statistical approach would provide the best method 

of obtaining from the photograph an objective measurement of the scale of 

the flow pattern. The spatial variation of the autocovariance of the trans­

parency of the photograph (defined in the next section) of the flow pattern 

provides a suitable statistic. In particular the full width at the half- 

maximum (FWHM) of the autocovariance curve is a good representation of the 

smallest spatial scale of the photograph (see Appendix).
In the experiments reported in this paper this approach has been applied 

for the first time to the flow in a horizontal layer of fluid heated from 

below and cooled at its upper surface. This hydrodynamic system is of particu­

lar interest because it represents a prototype situation from which information 

relevant to a basic understanding of more general (turbulent) flows might 

be obtained.^

Convection in horizontal fluid layers would also appear to have similar 

features to the flow in the outer layers of the solar atmosphere and in the 

terrestrial atmosphere. This similarity between the laboratory and the 

natural flow situation has generally only been considered from a qualitative 

point of view. A comparison of the characteristic scales of the three systems 

might provide a more systematic indication of their corimon features.

The method of Kretzmer^ was used in the experiments reported here to 

obtain the spatial variation of the autocorrelation function for the various 

flow patterns which were examined. Kretzmer originally applied this technique

to a statistical analysis of television pictures. The same method has also
6,20 .been employed by Kovasznay in the examination of shadowgraph pictures

of supersonic flows and by Leighton^^^ to the flow patterns in the solar 

atmosphere. Autocorrelation functions have also been measured using slightly 

different techniques by Soo^ in two phase flows and Vohr^ with boiling 

flows. Other applications and methods are discussed in references 1 and 9.

TECHNIQUE AND ANALYSIS*

A photograph may be considered as being made up of a spatially distribu­
ted variation of tones between black and white. Where the photograph is on a 

slide, it may be considered as a spatial variation in the transparency, 

i.e., the transparency is expressible in polar coordinates as T(s,8). Then 

the autocovariance between two horizontally adjoining elements of the photo­

graph is the spatially averaged product of the two transparencies of each 

pair of picture elements which appear in the region* over which the spatial 

averaging is carried out. If the picture elements are separated by a distance 

then the autocovariance is given by

C( AS.e) “ “i” ^  T(s,8) T(e + A»,e) dA (1)

where A Is the area of averaging.
The determination of the autocovariance can be raallaed In practice 

by measuring the relative optical transparency of two Identical slides placed 

face to face and shifted from register (As “ 0) by equal and opposite amounts 

(+^/2). Then according to equation (1) the autocovariance Is

C ( A S .e )  ~ - J ~  £  T (+ A s /2 ,e )  T (-A s /2 ,0 )d A  (2 )

The *utocovarlance as defined in equations (1) and (2) is only valid 
when the mean transparency of the slides is zero; in practice this condition 

never holds. In these circumstances the following definition (derived in 

the Appendix) is more appropriate

C< A s .e )  ■ "A-  ^  T(-A»/2,e)T(+a a/2,e)«u

- -jy £  T(-A»/2,9)dA T(+As/2,«)dA (3)

* The discussion of this section follows that of reference 7.

♦The region over which the spatial averaging la carried out should be large enough 
(•»T. an order of magnitude larger) to encompass the fine scale structure of the 
photograph. To show that the everaglng area la sufficiently large, the "stop" 
(Figure 1) used In the apparatus employed In the Investigation reported In this 
paper can be moved around to demonstrate that the variation of the autocovariance 
with the position of the atop la small.

♦Supported by Rensselaer Research Grants and by the R.P.I. Fluid, Chemical, 
and Thermal Processes Division.

♦♦Associate Professor of Mechanical Engineering
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In some cases lc Is desirable Co use a normalized measure of spatial 

correlation called the coefficient of autocorrelation (see Appendix)

~T [ T ( -  A z/2 ,»)T(+A s/2,#)dA -"77 f T(-£*/2,#)dA  /t *-A*/2,®)<IA

R(A8*e)* t S ------pr7----ns-------------
—  ^  T2 ( 0 , 9 ) d A  * [  A  J a  *«>.® )<JAJ ( 4 )

The quantities C and R can be plotted as functions of AS and 0. It Is

shown In the Appendix that a characteristic scale for the distribution of 

transparency can be obtained from the FWM4 of such a curve.

OPTICAL CORRELATION COMPUTER

The device used to measure the autocovariance la shown schematically 

in Figure 1; it is an exact copy of the apparatus described in reference 7.

A collimated beam of light is passed through two 4 in. x 5 in. glass slides 

of the photograph under consideration. The area of spatial integration 

(see preceding section) is defined by the stop (this was of 2 in. diameter in 

the experiments reported here). The light transmitted by the slides is 

focused on a ground glass screen. The light transmitted by the ground glass 

falls on the photo-cathode of a type 931A photomultiplier tube. The source 

of illumination is a 6 volt filament bulb (GE1493). It is supplied by a 

regulated DC power supply so that the fluctuations in luminous intensity are 

a minimum.

The slides are carefully aligned and clamped in two aluminum holders 

with their emulsions in contact*. The holders can be moved by a micrometer

■craw relative to one another so that the two slides move by equal amounts 

in opposite directions. This movement can be measured to within 0.002 in. 

The holders are held under tension so that residual variations in the back­

lash of the driving screw are extremely small. The slides are supported in 

the holders by two close fitting graduated aluminum rings which permit 

accurately determined rotation of both slides or one slide.

The photomultiplier tube and light bulb are mounted in light proof 

boxes. The small gap between the open ends of these boxes and the plate 

carriers was closed by a black velvet "boot". The measurements were made 

in a room artificially illuminated with low intensity light so that fluctua­

tions in the ambient light did not affect the measurements. The high voltage 

was continuously maintained on the photomultiplier in order that the charac­

teristic erratic behavior associated with the initial operation of such 

tubes be eliminated. The tube was suitably shielded when changing the glass 

plates in order to avoid damage by exposing it to high ambient light levels.

The output of the photomultiplier is proportional to the autocovariance 

as defined in equation (2) and is measured by a Hewlett-Packard model 425A 

microvolt-ammeter (Figure 2).

The micrometer screw which drives the plate holders was adjusted until 

the reading of the voltmeter was a maximum. This point was taken to corres­

pond to zero relative displacement of the plates (As = 0). This procedure 

was used to minimize the errors associated with the initial alignment of the 

plates in the holders, which was done by eye.

A bucking voltage was then inserted into the circuit so that the volt­

meter reading corresponding to the maximum correlation was zero. Since the 

variation of the autocovariance did not usually exceed 1071 of its maximum
PHOTO-MULTIPLIER 

__________________ s ' 931-A

POWER SUPPLY
--------- l— l H P 6 2 ISA

D IFFUSED  LIGHT 9 3 1 A PTM ( 0-30VDC,0-500m A)

A* ^  —i rT ^
I \ — ------- — 4

J / / l OOka took a  lOOka lOOka <>9 ka  V
SLIDES ^  “V N A —* - V n----------- --------------------------------------------------------------------------- '

—  = = r  CONDENSER _ 900 V
A  I \ lenses "" — “

^  ----- F  +1-----Hi"stop/  \ /  -----------------------1
---------  \ / POWER SUPPLY

\ / E R A  THSK 15LM
\ f (0 -SkV»0 - l 3mA)

A f a - H ------- LIGHT SOURCE Tlgure 2‘ dl*«r~
0E 1493

Figure 1. Schematic diagram of optical correlation computer.

*The slides oust be in the form of a right-and-left-hand pair if they are 
to be in register when arranged face-to-face with zero horizontal displacement.

value, it was then possible to nuke the full scale deflection of the voltmeter 

correspond to this variation by increasing the voltmeter gain.

The plates are then displaced by an appropriate amount and the new value 

of the autocovariance is determined. This procedure is repeated until the 

autocovariance appears to have leveled off to an essentially steady value.

The coefficient of autocorrelation (equation (4)) is determined using 

alnglt plate transparency values determined in the optical correlation 

computer.
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APPLICATION TO FREE CONVECTION IN HORIZONTAL FLUID LAYERS

When heat is first applied at the lower surface of a layer of fluid 

enclosed at the top and bottom by rigid, horizontal, conducting boundaries, 

it is transferred to the upper plate by conduction. With Increasing heat 

input, a point is reached where motion of the fluid commences. The initiation 

of motion has been shown to depend on the critical value (1.70 x 103) of a 

non-dimensional parameter, the Rayleigh number (Ra) , which is defined in the 

Symbols.

The motion at Rayleigh numbers slightly greater than critical usually 

appears as one of two regular flow patterns when viewed from above. In the 

one case, commonly called cellular flow, the fluid (if it is a liquid) rises 

in a series of vertical plumes located at the centers of a network of hexagons.

At the upper surface of the layer the rising fluid flows radially outward 

and descends along the outer edges of the hexagons. At the lower surface the 

flow is inward to the center of the hexagons. If the fluid is a gas the flow 

is observed to be in the opposite direction. The other flow pattern has the 

appearance of long vortices, known as rolls, in which the fluid circulates 

continuously between the upper and lower surfaces of the layer (as with the 

cellular flow pattern the direction of motion depends on the nature of the fluid). 

These rolls lie side by side in a regular pattern; for example, they may have 

the appearance of a system of concentric circles or a system of parallel 

straight lines. As the Rayleigh number of the system is increased the regular 

flow pattern breaks up and eventually (at a Rayleigh number* of about 3 x 10^) 

the flow becomes completely disordered. The flow pattern consists of irre­

gularly shaped cells with shapes and dimensions which continually vary with 

time. This disordered fluid motion provides a very suitable means for the 

study of turbulence.

The flow patterns associated with the disordered fluid motion at high 

Rayleigh numbers have been examined qualitatively by Silveston*3, Somerscales 

and Dropkin^, Elder3 and Rossby*^. In each case (except for the work reported 

in reference 15, where the Schlieren technique was used) the pattern was made 

visible by the addition of a very small amount of aluminum dust to the fluid. 

Under suitable illumination the flow appears as a pattern of light and dark 

areas.

* The exact value appears to depend on the Prandtl number of the fluid.

Because of the irregular nature of the flow pattern and because some of 

the cells are creased by faint, dark lines it is difficult to decide which 

regions of the photograph constitute individual cells. In these circumstances 

the spatial variation of the autocorrelation of the transparency provides the 

best means of determining the characteristic horizontal spatial scales of the 

flow system.

Measurements were made on one of the flow pattern photographs obtained 

by Somerscales and Dropkin (Figure 3 in reference 17). This photograph is 

a plan view of the flow pattern observed at a Rayleigh number of 1.31 x 103 in 

a 50 centistoke silicone fluid of Prandtl number 300. The apparatus shown in 

Figure 3 was used to obtain the flow pattern.

Because of the conditions under which the photograph of the flow pattern 

was obtained it probably represents the flow in regions of the fluid immediately 

adjacent to the upper boundary of the fluid layer. This is a speculative conclu­

sion and it would be worthwhile to investigate this point in more detail using 

a lighting system which illuminates different layers of the fluid.

A typical autocorrelation curve is shown in Figure 4. Such curves were 

obtained for a number of values of the angle 6 and were found to have substan­

tially the same character. Two features of the autocorrelation curve are of 

interest: the FW1W (as discussed in section 1) and the nature of the autocor­

relation curve for large values of displacement (is).

The FWltf varies with angle 0 between 0.25 in. and 0.27 in. with an 

average value of 0.26 in. On the average then the small structure observed 

at a Rayleigh number of 1.31 x 103 in the apparatus shown in Figure 3 is

0.26 in.

The correlation curve has a marked change in slope at points 

corresponding to a length of about 0.89 in. This is possibly associated 

with the cellular structure of the flow. An examination of the photograph 

shows this to be reasonable. If this conjecture is true then there should 

be in an area of 6 in. by 8 in. (the area of the test chamber) an average 

of 80 cells. Counting the cells in the original photograph (admittedly an 

uncertain process) gives a value of approximately 60 cells. The small 

difference between the two values is interesting but may only be coincidental.

One difficulty with this interpretation rises from the dimensions of the 

cellular structure. This is of the same order of magnitude as the area of 

the stop in the correlator. In these circumstances the stop is probably not

Figure 3. Schematic diagram of cast chamber (from reference 17).
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MICROMETER READI N6 (IN .)
Figure 4. Typical autocovariance curve obtained from Figure 3 of reference 

17 (reduction scale of photograph 2.21:1).

sufficiently large to provide suitable area averaging. Furthermore the relative 

dimensions of the cells and the test chamber are such that a statistically 

significant sample of cells may not be preaent. This could also be the cause 

of the slight assymetry in the correlation curve (Figure 4).

APPLICATION TO ASTROPHYSICAL AND METEOROLOGICAL SITUATIONS 

AND COMPARISON WITH LABORATORY OBSERVATIONS

The autocorrelation measurements were made on a photograph of 

the solar granulation (which has a complicated "cellular" structure not 

unlike the flow patterns seen in heated horizontal fluid layers) and on a 

photograph of a probably cellular cloud pattern. In the former case such 

measurements had already been made by L e i g h t o n * ^ a n d  the prlstary 

intention of repeating them was to check those measurements. The results 

however are of Intrinsic interest in that they dessonstrate very clearly

the type of information that can be obtained using the optical autocorrelation 

technique.

The autocorrelation curve made from Figure 1 of reference 11 is shown 

in Figure 5. The characteristic scales measured from this figure are in 

agreement with Leighton's values. It can be seen that the autocorrelation 

is periodic at large values of the displacement*. This would appear to 

correspond to a preferred dlsmnslon in the flow field of about 2000 km. So 

the photograph of the solar granulation can be Interpreted as being made 

up of a fine scale structure arranged into "cells" of about 2000 km. diameter.

It is worthwhile noting that the characteristics of the solar granulation 

photograph are such that to obtain the dimensions of the cells would have been 

extremely tedious by any other method.

* The persistent periodicity does not appear in Leighton's correlation curve".
The reason for this difference is not clear.
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Some cloud photographs taken from artificial earth satellites5,8 show 

patterns which correspond very closely to the cellular flow patterns seen in 

the laboratory. The physical mechanism operating to produce these cloud 

formations is unknown. However, Hubert5 has proposed that this flow situation 

is related to the flow of a fluid in a heated horizontal layer except that 

turbulent rather than molecular transport processes are dominant.

One of the cloud photographs taken from a Nimbus earth satellite 

was subjected to correlation analysis (see result in Figure 6). This photo­

graph was chosen because it provided a large field of possible cellular cloud 

formations with the cloud structure being substantially smaller than the 

area of the photograph and the area of the stop in the correlator. Furthermore, 

of the available photographs, this had a minimum of distortion due to the 

curvature of the earth. The characteristic size of the small structure in 

the photograph is approximately 100 statute miles as determined from the FWHM 

of the correlation curve. In addition there appears to be a cellular flow 

with dimensions of about 280 statute miles.

The nature of the cloud pattern photograph was such that the large 

scale periodic structure would have been extremely difficult to measure 

by simple visual study of the photograph.

ERROR CONSIDERATIONS

The major source of error in the correlation measurements is considered 

to be in the initial alignment of the plates. This was minimized by the 

procedure for determining the point of zero displacement described in section

3. The residual uncertainty is estimated to be + 0.005 in. The uncertainty 

in the measurement of the voltage output of the photomultiplier tube is

+ 2 percent.

An attempt was made to estimate the effect of plate grain "noise" 

on the correlation measurements. The conclusions were uncertain due to 

difficulties in uniformly developing the plates, however this probably 

adds not more than 2 percent to the measured correlation.

DISCUSSION AND CONCLUSIONS

A technique has been demonstrated for the measurement of spatial 

scales in free convection flows. By employing photographs of the flow 

pattern taken at different times it would be possible to extend the method 

to the measurement of temporal correlations, as has been done by Bahng and 

Schwarzschlld^. These two types of statistical measurements would be very 

useful in the study of Howard's thermal layer model of free convection at 

high Rayleigh numbers4 ’^ ’^ .  Optical correlation would be used in this case 

to measure the spatial scales and temporal periodicities in the flow field.

A preliminary investigation of these scalesata Rayleigh number of 1.40 

x 107 has been conducted by Lazzara**7 using temperature measurements. One 

of the results of this study was the detection of a large scale periodic 

phenomenon which seemed to be confined to the regions of the fluid close to 

the upper and lower surfaces. As noted above, it is not certain that 

a flow of this type was observed in the experiments reported in this paper.

Some statistical arguments were advanced for this and it is also possible that 

the substantially lower Rayleigh number (1.31 x 105) may have some effect. A 

program for the measurement of the scales of fluid motion in free convection for 

a wide range of Rayleigh numbers and with fluids of different Prandtl numbers

MICROMETER READING ( IN .)
Figure 6. Autocovariance curve obtained from NIMBUS satellite cloud photo­

graphs between 120°W - 134 W, 22°S - 30°S (approximate scale:
O.lOln. “ 40 statute miles).

by Hubert5 to laboratory investigation of this atmospheric phenomenon, such a 
comparison could be very fruitful. In particular, a wide range of flow condi­
tions can be examined in the laboratory under carefully controlled conditions. 
Such experiments might reveal significant conditions that could be searched 
for in a program of field measurements.

In conclusion It should be emphasised that the results reported here are 
preliminary to a more extensive investigation of free convection In a heated 
fluid layer.

would provide valuable information on the problem of free convection at 
high Rayleigh numbers.

The autocorrelation smasurements on the solar granulation and terrestrial 
cloud photographs revealed large scale ordered flows which would have been 
difficult to detact by other means. Because of the different physical pheno­
mena involved one would hesitate to apply conclusions obtained from laboratory 
flows to the solar granulation. However, for the cloud photographs, regardless 

of the valid objections (based on the physics of the atmospheric flow) raised
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Drawings for the construction of the optical correlator were provided 

by the Bell Telephone Laboratories with the invaluable assistance of Dr.

E. R. Kretzmer. The correlator was constructed by J. Marshall and the 
success of the work Is directly related to his skillful workmanship.

High quality prints of certain cloud photographs were supplied by 

the Envlroraaental Science Services Administration through the good offices 

of Dr. L. F. Hubert, Chief, Synoptic Meteorology Branch.

SYMBOLS

2A area of averaging (in. );
C autocovariance (lumens2); specific heat of experimental fluid (see 

definition of Rayleigh number) (BTU/lbm°F);
g acceleration of gravity (4.17 x 10® ft/h2);

k thermal conductivity of experimental fluid (BTU/h ft°F);
L distance between the upper and lower surfaces of the fluid (ft.);
R coefficient of autocorrelation (dimensionless);

Ra Rayleigh number (g 0 p CL^ At/vk) (dimensionless);
s radial polar coordinate (Inches);
T transparency at point s, 0 on the photographic slide (lumens);
T spatial mean transparency (lumens);
T' transparency fluctuation at point s, 6 on the photographic slide («T-T) 

(lumens) ;
t^ temperature of the lower (hot) surface of the fluid layer (°F);
t temperature of the upper (col<| surface of the fluid layer (°F) ;
0 coefficient of volume expansion of the experimental fluid (ft2/h);
AS displacement along a radius (in.);
At temperature difference between upper and lower surfaces of the fluid 

layer (tH - tc) (°F);
8 angular polar coordinate (degrees);
X spatial scale (in.);

v kinematic viscosity of the experimental fluid (ft2/h); 
p density of the experimental fluid (lbm/ft^);
Oj2 variance of T (lumens2).
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APPENDIX

Suppose the transparency of a photographic slide at some point distance
As/2 from an appropriate origin is given by

T(As/28) - T + T' (As/2,8)

where

T “ “7- / T(As/2,0)dAA J A

Then the autocovariance which is defined as

C(AS,8) - - T t ’ (+AS/2,#)T'(-A8/2,9)dAA J A

can be written

C (£3.e) “ * ^  [  T (+^ s / 2 .» ) - f  (e) j  jjr(-A S/2 ,8 )-T (8 ) J dA

Or, employing a simpler notation

C(AS,8) " (T+ - T+) (T_ - T.)

Then it can be shown that

c(^,e) - T^r. - t+t _

or

-  r 1
C(AS,«) " A ^  T(-A»/2,0)T(-*fcs/2,9)dA - ̂  J  T(-As/2,g)dAT(+A*/2,9)dA (3)

The coefficient of autocorrelation is defined as

C(AS,»)
*( *••> ---

or

aj2 “ T " ^  T ,2(0,8)dA 

" "a“ ^  [t (0,8) - f (8) j dA 

" ~ T  £  T^O.eldA - £ A T(0,8)dA j

Hence we obtain equation (4)in the text.

I t  can be shown (21) a ll  values of the coefficient of autocorrelation

l i e  between zero and one.

X



To obtain a Measure of the rate at which R varies about the point e *  - o 
we can expand R In a Taylor series about As “ 0 (21)

C AS)2
R(As,e) -  R(o,e) + AsR'(o.e) + 2! r" (0,0) + -----

Since R Is a maximum at * 0 It follows that 

R '( 0 ,e )  -  0

also

R(O,0) - 1

Hence
ta»r

R(As,e)»i + 2 r" (o,e)

If we write

\ -  [ -  y R " (o ,e )  j  %

where the minus sign Is Introduced because R" (0,0) Is negative because R 

Is a maximum at As = 0, then

R (A 5 ,e )s = i  -  ^ 2 . ) 2

It can be seen that X is a direct measure of the rate at which R changes 

in the vicinity of 0. Now the rate at which R changes will depend on

the mean width of the curves representing T* (As,0), as can be seen from 

Figure 7. Hence X Is a measure of the mean width of the transparency curves.

According to the preceding discussion the most logical procedure for 

the determination of X would be to fit a parabola through the autocorrelation 

curve in the vicinity of its maximum value. However, in view of the tediousness 

of such a procedure and because in general only an order of magnitude figure 

is required, it is conventional to adopt a simpler, approximate technique.

The half-width of the correlation curve at its half-maximum is used to repre­

sent the scale X. Conventionally the full width at the half-maximum (FWm) 

(approximating 2X) is generally employed.

Suppose a periodic random process is mixed with a random noise process 

with respective magnitudes P(s) and N(s). These processes are assumed to 

be statistically independent and hence unrelated. The autocovariance of the 

process F(s) formed by the addition of P and N is given by

Cp(AS>- j^P(s)+N(s) j j^P(s+As)+N(s+AS)J

“ P(s)P(s+AS) + P(s)N(e+As)

+ N(s)P(s+Aa) + N(s)N(s+Aa)

Since P and N are uncorrelated in this case 

P(s)N(s+As) - N(«)P(.+As) - N(s)P(s)

It cam also be shown that the autocovariance of a periodic funtlon la also

periodic hence P(s)P(*ia») • C (As) is periodic. Also for large values 
P

of As, N(s)N(s-hAs) approaches N(s)2 because N tends to become uncorrelated

as As increases.

Hence for large As

__________ 2
Cp(co) - Cp(«) + 2N(s) P(s) + N(s)

The behavior of C is shown in Figure 8. Hence if the autocovariance of a 
F

process F shows a periodic behavior then F must contain a periodic component.

T
T (-A s / 2 ,e )

/  T(0 ,S)

l  _  ___ /  T(+As/2,0)

-7^----- 7 * “ ; -------------------------- 1--------A------- -̂------------------S

- A s  f  A s
2 * 2

_______ A______

Figure 7. Illustration of autocorrelation (based on Figure 19 of reference
2 1 ) .

Cf(as)

f  \  A s)

^ 2 N ^ + N f

A s
Figure 8. Au toe over lames of a periodic random process mixed with a random 

noise process.
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