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ABSTRACT

Clustering analysis is an important topic in data mining, where data points that are simi-

lar to each other are grouped together. Graph clustering deals with clustering analysis of

data points that correspond to vertices on a graph. We first survey some most well known

algorithms for clustering analysis. Then for graph clustering we note that one of the fun-

damental factors is the distance measure between vertices. We further examine various

known venues for defining such measures and propose some others.
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CHAPTER 1

INTRODUCTION TO CLUSTERING

1.1 CLUSTERS

Clustering are the findings of a structure in a collection of unlabeled data. It is the process of

organizing data into groups with members that are similar in some way, hence, forming the

clusters. A cluster is the collection of data that are similar between them and are dissimilar

to the data belonging to the other clusters. As shown in Figure 1.1, you can see a total of

three clusters through the coloring of the dots.

Figure 1.1: Three clusters [3].

Imagine that each dot represents a data point. Based off the euclidean distance we will

measure how similar two points by how close they are to one another. As you can see in

Figure 1.1 above, the given data points have been colored in three different colors. Each
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group of the same color generally contains points that are close to each other.

We conclude this section by presenting the formal definition of clusters.

Definition 1.1. Clusters are groups of similar objects that are close to each other according

to a certain measure of closeness.

1.2 WHY IS CLUSTERING ANALYSIS IMPORTANT AND WHAT DOES IT DO?

The purpose of clustering is to make sense of the large sets of structured and unstructured

data. Clustering allows you to partition that data set into logical groups before attempting

to analyze it. This allows you to take a glance at all of the data, and then form a logical

structure based off your findings before going deeper into more specific analysis, which is

the main purpose of a clustering analysis.

Definition 1.2. Clustering is the task of grouping objects within the same group that are

more similar to one another than to those in the other groups.

In a clustering analysis it is necessary to analyze a significant amount of information

at once in regards to multiple documents. This is done by sorting, identifying, and finding

both the similarities and dissimilarities between each of them. These findings are computed

through several different methods, which are known as the clustering algorithms. We will

briefly survey these algorithms in the next chapter.

1.3 SURVEY OF OUR WORK

In this thesis we first present some well known clustering algorithms, together with exam-

ples through phylogenetic tree reconstruction.

We then discuss clustering analysis in graphs. More specifically, we point out that in

order to conduct clustering analysis the fundamental concepts is the “distance” between
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data points. In graphs these data points are vetices and we are interested in vertex simi-

larities in general. For this purpose we also present some representative distance measures

defined on vertices of graphs. Such distance measures include the type based on euclidean

measures and the ones induced from set differences.

Last but not least, we introduce some novel distance measures of vertex similarity,

including ones that accommodate both Euclidean measures and set differences.
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CHAPTER 2

CLUSTERING ALGORITHMS

Clustering algorithms consist of the different methods used to group the given data into dif-

ferent clusters based on their similarities. These approaches are known as the hierarchical

clustering, k-means clustering, and the two-step cluster analysis. Each method has its own

significance when it comes to performing a cluster analysis. Depending on the size of the

data file it will be determined which method to use. When dealing with a large data file, it

is suggested to use the two-step cluster analysis. Just as if the data file was small, then the

hierarchical clustering would have been recommended to be used. Also, if you know the

number of clusters you would like to have then the k-means clustering is possibly the best

option.

The phylogenetic tree that is displayed Figure 2.1 shows an example of what clustering

is. The tree displays a various amount of biological species and other entities bases off their

similarities and differences in their physical or genetic characteristics. Intuitively speaking,

species that are more alike will be grouped into closer “branches” in the phylogenetic tree.

In the rest of this chapter we will use phylogenetic tree reconstruction as an example

to illustrate the three aforementioned clustering methods. A good reference that we use

frequently is [1].

2.1 HIERARCHICAL CLUSTERING

The hierarchical clustering, can be used in two different ways; either the agglomerative

or divisive way. Most of the time the more useful choice is the divisive way. This starts

with one large cluster that contains data with a tremendous amount of files. Now based on

the files and their differences, the cluster will be broken into multiple clusters. Separating

those that are different and grouping those that are similar. Resulting in multiple clusters.

Another way to perform the hierarchical clustering, is the agglomerative way. With this
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Figure 2.1: A phylogenetic tree [2].
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method you are working backwards. So this means we start out with multiple clusters and

end with one. This is done by finding the similarities between each group, we will continue

this process until everything is grouped together, eventually giving you one big cluster [1].

So if we were to use the phylogenetic tree as an example for the hierarchical cluster-

ing, then the outcome will be similar to what we just explained. In Figure 2.1, we have

several different types of species. Just by looking at the figure, we know if we were to use

the divisive way, then, based off each species and their differences, they will be placed in

their own group. The divisive method consists of 3 steps. In each step we analyze and

break down everything in each group. In step one, we look at all of the species together

and divide them into two groups. Group one is the Boreoeutheria species and group two

are the Atlantogenata species.

Group I Boreoeutheria is a clade of placental mammals that is composed of the sister taxa

Laurasiatheria and Euarchontoglires.

Group II Atlantogenata is a proposed clade of mammals containing the cohorts or superorders

Afrotheria and Xenarthra.

In step two, we further analyze the differences between the species in each group.

Once we have done that, we see that each group can be categorized into two sets. Group

one set consist of the Euarchontoglires and Laurasiatheria species, while group two has the

Afrotheria and Xenarthra species.

Group I-1 Euarchontoglires is a clade and a superorder of mammals, the living members of

which belong to one of the five following groups: rodents, lagomorphs, treeshrews,

colugos and primates.

Group I-2 Laurasiatheria is a superorder of placental mammals that includes shrews, pangolins,

bats, whales, carnivorans, odd-toed and even-toed ungulates, among others
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Group II-1 Afrotheria is a clade of mammals, the living members of which belong to groups

that are either currently living in Africa or of African origin: golden moles, elephant

shrews (also known as sengis), tenrecs, aardvarks, hyraxes, elephants, sea cows, and

several extinct clades

Group II-2 The superorder Xenarthra is a group of placental mammals, extant today only in the

Americas and represented by anteaters, tree sloths, and armadillos.

Lastly, in step three, we look at each set and separate the species based off there

differences, grouping those that are similar together. Resulting in several different clusters

of the species, as yo can see in the list displayed below showing the final results.

• Primates - Humans and monkeys

• Scandentia - Only tree shrews

• Rodentia - Rats, squirrels, guinea pigs, etc.

• Lagomorpha - Rabbits, hares, pikas, etc.

• Cetartiodactyla - Dolphins, cows, pigs, and alpacas

• Carnivora - Cats, lions, dogs, bears, etc.

• Perissodactyla - Horses, tapir, and rhinoceros

• Chiroptera - Bats

• Eulipotyphla - Senrecs, moles, shrews, and hedgehops.

• Proboscidea - Elephants and mastodons

• Hyracoidea - Hyraxes

• Aforsocoricida - Golden mole and tenrecs
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• Cingulata - Armadillos

• Pilosa - Anteaters and sloths

Figure 2.2: Another representation of a phylogenetic tree [10].

The second approach is the agglomerative approach. With this method we would just

have to find the similarities between each species, which will eventually give us one big

cluster of all the species together.
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2.2 K-MEANS CLUSTERING

Unlike the hierarchical clustering, the k-means clustering does not require the evaluation

of all possible differences. The k-means clustering, with the k representing the number

of clusters you want, starts with an initial set of means and classify cases based off their

distances to the centers. Once that is done, based off the cases that were assigned to the

cluster, the means must be computed again, followed by reclassifying each case based off

the new set of means. This step must be repeated continuously until the cluster means

does not change much between the successive steps. Lastly, the calculations of the cluster

means must be done one last time, and this will result in each case being assigned to its

own permanent cluster [1].

Now if we were to apply the k-means clustering method to the phylogenetic tree, then

we must first decide how many clusters we want. This will be represented by k, which are

the number of groups the data (species) will be placed in. Based off Figure 2.1, we known

that we want a total of 14 groups (clusters). So now that we have chosen the number of

cluster, we can now begin the first step of this process; the cluster assignment step. This

is when the algorithm goes through each of the data points (species), and depending on

which cluster is closer to that species, then it will be assigned to them. Grouping several

of the species together. The next step to this method would be the “move centroid” step.

This is when the algorithm calculates the average of all the points in the cluster and moves

the centroid to that average location. In theory we will be repeating this process until a

stopping condition is met, such as there being no change in the clusters.

2.3 TWO-STEP CLUSTER ANALYSIS

Just as the name says, the two-step cluster analysis consists of two steps to analyze the data

that is given.
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The first step would be to have a formation of preclusters. The preclustering is done

to reduce the size of the matrix that contains the distance between all the possible pairs

of cases. The preclusters were clusters of the original cases used in place of the raw data

in the hierarchical clustering. Once a case is read, the algorithm would decide, based off

the distance measure, whether the current case should be merged with a previously formed

precluster or start a new precluster. Once that is computed, all cases in the same precluster

is treated as a single entity. This completes step one.

Now in step two, we use the standard hierarchical clustering algorithm on the preclus-

ters. This will allow a range of solutions with different numbers of clusters, resulting in the

completion of the two-step method [1].

Now, applying these steps to the phylogentic tree we have a similar outcome to what

was just explained. We would conduct our first step which is to reduce the size of the matrix

containing the distance between the possible pairs of species. This will allow a reading of

each case, where based off the distance between each species it is possible that they will be

merged together or possibly start a new precluster. Completing the first step.

Now with step two, we will apply the hierarchical clustering algorithm, where we will

have a range of species with a different amount of clusters. This completes the two-step

cluster on the phylogentic tree.

Sometimes this method does not seem as helpful as the other two. How well it per-

forms largely depends on step 1 and its findings. This is because of the larger the distance

measure, the fewer the preclusters you will have. But two few preclusters may result in

species being grouped with other species that share nothing in common. And the smaller

the distance measure, the more preclusters. However, having too many preclusters defeats

the purpose of this first step.
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CHAPTER 3

GRAPH CLUSTERING AND VERTEX SIMILARITIES

When thinking about clustering analysis in graphs, you must first think about a graph and

what it may consist of. A graph is the structure formed by a set of vertices and a set

of edges that are connections between the pairs of vertices. The graph clustering are the

groupings of those vertices into clusters while taking the edges into consideration. In graph

clustering, its main goal is to divide the given vertices into clusters so that each element

that is assigned to a particular cluster is similar or connected in someway to other vertices.

3.1 SOME GRAPH THEORETICAL CONCEPTS RELATED TO CLUSTERING ANALYSIS

Graph Theory is known to be the study of graphs, that are mathematical structures used to

model pairwise relations between objects. In this context, a graph is made up of vertices

(nodes or points) which are connected through edges (arcs or lines) (Figure 3.1). Most of

the time a graph is to be considered undirected, where there is no distinction between two

vertices associated with each edge. Sometimes its edges may also be directed from one

vertex to another.

Figure 3.1: A Graph [13].
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In the theory of graphs there are many examples of representations of clusters, in terms

of different types of graphs, such as a subgraph or a multi-partite graph. A subgraph, is a

graph G′ which graph edges and vertices form a subset of the graph vertices and edges

of a given graph G while the multi-partite graph is the complete k-partite graph for some

k. The k-partite graph is a graph whose vertices are or can be partitioned into k different

independent sets.

Similarly, there are also representations through matrices. The most well known is

probably the Adjacency matrix, which displays a square matrix used to represent a finite

graph. In such a matrix every entry is 0 or 1 depending on whether there exists an edge

between the corresponding vertices.

Definition 3.1 (Finite Graph). A graph with a finite number of nodes and edges. If it has

nodes and no multiple edges of graph loops, it is a subgraph of the complete graph.

Definition 3.2 (Adjacency Matrix). Given a graph on n vertices, the adjacency matrix of

this graph is an n × n 0-1 matrix such that the entry in the ith row and jth column is 1 if

and only if there is an edge from the ith vertex to the jth vertex.

To say a little about the history of graph clustering, we first note the introduction of

random graphs.

In 1959 E.N. Gilbert [9] presented a process to generate uniform random graphs with

n vertices. This allowed each of the
(
n
2

)
possible edges to be included in the graph with

a probability p, while considering each pair of vertices independently. In such uniform

random graphs, the vertex degrees follow Poisson distribution. In addition, the presence of

dense clusters are unlikely as the edges are distributed (by construction) uniformly, there-

fore no dense clusters can be expected.

An abstraction of Gilbert’s model used to produce clusters, is the planted l-partition

model [4]. The model is a graph that is generated with n = l · k vertices which are
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partitioned into groups of l with k vertices. To construct the edge set, two probability

parameters p and q < p are used. Each pair of vertices included in the same group share

an edge with a higher probability p, whereas each pair of vertices in different groups share

an edge with lower probability r. This is more or less the opposite of a multi-partite graph.

The main goal of the planted partition model is to find a planted partition into l clusters of

k vertices each, instead of optimizing some measure on the partition [11].

3.2 GRAPH STRUCTURES

Giving more of a visual, in Figure 3.2, we have an example of an adjacency matrix of a

graph. On the left side the matrix is displaying n vertices and m edges. The 2m black

dots are the ones of the matrix and the white areas are the zero entries. The left side also

shows that the vertices are being ordered randomly causing the adjacency matrix to have

no obvious structure, making it not suitable for interpreting the presence, number or quality

of clusters inherent in the graph [12]. However, the situation changes after running a graph

clustering algorithm and re-ordering the vertices according to their respective clusters. In

this case we will obtain a diagonalized model of the adjacency matrix, as shown on the

right side in Figure 3.2. This allows the structure of the adjacency matrix to visibly display

seventeen dense clusters of different orders and some scattered connections between the

clusters [11].

Figure 3.2: An adjacency matrix [11].
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In Figure 3.3 we are shown two graphs that are of the same order and size but they

are not the same graph and are identified differently. The graph on the left is a uniform

random graph, where the vertices, edges and connections between them are selected in a

random way, displaying a scattered graph. The graph on the right is the relaxed caveman

graph. This structure is formed by linking together a ring of small complete graphs “caves”

by moving one of the edges in each cave to point to another cave, which displays a clear

cluster structure.

Figure 3.3: An uniform random graph and a relaxed caveman graph [6, 7, 15]

Definition 3.3 (Caveman Graph (on the right of Figure 3.3)). A graph stemming from the

social network theory that is formed by arranging a set of isolated k-cliques (“caves”) by

removing one edge from each clique and using it to connect to a neighboring clique along

a central cycle such that all n cliques form a single unbroken loop [16].

3.3 VERTEX SIMILARITY AND DISTANCE MEASURE

Performing a clustering analysis on a data file essentially depends on finding the vertex

similarity. With the vertex similarities, if the vertices were being represented by documents,

we would be able to compute a content-based similarity values for each of the pairs of
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documents, using the similarity matrix as the basis for the clustering. This is an attempt to

group the vertices together that are well connected and similar to each other. Therefore, the

higher the similarity, the need to cluster the vertices together becomes stronger.

If a similarity measure has been defined for vertices, then the cluster should contain

vertices with close-by values and exclude those with the values differing significantly from

the values of the included vertices.

Based off the task that is given, the appropriate similarity measure or distance function

is chosen. From the data that is given, the distance measure should be a metric distance

satisfying the following:

1. The distance from a data points to itself is zero:

dist(di, di) = 0

2. The distance are symmetrical:

dist(di, dj) = dist(dj, di)

3. The triangular inequality holds:

dist(di, dj) ≤ dist(di, dk) + dist(dk, dj)

3.3.1 MEASURES BASED ON THE EUCLIDEAN DISTANCES

For points within an n-dimensional Euclidean space, common distance measure for two

data points

di = (di,1, di,2, ..., di,n)

and

dj = (dj,1, dj,2, ..., dj,n)

include:
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• the Euclidean distance:

dist(di, dj) =

√√√√ n∑
k=1

|di,k − dj,k|2

which is the L2 norm, also denoted as ||di,k − dj,k||2.

Example 3.4. Let di = (2, 4, 7, 3) and dj = (5, 1, 6, 8).

Calculate the L2 norm based off the given data points.

|2− 5|2 = | − 3|2 = 9

|4− 1|2 = |3|2 = 9

|7− 6|2 = |1|2 = 1

|3− 8|2 = | − 5|2 = 25

√
9 + 9 + 1 + 25 =

√
44 = 2

√
11

Based off the calculations, the L2 norm (Euclidean Distance) is 2
√
11.

• the Manhattan distance:

dist(di, dj) =
n∑

k=1

|di,k − dj,k|

which is the L1 norm, also denoted as

||di,k − dj,k||1.

Example 3.5. Let di = (2, 4, 7, 3) and dj = (5, 1, 6, 8).

Calculate the L1 norm based off the given data points.

|2− 5| = | − 3| = 3
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|4− 1| = |3| = 3

|7− 6| = |1| = 1

|3− 8| = | − 5| = 5

3 + 3 + 1 + 5 = 12

Based off the calculations, the L1 norm (Manhattan Distance) is 12.

• and the L∞ norm

dist(di, dj) = max
k∈[1,n]

|di,k − dj,k|,

also denoted as ||di,k − dj,k||∞.

Example 3.6. Let di = (2, 4, 7, 3) and dj = (5, 1, 6, 8).

Calculate the L∞ norm based off the given data points.

|2− 5| = | − 3| = 3

|4− 1| = |3| = 3

|7− 6| = |1| = 1

|3− 8| = | − 5| = 5

max{3, 3, 1, 5} = 5

Based off the calculations, the L∞ norm is 5.

3.3.2 MEASURES BASED ON SET DISTANCE

Very often the data points are not necessarily represented by single values or even vectors,

but rather a collection of objects or values. One way to define the distance between two

data points (two sets) A and B is:

d(A,B) =
|A4B|
|A ∪B|
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The purpose of this formula is to compare members from the two sets to see which members

are shared and which are distinct. The formula is broken down into two parts, the numerator

displaying the cardinality of |A4B| and the denominator displaying the cardinality of |A∪

B|.

Definition 3.7 (Cardinality). The number of elements in a set or other grouping, as a prop-

erty of that grouping.

A4 B or is defined as (A−B) ∪ (B−A) and it is the symmetric difference between

sets A and B. This is the set of elements which are in either of the sets and not their

intersection. As shown in (Figure 3.4), the shaded parts in the Venn diagram represents A

4 B. Within those shaded regions, the number of elements will represent the cardinality

of |A4B|.

Figure 3.4: Symmetric Difference of two sets [14].

Example 3.8. Let A = {a, b, f, g, t, e, w} and B = {a, c, e, y, u}

Determine the Symmetric Difference and its cardinality based off sets A and B.

A4B = {b, f, g, t, w, e, y}

|A4B| = 7

A ∪B is the union of the two setsA andB. This is the set of elements which are inA,

in B, or in both A and B. As shown in (Figure 3.5), the shaded parts in the Venn diagram
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represents A ∪ B. Based off the shaded regions, the number of elements will represent the

cardinality of |A ∪ B|.

Figure 3.5: Union of two sets [9].

Example 3.9. Let A = {a, b, f, g, t, e, w} and B = {a, c, e, y, u}

Determine the Union and its cardinality based off sets A and B.

A ∪ B = {a, b, c, e, f, g, t, y, w, u}

|A ∪ B| = 10

Hence with A = {a, b, f, g, t, e, w} and B = {a, c, e, y, u} we have

d(A,B) =
|A4B|
|A ∪B|

=
7

10
.

Also note that this distance is never going to exceed 1 as it measures the percentage

of elements in A ∪ B that are only in one of the two sets. Letting C = {a, f, g, t, e, u, w},

we then have

d(A,C) =
|A4C|
|A ∪ C|

=
2

9
.

From these simple computations we see that C is much “closer” to A than B is. This

is indeed consistent with what one would have observed from their definitions.
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CHAPTER 4

VERTEX SIMILARITY BASED ON THE DISTANCE METRICS AND SET

DISTANCE

From what we have discussed so far, before using any established clustering algorithms it

is necessary to define a distance measure between data points. In a graph, each data point

is a vertex and the information for each data point comes from the structure of the graph.

In this chapter we present several direct applications of distance metrics and set dis-

tance to measure vertex similarities.

4.1 USING DISTANCE MEASURES

In order to use aforementioned distance measures on vertices of a graph it is necessary to

represent each vertex with a vector. The simplest way to achieve this goal is to represent

the neighborhood N(v) of a vertex v in terms of a 0-1 vector as follows.

For each v ∈ V (G), let ~Sv = (δ1, δ2, ..., δn) where n = |V (G)| and

δi =


1 if vi ∈ N(v)

0 if vi 6∈ N(v)

is the characteristic function.

Example 4.1. Consider the graph G in Figure 4.1.

|V (G)| = n = 4

There are a total of 4 vertices and 5 edges displayed on the graph above. Now based on

the graph, the neighborhood of each vertex is listed as

N(v1) = {v2, v4}

as vertex v1 has an edge that connects with v2 and v4.

N(v2) = {v1, v3, v4}
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v1

v2

v3

v4

Figure 4.1: An example.

as vertex v2 has an edge that connects with v1, v3, and v4.

N(v3) = {v2, v4}

as vertex v3 has an edge that connects with v2 and v4.

N(v4) = {v1, v2, v3}

as vertex v4 has an edge that connects with v1, v2, and v3.

We now have

~Sv1 = (0, 1, 0, 1)

~Sv2 = (1, 0, 1, 1)

~Sv3 = (0, 1, 0, 1)

~Sv4 = (1, 1, 1, 0)
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Note that these are exactly the rows of the adjacency matrix of G:

0 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0


We now apply each of the metric distance based norms from the previous chapter to

Svi’s.

• L2 Norm (Euclidean Distance)

Recall that

dist(di, dj) =

√√√√ n∑
k=1

|di,k − dj,k|2,

then

dist(Sv1 , Sv2) =
√
|0− 1|2 + |1− 0|2 + |0− 1|2 + |1− 12|

=
√
| − 1|2 + |1|2 + | − 1|2 + |0|2

=
√
1 + 1 + 1 + 0

=
√
3

dist(Sv1 , Sv3) =
√
|0− 0|2 + |1− 1|2 + |0− 0|2 + |1− 12|

=
√
|0|2 + |0|2 + |0|2 + |0|2

=
√
0 + 0 + 0 + 0

=
√
0

= 0
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dist(Sv1 , Sv4) =
√
|0− 1|2 + |1− 1|2 + |0− 1|2 + |1− 02|

=
√
| − 1|2 + |0|2 + | − 1|2 + |1|2

=
√
1 + 0 + 1 + 1

=
√
3

dist(Sv2 , Sv3) =
√
|1− 0|2 + |0− 1|2 + |1− 0|2 + |1− 12|

=
√
|1|2 + | − 1|2 + |1|2 + |0|2

=
√
1 + 1 + 1 + 0

=
√
3

dist(Sv2 , Sv4) =
√
|1− 1|2 + |0− 1|2 + |1− 1|2 + |1− 02|

=
√
|0|2 + | − 1|2 + |0|2 + |1|2

=
√
0 + 1 + 0 + 1

=
√
2

dist(Sv3 , Sv4) =
√
|0− 1|2 + |1− 1|2 + |0− 1|2 + |1− 02|

=
√
| − 1|2 + |0|2 + | − 1|2 + |1|2

=
√
1 + 0 + 1 + 1

=
√
3
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Notice that Sv1 and Sv3 are exactly the same because of the identical neighborhood

of the corresponding vertices. Consequently the distance between these two will be

zero.

• L1 Norm (Manhattan Distance)

Recall that

dist(di, dj) =
n∑

k=1

|di,k − dj,k|,

then

dist(Sv1 , Sv2) = |0− 1|2 + |1− 0|2 + |0− 1|2 + |1− 12|

= | − 1|2 + |1|2 + | − 1|2 + |0|2

= 1 + 1 + 1 + 0

= 3

dist(Sv1 , Sv3) = |0− 0|2 + |1− 1|2 + |0− 0|2 + |1− 12|

= |0|2 + |0|2 + |0|2 + |0|2

= 0 + 0 + 0 + 0

= 0

dist(Sv1 , Sv4) = |0− 1|2 + |1− 1|2 + |0− 1|2 + |1− 02|

= | − 1|2 + |0|2 + | − 1|2 + |1|2

= 1 + 0 + 1 + 1

= 3
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dist(Sv2 , Sv3) = |1− 0|2 + |0− 1|2 + |1− 0|2 + |1− 12|

= |1|2 + | − 1|2 + |1|2 + |0|2

= 1 + 1 + 1 + 0

= 3

dist(Sv2 , Sv4) = |1− 1|2 + |0− 1|2 + |1− 1|2 + |1− 02|

= |0|2 + | − 1|2 + |0|2 + |1|2

= 0 + 1 + 0 + 1

= 2

dist(Sv3 , Sv4) = |0− 1|2 + |1− 1|2 + |0− 1|2 + |1− 02|

= | − 1|2 + |0|2 + | − 1|2 + |1|2

= 1 + 0 + 1 + 1

= 3

• L∞ Norm (Chebyshev Distance)

Recall that

dist(di, dj) = max
k∈[1,n]

|di,k − dj,k|,

then

maxk∈[4] |Sv1 − Sv2| maxk∈[4] |Sv1 − Sv3|

|0− 1| = 1 |0− 0| = 0

|1− 0| = 1 |1− 1| = 0
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|0− 1| = 1 |0− 0| = 0

|1− 1| = 0 |1− 1| = 0

maxk∈[4]{1, 1, 1, 0} = 1 maxk∈[4]{0, 0, 0, 0} = 0

maxk∈[4] |Sv1 − Sv4| maxk∈[4] |Sv2 − Sv3|

|0− 1| = 1 |1− 0| = 1

|1− 1| = 0 |0− 1| = 1

|0− 1| = 1 |1− 0| = 1

|1− 0| = 1 |1− 1| = 0

maxk∈[4]{1, 0, 1, 1} = 1 maxk∈[4]{1, 1, 1, 0} = 1

maxk∈[4] |Sv2 − Sv4| maxk∈[4] |Sv3 − Sv4|

|1− 1| = 0 |0− 1| = 1

|0− 1| = 1 |1− 1| = 0

|1− 1| = 0 |0− 1| = 1

|1− 0| = 1 |1− 0| = 1

maxk∈[4]{0, 1, 0, 1} = 1 maxk∈[4]{1, 0, 1, 1} = 1

4.2 USING SET DISTANCE

Similarly, in order to use set distance to measure vertex similarity we need to represent

each vertex with a set. The natural approach is to use a vertex’s neighborhood N(v) for

each v ∈ V (G).
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Example 4.2. Again using the graph G from Figure 4.1, we have:

N(v1) = {v2, v4}

N(v2) = {v1, v3, v4}

N(v3) = {v2, v4}

N(v4) = {v1, v2, v3}

Recall that

d(A,B) =
|A4B|
|A ∪B|

,

applying this formula to N(vi)’s yields the following.

d(N(v1), N(v2)) =
|N(v1)4N(v2)|
|N(v1) ∪N(v2)|

=
|{v1, v2, v3}|
|{v1, v2, v3, v4}|

=
3

4

d(N(v1), N(v3)) =
|N(v1)4N(v3)|
|N(v1) ∪N(v3)|

=
|∅|
|v2, v4|

=
0

2

= 0

d(N(v1), N(v4)) =
|N(v1)4N(v4)|
|N(v1) ∪N(v4)|

=
|{v1, v3, v4}|
|{v1, v2, v3, v4}|

=
3

4
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d(N(v2), N(v3)) =
|N(v2)4N(v3)|
|N(v2) ∪N(v3)|

=
|{v1, v2, v3}|
|{v1, v2, v3, v4}|

=
3

4

d(N(v2), N(v4)) =
|N(v2)4N(v4)|
|N(v2) ∪N(v4)|

=
|{v2, v4}|

|{v1, v2, v3, v4}|

=
2

4

=
1

2

d(N(v3), N(v4)) =
|N(v3)4N(v4)|
|N(v3) ∪N(v4)|

=
|{v1, v3, v4}|
|{v1, v2, v3, v4}|

=
3

4

Example 4.3. It is also interesting to apply set difference to the S(vi)
′s as sets instead of

vectors.

d(Sv1 , Sv2) =
|Sv14Sv2|
|Sv1 ∪ Sv2|

d(Sv1 , Sv3) =
|Sv14Sv3|
|Sv1 ∪ Sv3|

=
3

5
=

0

4

= 0

d(Sv1 , Sv4) =
|Sv14Sv4|
|Sv1 ∪ Sv4|

d(Sv2 , Sv3) =
|Sv24Sv3|
|Sv2 ∪ Sv3|

=
3

5
=

3

5
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d(Sv2 , Sv4) =
|Sv24Sv4|
|Sv2 ∪ Sv4|

d(Sv3 , Sv4) =
|Sv34Sv4|
|Sv3 ∪ Sv4|

=
2

6
=

3

5

=
1

3

4.3 COMPARISON OF DIFFERENT MEASURES

Before ending this chapter, we compare the resulted vertex similarities obtained using dif-

ferent measures. Table 4.1 displays the results of each Distance Metrics and Set Distance.

Table 4.1: Comparison of vertex similarities under different measures.

L2 L1 L∞ Set Diff.

d(v1, v2)
√
3 3 1 3

4

d(v1, v3) 0 0 0 0

d(v1, v4)
√
3 3 1 3

4

d(v2, v3)
√
3 3 1 3

4

d(v2, v4)
√
2 2 1 1

2

d(v3, v4)
√
3 3 1 3

4

As expected, for vertices v1 and v3 with identical neighborhood. The “distance” be-

tween them is always zero regardless of the measures that are employed. Between the other

vertices, v2 and v4, although different from each other, shows more similarity (i.e. less dif-

ference) than other pairs of vertices. Regardless of the euclidean distance or set distance

measures that were used our results appear to be consistent.
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CHAPTER 5

NOVEL VERTEX SIMILARITY MEASURES WITH EXAMPLES

As one can see from the previous chapter, a particular distance measure or representation of

vertex information is very often not sufficient to distinguish the difference between different

pairs of vertices. For instance, in Table 4.1, several different pair of vertices share the same

value when using the few basic distance measures.

It is then natural to include more information when representing vertices from a graph

and develop slightly more sensitive distance measures. In this chapter we will introduce

two representations of vertices that accommodate not only the neighborhoods, but the col-

lections of vertices at distance i for any i.

For each of the proposed model we show, in detail, how to evaluate the differences.

We also apply them to an exemplary graph (Figure 5.1) and compare the results.

v1 v2

v3v4

v6

v5

Figure 5.1: Another example.
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5.1 VECTOR REPRESENTATION AND DISTANCE MEASURES

First let

Ni(v) = {u ∈ V (G)|dG(u, v) = i}.

This is the set of vertices that are at distance i from v. That is, the i is the number of edges

it takes to connected v to any vetex in that set.

Then

δi(v) = |Ni(v)|

is simply the number of vertices at distance i from v, for each vertex v of the graph G.

We now define

~Rv = {(δ1(v), δ2(v), δ3(v), ..., δk(v))} where k = diam(G),

the vector representation of a vertex v based on the number of vertices at various distances

from v. In other words, it is a vector keeping track of how many times a distance occur

from a particular vertex. Since the maximum such distance in G is called the diameter

diam(G) = k, we only need to consider the values of i up to k.

First we list the distances between each pair of vertices:

dG(v1, v2) = 1 dG(v1, v3) = 2

dG(v1, v4) = 1 dG(v1, v5) = 1

dG(v1, v6) = 2 dG(v2, v3) = 1

dG(v2, v4) = 1 dG(v2, v5) = 2

dG(v2, v6) = 2 dG(v3, v4) = 1

dG(v3, v5) = 3 dG(v3, v6) = 1

dG(v4, v5) = 2 dG(v4, v6) = 1

dG(v5, v6) = 3
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Now we obtain Ns(vi) for any 1 ≤ s ≤ 3 and 1 ≤ i ≤ 6 in Figure 5.1.

Distance of 1 Distance of 2 Distance of 3

N1(v1) = {v2, v4, v5} N2(v1) = {v3, v6} N3(v1) = ∅

N1(v2) = {v1, v3, v4} N2(v2) = {v5, v6} N3(v2) = ∅

N1(v3) = {v2, v4, v6} N2(v3) = {v1} N3(v3) = {v5}

N1(v4) = {v1, v2, v3, v6} N2(v4) = {v5} N3(v4) = ∅

N1(v5) = {v1} N2(v5) = {v2, v4} N3(v5) = {v3, v6}

N1(v6) = {v3, v4} N2(v6) = {v1, v2} N3(v6) = {v5}

By taking the cardinalities of the above sets we now have the values of δs(vi):

δ1(v1) = 3 δ2(v1) = 2 δ3(v1) = 0

δ1(v2) = 3 δ2(v2) = 2 δ3(v2) = 0

δ1(v3) = 3 δ2(v3) = 1 δ3(v3) = 1

δ1(v4) = 4 δ2(v4) = 1 δ3(v4) = 0

δ1(v5) = 1 δ2(v5) = 2 δ3(v5) = 2

δ1(v6) = 2 δ2(v6) = 2 δ3(v6) = 1

Now, applying our model to Figure 5.1, we have:

• ~Rv1 = (3,2,0) from

N1(v1) = {v2, v4, v5} → δ1(v1) = 3

N2(v1) = {v3, v6} → δ2(v1) = 2

N3(v1) = ∅ → δ3(v1) = 0
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• ~Rv2 = (3,2,0) from

N1(v2) = {v1, v3, v4} → δ1(v2) = 3

N2(v2) = {v5, v6} → δ2(v2) = 2

N3(v2) = ∅ → δ3(v2) = 0

• ~Rv3 = (3,1,1) from

N1(v3) = {v2, v4, v6} → δ1(v3) = 3

N2(v3) = {v1} → δ2(v3) = 1

N3(v3) = {v5} → δ3(v3) = 1

~Rv4 = (4,1,0) from

N1(v4) = {v1, v2, v3, v6} → δ1(v4) = 4

N2(v4) = {v5} → δ2(v4) = 1

N3(v4) = ∅ → δ3(v4) = 0

• ~Rv5 = (1,2,2) from

N1(v5) = {v1} → δ1(v5) = 1

N2(v5) = {v2, v4} → δ2(v5) = 2

N3(v5) = {v3, v6} → δ3(v5) = 2

• ~Rv6 = (2,2,1) from

N1(v6) = {v3, v4} → δ1(v6) = 2

N2(v6) = {v1, v2} → δ2(v6) = 2

N3(v6) = {v5} → δ3(v6) = 1
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It may be interesting to note that, the sum of the values in each vector is exactly the

total number of other vertices in the graph (i.e. |V (G)| − 1). In the figure above there are a

total of six vertices, and

~Rv1 = (3,2,0)→ 3 + 2 + 0 = 5

~Rv1 = (3,2,0)→ 3 + 2 + 0 = 5

~Rv3 = (3,1,1)→ 3 + 1 + 1 = 5

~Rv4 = (4,1,0)→ 4 + 1 + 0 = 5

~Rv5 = (1,2,2)→ 1 + 2 + 2 = 5

~Rv6 = (2,2,1)→ 2 + 2 + 1 = 5

Now we have:

~Rv1 = (3, 2, 0)

~Rv1 = (3, 2, 0)

~Rv3 = (3, 1, 1)

~Rv4 = (4, 1, 0)

~Rv5 = (1, 2, 2)

~Rv6 = (2, 2, 1)

Applying L2 norm to each pair of vectors, we have

d(~Rvi ,
~Rvj) =

√√√√ k∑
s=1

(δs(vi)− δs(vj))2.
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Then

d(~Rv1 , ~Rv2) =
√
(3− 3)2 + (2− 2)2 + (0− 0)2 =

√
0 = 0

d(~Rv1 , ~Rv3) =
√
(3− 3)2 + (2− 1)2 + (0− 1)2 =

√
1 + 1 =

√
2

d(~Rv1 , ~Rv4) =
√
(3− 4)2 + (2− 1)2 + (0− 0)2 =

√
1 + 1 =

√
2

d(~Rv1 , ~Rv5) =
√
(3− 1)2 + (2− 2)2 + (0− 2)2 =

√
4 + 4 = 2

√
2

d(~Rv1 , ~Rv6) =
√
(3− 2)2 + (2− 2)2 + (0− 1)2 =

√
1 + 1 =

√
2

d(~Rv2 , ~Rv3) =
√
(3− 3)2 + (2− 1)2 + (0− 1)2 =

√
1 + 1 =

√
2

d(~Rv2 , ~Rv4) =
√
(3− 4)2 + (2− 1)2 + (0− 0)2 =

√
1 + 1 =

√
2

d(~Rv2 , ~Rv5) =
√
(3− 1)2 + (2− 2)2 + (0− 2)2 =

√
4 + 4 = 2

√
2

d(~Rv2 , ~Rv6) =
√
(3− 2)2 + (2− 2)2 + (0− 1)2 =

√
1 + 1 =

√
2

d(~Rv3 , ~Rv4) =
√
(3− 4)2 + (1− 1)2 + (1− 0)2 =

√
1 + 1 =

√
2

d(~Rv3 , ~Rv5) =
√
(3− 1)2 + (1− 2)2 + (1− 2)2 =

√
4 + 1 + 1 =

√
6

d(~Rv3 , ~Rv6) =
√
(3− 2)2 + (1− 2)2 + (1− 1)2 =

√
1 + 1 =

√
2

d(~Rv4 , ~Rv5) =
√
(4− 1)2 + (1− 2)2 + (0− 2)2 =

√
9 + 1 + 4 =

√
14

d(~Rv4 , ~Rv6) =
√
(4− 2)2 + (1− 2)2 + (0− 1)2 =

√
4 + 1 + 1 =

√
6

d(~Rv5 , ~Rv6) =
√
(1− 2)2 + (2− 2)2 + (2− 1)2 =

√
1 + 1 =

√
2

Similarly, applying L1 Norm and L∞ Norm yield

d(~Rvi ,
~Rvj) =

k∑
s=1

|δs(vi)− δs(vj)|
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and

d(~Rvi ,
~Rvj) = max

s∈[k]
|δs(vi)− δs(vj)|,

respectively. We skip the details but summarize our findings in Table 5.1. One can easily

see a larger variety of different distances between different pairs of vertices than in the

previous chapter.

Table 5.1: Distance Metrics between each ~Rvi’s.

L2 Norm L1 Norm L∞ Norm

d(~Rv1 , ~Rv2) 0 0 0

d(~Rv1 , ~Rv3)
√
2 2 1

d(~Rv1 , ~Rv4)
√
2 2 1

d(~Rv1 , ~Rv5) 2
√
2 4 2

d(~Rv1 , ~Rv6)
√
2 2 1

d(~Rv2 , ~Rv3)
√
2 2 1

d(~Rv2 , ~Rv4)
√
2 2 1

d(~Rv2 , ~Rv5) 2
√
2 4 2

d(~Rv2 , ~Rv6)
√
2 2 1

d(~Rv3 , ~Rv4)
√
2 2 1

d(~Rv3 , ~Rv5)
√
6 4 2

d(~Rv3 , ~Rv6)
√
2 2 1

d(~Rv4 , ~Rv5)
√
14 6 3

d(~Rv4 , ~Rv6)
√
6 4 2

d(~Rv5 , ~Rv6)
√
2 2 1
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5.2 VECTOR REPRESENTATION AND SET DISTANCE

This time for each vertex v we define

~Wv = (N1(v), N2(v), ..., Nk(v)).

That is, instead of just tracking the number of vertices at various distances from v we record

the set of these vertices. Again from Figure 5.1 we have

N1(v1) = {v2, v4, v5} N2(v1) = {v3, v6} N3(v1) = ∅

N1(v2) = {v1, v3, v4} N2(v2) = {v5, v6} N3(v2) = ∅

N1(v3) = {v2, v4, v6} N2(v3) = {v1} N3(v3) = {v5}

N1(v4) = {v1, v2, v3, v6} N2(v4) = {v5} N3(v4) = ∅

N1(v5) = {v1} N2(v5) = {v2, v4} N3(v5) = {v3, v6}

N1(v6) = {v3, v4} N2(v6) = {v1, v2} N3(v6) = {v5}

Hence

~Wv1 = ({v2, v4, v5}, {v3, v6}, ∅)

~Wv2 = ({v1, v3, v4}, {v5, v6}, ∅)

~Wv3 = ({v2, v4, v6}, {v1}, {v5})

~Wv4 = ({v1, v2, v3., v6}, {v5}, ∅)

~Wv5 = ({v1}, {v2, v4}, {v3, v6})

~Wv6 = ({v3, v4}, {v1, v2}, {v5})

Recall now the difference formula for a pair of sets A and B:

d(A,B) =
|A4B|
|A ∪B|

,

we have
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Table 5.2: Set Distance between each Wvi’s.

i = 1 i = 2 i = 3

d( ~Wv1 , ~Wv2)
4
5

2
3

0

d( ~Wv1 , ~Wv3)
1
2

1 1

d( ~Wv1 , ~Wv4)
5
6

1 0

d( ~Wv1 , ~Wv5) 1 1 1

d( ~Wv1 , ~Wv6)
3
4

1 1

d( ~Wv2 , ~Wv3)
4
5

1 1

d( ~Wv2 , ~Wv4)
3
5

1
2

0

d( ~Wv2 , ~Wv5)
2
3

1 1

d( ~Wv2 , ~Wv6)
1
3

1 1

d( ~Wv3 , ~Wv4)
3
5

1 1

d( ~Wv3 , ~Wv5) 1 1 1

d( ~Wv3 , ~Wv6)
3
4

1
2

0

d( ~Wv4 , ~Wv5)
3
4

1 1

d( ~Wv4 , ~Wv6)
4
5

1 1

d( ~Wv5 , ~Wv6) 1 2
3

1
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By applying L2 Norm to the numerical valued vectors as a result of taking correspond-

ing set distance, we have

d( ~Wvi ,
~Wvj) =

√√√√ k∑
s=1

[d(Ns(vi), Ns(vj))]2.

Conducting this computation for all pairs of vertices, we have the following.

d( ~Wv1 , ~Wv2) =

√(
4

5

)2

+

(
2

3

)2

+ (0)2 d( ~Wv1 , ~Wv3) =

√(
1

2

)2

+ (1)2 + (1)2

=

√
244

225
=

√
9

4

=
2
√
61

15
=

3

2

≈ 1.04 ≈ 1.5

d( ~Wv1 , ~Wv4) =

√(
5

6

)2

+ (1)2 + (0)2 d( ~Wv1 , ~Wv5) =
√

(1)2 + (1)2 + (1)2

=

√
61

36
=
√
3

=

√
61

6
≈ 1.73

≈ 1.30

d( ~Wv1 , ~Wv6) =

√(
3

4

)2

+ (1)2 + (1)2 d( ~Wv2 , ~Wv3) =

√(
4

5

)2

+ (1)+(1)2

=

√
41

16
=

√
66

25

=

√
41

4
=

√
66

5

≈ 1.60 ≈ 1.62
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d( ~Wv2 , ~Wv4) =

√(
3

5

)2

+

(
1

2

)2

+ (0)2 d( ~Wv2 , ~Wv5) =

√(
2

3

)2

+ (1)2 + (1)2

=

√
61

100
=

√
22

9

=

√
61

10
=

√
22

3

≈ 0.78 ≈ 1.56

d( ~Wv2 , ~Wv6) =

√(
1

3

)2

+ (1)2 + (1)2 d( ~Wv3 , ~Wv4) =

√(
3

5

)2

+ (1)2 + (1)2

=

√
19

9
=

√
59

25

=

√
19

3
=

√
59

5

≈ 1.45 ≈ 1.54

d( ~Wv3 , ~Wv5) =
√

(1)2 + (1)2 + (1)2 d( ~Wv3 , ~Wv6) =

√(
3

4

)2

+

(
1

2

)2

+ (0)2

=
√
3 =

√
13

16

≈ 1.73 =

√
13

4

≈ 0.9

d( ~Wv4 , ~Wv5) =

√(
3

4

)2

+ (1)2 + (1)2 d( ~Wv4 , ~Wv6) =

√(
4

5

)2

+ (1)2 + (1)2

=

√
41

16
=

√
66

25

=

√
41

4
=

√
66

5

≈ 1.60 ≈ 1.62
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d( ~Wv5 , ~Wv6) =
√

(1)2 +
(
2
3

)2
+ (1)2

=
√

22
9

=
√
22
3

≈ 1.56

Similarly, for L1 Norm we have

d( ~Wvi ,
~Wvj) =

k∑
s=1

|d(Ns(vi), Ns(vj))|

and for L∞ Norm we have

d( ~Wvi ,
~Wvj) = max

s∈[k]
|d(Ns(vi), Ns(vj))|.

Again we skip the details but list our findings in Table 5.3. It appears that using set-

valued vectors to represent vertices yields even better results, as different pairs of vertices

almost always receive different distances.
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Table 5.3: Distance Metrics between each ~Wvi’s.

L2 Norm L1 Norm L∞ Norm

d( ~Wv1 , ~Wv2)
2
√
61

15
22
15

4
5

d( ~Wv1 , ~Wv3)
3
2

5
2

1

d( ~Wv1 , ~Wv4)
√
61
6

11
6

1

d( ~Wv1 , ~Wv5)
√
3 3 1

d( ~Wv1 , ~Wv6)
√
41
4

11
4

1

d( ~Wv2 , ~Wv3)
√
66
5

14
5

1

d( ~Wv2 , ~Wv4)
√
61
10

11
10

3
5

d( ~Wv2 , ~Wv5)
√
22
3

8
3

1

d( ~Wv2 , ~Wv6)
√
19
3

7
3

1

d( ~Wv3 , ~Wv4)
√
59
5

13
5

1

d( ~Wv3 , ~Wv5)
√
3 3 1

d( ~Wv3 , ~Wv6)
√
13
4

5
4

3
4

d( ~Wv4 , ~Wv5)
√
41
4

11
4

1

d( ~Wv4 , ~Wv5)
√
66
5

14
5

1

d( ~Wv5 , ~Wv6)
√
22
3

8
3

1
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CHAPTER 6

CONCLUDING REMARKS

In this thesis we first surveyed the concept of clustering and known clustering algorithms.

We used the phylogenetic tree and the clustering of species as an example. In this example

we analyzed the differences between the different clustering algorithms while applying

each algorithm to a phylogentic tree.

Next we moved onto exploring the important concepts and techniques in graph clus-

tering where one of the main topics is to distinguish vertices based on the information from

the graph structure. Based off the location of each vertex and those adjacent to one another,

we will place those in their own cluster. This process relies on the definition and application

of the vertex similarities and distance measurements.

For each pair of vertices, they are treated as data points that contain information from

the graph structure. With this in mind, we then measure the level of similarities between

each pair of vertices by using three of the main distance metrics and set differences.

The three main distance metrics are: The L2 Norm, L1 Norm, and L∞ Norm. We then

proceeded onto applying these methods to our two examples, where the results from each

method are compared and analyzed. In particular, preliminary study seems to suggest that

our proposed model performs well with set distance and the L2 norm.

As for future work we plan to use our proposed model on much larger networks or

graphs of practical interests.
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Appendix A

L1 NORM AND L∞ NORM FOR RVI

Recall the formula:

d(~Rvi ,
~Rvj) =

k∑
s=1

|δs(vi)− δs(vj)|.

Computation details:

(~Rv1 − ~Rv2) = |(3− 3)|+ |(2− 2)|+ |(0− 0)| = 0

(~Rv1 − ~Rv3) = |(3− 3)|+ |(2− 1)|+ |(0− 1)| = 1 + 1 = 2

(~Rv1 − ~Rv4) = |(3− 4)|+ |(2− 1)|+ |(0− 0)| = 1 + 1 = 2

(~Rv1 − ~Rv5) = |(3− 1)|+ |(2− 2)|+ |(0− 2)| = 2 + 2 = 4

(~Rv1 − ~Rv6) = |(3− 2)|+ |(2− 2)|+ (0− 1)| = 1 + 1 = 2

(~Rv2 − ~Rv3) = |(3− 3)|+ |(2− 1)|+ |(0− 1)| = 1 + 1 = 2

(~Rv2 − ~Rv4) = |(3− 4)|+ |(2− 1)|+ |(0− 0)| = 1 + 1 = 2

(~Rv2 − ~Rv5) = |(3− 1)|+ |(2− 2)|+ |(0− 2)| = 2 + 2 = 4

(~Rv2 − ~Rv6) = |(3− 2)|+ |(2− 2)|+ |(0− 1)| = 1 + 1 = 2

(~Rv3 − ~Rv4) = |(3− 4)|+ |(1− 1)|+ |(1− 0)| = 1 + 1 = 2

(~Rv3 − ~Rv5) = |(3− 1)|+ |(1− 2)|+ |(1− 2)| = 2 + 1 + 1 = 4

(~Rv3 − ~Rv6) = |(3− 2)|+ |(1− 2)|+ |(1− 1)| = 1 + 1 = 2

(~Rv4 − ~Rv5) = |(4− 1)|+ |(1− 2)|+ |(0− 2)| = 3 + 1 + 2 = 6

(~Rv4 − ~Rv6) = |(4− 2)|+ |(1− 2)|+ |(0− 1)| = 2 + 1 + 1 = 4

(~Rv5 − ~Rv6) = |(1− 2)|+ |(2− 2)|+ |(2− 1)| = 1 + 1 = 2

Similarly, recall:

d(~Rvi ,
~Rvj) = max

s∈[k]
|δs(vi)− δs(vj)|.
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Computation details:

(~Rv1 − ~Rv2) = maxs∈[1,6](0, 0, 0) = 0

(~Rv1 − ~Rv3) = maxs∈[1,6](0, 1, 1) = 1

(~Rv1 − ~Rv4) = maxs∈[1,6](1, 1, 0) = 1

(~Rv1 − ~Rv5) = maxs∈[1,6](2, 0, 2) = 2

(~Rv1 − ~Rv6) = maxs∈[1,6](1, 0, 1) = 1

(~Rv2 − ~Rv3) = maxs∈[1,6](0, 1, 1) = 1

(~Rv2 − ~Rv4) = maxs∈[1,6](1, 1, 0) = 1

(~Rv2 − ~Rv5) = maxs∈[1,6](2, 0, 2) = 2

(~Rv2 − ~Rv6) = maxs∈[1,6](1, 0, 1) = 1

(~Rv3 − ~Rv4) = maxs∈[1,6](1, 0, 1) = 1

(~Rv3 − ~Rv5) = maxs∈[1,6](2, 1, 1) = 2

(~Rv3 − ~Rv6) = maxs∈[1,6](1, 1, 0) = 1

(~Rv4 − ~Rv5) = maxs∈[1,6](3, 1, 2) = 3

(~Rv4 − ~Rv6) = maxs∈[1,6](2, 1, 1) = 2

(~Rv5 − ~Rv6) = maxs∈[1,6](1, 0, 1) = 1
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Appendix B

L1 NORM AND L∞ NORM FOR WVI

Recall the formula:

d( ~Wvi ,
~Wvj) =

k∑
s=1

|d(Ns(vi), Ns(vj))|

Computational details:

d( ~Wv1 , ~Wv2) =
4

5
+

2

3
+ 0 d( ~Wv1 , ~Wv3) =

1

2
+ 1 + 1

=
22

15
=

5

2

≈ 1.47 ≈ 2.5

d( ~Wv1 , ~Wv4) =
5

6
+ 1 + 0 d( ~Wv1 , ~Wv5) = 1 + 1 + 1

=
11

6
= 3

≈ 1.83

d( ~Wv1 , ~Wv6) =
3

4
+ 1 + 1 d( ~Wv2 , ~Wv3) =

4

5
+ 1 + 1

=
11

4
=

14

5

≈ 2.75 ≈ 2.8

d( ~Wv2 , ~Wv4) =
3

5
+

1

2
+ 0 d( ~Wv2 , ~Wv5) =

2

3
+ 1 + 1

=
11

10
=

8

3

≈ 1.1 ≈ 2.67
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d( ~Wv2 , ~Wv6) =
1

3
+ 1 + 1 d( ~Wv3 , ~Wv4) =

3

5
+ 1 + 1

=
7

3
=

13

5

≈ 2.33 ≈ 2.6

d( ~Wv3 , ~Wv5) = 1 + 1 + 1 d( ~Wv3 , ~Wv6) =
3

4
+

1

2
+ 0

= 3 =
5

4

≈ 1.25

d( ~Wv4 , ~Wv5) =
3

4
+ 1 + 1 d( ~Wv4 , ~Wv6) =

4

5
+ 1 + 1

=
11

4
=

14

5

≈ 2.75 ≈ 2.8

d( ~Wv5 , ~Wv6) = 1 +
2

3
+ 1

=
8

3

≈ 2.67
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Similarly, recall:

d( ~Wvi ,
~Wvj) = max

s∈[k]
|d(Ns(vi), Ns(vj))|

Computation details:

d( ~Wv1 , ~Wv2) = maxs∈[k] |d(Ni(v1), Ns(v2))| = max1∈[6](
4
5
, 2
3
, 0) = 4

5

d( ~Wv1 , ~Wv3) = maxs∈[k] |d(Ns(v1), Ns(v3))| = max1∈[6](
1
2
, 1, 1) = 1

d( ~Wv1 , ~Wv4) = maxs∈[k] |d(Ns(v1), Ns(v4))| = max1∈[6](
5
6
, 1, 0) = 1

d( ~Wv1 , ~Wv5) = maxs∈[k] |d(Ns(v1), Ns(v5))| = max1∈[6](1, 1, 1) = 1

d( ~Wv1 , ~Wv6) = maxs∈[k] |d(Ns(v1), Ns(v6))| = max1∈[6](
3
4
, 1, 1) = 1

d( ~Wv2 , ~Wv3) = maxs∈[k] |d(Ns(v2), Ns(v3))| = max1∈[6](
4
5
, 1, 1) = 1

d( ~Wv2 , ~Wv4) = maxs∈[k] |d(Ns(v2), Ns(v4))| = max1∈[6](
3
5
, 1
2
, 0) = 3

5

d( ~Wv2 , ~Wv5) = maxs∈[k] |d(Ns(v2), Ns(v5))| = max1∈[6](
2
3
, 1, 1) = 1

d( ~Wv2 , ~Wv6) = maxs∈[k] |d(Ns(v2), Ns(v6))| = max1∈[6](
1
3
, 1, 1) = 1

d( ~Wv3 , ~Wv4) = maxs∈[k] |d(Ns(v3), Ns(v4))| = max1∈[6](
3
5
, 1, 1) = 1

d( ~Wv3 , ~Wv5) = maxs∈[k] |d(Ns(v3), Ns(v5))| = max1∈[6](1, 1, 1) = 1

d( ~Wv3 , ~Wv6) = maxs∈[k] |d(Ns(v3), Ns(v6))| = max1∈[6](
3
4
, 1
2
, 0) = 3

4

d( ~Wv4 , ~Wv5) = maxs∈[k] |d(Ns(v4), Ns(v5))| = max1∈[6](
3
4
, 1, 1) = 1

d( ~Wv4 , ~Wv6) = maxs∈[k] |d(Ns(v4), Ns(v6))| = max1∈[6](
4
5
, 1, 1) = 1

d( ~Wv5 , ~Wv6) = maxs∈[k] |d(Ns(v5), Ns(v6))| = max1∈[6](1,
2
3
, 1) = 1
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Appendix C

VERIFICATION OF THE TRIANGLE INEQUALITY

We are interested in showing

d( ~Wvi ,
~Wvj) ≤ d( ~Wvi ,

~Wvk) + d( ~Wvk ,
~Wvj)

of our defined distance measure with the example used.

• d( ~Wv1 , ~Wv3) ≤ d( ~Wv1 , ~Wv2) + d( ~Wv2 , ~Wv3)(
1

2
, 1, 1

)
≤
(
4

5
,
2

3
, 0

)
+

(
4

5
, 1, 1

)
(
1

2
, 1, 1

)
≤
(
8

5
,
5

3
, 1

)
X

• d( ~Wv1 , ~Wv4) ≤ d( ~Wv1 , ~Wv3) + d( ~Wv3 , ~Wv4) or d( ~Wv1 , ~Wv4) ≤ d( ~Wv1 , ~Wv2) + d( ~Wv2 , ~Wv4)(
5

6
, 1, 0

)
≤
(
1

2
, 1, 1

)
+

(
3

5
, 1, 1

)
or

(
5

6
, 1, 0

)
≤
(
4

5
,
2

3
, 0

)
+

(
3

5
,
1

2
, 0

)
(
5

6
, 1, 0

)
≤
(
11

10
, 2, 2

)
X or

(
5

6
, 1, 0

)
≤
(
7

5
,
7

6
, 0

)
X

• d( ~Wv1 , ~Wv5) ≤ d( ~Wv1 , ~Wv2) + d( ~Wv2 , ~Wv5) or d( ~Wv1 , ~Wv5) ≤ d( ~Wv1 , ~Wv3) + d( ~Wv3 , ~Wv5)

(1, 1, 1) ≤
(
1

2
, 1, 1

)
+

(
3

5
, 1, 1

)
or (1, 1, 1) ≤

(
4

5
,
2

3
, 0

)
+

(
3

5
,
1

2
, 0

)
(1, 1, 1) ≤

(
11

10
, 2, 2

)
X or (1, 1, 1) ≤

(
7

5
,
7

6
, 0

)
X

d( ~Wv1 , ~Wv5) ≤ d( ~Wv1 , ~Wv4) + d( ~Wv4 , ~Wv5)

(1, 1, 1) ≤
(
5

6
, 1, 0

)
+

(
3

4
, 1, 1

)
(1, 1, 1) ≤

(
19

12
, 2, 1

)
X
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• d( ~Wv1 , ~Wv6) ≤ d( ~Wv1 , ~Wv2) + d( ~Wv2 , ~Wv6) or d( ~Wv1 , ~Wv6) ≤ d( ~Wv1 , ~Wv3) + d( ~Wv3 , ~Wv6)(
3

4
, 1, 1

)
≤
(
4

5
,
2

3
, 0

)
+

(
1

3
, 1, 1

)
or

(
3

4
, 1, 1

)
≤
(
1

2
, 1, 1

)
+

(
3

4
,
1

2
, 0

)
(
3

4
, 1, 1

)
≤
(
17

15
,
5

3
, 1

)
X or

(
3

4
, 1, 1

)
≤
(
5

4
,
3

2
, 1

)
X

d( ~Wv1 , ~Wv6) ≤ d( ~Wv1 , ~Wv4) + d( ~Wv4 , ~Wv6) or d( ~Wv1 , ~Wv6) ≤ d( ~Wv1 , ~Wv5) + d( ~Wv5 , ~Wv6)(
3

4
, 1, 1

)
≤
(
5

6
, 1, 0

)
+

(
4

5
, 1, 1

)
or

(
3

4
, 1, 1

)
≤ (1, 1, 1) +

(
1,

2

3
, 1

)
(
3

4
, 1, 1

)
≤
(
49

30
, 2, 1

)
X or

(
3

4
, 1, 1

)
≤
(
2,

5

3
, 2

)
X

• d( ~Wv2 , ~Wv4) ≤ d( ~Wv2 , ~Wv3) + d( ~Wv3 , ~Wv4)(
3

5
,
1

2
, 0

)
≤
(
4

5
, 1, 1

)
+

(
3

5
, 1, 1

)
(
3

5
,
1

2
, 0

)
≤
(
7

5
, 2, 2

)
X

• d( ~Wv2 , ~Wv5) ≤ d( ~Wv2 , ~Wv3) + d( ~Wv3 , ~Wv5) or d( ~Wv2 , ~Wv5) ≤ d( ~Wv2 , ~Wv4) + d( ~Wv4 , ~Wv5)(
2

3
, 1, 1

)
≤
(
4

5
, 1, 1

)
+ (1, 1, 1) or

(
2

3
, 1, 1

)
≤
(
3

5
,
1

2
, 0

)
+

(
3

4
, 1, 1

)
(
2

3
, 1, 1

)
≤
(
9

5
, 2, 2

)
X or

(
2

3
, 1, 1

)
≤
(
27

20
,
3

2
, 1

)
X

• d( ~Wv2 , ~Wv6) ≤ d( ~Wv2 , ~Wv3) + d( ~Wv3 , ~Wv6) or d( ~Wv2 , ~Wv6) ≤ d( ~Wv2 , ~Wv4) + d( ~Wv4 , ~Wv6)(
1

3
, 1, 1

)
≤
(
4

5
, 1, 1

)
+

(
3

4
,
1

2
, 0

)
or

(
1

3
, 1, 1

)
≤
(
3

5
,
1

2
, 0

)
+

(
4

5
, 1, 1

)
(
1

3
, 1, 1

)
≤
(
31

20
,
3

2
, 1

)
X or

(
1

3
, 1, 1

)
≤
(
7

5
,
3

2
, 1

)
X
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d( ~Wv2 , ~Wv6) ≤ d( ~Wv2 , ~Wv5) + d( ~Wv5 , ~Wv6)(
1

3
, 1, 1

)
≤
(
2

3
, 1, 1

)
+

(
1,

2

3
, 1

)
(
1

3
, 1, 1

)
≤
(
5

3
,
5

3
, 2

)
X

• d( ~Wv3 , ~Wv5) ≤ d( ~Wv3 , ~Wv4) + d( ~Wv4 , ~Wv5)

(1, 1, 1) ≤
(
3

5
, 1, 1

)
+

(
3

4
, 1, 1

)
(1, 1, 1) ≤

(
27

20
, 2, 2

)
X

• d( ~Wv3 , ~Wv6) ≤ d( ~Wv3 , ~Wv4) + d( ~Wv4 , ~Wv6) or d( ~Wv3 , ~Wv6) ≤ d( ~Wv3 , ~Wv5) + d( ~Wv5 , ~Wv6)(
3

4
,
1

2
, 0

)
≤
(
3

5
, 1, 1

)
+

(
4

5
, 1, 1

)
or

(
3

4
,
1

2
, 0

)
≤ (1, 1, 1) +

(
1,

2

3
, 1

)
(
3

4
,
1

2
, 0

)
≤
(
7

5
, 2, 2

)
X or

(
3

4
,
1

2
, 0

)
≤
(
2,

5

3
, 2

)
X

• d( ~Wv4 , ~Wv6) ≤ d( ~Wv4 , ~Wv5) + d( ~Wv5 , ~Wv6)(
4

5
, 1, 1

)
≤
(
3

4
, 1, 1

)
+

(
1,

2

3
, 1

)
(
4

5
, 1, 1

)
≤
(
7

4
,
5

3
, 2

)
X
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