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TURBULENCE EFFECTS UPON LASER 

PROPAGATION IN THE MARINE BOUNDARY LAYER

Kenneth L. Davidson and Thomas M. Houlihan

Naval Postgraduate School 

Monterey, California 93940

ABSTRACT

Shipboard measurements of small scale tempera­

ture and velocity fluctuations have been accomplished 

to determine optical wave propagation properties of 

the marine boundary layer. Measurements were record­

ed for ocean conditions in Monterey Bay and in the 

confines of the Pacific Missile Range. Laser beam 

propagation measurements were performed in conjunc­

tion with the meteorological measurements.

INTRODUCTION

The propagation of a light beam through the at­

mosphere is affected by the refractive nature of the 

medium. This has important consequences for various 

optical systems applications including Image resolu­

tion, optical communications, and laser radars.

In addition to the regular variation of atmos­

pheric refractive Index with altitude, there exist 

small inhomogeneities in the refractive index associ­

ated with fluctuations in the density and the temp­

erature of the air. These cause random phase and 

amplitude distortions in propagating wave fronts 

and thus degrade spatial and temporal coherence 

therein. Hence, there 1s an increase in beam diver­

gence which reduces the power density and degrades 

angle resolution. A non-uniformity in the Illumina­

tion field 1s Induced which Impairs target detection 

statistics and reduces the efficiency of detection. 

Moreover, amplitude modulation noise is Introduced, 

as well as alteration of the frequency distribution 

and polarization of the transmitted beam.

The magnitude of these effects place limitations 

on optical system performances and must be Included 

1n design considerations. It 1s desirable to have a 

theory sufficiently wel1-developed to permit deriva­

tion of propagation characteristics in real time from

measurements of meteorological variables.

Descriptions of small scale fluctuations which 

affect laser propagations have not been as complete 

nor in the quantity for the overwater regime as for 

the overland regime. Overwater descriptions are 

necessary, even though considerable progress has been 

made 1n overland investigations such as from experi­

ments by AFCRL. (Wyngaard et al., 1971). The neces­

sity exists because of increasing evidence of the 

influence on atmospheric motions by oceanic waves. 

(Davidson, 1974). This wave influence has been ob­

served to be significant enough to warrant re-examina 

tion of empirical expressions relating small scale 

properties to mean wind and temperature profiles.

It is toward this end that the research efforts 

of the Electro-Optics/Laser Technology Research Group 

at the Naval Postgraduate School have been directed 

in the last two years. A short review of the meteor­

ological program of this study is now presented, to­

gether with some primary findings of the research.

THEORY

On the basis of the isotropic nature of small 

scale fluctuations, only one parameter is necessary 

to describe the intensity of the atmospheric refrac­

tive index fluctuations over many scales. (Tatarski,

1964). It is the refractive index structure function 
2

parameter, CN , where

C„2 = [n1(x) - n'(*+r)J2/ r 2/3 (1)

Herein, n'(x) and n'(x+r) are refractive Index 

fluctuations at two points on a line oriented normal 

to the mean wind direction separated by the distance, 

r. This distance, r , is less than the outer scale, 

Lq - the lower end of the inertial subrange - and 

greater than the Inner scale, lQ - the smallest scale 

of naturally occurring turbulence. The brackets 1n 

Eq. (1) designate an RMS evaluation of the quantities 

contained therein.
2

Fortunately, CN can be related to the tempera­

ture structure function parameter, Cy2 , in the fol­
lowing manner, 1.e.,

CN2 « [79 x 10‘6 (P/T2)]2 Ct2 (2)

where P = barometric pressure

T * atmospheric temperature.
2 2Equally fortunately, both CN and Cy are readily 

measurable quantities.
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Since turbulence 1s nearly synonymous with dens­

ity and temperature fluctuations, 1t 1s ultimately 

necessary to describe mean thermal stratification in 

terms of the atmospheric stability parameters, Ri 
(Richardson Number) and L (Mon1n-0bukhov Length). In 

this regard, concomitant measurements of both atmos­
pheric mean profiles and flux gradients are necessary 
for a complete determination of atmospheric transmis­

sion behavior.

MEASUREMENTS

From optical measurements

CN2 - K „2 n7/6 L,1/6 (3)
where K = constant dependent upon beam geometry

2
o = log Intensity variance 

n = laser wavelength 
L = propagation pathlength 

Since log Intensity variance values are directly 

available from analog processing of phototube signals, 

pathllne values of refractive index values are read­

ily available.
o

Likewise, point measurements of Cy (which ult1-
* O

mately lead to polntwlse measurements of ) are 
readily accomplished. By definition,

Cy2 =[T'(x) - T'(x + r)]2/r2/3 ( 4 )

where T'(x) and T'(x + r) are temperature fluctua­

tions at two points along the propagation path sep­

arated by the distance, r. Obviously, two fast 

response probes 1n conjunction with analog circuitry
configured to yield RMS values of the measured tem-

2
perature fluctuation differences can generate Cy 

values directly. Systems using thin platinum wires

as sensors have been developed to achieve such direct
2

Cy measurements 1n a band of 0-1 KHz.

Over the Inertial subrange, the relation exist­
ent between the temperature structure function parame-

2
ter, Cy , and the Fourier Transform of the tempera­
ture correlation function, *(k) , 1s

Cy2 * 4*(k) k5/3 (5)

where k 1s the temperature spectrum wavenumber. 

(Kolomogorov, 1941) Thus, data obtained from one

fast response temperature sensor can be treated to
2

yield Cy values. Herein, Implicit use Is made of 

Taylor's Hypothesis to relate correlation distance 
(r) to wavenumber (k) via the mean wind velocity 

(U). Hence. It 1s necessary to obtain mean velocity

values 1n conjunction with temperature spectrum 

measurements to arrive at final Cy2 values.
A third approach toward the measurement of the 

tenperature structure function parameter involves its 

dependence on the dissipations of turbulent kinetic 

energy (e) and temperature variance (x). (Corsin, 

1951). Dimensional arguments relate the temperature 
spectrum to these parameters 1n the following manner:

Hence,

*(k) = Bxe"1/3 k5/3

Cy2 = ^ x r 1/3

( 6 )

(7)

where e is an empirically derived constant. Turbu­

lence measurements demand the incorporation of hot 

wire or sonic anemometer gear to record the data 

that results in determinations of the kinetic energy 
dissipation term. Likewise, temperature variance 

measurements require fast response thermal systems 
to record the data that results in determinations of 

the temperature dissipation factor. Again, since 
the Taylor Hypothesis is utilized in conjunction with 

these dissipation data, the presence of a mean wind 

record 1s necessary for final determinations. Such 

a record is, of course, available from the anemometer 
gear used 1n conjunction with turbulence measurements.

It is to be noted that these determinations for 
Cy2 hold for scales greater than the atmospheric tur­

bulence microscale, / , the smallest scale of natur-o
ally occurring turbulence. Physically, this micro­

scale affects seeing conditions. Now, when equilib­
rium exists, the atmospheric turbulence spectrum is 

dependent only upon the rate of dissipation of turbu­

lent kinetic energy (e) and the kinematic viscosity 

of the constituent atmosphere (v). (Lumley and 
Panofsky, 1964). Dimensional analysis yields,

l0 * (v3/c)1/4 (8)

Now, over the inertial subrange, 1.e., the 
range in turbulent velocity spectrum wavenumber 

space between the input of energy (large scales, 
small wavenumbers) and the dissipation region (small 
scales, large wavenumbers), Kolomogorov postulated

that
,(k) - « e2'3 k‘5/3 (9)

where
*(k) * velocity spectrum

k * empirically derived constant. 

Hence, velocity spectra 1n the vertical subrange can 
be treated to yield optically relevant results, viz.,
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values of microscale.

As can be expected, the height variations of 

these optical parameters are of ultimate Importance. 

Likewise, relationships between these turbulent (small 

scale) quantities and the mean (large scale) meteor­

ological variables (wind speed, temperature gradient) 

are equally important. This latter similarity rela­

tionship is dependent upon atmospheric stability con­

ditions and is characterized by relationships involv­

ing the Richardson Number (Ri) and the Monin-Obukhov 

Length (L).

RESULTS

Shipboard observational experiments to describe 

the height and stability dependence of small scale 

properties of atmospheric turbulence are being per­

formed in Monterey Bay and over the open ocean off 

the west coast by a team of NPS investigators from 

the Departments of Meteorology, Oceanography, Physics, 

and Engineering. Simultaneous laser transmission ex­

periments are being completed in conjuction with these 

meteorology studies. The shipboard sensor arrangement 

aboard the NPS Research Vessel, ACANIA, appears in 

Figure 1. Instrumentation consists of hot wire 

anemometers, platinum resistance wire thermometers, 

and lyman-alpha humidiometers for turbulence measure­

ments and cup anemometers, quartz sensor thermometers, 

and lithium chloride hygrometers for mean determina­

tions. Coincident accelerometer measurements in early 

experiments supported other results that Indicated the 

high frequency portion of velocity spectra can be In­

terpreted for dissipation rates and Inner scale deter­

minations.
First results were derived from structure func­

tion measurements using separated pairs of sensors.
2

These yielded a consistent height dependence for Cy 

of z-4/3 over long periods (Fig. 2) during which Cy^ 

at Individual levels changed by a factor of three
-4/3between minimum and maximum values. Although a z 

dependence was predicted by Wyngaard, 1971, for free 

convection results, the overwater results were observ­

ed 1n only slightly unstable conditions.

Several observational periods with near neutral 

stratification resulted in small temperature differ­

ences between the paired wires. This led to the use 

of temperature variance spectra using single sensors
O

for estimating CT . Preliminary spectral results ob-
-4/3talned at four levels reveal differences from the z 

relationship depending on thermal stratification.

The observational experiments required to evalu­

ate existing predictions with regard to the overwater 

regime emphasized the height dependence of both the 

temperature structure function parameter (Cy ) and 

the turbulent kinetic energy dissipation factor (e) 

that enters directly Into microscale calculations 

(Eq. 8).
2

A typical plot of the height variation of Cy 

for neutral atmospheric conditions 1s shown in Figure 

3 (Lund, 1975). Herein, experimental agreement with 

the predicted -3/2 relationship is evident. A simi­

larly typical plot of the height variation for e, 

again for neutral atmospheric conditions, is shown in 

Figure 4. Again, a close agreement with the -1 

relationship determined from overland analyses is 

portrayed.

Typical results for temperature structure func­

tion data recorded in unstable atmospheric conditions 

(1.e., ocean water temperature greater than ambient 

air temperature) are shown in Figure 5 (Bone, 1974). 

The general slope of this plot agrees very well with 

the -4/3 predictions from overland analyses. One 

might expect slightly greater negative slopes for 

greater Instability situations. However, -4/3 should

be the limiting slope if overland results are valid
2

overwater. Since Cy 1s a function of both e and x

(Eq. 7), it 1s possible that wind-wave coupling
2

effects upon e values would influence Cy values.

Results on e height variations (again, for 

unstable atmospheric conditions) are shown In Figure 

6. Negative slopes greater than -1 are noted herein. 

This 1s In agreement with present boundary layer 

theory for overland results.

This deviation of the slope from -1 was examined 

to determine 1f perhaps it could be accounted for by 

the Influence of unstable stratifications. A slight 

shift toward a -1 slope was observed. However, com­

plete adjustment to a -1 slope could not be accomp­

lished. The fact that stability corrections did not 

completely restore the -1 slope leads to the specula­

tion that wind-wave coupling effects are present 
(Johnston, 1974).

CONCLUSION

In general, the preliminary height variations of
2

Cy and c observed 1n this study agree well with the 

overland expressions. This agreement buttresses the 

constant flux assumption which 1s the cornerstone of 

the developed predictive analyses. However, the
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possible existence of wind-wave coupling effects will 

remain a matter of speculation until a sufficient data 

base 1s recorded to adequately explain the discrep­

ancies evident 1n "corrected" unstable atmospheric 

results.
In general, the present shipboard system 1s pro­

viding results which provide useful description of 

those small scale turbulent properties which are Im­

portant for optical transmissions 1n the marine en­

vironment.

Future work in this regard will Include deter- 

minations of Cy utilizing the Corsin relation (Eq. 7) 

which 1n practice Involves operations with differen­

tiated velocity and temperature fluctuation signals. 

Furthermore, analysis of the spectra of these dif­

ferentiated velocity signals will provide a second 

method for estimating e by allowing the upper limit 

of the Inertial subrange of the velocity spectrum to 

be defined. Since the microscale 1s directly related 

to the dissipation wavenumber (via the Taylor Hypothe­

sis), the turbulent kinetic energy dissipation factor 

will be obtained 1n conjunction with simultaneous 

laser transmissions Involving several wavelength and 

propagation distances.
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FIG. 2 OBSERVED VALUES OF RATIO, CT(38 FEET)/ 

CT (26 FEET) VERSUS TIME IN UNSTABLE 

CONDITIONS. THE .776 VALUE CORRESPONDS 

TO A Z'4/3 RELATIONSHIP.
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FIG. 5 CT2 VERSUS HEIGHT, OBSERVED DURING UNSTABLE 

CONDITIONS.

FIG. 3 Cj2 VERSUS HEIGHT, OBSERVED DURING NEUTRAL 

CONDITIONS.

FIG. 6 e VERSUS HEIGHT, OBSERVED DURING UNSTABLE 

CONDITIONS.

FIG. 4 e VERSUS HEIGHT, OBSERVED DURING NEUTRAL 

CONDITIONS.
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DISCUSSION

R. S. Brodkey, Ohio State University: What is the 

effect of the vertical stability of your ship? That 

is what happens when the boundary layer moves up and 

down due to wave or ship motion?

Davidson: Because the gradient of the measured quan­

tities is not constant with respect to height, a bias 

is expected in our representation due to the ship 

vertical motion. However, our measurements are not 

expected to be sensitive enough to detect this bias.

J. M. Delhaye, Centre d' Etudes Nucleaires de Grenoble: 

I notice in your paper that you are measuring the 

fluctuating component of the humidity. Could you give 

some information on the lyman alpha humidometer? What 

accuracy can you expect with his technique?

Davidson: The Lyman-alpha sensor measures humidity as 

a function of the absorption of ultraviolet light by 

the 1215°A° Lyman-alpha transition of hydrogen in water 

vapor. It consists simply of a UV source tube and 

detector, separated by an absorbing air gap (1 cm) 

representing the ambient medium. Because water sol­

uble windows (LiF or MgF2 ) are required for transmis­

sion in the ultraviolet, the reference (dry air) 

voltage is highly variable. However, the signal versus 

vapor pressure curve has been found to be more stable, 

enough to obtain satisfactory calibration for fluctua­

tion statistics. We believe the variance spectral 

estimates of specific humidity in the 1 to 20 Hz band 

can be defined within 30%, which we assign to esti­

mates of the humidity structure function parameter,
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