
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Symposia on Turbulence in Liquids Chemical and Biochemical Engineering 

01 Sep 1975 

Energy Spectrum and Turbulent Scales in a Plane Air Jet Energy Spectrum and Turbulent Scales in a Plane Air Jet 

V. W. Goldschmidt 

M. F. Young 

Follow this and additional works at: https://scholarsmine.mst.edu/sotil 

 Part of the Chemical Engineering Commons 

Recommended Citation Recommended Citation 
Goldschmidt, V. W. and Young, M. F., "Energy Spectrum and Turbulent Scales in a Plane Air Jet" (1975). 
Symposia on Turbulence in Liquids. 6. 
https://scholarsmine.mst.edu/sotil/6 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Symposia on Turbulence in Liquids by an authorized administrator of Scholars' Mine. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/sotil
https://scholarsmine.mst.edu/che_bioeng
https://scholarsmine.mst.edu/sotil?utm_source=scholarsmine.mst.edu%2Fsotil%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=scholarsmine.mst.edu%2Fsotil%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/sotil/6?utm_source=scholarsmine.mst.edu%2Fsotil%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


ENERGY SPECTRUM AND TURBULENT 
SCALES IN A PLANE AIR JET
V.W. Goldschmidt and M.F. Young* 
Ray W. Herrick Laboratories 
Purdue University 
West Lafayette, Indiana 47906

ABSTRACT
The energy spectra and longitudinal length 

scales measured in a free plane jet are 
presented. The actual convective velocity 
was used in determining the scales. The 
results show a universal spectral distribution 
along the axis but no obvious similarity in 
the large scale motion off the axis. The 
results are limited to x/D < 60. The measured 
scales suggest a noticeable increase of the 
microscale along the lateral coordinate but an 
essentially constant value along the axis. 
However the macroscales, increasing linearly 
along the axis do not show any similarity off 
the axis.
INTRODUCTION

An earlier paper presented measurements 
of spectra and scales in a submerged circular 
water jet, Goldschmidt and Chuang (1972).
This now presents similar measurements in a 
plane air jet. For brevity sake the reader is 
referred to the earlier publication,
Goldschmidt and Chuang (1972), for definitions, 
nomenclature, and extensive references. There 
the warning was made that the concept of 
eddies and scales, useful as it is in some 
models of turbulent transport, has some 
physical weakness. This is particularly true 
in flows which are intermittently turbulent 
and non-turbulent.

The length scales of turbulence can be 
determined from measured energy spectra by 
knowing the velocity of propagation of the 
turbulent structure. This velocity, referred 
to as convective velocity, need not be equal 
to the local mean velocity. Taylor's frozen 
turbulence hypothesis, usually invoked when

computing the scales, postulates this equality. 
In the results to be presented the scales will 
be computed based on both the local mean and 
convective velocities.
FLOW FIELD

The flow field considered is a subsonic, 
plane free jet. The flow emanates at an exit 
Reynolds number of UQD/v = 10,000, through a 
rectangular slot 0.635 x 30.48 cm. In order 
for it to behave as an infinite plane jet the 
jet was confined by two horizontal walls. 
Measure of the mean velocity profiles showed 
them to satisfy the documented Reichardt and 
Gortler solutions, with a half-width given by:

| = 0.0875 [g + 8.75] (1)
and an axial velocity decay rate 

/ U \” 2
\ u51) = 0.15 + 1.25] (2)o

agreeing well with documented values in the 
literature. Such are tabulated (Table 1) as 
follows, where

b
D K1 « Cll

l- -lD c2]

ENERGY SPECTRA
The energy spectra were obtained from 

digital Fourier analysis of the hot-wire 
anemometer signal. The major instrumentation 
consisted of a Security Associates anemometer 
model 100, a HP 5465A analyzer, a standard TSI 
probe and a SKL variable low pass filter. The 
scales were obtained from the energy spectra 
(based on the wave number) from

and
Xx = /2 [/* F(k)k2dk]”1/2

■x- Lim F (k) 
* k -*-0

(3)

(4)

The energy spectra, based on wave number 
were obtained from the frequency distribution 
by noting that

v = 2lTf U_ (5)

‘Presently at Texas A & M University, College Station, Texas.
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Taylor's hypothesis in essence implies that 
the convective velocity, Uc, is equal to the 
local mean velocity, U.

The energy spectra were measured at 
x/D = 20, 30, 40 and 60 for different y/b 
values from 0 to 1.8. The spectra along the 
axis, when scaled by the distance from the 
origin, collapse onto one single curve as 
shown in Figure 1. However, in the intermit
tent region this is no longer the case. As an 
example the spectra at different lateral loca
tions is shown in Figure 2. It is shown for 
the furthest x/D station where data resolution 
would be at its worst. As expected, the high 
wave number region (dependent on dissipation 
rate) does collapse onto one curve whereas the 
large scale motion, strongly dependent on 
intermittency, does not. This is in agreement 
with the results of reference 1, Goldschmidt 
and Chuang (1972).
TAYLOR LONGITUDINAL SCALES

The longitudinal macroscale can be 
estimated from the extrapolation of data taken 
at very low wave numbers (corresponding to 
frequencies as low as 2 Hz). The macroscale 
along the axis is found to satisfy the 
relationship,

T T  = 0.0885 [J - 8.5] (6)
in excellent agreement (except for a jump in 
virtual origin) with the measured half-width 
of equation (1). The corresponding lateral 
distribution of the macroscale (computed based 
on Taylor's frozen hypothesis) is shown in 
Figure 3, whereas that based on the actual 
convective velocities: Young and Ott (to be 
published), is shown in Figure 4 disproving 
the otherwise inferred reduction in macroscale 
towards the edge of the jet. (The convective 
velocities were found from the cross correla
tion between two probes one downstream from 
the other.)

The ratio Uc/U was noted to approximately 
follow the relationship

U .
-£■ = i + o (6)

The solid data points noted in Figure 4 were 
obtained from the longitudinal space correla
tion measured with two probes located at dif
ferent separations (in the downstream direc
tion) from each other. These scales when 
compared with the values computed from the 
energy spectra are well within the range of 
experimental error.

Similar results for the Taylor microscale 
are shown in Figures 5 and 6. The microscale, 
based on the approximate Taylor hypothesis 
appears essentially constant. However, based 
on the actual convective velocities it exhibits 
an interesting increase with lateral location. 
The agreement with values obtained from actual 
longitudinal conditions, noted by the shaded 
data points, is satisfactory. From the 
measured microscales the turbulent Reynolds 
number and corresponding Kolmogoroff Scales 
can be computed. To so do, the isotropic 
relationships,

p u2Rex = 727 Xx (7)

iic 1 1 (8)157 * Re77
may be used. These apply, at best, on the 
axis where isotropic conditions nearly exist. 
Comparison of dissipation and microscales with 
data inferred from Heskestad (1963), is shown 
in Table 2.

The measurements are in need of further 
refinement. It must be noted that the repor
ted (non-conditional) measurements include 
both the turbulent and non-turbulent regions 
in the flow. The additional refinement would 
be through a measure of the conditional scales 
(in the turbulent region only).
CONCLUSIONS

The energy spectra along the axis of the 
jet was seen to have a universal shape when 
plotted in terms of a wave number made 
dimensionless by the axial distance from the 
origin. On the other hand, the energy spectra 
at different lateral positions showed no 
universality. This was attributed to the 
differing large scale structures as inter
preted with Eulerian non-conditional averaging. 
At lateral locations off the axis a maximum
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of the energy spectra was seen to occur at a 
frequency of the order of 20 Hz. This was not 
so at the origin. One possible explanation 
would be the intermittent nature of the flow.

The longitudinal micro and macro length 
scales were computed from the measured 
spectra. This was done correctly by recalling 
the measured convective velocities. These 
values were compared with those computed erro- 
eously assuming that the local mean velocity 
represented the convective velocity. The 
difference in these results was considerable 
for lateral stations larger than y/b = 0.8.

The lateral distribution of the macro
scales did not convincingly suggest that simi
larity had been reached for 20 £ x/D £ 60. In 
general the results did show a slight increase 
of the scale with y/b. The measured values 
were spot checked with macroscales computed 
from measured longitudinal correlation coef
ficients. This agreement also reinforced the 
confidence in the measured data. To the best 
of the authors' knowledge this is the first 
time that measurement of longitudinal macro
scales in plane jets have been reported.
Earlier measurements in circular jets:
Laurence (1957) , Wygnanski and Fiedler 
(1969), and Corrsin and Uberoi (1951), did 
present macroscales which are of the same 
order of magnitude as the present results.

The longitudinal microscales along the 
axis increased very slightly with axial loca
tion. On the other hand, the longitudinal 
microscales increased considerably with y/b 
(the values at y/b * 1.5 being more than 
double those at the axis). The data did show 
consistent trends at different x/D locations. 
Agreement with the scales obtained from the 
independent measurement of the longitudinal 
correlation coefficient was very satisfactory.

The results are useful in characterizing 
the flow. In addition, the scales and the form 
of the spectra may be of assistance in formula
ting models describing the flow and predicting 
its behavior. As an example, available predic
tors for the transfer of suspended particles 
require a knowledge of the macro-scales.
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TABLE 1. CHARACTERIZATION COMPARISON OF VARIOUS FREE TURBULENT JETS.
Investigator K1 K2 ci C2 Re

Miller & Comings (5) 0.0983 0.227 -1.572 -1.572 1.78 (104)
Van der Hegge Zijnen 

(6)
0.100 0.205 0 -1.70 1.33 (104)

4Foss (7) 0.085 0.2565 -2.0 6.50 5.5 (10 )
Hesk.estad (4)* 0.110 0.364 5.3 5.3 2.5(104)
Householder (8) 0.0908 0.1927 -1.46 6.98 4-8(104)
Flora (9) 0.109

to
0.130

0.158
to

0.227
-15.0 2.0 2-3 (104)

Kaiser (10) 0.101 0.208 -2.6 0 1-4 (104)
Ott (2) 0.0968 0.228 -3.0 7.0 104
Jenkins (11) 0.085 0.160 -6.1 4.0 1.45(104)
Present 0.0875 0.150 -8.75 -1.25 104

*Heskestad's K~ is larger than 
exit.

that of other investigators because of mixing at the

Author
TABLE

x/D
2. COMPARISON 

Xx (ft)102
OF TURBULENT
X /D x'

SCALES

Rex n/D(103) Ren

80 1.62 0.3885 385.7 7.1 7.047
70 1.56 0.3744 406.8 6.73 7.3

Heskestad (4) 60 1.50 0.3600 411.1 6.37 7.26
50 1.455 0.3492 440.0 5.98 7.53
40 1.45 0.3485 475.0 5.74 7.82
35 1.45 0.3384 493.0 5.476 7.978

60 1.01 0.487 358.0 9.248 3.047
40 0.981 0.468 390.0 8.515 3.097

Present 30 0.952 0.4575 415.0 7.79 3.175
20 0.931 0.446 445.0 7.6 3.413
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0 . 1 0

Figure 1: Dimensionless Energy Spectra Along the Jet Axis.

x/D = 60

I_________ |_________ |_________ |__________I
5 10 15 20 25

k(ft“A)
Figure 2: Normalized Energy Spectra at x/D = 60.
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o x/D = 20
□ x/D = 30
A x/D = 40
O x/D - 60

0.5 J . 0 1.5
y/b

DistributionUc U . of Lonq l tudi na1F i g u r o 3 : Macroscale based on Figure 4: Distribution of the Longitudinal Macroscale, based
on Measured U .c

44



Figure 5: Distribution of the Longitudinal Microscale, based
on U = U. c

1.4

0 x/D = 20 
□ x/D = 30 
A x/D = 40 
O x/D = 60

1.0 A

0.80
A O

0.60

0.40

o

A

OO
□

□

Shaded symbols represent data points 
obtained in plotting the correlation 
function against probe separation.

I
0.5 1.0

y/b

i .
1.5

Figure 6: Distribution of the Longitudinal Microscale, based
on Measured U .c
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DISCUSSION

W. Willmarth, University of Michigan: You have found 

that the small scales move faster than the local mean 

velocity. Does that mean that they are riding on top 

of the larger scales? Why do small scales move faster 

than the local mean velocity?

Goldschmidt: The question is related to measurements 

of convective velocity (at different frequencies) pre

sented as reference data. The measurements showed 

that for y/b < 1.0, the convective velocities of small 

wave number structures was less than the local mean 

velocity, whereas for large wave number structures the 

ratio of convective velocity to local mean velocity 

is larger than one. This suggests that the small 

structures move faster than the larger structures. 

Whether or not this means that the little scales ride 

on the big scales I don't know - although I wish I 

could say so. I'm afraid we won't be able to explain 

what this all means until we repeat this same kind of 

measurement in a conditional sense.

J. A. Miller, Max-Planck Institute: How sharp are the 
sought maxima 1n the e - at plane?

Goldschmidt: The question relates to curves not in

cluded in the paper showing how the convective velo

cities were determined. This included a measure of 

the time delay for a maximum 1n the space-time correla
tion curve.

As an example, at x/D = 40, y/b = 0.25 and e =

1.3°, the time delay for maximum correlation at a

separation between the wires of 1.27 cm was at about

3.8 m seconds, whereas its value decreased by at least

10% for a delay of 3.3 and 4.5 m seconds (on either

side of the maximum). The companion plot to determine

em wa$ generally not as sharp, leading to a possible

20% uncertainty in the measure of e . These detailsm
will be presented in Reference 12.

B. G. Jones, University of Illinois: Spencer's data 

for conditioned sampling of turbulent/non-turbulent 

structure convection velocities show that U is aU ,
C CL

across at least half of the mixing layer.

We too have found that specific frequency struc

ture has specific convection velocities. For long 

wave length structure U£ < U and for small wave length

structure U > H. c

H. M. Nagib, Illinois Inst, of Tech.: In your Figure 

2, the spectra has a peak in the low frequency range. 

Are these peaks related to the intermittency of the 

flow for y/b >_ 0.1? If so, what effect would that 

have on Figures 3 to 6 and the comparisons between 

them?

Goldschmidt: The peak is not noticed at the axis 

where the intermittency is 1. It occurs as we move 

outwards. Thus, it can be attributed to the inter

mittent nature of the flow, as you suggest. (The 

data were not conditionally sampled).

There is some uncertainty in the values of the 

macroscales. These were obtained by the extrapolation 

of curves such as those in Figure 2. The values 

obtained, however, are not in serious disagreement with 

those from actual space correlation (as noted by the 

shaded symbols in Figures 4 and 6).

G. Comte-Bellot, Ecole-Centrale de Lyon: Have you 

taken time correlation measurements for two probes 

which are only separated 1n the transverse direction?

In that case, I think that the maxima can occur at 

time delays which are either positive or negative 

according to the shape of the two point space 

correlation contours.

Goldschmidt: No, we have not. Generally we carried 

the measurements up to angles of 30 to 60° from the 

longitudinal direction. I agree that two maxima might 

occur.

A. Hussain, University of Houston: We have carried 

out an experiment on controlled excitation of a plane 

turbulent air jet and determined the phase velocities 

of the vorticity waves introduced at different fre

quencies. Though the vorticity wave is different from 

large or small eddies, we have found that the phase 

velocity is typically 60% of the centerline velocity.

It increases slightly with a frequency or Strouhal 

number but never went as high as the local mean 

velocity.

Goldschmidt: I would expect the phase velocity, as 

described, to be related more to the mean velocity 

across the jet (hence about 60% of the centerline 
velocity) than to the convection velocity. I believe 

your results may be comparable to Stiffler's work 

(Ph.D. thesis Penn. State, circa 1972).
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