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PERIODIC AND RANDOM EXCITATION OF 
STREAMLINED STRUCTURES BY TRAILING EDGE 
FLOWS

William K. Blake
David W. Taylor Naval Ship Research and 
Development Center 
Bethesda, Maryland 20084

ABSTRACT

This paper is an examination of semi-empirical 

techniques which are shown to be effective in predict

ing the response of hydrofoils to flow excitation. 

Examples are given for buffeting by inflow turbulence, 

excitation by the boundary-layer pressures on the 

hydrofoil, and linear and non-linear excitation by 

vortex street formation in the wake. Co-ordinated 

aerodynamic and hydrodynamic measurements are used in 

Reynolds number - scaled experiments to determine both 

the flow induced forces and the hydro-elastic behavior 

on cantilever struts. An analytical formulation based 

on normal mode theory is used to combine the results.

INTRODUCTION

The flow excited vibration of hydrofoils and 

struts is controlled by both the nature of the dis

turbance in the flow and the bending impedance of the 

structure. This paper summarizes the results of a 

series of investigatibns which were directed at deter

mining the relative importance of various fluid forcing 

mechanisms on struts at small angle of attack. Char

acteristics of fluctuating driving forces and of hydro- 

dynamic damping have been measured for a range of strut 

geometries.

Hydrodynamic fluid loading on a strut is mani

fested both as added mass and as damping. The inertial 

loading is flow-independent as long as the entrained 

mass is small enough and the mean fluid velocity is 

low enough that the instabilities leading to flutter 

divergence are unimportant. Velocity-dependent hydro- 

dynamic damping arises from fluid reaction forces 

which are in phase opposition with the transverse

bending velocity. These forces are induced by the 

potential flow around the strut responding to the small 

oscillating angle of attack provided by a superposition 

of the bending velocity and the inflow velocity. Work 

is done by the strut as it generates vorticity in the 

wake; Blake and Maqa (l?75a) provide a characterization 
of this damping mechanism.

We will consider characteristics of the unsteady 

excitation forces to depend on the structure of inflow 
unsteadiness, on the flow in the boundary layer of the 

strut, and on the properties of the near-wake behind 

the strut. When the flow leaving the trailing edge 

does not generate a von Karman vortex street, as is 

often the case when the edge is sharp, the fluctuating 

forces are due primarily to the boundary layer turbu

lence and to buffeting by inflow unsteadiness. These 

disturbances linearly excite the resonant bending modes 

of the strut; when the unsteadiness is random in time 

and space large numbers of modes are excited. In the 

case of excitation by inflow turbulence an investiga

tion by Mugridge (1970) has characterized the unsteady 

forces in terms of the spectrum and macro-1enqth scale 

of the inflow turbulence. The response of the beam to 

its own boundary layer depends on the magnitudes and 

the spatial correlation area of the turbulent surface 

pressures.

When a periodic wake vortex excitation occurs, as 

is often the case with blunt trailinq edges, the pres

sures are concentrated within a small region of the 

trailing edge. The speed dependence of the flow- 

induced vibration of the strut is typically character

ized by extra-ordinarily great responses at specific 

speeds. At speeds for which the frequency of vortex 

formation coincides with a resonance frequency of the 

hydrofoil, the vibration levels are dramatically 

greater than when such a coincidence of frequencies does



not exist. Increases of structural damping in the 

strut reduce the non-linear coupling of the fluid and 

structure which brings about that vibration. The 

problem is not new; the related problem of the flow- 

excited singing of circular cylinders has occupied 

the attention of numerous authors. The results of 

those investigations have provided much theoretical 

and empirical knowledge of the dynamical constraints 

on the shedding process. Dimensionless (Strouhal) 

frequencies for shedding, oscillatory lift coefficients, 

vortex correlation lengths, and vortex-street drag 

coefficients have all been well-documented for fixed 

cylinders. In the case of hydrofoils and struts far 

less published information exists, and that informa

tion is largely theoretical.
In this paper we will first present a brief review 

of a modal analysis which provides a framework for 

interpreting measured strut responses. This analysis 

has been used in assessing the linear excitation due 

to inflow turbulence and boundary layer pressures. 

Following this review, new measurements which show the 

the relationship between the oscillatory pressures at 

trailing edges and the dynamics of the periodic wakes 

of rigid, blunt-edged struts will be discussed. We 

then consider new measurements of the linear and non

linear flow excitations of damped struts by their 

vortex streets. These struts have geometrically 

similar cross sections, but varying damping and trail

ing edge thickness. Finally we will apply the 

empirical modeling techniques to the non-linear prob

lem of vortex flow excitation

LINEAR RESPONSE TO TURBULENT FLOW EXCITATION

The necessary analytical formulations for fluid- 

driven struts have been presented by Blake and Maga 

(1975a) (1975b) We will summarize the analytical 

treatment in order to form a foundation for the con

sistent examination of the measured responses of struts 

to various fluid excitations. The cantilever plate
like strut which is illustrated in Figure 1 is driven 
by excitation pressures p6 (x ,t ) and it is loaded by 

fluid reaction pressures p £Cx ,t ). The quantities 

"x = (x,z) and t are position and time coordinates. The 

reaction pressures include both inertial and hydro- 

dynamic damping effects; they are differentials between 

pressures on the upper and lower surface. Excitation 

pressures on the upper and lower surfaces are

* V

Figure 1 - Co-ordinate System for a Strut Immersed in a 
Flow Field

correlated in the cases of either buffeting or vortex 

excitation, and uncorrelated in the case of boundary 

layer excitation. The transverse vibration velocity is 

expandable in the normal modes of the strut

v<x -x> = E vmn(t) ’mn(x>

where

= As

is the area (Lw) of the strut. The plate motion is 

then expressed as

vmn^) + 6;mn(T)+wmnVmn(T) = (mn)"1[pe (t )'P* (t)] (1)e
mn mn

where B is a material damping coefficient, wmn is the 

in-vacuo resonance frequency of the m,n mode, and nip 

is the area density of the plate. The modal excitation 

pressure is

e
mn

pe(x'T) W x) dx

and similarly for p£ (x) which depends on vmn(-r). The 
mn pressure is considered to be amodal excitation

random variable and independent of vmn(0 for linear 

turbulence excitation, but in cases involving vortex 

shedding it nay depend on the bending velocity and it 

may not be stochastic. For any 1inear turbulence 
excitation the spectral density of transverse acceler

ation at a point x .  $A(x ,w),has been shown in 

Reference 5, to be given by a summation over resonant 

bending modes;

♦A(V “ >ms I
m,n

',»m(xo)
(2)

[(jnn)2_1]2+(_mn^2
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$n(x ,x . 
_2__i__2_ Y Xmnv i ’mn (x2 ' V >

s s

where x^, and x^ are locations in the plane of the 

strut. In this expression q=pLl£/2 where p is the fluid 
density, is the mean velocity, m$ is the wetted mass 

per unit area of the strut, and n-j- is the total loss 

factor of the m,n mode; it includes both hydrodynamic 

and hysteretic damping. The resonance frequency now 

applies to the cantilever plate in water. The cross- 

spectral density of the pressure on the strut,

<t>p(x"iy2^), has a particular form depending on the type 

of excitation. The integral in equation (2) expresses 

the spatial matching of the chordwise (x) and spanwise 

(z) correlation length scales typical of the fluid 

pressure say (*x »*z)> with The characteristic wave
lengths of bending motion, say (x ,x ). In Reference

r V r Z
6 it was assumed that the correlation area of the 

fluid pressure satisfied the inequality U x^z) < <

(Xp Xp ) for both boundary-layer and inflow-turbulence 

excitation. The cases of both linear and non-linear 

vortex-excitation will be treated subsequently. In 

any of these cases the integral is considered as a 

mean-square modal force (or oscillatory lift) coeffi

cient, for the flow-excited strut.

Equation (2) has been evaluated in Reference 6 

for comparison to the measured acceleration levels of 

specific modes of a 2.75 x 20 x 0.25 inch thick stain

less steel cantilever strut in flowing water. The 

strut had the same section shape with a sharp trailing 

edge as shown in Figure 1. Measurements* were obtained 

for the uniform beam modes (1,0), (2,0), (3,0), and 

(4,0) illustrated in Table I. The experimental and

TABLE I

RESONANCE FREQUENCIES (Hz) OF BEAMS** IN WATER

Shape Order Brass, L=18" Steel L=18 7/16

T--- T 1,0 ■ 70 115
•1 '•"-1 0,1 170 260
f  ! H 2,0 186 298
n  i n 3,0 375 580
iK-'.-l 1,1 520 850
m  : : I 4,0 630 987

2,1 870
-IT! r? :l 5,0 940

theoretical evaluation of the acceleration was made

only at frequencies corresponding to u = u>m Q. The

* A full description of the procedure and instrumenta

tion is given by Blake and Maga (1973) and it is sim- 

marized in References 5 and 6.

**w = 2.5 inch, t = 0.072 inch

integral in equation (2) was evaluated for boundary 

layer excitation using measured cross-spectral densi

ties in a wind tunnel on a two-dimensional, Reynolds 

number-scaled version of the strut and the measured 

mode shapes Q(x). Buffeting response was estimated 

by using the measured free-stream turbulence spectra 

in the water tunnel and Mugridge's (1970) theoretical 

oscillatory lift coefficient. Figure 2 shows the

Figure 2 - Comparison of Theoretical and Measured
Modal Acceleration Spectra for a Stainless 
Steel Strut. Taken from Blake and Maga 
(1975b)

measured dimensionless acceleration spectral density 

with frequency normalized as mh/U^. The dimensionless 

acceleration spectral density is seen to be compatible 

with equation (2) when w = . Theoretically cal

culated levels of the integral in equation (2) are 

shown as dotted lines. Boundary layer excitation 

accounts for the high frequency acceleration while 

buffeting by inflow turbulence (which has a root- 

mean-square level of 2% of U^) causes low frequency 

acceleration. The boundary layer excitation for 

ujh/U^ > 2 is dominated by the pressure fluctuations 

exerted in the downstream portion of the strut surface. 

These pressures are highest due to the adverse static 
pressure gradient existing there. At lower frequen

cies, the calculated boundary layer excitation is con

trolled by a large-scale eddy structure which is gen

erated at the circular leading edge of the strut. 

Separation of the laminar boundary layer at the lead

ing edge generated this unsteadiness. The aerodynamic 

measurements disclosed that the large-scale pressure 

field induced by the separation increased as the angle 

of attack increased. The higher frequency boundary 

layer pressures were unaffected by the small angle of 

attack. The theoretical model for the calculated 

buffeting response is valid for uh/U^ < 1. For 

1 < wh/U^ < 3 it is difficult to distinguish physically 

between the effects of in-flow turbulence and the 

effects of separation because both disturbances are
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of the same spatial scale, and both are convected at 

speeds near U_. This result is typical of those 

which were obtained on a series of beams with varying 

chord and length. It is to be noted that values of 

the total loss factors for each node were required in 

the normalization of Figure 2. For the strut of this 

example the loss factors were dominated by speed- 

dependent hydrodynamic damping throughout most of the 

speed range. This loss mechanism will be further 

examined in section 4. The kinematic basis for scal

ing the aerodynamic pressures to calculate the hydro- 

dynamically-induced bending response was provided by 

wake measurements. In experiments in both media mean 

velocity profiles and turbulence intensity spectra were 

obtained at corresponding locations in the wakes just 

downstream of the trailing edges.

CHARACTERISTICS OF THE OSCILLATORY LOADING ON STRUTS 

WITH FIXED EDGES

The remainder of the paper is concerned with the 

excitation of the struts by periodic vortex streets.

The struts have the same basic section shape as that 

diagrammed in Figure 1, but in these cases the trail

ing edge was blunted ( slightly reducing the chord 

from 2.75 inches to 2.5 inches) as shown in Figure 3.

x/w

Figure 3 - Cross-Section Shape and Pressure Distri
bution of the Strut with t/v-0.0266, h/v- 
0.091 at Zero Angle of Attack

As in References 5 and 6 the fluid excitation forces 

were determined aerodynamically and the flow-induced 

bending response was determined in a water tunnel. The 

procedures were the same as those in References 5 and

6. These results are new and will be considered in 

more detail than in the last section. Although two 

trailing edge thicknesses were used in the water tun

nel experiments, t = 0.036 inch (t/w = 0.0133) and 

t = 0.072 inch (t/w=0.0266), only the scaled-up version 

of the larger thickness edge was examined in air. The 

aerodynamic measurements of the wake structure as well 

as of the chordwise dependence of the oscillating pres

sure were made on a two-dimensional rigid strut with 

w = 21 inches; hydrodynamic measurements of the flow- 

excited acceleration were made on damped cantilever 

struts with a chord of w = 2.5 inches. The air measure

ments on the rigid strut are expected to apply to the 

linear flow excitation of struts.

This section is concerned with the results of the 

measurements in air which were performed in the David W. 

Taylor Naval Ship Research and Development Center 

(DTNSRDC) Anechoic Flow Facility (AFF). The static 

pressure distribution for the strut is shown in Figure

3. Over most of the chord and except for x/w > 0.8 it 

is identical to that given previously in Reference 6. 

The pressure coefficient is defined as (P-Poo)/q where 

P and P^ are the static pressures on and far from the 

strut respectively. The base pressure coefficient is 

designated as (Cp)^. The boundary layer development 

on the strut is the same as that described in 

Reference 6.

The frequency spectra of fluctuating pressures at 

the trailing edge of the strut with t/w = 0.0266 were 

dominated by a tone at frequencies f = u> /2* which 

satisfy a Strouhal number which is most conveniently 
defined as

N .  = f t/U = 0.148. si s «°

(This frequency may be put in the perspective of the 

last section and Figure 2 by noting that it corresponds 

to a dimensionless frequency, w, h/U = 3.6). This form 

of nondimensionalization for the frequency is not 

universal, see Beaman (1967) and Blake (1975), but it 

is a constant for the air and the water experiments 

considered here. The wake structure behind the rigid 

strut at the Reynolds number U^t/v = 2.92 x 104 (U *

100 ft/sec, t = 0.56 inch) is shown in Figure 4. The 

method of data acquisition is described by Blake (1975). 

The cross-stream variation of the periodic velocity 

fluctuations, u,(fs )/U<r, measured in a 7% frequency 

band centered on f = f , is seen to have local maxima, 

u'(fs )m/U_, at distances yQ apart. This wake dimension 

first decreases then increases with increasing distance 

downstream of the edge while the local maxima in the
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Figure 4 - Composite Diagram of Near-Wake Dynamical Properties Showing Filtered Wake 
Intensity, u'(f )/Uoe, Width Parameter, y , and Static Pressure Coefficient 
Distribution, (-C ). Note that the Streanwise Co-ordinate Scale has been
Expanded for x >0^.

wake intensity display an absolute maximum near the 

point of minimum y This point has been defined by 

Bearman (1965) as the end of the formation region of 

the vortex which occurs a distance x = downstream 

of the edge. The spatial growth of the disturbances 

shown in Figure 4 is demonstrative of the instabilities 

which occur in free shear layers; the observed forma

tion length, = 0.9t, is comparable to that observed 

by Bearman (1965) and Blake (1975) for trailing edges 

without splitter plates.

A narrowband, 3 Hz bandwidth, spectral analysis 

of the fluctuating pressures at the trailing edqe 

showed the dominant periodic component to be super

imposed on the boundary layer pressure that would have 

existed if the edge had been sharp. However, as we 

shall presently see, the periodic component of pressure 

dominated the excitation of the strut. The narrowband, 

mean-square levels of periodic pressure on the surface 

of the rigid strut at the trailing edge are shown 

normalized on the free-stream dynamic head, in Figure 

5. The bandwidth of analysis was greater than that of 

the pressure fluctuations at speeds below = 100 ft/ 

sec. Frequency has been made dimensionless as a 
Reynolds number

N
U.t

v

Figure 5 - Mean-Square Fluctuating Pressure on Rigid 
Strut at |x|/t“0.11 (x/lf-0.13) and t/c- 
0.0266 Shown as a Function of Trailing Edge 
Reynolds Number. Measured Directly in Air
(_____); Indirectly Determined from Wake
Survey of Vibrating Beam (------); Total
Mean-Square Values (---). Values of U /
ft/sec Pertaining to the Data are shown in 
Parenthesis.

where v is the kinematic viscosity of the fluid. The 

pressure was measured at a distance |xj/t = 0.11 up

stream of the trailing edge. The locus of levels 

described by the dotted line, p^ (f$)/q2, are the total 

mean square pressure levels which reach a maximum value 

at a frequency f t2/Nstv = 31700. For lower Reynolds 

numbers, the level of oscillating pressure appears to
171



increase roughly as the square of Reynolds number. The 

dotted spectra were deduced from the water-tunnel wake 

survey using a method which will be described later in 

this paper. The measured chordwise distribution of 

fluctuating pressure showed maximum levels at the 

trailing edge. For this strut the experimentally- 

determined chordwise pressure distribution can be 

expressed for our convenience by the equation

( p2(x/4f=0.3,fs)]/q - 2 u U £
' OO 00 T

where U$ is the mean velocity at the separation points 

which is defined as

U /U = s » / T T  .
Pb

p2(|x|/t,f$)/q2 = p^ (|x|/£f=0.3,fs)/q2[10|x|/t]_1

__ (3)
which is valid for 0.11 < x/t < 20. Here p^ is the 

mean square pressure evaluated at x = 0.3 A more 

universal form of equation (3) in which t is replaced 

by t^wasshown by Blake (1975) to apply for different 

edge shapes. The chordwise pressure distribution is 

deterministic, while the spanwise spatial variation is 

random. At this point it is worth noting that the 

magnitude of the base pressure coefficient, -C =0.11 

(see Figures 3 and 4), of the current experiment, is 

somewhat larger than that measured for larger trailing 

edge thicknesses. Although we are gaining some 

experience in relating the fluctuating pressure levels 

with mean-flow parameters, a_complete set of data 

which gives the behavior of p£/q2 for various base 

pressure coefficients is not yet available. However, 

as shown in Figure 6 there appears to be a relationship

Figure 6 - Variation of Mean-Square Pressure, on Blunt 
Edged Struts at x - 0.3 1^, with Static Base 
Pressure Coefficient

between the base pressure coefficient and fluctuating 

pressure, at least for the blunt edges examined so far.

The fluctuating pressure at the edge of the strut 

has been related to the strength and structure of the 

wake vorticity by Blake (1975) through an empirical 
function

The root-mean-square vortex strength < is given by

< = u'(fs) rQ (5)
m

where u'(fs) is given in Figure 4 and rQ = yQ/4.

This definitTon is predicated on the assumption that 

the vortex cores of the upper and lower vortex rows 

occupy the cross-wake regions 0 < y < yQ/2 and 

-y /2 < y < 0 respectively. A similar assumption has 

been made by both Schaefer and Eskinazi (1959) and 

Fage and Johanson (1927). The local maxima in the 

velocity fluctuations are therefore interpreted as 

the peripheral velocities at the extremities of the 

vortex cores. Equations (4) and (5) give a means of 

estimating the level of fluctuating pressures given 

the measured intensity distributions of the velocity 

fluctuations in the wake of a strut.

MEASURED HYDRO-ELASTIC MOTIONS OF CANTILEVER STRUTS

The second, hydrodynamic, Dhase of the character

ization of singing and non-singing hydrofoils has been 

conducted in an open-jet water tunnel on cantilever 

struts which were nominally 18 inches in length and 

protruded into the flow from a 200 lb. block of stain

less steel. In this investigation all the struts had 

nearly the same chord but they had varying degrees of 

mechanical damping which was incorporated by using 

constrained-layer constructions. For most damping 

treatments the base structure, element 1 in Figure 7, 

was 0.191 inch thick, the visco-elastic damping layer 

was .021 inch thick, and the constraining layer was 

0.035 inch thick. The nominal overall thickness of 

the struts was h = 0.25 inch. By constructing the 

base and constraining portions of the struts with 

combinations of brass and steel, the damping of the 

composite could be varied. The visco-elastic material 

was the sane for all damped struts with one exception. 

That strut was damped with a layer of damping tape, 

Scotch Brand (3M) 4428A UAX R 5182. Fiqure 7 shows 

the measured loss factors, n , of the cantilever struts
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100 1000
F R E Q U E N C Y / H z

Figure 7 - Total Loss Factors for All Cantilever Struts 
used in the Study. Measurements were 
Obtained at U =0 using Reverberation Times 
of Structural Vibration Following an Impact

in still water for most of the beams considered in the 

experimental program. The damping in the plain brass 

and steel struts was controlled by dissipation in the 

clamp and losses in the composite struts was control

led by the viscoelastic layer. The high loss factors 

for the brass-steel strut are made possible by the 

high modulus of the steel constraining layer compared 

to that of the brass base plate. It is noteworthy 

that the measured loss factors of the cantilever struts 

agreed with calculated values obtained with the theory 

of Ross et al. (1959) for sandwich constructions to 

within 20%.
The strut vibration was characterized by both 

simple beam and torsion modes as demonstrated by the 

mode shapes and resonance frequencies in Table I. The 

mean-square acceleration, ,a2, of the strut was measured 

near the mid-chord and so that the torsion response 

could not be examined in detail. Also, the loss 

factors were obtained following an impact which was 

applied also near the mid-chord so that only the simple 

beam modes could be examined. Figure 8 shows the fre

quency dependence of the flow-excited mean-square, 

narrowband, acceleration measured in a 2.5 Hz frequency 

bandwidth for the stainless steel strut with t = 0.072 

inch. The responses of two bending modes and the 

forced non-resonant response at f * f are all shown, 

the torsion mode response is suppressed. The acceler

ation has been made dimensionless using the total 

wetted mass per unit area of the strut, m$ , and the

Figure 8 - Dimensionless Acceleration in 2.5 Hz Bands 
of Steel Strut with t=0.072" at 11^=10.4 
ft/sec Showing both Resonant Mode Response 
and Forced Vibration at f=f . Points (•••) 
are Calculated using Data o f  Figure 5 and 
equations (6) and (8).

dynamic pressure q. By comparing the spectra of 

Figures 2 and 8, we can account for the relative impor

tance of the three fundamental excitation mechanisms.

We first recall that 2irf h/U = 3.6; this dimensionlessS 00
frequency corresponds to the lower frequency limit of 

turbulent boundary layer excitation in Figure 2. Thus 

the (2,0) mode of the strut is driven by this mechanism. 

On the other hand the (1,0) mode, which occurs at a 

frequency f-| gh/U^ = 1.4, is excited by a combination 

of «ources which involve in-flow buffeting and con- 

vected eddies generated by leading edge separation.

From spectra such as this, acceleration levels for

each mode were determined as a function of speed.

Figure 9 shows the speed dependence of the acceleration

of each of the modes (1,0), (2,0), and (3,0) of

undamped stainless steel struts. The open points in

the figure pertain to measured non-s1nging resonant

responses which were determined with t * 0, and w «

2.75 inches as described in Section 2. The closed

points are for t = 0.072 inch and the extraordinarily

high values of acceleration occur at those speeds for

which f = f the levels are in excess of 50
decibels greater than the vibration levels with the

sharp edge. The speed dependence of the flow-induced

acceleration of the steel-steel damped strut 1s shown

in Figure 10. In this case, the acceleration levels

are considerably less amplified at coincidence speeds

compared to the cases of the lightly damped strut. In

the highly-damped cases, the flow excitation caused by

vortex sheddinq was very nearly linear in the sense of

Section 2 even when f ■ f,. This was established n ,o s
by calculating the ratios of the measured responses of 

each singing strut to that of the same, non-s1nging 

strut with vanishing trailing edge thickness. The 

frequency and speed dependence for these ratios closely 

resembles the spectra in Figure 5. Since the



Figure 9 - Flow-Induced Acceleration from Bending Modes 
of Stainless Steel Cantilever Struts with 
Sharp (open points) and Blunt (closed points) 
Trailing edges. Blunt Edges have Thickness, 
t=0.072 inch, the Frequency Bandwidth of 
Analysis is 5 Hz.

Figure 10 - Speed Dependence of Flow-Induced Acceler
ation of Steel-Steel Damped Cantilever 
Strut with Blunt Trailing Edge. The 
Edge has Thickness t*0.072 inch, the 
Frequency Bandwidth of Analysis is 5 Hz.

non-singing, linearly-excited strut motion increases 

uniformly nearly as l£, these ratios of singing to 

non-singing acceleration provided a qualitative measure 

of the lift coefficient.

Total loss factors for the singing struts, nj, 

determined as functions of speed, showed anamalous 
behavior at speeds for which f̂  = f^ As an example, 

we examine the data for the (2,0) mode of the stainless

Figure 11 - Loss Factors for Damped and Undamped Steel 
Struts Vibrating in (2,0) Mode for both 
Blunt and Sharp Trailing Edges.

flow-excited an impact was remotely applied to the strut 

and the reverberation time of the resulting vibration 

was measured. Reductions in the apparent damping 

occurred whenever f = f^ Q. It appears that in the 

mechanism of self-excitation, the couplinq of the 

structural notion with the vortex formation is such as 

to completely overcome whatever hydrodynamic damping 

that would have existed if the trailing edge had been 

sharp. This is seen by comparing the measured loss 

factors with the values of hydrodynamic damping which 

are calculated using relationships in reference 5.

The total damping coefficient is assumed to be a 

superposition of structural, n , and hydrodynamic, nh ,

effects. Structural damping, shown in Figure 7, is as

sumed to dominate at 0 and hydrodynamic self-excita

tion effects dominate for > 5 ft/sec. In the case 

of the steel-steel strut, self-excitation effects on the 

observed damping were much less pronounced and they were 

most noticable in the immediate region of f = f . W e  

also note that frequency lock-in was observed to occur 

near f = f Q , the range of speeds for which both the 

amplitudes were high and the loss factors were low. The 

root-mean-square displacement amplitudes of motion were

steel struts in Figure 11. While the beam was
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Figure 12 - Dimensionless Modal Acceleration Levels, in 5 Hz Bands, Shown as a Function of Loss Factor. Data
is shown for t=0.036 in ch and t=0.072 inch for All Struts Tested. Lines (---- ) and (- -) are
Calculated Results for Non-Linear Oscillator.

_o
less than 10 t for all modes of all the struts.

The maximum modal acceleration levels for the vari

ous bending modes of the different struts are summar

ized as functions of damping and dynamic head in Figure 

12. The loss factors are those measured in water at 

11̂ =0. The normalization of this figure permits the 

acceleration levels to be interpreted in an alternative 

fashion which expresses the modal amplitude, y2 = 

w^a2 , as a fraction of trailing edge thickness t. In 

this alternative representation we have let

For the t = 0.072 inch edge the tight collapse of the 

dimensionless acceleration indicates that the hydro

elastic coupling is affected more by the damping than 

by the order of the mode. The acceleration appears to

decrease as n'14 for light damping in the beams and as 
s _ 2

n"2 as the damping is increased above n$ = 3 x 10 .

Additional data is shown for the t = 0.036 inch edge.

For this edge there is more scatter, the beam did not

sing as strongly as it did for t = 0.072 inch and the

flow excitation was not more than 20 decibels greater

than the non-singing, sharp-edged response. This data

does show a dependence on loss factor in good agree-
_2

ment with that of the thicker edge. For n$ > 3 x 10 

vortex-induced response cannot be distinguished from 

the non-singing motion of the sharp-edges strut.

MATHEMATICAL MODELS OF HYDRO-ELASTIC BEHAVIOR

The theoretical model for the linearly excited 

acceleration of the cantilever strut, equation (2), 

can be modified slightly to express the mean square 

acceleration levels in narrow bands, Af. In terms of

the dynamic head and m& we have

a2(xQ ,f)m2

m.O\2T . 5/ m.o,2
( 6 )

[1 - (-f*) ] +n2(-^f)

The integral in equation has been represented as 

an oscillatory lift coefficient spectrum, C2 (f), which 

may be expressed in terms of a pressure spectrum and 

correlation lengths in the following manner.

Measurements of the statistical nature of the pres

sures at blunt trailing edges, Blake (1975), suggest 

that the cross-spectral density can be approximated, 
using equation (3), as

—  10|x | 10|x |
• (X ,X ,«)- P2[(---rJ— )(---) r 1/Z*(-) M *  -Z )(7)1 2 0 t t P 1 2

where t(u) is the auto-spectral density of the pressure

at any point. R(z -z ) is the spanwise correlation
l 2 ~

function of the pressure, and p2=p2 (x = 0.3 t^.f^). 

Assuming that the spanwise correlation length,
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is much less than the bending wavelength, equation 

(7) allows the integral of equation (2) to be approxi

mated as

C2 (f) ( 8)

where G(f)Af = 2$(w )au> . The term (^-) expresses an 

average of the deterministic chordwise pressure dis

tribution over chord, w; it is an average over w of 

equation (3). The term l_w/L is the fraction of the 

total length of the strut over which the fluid is 

flowing. In the experimental configuration, the strut 

protruded into the open jet of a water tunnel so that 

L /L < 1. The spectrum C.2(f) is considered to holdW L
for those situations in which the hydrofoil motion is 

small enough to have no influence on the shedding 

mechanism. A wake survey similar to that of Figure 4 

was conducted behind the steel undamped hydrofoil with 

t = 0.072 inch in the water tunnel* at speeds for 

which very strong singing did not occur. These 

surveys yielded velocity spectral densities, Gu(f) 

and wake thickness parameters, y Q for implementation 

in equations (4) and (5) in order to calculate 
p2 G(f) according to

P l G(f)

The resulting pressure spectra for = 7.7 ft/sec 

and = 10.7 ft/sec are shown in Figure 5. These 

spectra are in excellent agreement with those obtained 

in the wind tunnel experiment on the geometrically 
similar larger strut.

The evaluation of equation (6) was made for U =oo
10.4 ft/sec in the case of non-resonant motion of the 

(2,0) bending mode of the beam. The motion of the 

(0,1) torsion mode was ignored because the accelero

meter was not positioned to measure this mode.

Equation (6) was evaluated using ic = 4t from Blake 

(1975) and Lw/L = 0 . 7  from the experiment configura

tion. The computation, which is shown as the heavily 

dotted line in Figure 8, agrees well with the measured 

acceleration. It substantiates the hypothesis of 

linear flow excitation of the beam and it provides a 

basis for our analysis of the non-linear hydro
elastic behavior.

We turn now to the non-linear hydro-elastic coupling 

that can control the response to periodic vortex 

streets. Unfortunately no fully satisfactory analysis 

exists which correctly portrays the characteristics

•Details of the wake survey will be published in the 
final report of this work.

of the hydroelastic coupling. Recently Hartlen and 

Currie (1970) suggested an analytical description of 

the fluid-structure coupling as satisfying the non

linear Rayleigh equation. Later Skop and Griffin (1973) 

and Griffin, Skop, and Koopman (1973) modified the 

model and extended comparisons of the model with exist

ing data. The fluid oscillator model of Hartlen and 

Currie (1970) will be applied to the struts of the 

current study. The lift coefficient is postulated as 

satisfyi ng

C." -  a ( - 2- )c ;  + j^-r- L %  L (us/wn

where C, =C, (u„x) and C,' =L L n L

) (CL> + &  CL=bYn (9)

d(u t ) Here, again, x

is time, = 2irfn is the resoRance frequency of the 

strut, and Yp = yn (w)/t is the normalized modal dis

placement, vn U )  = y n (x). The coefficients a and y 

are assumed to be characteristic of the vortex gen

eration process; b is a coupling parameter. For rigid 

struts Yn1=0 so that solution to equation (9) is

C. = C. cos 2irf x 
L Lo s

where C^ is the square root of the oscillatory lift 

coefficient spectrum on a rigid strut, i.e. with 

y n=0, given by equation (8). It is related to the 

parameters of equation (9) by

( 10)

The coefficients y and b are estimated from the hydro
elastic data as described shortly. The modal oscil

lation is assumed sinusoidal and therefore it may be 

expressed from equation (1) as

. [ i / M i ]  (S  )
*n + nT V" %  * m t ' CL ( 1 1 )

where we have incorporated the added mass and hydro- 

dynamic damping effects in m$ and in n-p. We have let 

ns=B/ |co |, nT = nn + and we have let p (t ) = 
qC^ cos u)sx. Equations (9) and (11) maymGe solved in 

approximate form by assuming steady state solutions 

as shown by Hartlen and Currie (1970) or may be solved 

more exactly on an analog computer. In either case, 

y and b remain the undetermined coefficients. An 

examination of possible solutions of equations (9) 

and (11) discloses that b affects the frequency band

width, Af/f$ of the lock-in region and y affects the 
peak so that the maximum amplitude is linearly pro

portional to y . Figure 13 shows calculated amplitudes 

of motion (Yn)nns for the (3 »°) 1110(16 of the brass
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Figure 13 - Modal Displacement Amplitudes for the (2,0) 
Bending Mode of a Cantilever Stainless
Steel Strut. Legend: Measured points ---;
Calculated Values are for ris=0.0028 (- -), 
ns=0.0056 (— ), and ns=0.010 (---).

undamped strut as a function of the frequency ratio
_3

u»s/(Dn . The calculation for ns = 2.8 x 10 was con

ducted first and it served to define y and b by a 

trial- and -error curve-fit. With the coefficients 

thus defined, amplitudes were calculated for higher 

values of damping. It is to be noted that an increase 

in damping by a factor of two resulted in an estimated 

reduction in maximum amplitude by a factor of 4. The 

results of the calculations for the t=0.072 inch edge 

are shown in Figure 12 as well as additional calcula

tions for t=0.026 inch. The excellent agreement between 

the measured and calculated damping dependencies lends 

encouragement to further use of the model. It also 

indicates that the coefficients y and b are constant 
over the modest range of Reynolds numbers covered by 

the vibration measurements as well as being independent 

of amplitude.

CLOSURE

The random flow excitation of struts has been 

analytically predicted using a procedure developed for 

the estimation of modal response. This technique has 

been successful for both boundary layer and inflow

turbulence excitation. In more recent investigations, 

the methods have been extended to apply to the linear 

and non-linear forcing due to vortex street formation.

The relationship has been shown between the

linear vortex flow excitation of hydrofoils with the

circulatory characteristics of their periodic wakes.

The linear excitation occurs with the non-resonant

response of lightly damped modes and with the resonant

response of modes with structural loss factors which 
_2

exceed 3 x 10 . Comparisons of measurements of flow-

induced acceleration on vibrating hydrofoils and of 

the aerodynamic pressure fields induced on rigid 

struts by their wakes have formed the basis of this 

comparison. In these cases of linear excitation of 

hydrofoils by vortex streets, a reliable prediction 

method for determining response to known oscillatory 

pressures is shown. Empirical data for these pres

sures or a semi-empirical relationship between the 

pressures and the wake statistics appear to be more 

reliable than purely theoretical estimates in determin

ing excitation functions.

In the case of moving edges, it appears that non

linear empirical models such as that proposed by 

Hartlen and Currie (1970) will become increasingly 

important. An experiment which is directed at giving 

physical significance to the coefficients of the model 

is currently underway. The approach is to determine 

the influence of trailing edge motion on the lift 

coefficient in so far as it alters the strength of 

shed vortices and the phase between the motion of the 

surface of flow-separation and the resulting vortex at 

its formation point. Preliminary data shows that the 

motion increases the levels of the pressures as well as 

the strengths and spanwise coherence of the shed 

vortices. Also, when f/f = 1 the pressures are in 

phase with the velocity of the edge. Thus the effect 

of the vortices becomes as a negative damping term in 

equation (1). These effects were observed to become
_3

apparent when ynns/t > 3 x 1 0  and they are dependent 

on Reynolds number.
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DISCUSSION

R. Brown, Naval Underwater Systems Center: Have you 

noticed any coupling between shed vortices and the 

leading edge, laminar portion of the boundary layer?

This has been reported to cause intense, coherent com

ponents in strut vibration.

Blake: The formation of disturbances, especially well- 

correlated ones, at trailing edges could cause some 

oscillation of the potential fluid flow. This motion 

could conceivably be coupled to the leading-edge flow 

and thus cause a "wandering"of the stagnation point 

there. In our wind tunnel measurements of the fluctua

ting pressures on struts, we have found no evidence of 

this.

Cob Ash, Old Dominion University: In your measurements 

of your structurally damped experiments how did you 

compensate for the air damping that occurs even without 

flow? Did you take that into consideration?

Blake: Yes, we considered these losses. The cantilever 

beams were clamped in a 200 lb. block of stainless steel. 

In air, damping of the beams without damping treatment 

was controlled by losses in the clamp. In stagnant 

water, the damping of the untreated beams (Figure 7) 

was controlled by the losses in the clamp with a small 

contribution at low frequencies due to viscous losses 

in water. (See also Blake, W.K., "On Damping of Trans

verse Motion of Free-Free Beams in Dense, Stagnant 

Huids," Shock and Vibration Bulletin No. 42, Jan. 1972.
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