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UNIDIMENSIONAL TURBULENCE IN A SHEET FLOW 

UNDER RAINFALL- 

A STOCHASTIC ANALYSIS

H. L. Shahabian, Aldo Giorgini, 
J. W. Delleur, A. R. Rao 

School of Civil Engineering 

Purdue University 

Lafayette, Indiana

ABSTRACT

Probability distributions of longitudinal veloc­

ity fluctuations are presented for cases with and 

without rainfall. They deviate from the normal dis­

tribution. These velocity fluctuations are fitted 

by an autoregressive - moving average process. The 

process explains adequately the variance of the series.

EXPERIMENTAL SET-UP

The data analyzed are the output from a hot-film 

sensor positioned at different depths in a shallow 

water flow field where rainfall can be superimposed.

The apparatus consists of a smooth plexiglass surface 

that acts as a catchment on which constant discharges 

can be obtained. A uniform rainfall can be super­

imposed on this surface by an independent system. The 

measurements are done by means of a hot-film sensor 

the output of which is recorded on analog magnetic 

tape for approximately two (2) minutes and later digi­

tized at the rate of .003 seconds. The digitized 

data in turn are recorded on magnetic tape for further 

analysis. The apparatus, electronic data collection 

and processing were described in detail by Kisisel, 

et.al. (1, 2), whose data are used in this paper.

The longitudinal velocity fluctuations of two (2) 

cases are presented: one with and the other without 

rainfall. For comparison, the two (2) cases have very 

close Reynolds numbers (= 10,000); the parameters of 

the flow fields are given in Figures 1 and 2.

DETERMINATION OF THE SAMPLING INTERVAL

A digitization rate of .003 seconds was used ini­

tially to discretize the continuous signal, this rate 

being the maximum attainable by the available hybrid 

facilities. However, this rate was soon found to be 

too high and the number of data points was too large. 

For the purpose of studying the probability distribu­

tion of the turbulence signal the sampling rate can be 

reduced without loss of valuable information. The 

effects of two (2) digitization rates can be compared 

by calculating the eigenvalues of the autocorrelation 

matrices for the two (2) digitization rates. If the 

additional eigenvalues resulting from higher sampling 

rate are small, the lower sampling rate can be taken 

as adequately representing the series. However, the 

computation of eigenvalues is time consuming.

Fukunaga (3) defines a criterion, Jn , which is an ap­

proximate ratio of the sum of n smaller eigenvalues of 

the autocorrelation matrix to the sum of all 2n eigen­

values. For stationary series Jn could be calculated 

by

Jn = H{R(0) - R(T/2n)}/R(0)

where,
2n = original number of sample points 

R(m) = autocorrelation function at lag m 

T = time length of the series, 

if Jn << 1, then n sample points can be taken instead 

of 2n.
This criterion, applied to the data analyzed, led

to a sampling rate of .012 seconds, with very small

values of J .n
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PROBABILITY DISTRIBUTION

A total of 8192 (or 213) sampling points are ob­

tained from each data set of 98.3 seconds with an in­

terval of .012 seconds. The frequency histograms of 

the turbulent velocities, so sampled, are shown in 

Figures 1 and 2. These curves were obtained for thir­

ty (30) equal class intervals over the range of the 

data. For comparison purposes the abscissa is stan­

dardized by subtracting the mean from the actual value 

and dividing the result by the standard deviation.

The inserted Table gives the values of the mean, vari­

ance, skewness coefficient and kurtosis of the series 

as well as the point mean velocity U. Tables, la and 

lb, give these four statistics of the series for dif­

ferent sampling intervals; the insensitivity of these 

parameters to the sampling rate is apparent.

Attempts were made to fit several theoretical 

probability distributions to the data. Table 2 sum­

marizes the result of the x2 goodness of fit test. It 

can be seen from Table 2 that:

(1) None of the distributions considered fit the 

data consistently.

(2) The data with rainfall are more likely to be 

fitted by a theoretical probability distri­

bution than those without rainfall.

(3) Whenever the parameters converge a Pearson 

type 4 probability distribution fits the 

data.

(4) A log-normal distribution is an adequate 

"runner-up."

STOCHASTIC ANALYSIS

These functions are smooth but oscillatory around 

zero (0) for small values of y/d; the fluctuations in­

crease with an increase of the y/d value (away from 

the wall). The spectra, on the other hand, are rela­

tively large for low frequencies and decrease rapidly 

to zero (0) at about h of theNyquist frequency. Ex­

cept for random changes of the fluctuating peaks 

they do present a similar shape over the range of y/d 

analyzed. This shape of the spectrum suggests an auto­

regressive - moving average (ARMA) type of process, 

Shahabian (5).

FROM BURGERS' EQUATION TO ARMA PROCESS

Since the Navier-Stokes equations contain second 

order space derivatives and a mean velocity, with 

respect to which the velocity fluctuations are small, 

an autoregressive process of the second order, AR(2), 

may be suspected to be a strong component of the pro­

cess under investigation.

In this respect, an argument based on the 

Burgers' equation, a one-dimensional model for analytic 

studies on turbulence, is presented.

32U3U . ,, 3U 
9t + U v 9X2 (1)

Decomposing the velocity U into an average and a fluc­

tuating component
U * U + u

equation (1) can be rewritten as

32U3u . r. 3u . 3U _ 
8t"f U S r + U 1 x ' V 3X' ( 2 )

A finite difference form of (2) with 

U0 (t ) = u(nAx, tAt)

The standardized data are treated as time series. 

The Fast Fourier Transform (FFT) algorithm is used to 

obtain raw periodograms which are then averaged over 

eight (8) consecutive series to obtain an estimate of 

the power spectrum with a frequency resolution of 

.0814 cps and a Nyquist frequency of 41.66 cps. The 

equivalent number of degrees-of-freedom for the ap­

proximating x2 distribution of the average power spec­

trum is sixteen (16). The autocorrelation function 

is calculated by taking the inverse Fourier transform 

of the spectrum. The spectra and autocorrelation func­

tions for alternating series are presented in Figures 

3, 4, 5, and 6. In Figures 3 and 4 the spectra are 

presented up to 20.833 cps, half the Nyquist fre­

quency. The spectra are decreasing uniformly between 

20.83 cps and 41.66 cps. The autocorrelation func­

tions, on the other hand, are presented in Figures 5 

and 6 in their entirety (up to 6.144 seconds).

becomes:

U„(x ♦ 1) - U„(r 1)
2At U + Un(x) Un+l(x) - Un-l(x)

2ax

r Un+l(T) ~ 2un (r) * Un-l(x) .
V L AX2 J

stipulating that At and Ax are related via U as 

define the nondimensional quantities

vnU )  - Un <x> R = UAX U2At

(3)

and let an(t) he defined by

Vn+l(x + 1} = V x) + an(x) (4)

where an (x) represents the unsteady component of the 

turbulent fluctuations as seen by an observer moving 

with velocity U; (Note that: if an(x) = 0, Equation 

(4) reduces to the Taylor’s hypothesis). Replacing 

the nondimensional quantities defined, and reducing
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the velocity fluctuations to the point n making use of 

(4), Equation (3) becomes:

V t + 11 [ 1 + f ' nw ]

- 2 V„(x) ♦ V„(x - 1) [l - | V„(t )]

= V i (t )  [ f  11 + V t)> + x]

+ an (T ' X) [f {1 + vn(T)) ' x] <5>

whose linearized form is:

Vn(x + 1) - 2 Vn(x) + Vn (T - 1)

= Vl<*> [x + I] - an<T - 1) [l - f] <6)
If the an (x) series is strongly correlated to the 

an_j(x) series, Equation (6) may be seen as a second 

order autoregressive first order moving average, ARMA 

(2, 1), process on Vn(x) of the form 

x(t + 1) - ♦jx(t) - *2x(t - 1) = Z(t) + ejZ(t - 1)

(7)
However, if the an_^(x) is only weakly correlated to 

an(x), a new variable, bn(x), may be defined as in 
Equation (4):

an+i^T + D  ■ an(0 + bnU )  (8)
(Note: bn(x) would represent the rate of change of 

the unsteady component of the velocity fluctuations as 
seen by an observer moving with velocity U).

Substituting (8) in Equation (6):

Vn(x + 1) - 2 Vn (x) + Vn(x - 1)

■ Y t + ;> l 1 + f J  r
>„<T -  x> [ x -  ? j  - V l < * >  [ (9)

which suggests an ARMA (2, 2) process. Analogous ob­

servations could be made for the nonlinearized dif­

ference Equation (5) if the Vn(x) values in brackets 

are considered as the RMS value of the velocity fluc­
tuations.

Thus, while the Vn(x) process is a complex one as 

represented by Equation (3) in finite difference form 

in the case of the Burgers' equation, a strong AR (2) 

component seems to be present. An ARMA (2, 2) or 

ARMA (2, 1) model would appear to represent the system 

depending on the degree of correlation of the unsteady 

component of the velocity fluctuations at two (2) suc­

cessive stations.

The actual analysis of the data shows that the 

parameters of the ARMA (2, 2) type process do not con­

verge thus the ARMA (2, 1) model is used for the 

analysis.

FIT OF ARMA (2 ,1) MODEL

The parameters ^  <|>2 , and ex of the process (7) 

are calculated from the autocorrelation function of 

the data, following the procedure by Box and Jenkins

(5). These parameters are given on Figures 5 and 6.

The diagnostics of the model are performed by generating 

the residual series by means of

Z(t) = x(t) - ^ x U  - 1) - <|>2x(t - 2) - e1Z(t - 1) 

where the

x(t)

series is tne standardized data and

♦ j, <f>2 » and 9i
are the calculated parameters. The initial value of 

Z(t) is assumed to be zero (0). The variance and 

first order serial correlation coefficient of the resi­

dual series are calculated and are presented in Figures 

7 and 8. It can be seen from these parameters that 

the variance of the residual series is much smaller 

than that of the standardized original series which 

has a variance of 1.00. The reduction is of the order 

of 85%. The reduction is much more pronounced for the 

small y/d values and it decreases with the increase of 

y/d.

The test of the model is to compare the residual 

series to white noise. In this respect the autocor­

relation functions are calculated and they are shown 

in Figures 7 and 8, for the corresponding series shown 

previously. The autocorrelation functions decrease 

very rapidly to zero (0) after a lag of one (1) and 

oscillate around the zero (0) axis throughout the 

range considered with very small amplitude, which is 

characteristic of an uncorrelated random sequence.

The spectra of the residual series are calculated 

and shown in Figures 9 and 10 for the same series.

The spectra are flat and oscillating around the theo­

retical spectrum of a white noise having the corre­

sponding variance. A test of white noise in the fre­

quency domain is on the cumulative spectrum with a 

test of significance due to Kolmogoroff and Smirnov 

(7). This test is shown in Figures 11 and 12 where 

the 75% and 95% confidence intervals are drawn to­

gether with the theoretical line. The actual data os­

cillate around the theoretical line and except for one 

series they all lie within the confidence interval 

showing that the noise term is free of cyclical com­

ponents. The particular series that does not pass 

the test Is due to a peak in the spectrum of the 

residual series at around fifteen (15) cps.

Thus an ARMA (2, 1) process gives a reasonably 

good fit of this particular form of turbulence and ex-
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plains most of the variance of the process adequately. 

This particular model could be used to generate unidi­

mensional turbulence where need be, like for example 

in particle diffusion problems or sediment transport 

process.
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Table la— STATISTICS OF LONGITUDINAL VELOCITY FLUCTUA­
TIONS WITHOUT RAINFAL1 WITH DECREASING DIGI- 
TIZATION RATE

At .003 .006 .012 .024 .048 y/d
N 32768 16384 8192 4096 2048

in x 102 .740 .740 .740 .742 .742
s2 x 102 .148 .148 .148 .148 .148 .020Skew.Coef. .313 .313 .312 .319 .314
Kurtosis 2.56 2.56 2.55 2.57 2.58
m x 102 1.205 1.205 1.204 1.217 1.205
s2 x 102 .424 .424 .424 .424 .418 .179Skew.Coef. .559 .558 .560 .568 .553
Kurtosis 2.97 2.97 2.97 2.97 2.97
m x 102 1.008 1.005 1.006 1.001 .977
s2 x 102 .422 .422 .422 .420 .423 .292Skew.Coef. .609 .603 .604 .619 .648
Kurtosis 3.56 3.55 3.56 3.55 3.69
in x 102 .920 .916 .917 .942 .922
s2 x 102 .340 .341 .341 .342 .347 .405Skew. Coef. .656 .647 .646 .638 .657
Kurtosis 3.74 3.74 3.77 3.76 3.94
in x 102 .360 .361 .361 .361 .354
s2 x 102 .205 .205 .205 .206 .208 .575Skew.Coef. -.580 -.578 -.573 -.571 -.561
Kurtosis 3.60 3.58 3.58 3.58 3.50
in x 102 .412 .409 .410 .416 .432
s 2 x 102 .155 .155 .155 .154 .150 .744Skew.Coef. -.456 -.459 -.463 -.455 -.434
Kurtosis 3.56 3.57 3.58 3.47 3.48

Table lb-STATISTICS OF LONGITUDINAL VELOCITY FLUCTUA­
TIONS J O I O M N F A L J L W I T H  DECREASING DIGITI­
ZATION RATE

A t .003 .006 .012 .024 .048 y/d
N 32768 16384 8192 4096 2048

m x 102 .064 .064 .064 .065 .060
s2 x 102 .011 .011 .Oil .011 .011 .012Skew.Coef. .560 .560 .556 .560 .570
Kurtosis 3.75 3.76 3.74 3.72 3.76
in x 102 .827 .828 .827 .831 .826
s2 x 102 .119 .119 .119 .119 .119 .032Skew. Coef. .764 .763 .746 .769 .768
Kurtosis 3.84 3.84 3.84 3.83 3.83
in x 102 1.657 1.660 1.661 1.660 1.639
s2 x 102 .834 .835 .836 .838 .829 .072Skew.Coef. .710 .711 .712 .718 .730
Kurtosis 3.40 3.40 3.40 3.41 3.44
in x 102 .997 .999 1.000 1.006 .950
s2 x 102 .644 .644 .643 .642 .651 .123Skew. Coef. .723 .724 .724 .727 .755
Kurtosis 4.01 3.02 4.01 4.03 4.23
in x 102 .282 .283 .282 .271 .278
s2 x 102 .348 .348 .345 .347 .359 .223Skew.Coef. .390 .388 .388 .398 .422
Kurtosis 3.73 3.72 3.72 3.73 3.72
in x 102 -.209 -.208 -.203 -.213 -.241
s2 x 102 .352 .352 .352 .350 .358 .374Skew.Coef. .467 .462 .464 .469 .517
Kurtosis 3.79 3.78 3.76 3.73 3.76

Table 2a— x2 GOODNESS OF FIT TEST OF PROBABILITY DEN­
SITY FUNCTIONS WITHOUT RAINFALL

y/d .020 .179 .292 .405 .575 .744
Normal 348 459 456 373 389 253
Normal 
Hermite - 3 208 147 90 68 90 46

Normal 
Hermite - 4 125 144 135 93 62 33

Log Normal 150 76 87 39 — 702
Pearson 
type 4 — — — — — 43

Gamma 3 153 59 121 69 -- —

Gamma 3 
+ Laguerre 3 86 52 78 26 — —

Gamma 3 
+ Laguerre 4 2539 6922 82465 22000 — —

Double-branch 
Gamma 3 1283 746 643 630 782 477

Normal 
+ Gamma 3 289 49 — 74 — —

Mixture 
2 Normal — — 493 394 — —

Mixture 
3 Normal 112 378 664 714 317 397

Wei bull 273 413 988 845 -- --

* Digitization Rate = .012 seconds 
critical x2(99%) = 48

Table 2b— x2 GOODNESS OF FIT TEST OF PROBABILITY DEN­
SITY FUNCTIONS WITH RAINFALL

y/d .012 .032 .072 .123 .223 .374

Normal 237 490 547 315 98 152

Normal 
Hermite -3 57 121 172 88 69 38

Normal 
Hermite - 4 55 89 172 141 61 48

Log Normal 40 73 51 42 53 31

Pearson 
type 4 31 — — 42 38 18

Gamma 3 51 92 49 40 58 38

Gamma 3 
+ Laguerre 3 40 78 51 36 66 34

Gamma 3 
+ Laguerre 4 2700 6628 5945 1558 66 34

Double-branch 
Ganna 3 520 432 684 613 465 442

Normal 
+ Gamma 3 29 73 69 89 — 25

Mixture 
2 Normal 205 — — 340 42 136

Mixture 
3 Normal 536 3600 1050 991 284 439

Weibull 577 550 434 515- 624 729
* Digitization Rate = .012 seconds 

critical x2(99%) = 48
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Figure 1— FREQUENCY HISTOGRAMS OF STANDARDIZED VELOCITY FLUCTUATIONS, WITHOUT RAINFALL, (y/d not to scale)

Figure 2— FREQUENCY HISTOGRAMS OF STANDARDIZED VELOCITY FLUCTUATIONS, WITH RAINFALL, (y/d not to scale)
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Figure 3— SPECTRA OF STANDARDIZED VELOCITY FLUCTUATIONS, WITHOUT RAINFALL.

FREQUENCY

Figure 4— SPECTRA OF STANDARDIZED VELOCITY FLUCTUATIONS, WITH RAINFALL.
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Figure 5— AUTOCORRELATION OF VELOCITY FLUCTUATIONS, 
WITHOUT RAINFALL.

Figure 6— AUTOCORRELATION OF VELOCITY FLUCTUATIONS, 
WITH RAINFALL.
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Figure 7— AUTOCORRELATION OF RESIDUALS FROM ARMA(2, 1) 
MODEL, WITHOUT RAINFALL.

Figure 8— AUTOCORRELATION OF RESIDUALS FROM ARMA (2, 1) 
MODEL, WITH RAINFALL.
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Figure 9— SPECTRA OF RESIDUALS FROM ARMA (2, 1) MODEL, WITHOUT RAINFALL.

FREQUENCY

Figure 10— SPECTRA OF RESIDUALS FROM ARMA (2, 1) MODEL, WITH RAINFALL.
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Figure 11— A TEST OF WHITE NOISE USING INTEGRATED SPEC­
TRA OF RESIDUALS, WITHOUT RAINFALL.

Figure 12— A TEST OF WHITE NOISE USING INTEGRATED SPEC­
TRA OF RESIDUALS, WITH RAINFALL.

DISCUSSION

T. Hanratty, University of Illinois: I was wondering 

if you'd care to comment on the motivation for looking 

at this, with or without rainfall? Are you looking 

for something very different and why?

Shahabian: The motivation of the study of the tur­

bulent flow field as generated by the impact of the 

rain drops over a sheet flow is mainly related to 

erosion. This model allows the generation of this type 

of turbulent flow field. Now, for the overland flow 

wd have very shallow water and usually we don't have 

significant turbulence if rainfall is not present. 

However when the rainfall is superimposed large eddies 

are formed and we have an artificially created turbul­

ence in the flow field, and this is where the interest 

comes from.

W. Blake, Naval Ship Research and Development Center: 

What is an auto-regressive quantity?

Shahabian: An auto-regressive process is one whereby 

the element in a time series at a given time is re­

lated to elements of the series at previous times:

X(t) = ♦^(t - 1) + <|>2 x(t - 2) . . . <{>n x(t - n) + Z(t)
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