
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Engineering Management and Systems 
Engineering Faculty Research & Creative Works 

Engineering Management and Systems 
Engineering 

01 Dec 2007 

Attaining Knowledge Workforce Agility in a Product Life Cycle Attaining Knowledge Workforce Agility in a Product Life Cycle 

Environment using Real Options Environment using Real Options 

Ruwen Qin 
Missouri University of Science and Technology, qinr@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/engman_syseng_facwork 

 Part of the Industrial Engineering Commons 

Recommended Citation Recommended Citation 
R. Qin, "Attaining Knowledge Workforce Agility in a Product Life Cycle Environment using Real Options," 
The Pennsylvania State University, Dec 2007. 

This Dissertation - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted 
for inclusion in Engineering Management and Systems Engineering Faculty Research & Creative Works by an 
authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use 
including reproduction for redistribution requires the permission of the copyright holder. For more information, 
please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng_facwork?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


The Pennsylvania State University

The Graduate School

Harold & Inge Marcus Department of Industrial and Manufacturing Engineering

ATTAINING KNOWLEDGE WORKFORCE AGILITY IN A

PRODUCT LIFE CYCLE ENVIRONMENT USING REAL

OPTIONS

A Thesis in

Industrial Engineering

by

Ruwen Qin

c© 2007 Ruwen Qin

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

December 2007



The thesis of Ruwen Qin has been reviewed and approved* by the following:

David A. Nembhard
Associate Professor of Industrial and Manufacturing Engineering
Harold & Inge Marcus Career Professor
Thesis Adviser
Chair of Committee

Harriet Black Nembhard
Associate Professor of Industrial and Manufacturing Engineering
Bashore Career Professor

Bryan A. Norman
Associate Professor of Industrial Engineering at University of Pittsburgh
Special Member

James L. Rosenberger
Professor of Statistics

Tao Yao
Assistant Professor of Industrial and Manufacturing Engineering

M. Jeya Chandra
Professor of Industrial and Manufacturing Engineering
Acting Head of the Harold & Inge Marcus Department of Industrial and
Manufacturing Engineering

*Signatures are on file in the Graduate School.



iii

Abstract

The product life cycle (PLC) phenomenon has placed significant pressures on

high-tech industries which rely heavily on the knowledge workforce in transferring cutting-

edge technologies into products. This thesis examines systems where market changes and

production technology advances happen frequently and unpredictably during the PLC,

causing difficulties in predicting an appropriate demand on the knowledge workforce and

in maintaining reliable performance. Knowledge workforce agility (KWA) is identified

as a desirable means for addressing the difficulties, and yet previous work on KWA is

incomplete.

This thesis accomplishes several critical tasks for realizing the benefits of KWA in

a representative PLC environment, semiconductor manufacturing. Real options (RO) is

chosen as the approach towards exploiting KWA, since RO captures the essence of KWA

– options in manipulating knowledge capacity, a human asset, or a self-cultivated orga-

nizational capability for pursuing interests associated with change. Accordingly, market

demand change and workforce knowledge (WK) dynamics in adoption of technology

advances are formulized as underlying stochastic processes during the PLC. This thesis

models KWA as capacity options in a knowledge workforce and develops a RO approach

of workforce training, either initial or continuous, for generating options. To quantify

the elements of KWA that impact production, the role of the knowledge workforce in

production and costs in obtaining KWA are characterized mathematically. It creates

necessary RO valuation methods and techniques to optimize KWA.
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An analytical examination of the PLC models identifies that KWA has potential

to reduce negative impacts and generate opportunities in an environment of volatile

demand, and to compensate unreliable performance of knowledge workforce in adoption

of technology advances. The benefits of KWA are especially important when confronting

highly volatile demand, a low initial adoption level, shrinking PLCs, a growing market

size, intense and frequent WK dynamics, insufficient learning capability of employees, or

diminishing returns from investments in learning. The thesis further assesses RO, as an

agility-driven approach, by comparing it to a chase-demand heuristic and to the Bass

forecasting model under demand uncertainty. The assessment demonstrates that the

KWA attained from the RO approach, termed RO-based KWA, leads to a stably higher

yield, to a persistently larger net present value (NPV), and to a NPV distribution that

is more robust to highly volatile demand. Subsequently, a quantitative evaluation of

KWA value shows that the RO-based KWA creates a considerable profit growth, either

with uncertainty in demand or in the WK dynamics. In evaluation, RO modeling and

the RO valuation are identified to be useful in creation of KWA value especially in highly

uncertain PLC environments. This thesis illustrates the effectiveness of the numerical

methods used for solving the dynamic system problem.

This research demonstrates an approach for optimizing KWA in PLC environ-

ments using RO. It provides an innovative solution for knowledge workforce planning

in rapidly changing and highly unexpected environments. The work of this thesis is

representative of studying KWA using quantitative techniques, where there is a dearth

of quantitative studies in the literature.
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Chapter 1

Introduction

1.1 Knowledge Workforce Agility Explores A New Frontier

Traditional conditions of stability and predictability are being replaced by the

modern conditions of change and unpredictability. This brings many industrial and

business organizations great difficulties in the attempt to fulfill development goals. The

ability of an organization to effectively overcome the difficulties is often referred to as

agility.

The lack of agility has been reported as one major reason that many traditional

manufacturing solutions could not outpace the increasing rate of change since the 1990’s.

Agility has gained considerable interest among researchers and industrialists, and it has

become one of the leading research topics in the past fifteen years [e.g., Kidd (1994, 1995),

Dove (1994, 1995), Youssef (1994), Goldman et al. (1995), Nelson & Harvey (1995),

Katayama & Bennett (1999), and Yusuf et al. (1999)]. Although definitions of agility

are varied and sometimes vague in the extensive agility research, many would believe

agility is a competency that involves actively taking advantages of opportunities and

positively countering threats, all of which arise from frequent, large and unpredictable

changes. They would also agree that agility facilitates the accomplishment of competitive

success through strategically keeping an economical balance among important metrics
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of change proficiency (e.g., time, cost, robust, and scope of change). The lack of agility

may result in significant losses.

Workforce agility, which forms the human facet of an agility framework, is the

benefits of agility with respect to workforce [e.g., Weick (1979), Prahalad & Hamel

(1990), Kidd (1994), Yusuf et al. (1999), Gunasekaran (1998, 1999), and Breu et al.

(2001)]. Knowledge-intensive organizations, for example, high-tech industries, would

especially appreciate workforce agility since they rely heavily on workforce capability

in transferring cutting-edge technologies into products. Thus, the knowledge workforce

should be the real concern in the study of workforce agility. This thesis uses the term

knowledge workforce agility (KWA) to be precise.

A phenomenon termed the product life cycle (PLC), which has commonly been

observed in many high-tech industries, poses demands on KWA. The semiconductor

manufacturing industry is representative of these, whose generations of products are

characterized with clear PLCs. Demand during a PLC has a bell-shaped pattern [e.g.,

Rogers (1962), and Bass (1969)]. However, instead of following the pattern exactly, de-

mand often demonstrates a partly stochastic manner as it fluctuates over the PLC [e.g.,

Bollen (1999), and Bass (2004)]. To manage such demand fluctuations is challenging, and

yet it is very important since the sales price drops rapidly during the PLC (called price

erosion). Thus, production processes are preferred to remain unchanged, so that the

production scale can be adjusted to desired levels to meet rapid and unexpected changes

in demand. Contrary to the aforementioned reason, to remedy deficiencies caused by the

introduction of new generations before production technologies mature, manufacturers
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have to adopt timely technology advances and modify production processes. The succes-

sive process changes during the PLC make the skills or workforce knowledge (WK) par-

tially lose the relevance to what they attempt to fulfill, causing WK dynamics during the

PLC. [e.g.,Hatch & Mowery (1998), Carrillo & Gaimon (2000), Terwiesch & Bohn (2001),

and Terwiesch & Xu (2004)]. The individual learning thereby is interrupted frequently

and unanticipatedly (of course, the same to the organizational learning). Workforce

training efforts have to be changed correspondingly without much delay. The market

changes and the production technology advances during the PLC cause a paradox for the

knowledge workforce management as the demands on the knowledge workforce and their

performance become unstable and unanticipated. KWA exhibits a potential advantage

for addressing the paradox.

Without commonly understood business practices or enterprise reference mod-

els, a host of things are found to be ambiguous in the attempt to carry out KWA in

practices, such as the KWA model, agility-driven mechanisms and algorithms, rewards

from KWA and expenses, and the performance measures for KWA. The previous studies

of workforce agility are limited, and the most of them still linger at a conceptual level

[e.g., Weick (1979), Prahalad & Hamel (1990), Kidd (1994), Plonka (1997), Gunasekaran

(1998), Gunasekaran (1999), Yusuf et al. (1999), Breu et al. (2001), and Sumukadas &

Sawhney (2004)]. Numerous research and practices of workforce flexibility are avail-

able, which seem to have formed a good foundation of workforce agility [see Hopp &

Van Oyen (2004)]. However, agility has clearly been distinguished from flexibility in

many agility studies [e.g., Kidd (1994), and Dove (1995)]. A major difference between
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workforce agility and workforce flexibility lies in the attitude they hold towards uncer-

tainty. Workforce agility holds a positive attitude toward uncertainty, and knowledge

workforce adjustments are made just ahead of taking advantages of opportunities or of

countering threats. Workforce flexibility, however, holds a passive attitude, and it re-

sponds to more anticipated contingencies in a pre-designed manner. Thus, the scope

of the uncertainty that workforce agility is expected to handle is far beyond the capa-

bility of workforce flexibility, as Figure 1.1 demonstrates. Furthermore, after reviewing

Fig. 1.1. Different Scales of Uncertainty

the canonical policies of workforce flexibility summarized in Hopp & Van Oyen (2004),

a very similar impression is attained. That is, that most of these policies have been

developed to handle more greatly anticipated contingencies. Therefore, traditional so-

lutions of training and manipulating knowledge workforce under uncertainty could be
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outmoded or ineffectual in no time in PLC environments. This has already been demon-

strated by the work of Nembhard et al. (2002a) and of Nembhard et al. (2005a). They

question the reliability in the optimality of traditional workforce flexibility policies in a

highly uncertain environment, and real options (RO) have been shown to be a promising

method for remedying the problem. A frontier that workforce flexibility ever could not

explore has been identified, whereon an unpreventable evolution of knowledge workforce

management, referred to as the study of KWA, is happening.

Having been attracted by the promising benefits of KWA in PLC environments

and having foreseen significant needs towards improving KWA practices, research of

the abovementioned frontier is motivated. Distinguished from the previous work, this

thesis will develop an effective approach to cultivating and optimizing KWA for overcom-

ing the difficulties of knowledge workforce planning in semiconductor manufacturing, a

representative PLC environment. The sections which follow describe detailed relevant

background on the PLC, KWA and a RO solution approach.

1.2 Challenges Posed by The PLC Phenomenon

Semiconductor manufacturing is a representative high-tech industry that produces

microelectronic devices, such as memory chips, micro components, and logic devices,

wherein the PLC phenomenon is commonly observed. Their products are important

inputs for the computer industry, consumer electronics, and communication equipment.

About 30% of semiconductor products are memory chips, including DRAM, SRAM,

ROM, EPROM, EEPROM and flash memories. The volatile memory chips, DRAM and

SRAM, account for 90% memory chips in the market. Generations of semiconductor
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products are characterized by clear PLCs, during which unanticipated demand changes

and production technology advances happen frequently, and the sales price drops rapidly.

For example, DRAMs are classified as successive generations according to the storage

capacity (e.g., 64k, 256k, and 1Mb), as illustrated in Figure 1.2. The PLC is referred to

Fig. 1.2. PLCs of DRAMs (cited from Bollen (1999) in Management Science)

as the time horizon during which a generation of product exists in the market. PLCs

of DRAM have been reported to be short, around 10 years [e.g., Bollen (1999), and

Siebert (2003)]. Semiconductor manufacturing thereby bears great pressures to maintain

a workforce that carries the right skills and timely knowledge. Robert Jones, an executive

director of the National Alliance of Business said, “the quality of a company’s workforce

is its most important competitive advantage, . . . in manufacturing computer chips, 98%

is ideas, skills, and knowledge and the rest is sand. Microsoft and IBM are more akin to

championship sports teams where the quality of the human factor is essentially the only

important variable to success”.
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Most of the knowledge workforce in semiconductor manufacturing work in a pro-

cess called wafter fabrication, as Figure 1.3 illustrates. In wafer fabrication, the inte-

Fig. 1.3. Wafer Fabrication

grated circuit (IC or die) or a set of electronic components is produced by being fabricated

on semiconductor material (e.g., silicon). The fabrication process involves building many

layers of material, either conducting or insulating, on wafers. For example, DRAM chips

are produced via etching circuitry on wafers of silicon. The complex process should be

controlled precisely with respect to production environments (e.g., temperature, dust,

and humidity), vibration, and facility settings. To maintain a stably high production

quality thus is not easy. The PLC phenomenon severely intensifies the difficulty in that
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the rapid and unanticipated demand changes and production technology advances are

very likely to cause many problems in wafer fabrication. Solving these problems to

improve production quality is the major role of the knowledge workforce in semiconduc-

tor manufacturing. Thus, KWA should be a potential solution of pursuing the desired

production quality through providing a proper capacity of problem solving in the PLC

environment.

1.3 Viewing Knowledge Workforce Agility Through Real Options

An option is a contract to buy (i.e., long) or sell (i.e., short) a specific financial

product referred to as the underlying instrument or underlying interest of the option

(e.g., stock, exchange-traded fund, or similar product). The contract sets a specific price,

called the strike price (or exercise price), at which the contract may be exercised. An

option has an expiration date. When an option expires, it no longer has value. Options

are classified into two categories, calls and puts, and either type can be bought or sold.

People on different sides of the contract act in different manners. Call options give the

option holder the right to buy the underlying instrument at the strike price at or before

the expiration date, and put options give the holder the right to sell. Correspondingly,

the writer of call (or put) options has the obligation to sell (or buy) the underlying

instrument at the exercise price if the holder determines to exercise. When an option

is bought (or sold), the money paid (or received) for the option is called the premium.

The premium keeps changing over time. The value of an option contract is together

determined by the price of underlying instrument and the exercise price. It is in-the-

money if the value is positive, or else it is out-of-the-money. That is, a call (or put)
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option is in-the-money if the current market price of the underlying instrument is above

(or below) the exercise price of the option, and out-of-the-money if it is below (or above)

the exercise price. Options are categorized as European options and American options

according to their expiration date. European options can only be exercised on the

expiration date, whereas American options can be exercised on or before the expiration

date. These basic concepts have been discussed in detail in the option literature [e.g.,

Hull (2003)].

The Black & Scholes (1973) and Merton (1973) option pricing research initiated

an influential development of financial practices. Option valuation methods, numerical

techniques, and applications have been surveyed comprehensively by Broadie & Detem-

ple (2004). The influence of option pricing theory goes far beyond financial options, and

real options (RO) remain a developing family of methods for applying the underlying

conceptual framework of option pricing theory to real assets (i.e., non-financial instru-

ments) [Merton (1998)]. The area of RO research has witnessed an important period

when theories in finance are penetrating into many other areas, for example, operations

research/management. RO exhibit an attractive fit in solving a range of risk-related

problems arising from this period, and the research in this thesis employs this approach.

RO is particularly relevant to KWA in the sense that they share several similarities

described below.

• KWA in uncertain environments is an analogue to capacity options upon

underlying stochastic processes. Capacity options are a type of RO which

allow the option holder to change the capacity in response to one or some un-

derlying stochastic processes. The option holder gain certain amount of profits
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through manipulating the capacity options. Similar to capacity options, KWA en-

dows knowledge workforce management a competency towards pursuing interest

in highly uncertain environments. Management would earn extra profits with the

facilitation of KWA.

• Knowledge workforce represents knowledge capacity or a human asset,

which is created through capitalizing the workforce with required skills and knowl-

edge. Thus, the creation of KWA is like a sequential investment on options in

knowledge capacity under uncertainty. RO has been used to manage investments

on physical capacity in high-tech industries [e.g., Benavides et al. (1999), Johnson

& Billington (2003), and Wu et al. (2005)], so to generate KWA using RO can be

an extension to knowledge capacity.

• KWA is a special type of organizational capability, which makes an or-

ganization respond to market and technology changes effectively. This capability

could not be bought in the market or obtained by simple imitation. It can only be

cultivated by the organization itself. RO has been suggested to be an appropriate

methodology for managing the investment on this type of organizational capability

[e.g., Kogut & Kulatilaka (1994)].

This thesis will model KWA as RO because RO properly capture the characteristic of

KWA, and the real options valuation can optimize KWA and maximize the expected

reward from it. KWA attained through the adoption of RO models and the implement

of RO valuation methods is termed RO-based KWA in this thesis. There are two pre-

requisites for obtaining RO-based KWA in a PLC environment: first a mechanism of
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driving KWA is available, and second the PLC environment can be modeled as one or

more underlying stochastic processes such as Brownian motion processes, mean reverting

processes, Poisson jumping processes, or combinations of these.

1.4 Overview of Thesis

The PLC phenomenon is found to have placed significant pressures on high-tech

industries which rely heavily on the knowledge workforce in transferring cutting-edge

technologies into products. This is because market changes and production technology

advances during the PLC cause great difficulties in predicting an appropriate demand

on the knowledge workforce and in maintaining reliable performance. KWA exhibits an

advantage of enhancing the capability of high-tech industries in operating the business

in PLC environments. However, previous research on KWA is limited. A deep gap

exists between the KWA concept and practices. This thesis is motivated to make efforts

to fill the gap and to attempt to realize the benefits of KWA. RO is identified as an

appropriate prototypical model of KWA in the sense that RO capture the characteristic of

KWA – options in manipulating knowledge capacity, a human asset, or a self-cultivated

organizational capability for pursuing interests associated with change.

This thesis will present an approach toward exploiting KWA in a representative

PLC environment, semiconductor manufacturing, using RO. The major elements of this

thesis are described below.

1. Descriptive models of the PLC phenomenon. The models should best cap-

ture the realism of the PLC phenomenon observed in semiconductor manufacturing,

so that they make the cultivation/optimization of KWA better informed.
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2. The formulation of an agility-driven mechanism. It should mathematically

represent how an agility-driven mechanism creates capacity options in a knowledge

workforce.

3. The model of the knowledge workforce in wafer fabrication. The model

measures the role of the knowledge workforce and costs in attaining KWA, quan-

tifying the elements of KWA that impact production.

4. The optimization of KWA. Algorithms and numerical methods for attaining

the RO-based agility should be capable of solving the formulized problem which

may be complex.

The feasibility of using RO to cultivate KWA will be justified after finishing the first two

tasks, and the accomplishment of it will be finally conveyed by the other two tasks.

The thesis is organized into five Chapters followed by Appendices and a Bib-

liography. Chapter 2 reviews related work that either has an impact on the work of

this thesis or informs this thesis directions of development. Chapter 3 presents the re-

search framework for attaining RO-based agility, wherein the major bodies of work are

developed. Chapter 4 assesses the significance of this work through mathematical jus-

tifications, study designs and detailed results analyses. Chapter 5 concludes this thesis

and gives some thoughts on future research directions.

The fulfillment of the work is expected to provide an executable optimal solution

for planning knowledge workforce in PLC environments, and to best bring out the profit

growth from KWA. Implementing KWA via this approach has the potential to provide

useful technology for high-tech industries. KWA may ameliorate the anxiety from rapid,
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large and unexpected changes, and may effectively turn such changes into attainable

opportunities.
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Chapter 2

Previous Work

This thesis benefits greatly from the research of others, which uncovered weak-

nesses to avoid, strengths to inherit, and directions to develop. The research stated in

Chapter 1 related, either directly or indirectly, to research fields, such as workforce agility,

real options (RO), product life cycle (PLC) phenomenon, and learning. This chapter

reviews some of this related research to provide insight for the thesis. Not surprisingly,

as the review process moves forward in this chapter, ideals in seemingly disparate fields

combine to form an enlightening approach to exploiting knowledge workforce agility

(KWA).

2.1 Workforce Agility

2.1.1 Agility Concept

The concept of agility originates from the report entitled 21st Century Manufac-

turing Enterprise Strategy published by Iacocca Institute at Lehigh University in 1991.

An agility forum based there has led to a successive agility studies, research programs,

and national conferences. Despite of increasing interests in agility, the definition of this

concept is sometimes vague in the associated research. For example, Dove (1994) defined

agility as “change proficiency.”Kidd (1994, 1995) felt that agility was a “reconfiguration
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capability,”rapidly responding to opportunities embedded in the changing market envi-

ronment. Youssef (1994) took agility as “extraordinary capabilities to meet the rapidly

changing needs of the marketplace”through “shifting quickly among product models or

between production lines, ideally in real-time response. . . . ”Goldman et al. (1995) stated

that agility was “dynamic, context specific, aggressively change embracing, and growth

oriented,”and is about “succeeding and winning profits . . . in the very center of competi-

tive storms that many companies now fear.”Nelson & Harvey (1995) identified agility as

an “organization’s capacity to respond rapidly and effectively to unanticipated oppor-

tunities and to proactively develop solutions for potential needs.”Gunasekaran (1998)

emphasized that agility was an “ability to thrive and prosper in a competitive environ-

ment of continuous and unanticipated change, to respond quickly to rapidly changing

markets driven by customer-based valuing of products and services.”Yusuf et al. (1999)

anticipated agility to be a “successful exploration of competitive bases . . . ”through “the

integration of reconfigurable resources and best practices in a knowledge-rich environ-

ment”to “provide customer-driven products and services in a fast changing market en-

vironment.”Katayama & Bennett (1999) felt that agility was a competitive strategy for

“coping with demand volatility by allowing changes to be made in an economically vi-

able and timely manner.”Along the way of exploring the agility concept, researchers

are gradually becoming convinced that making enterprises agile is the gateway towards

successful survival in the 21st century.

Workforce agility is the human facet in the agility framework [see Gunasekaran

(1998, 1999)]. As indicated in this agility study, the essence of workforce agility is

the change proficiency in workforce capacity and capability, and training workforces to
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master timely knowledge and skills is a way of cultivating workforce agility. For example,

Weick (1979) suggested that future workforce skills should be frequently anticipated

by continuously examining environment dynamics. Prahalad & Hamel (1990) felt that

capitalizing on employees’ skills just ahead of requests was a means for creating agile

workforces. Kidd (1994) emphasized the necessity of skilled, cooperative and motivated

people for creating an agile manufacturing enterprise. Yusuf et al. (1999) thought that

workforce were competent carriers on which an organization ultimately depended to

infuse collective knowledge into products.

Breu et al. (2001) identified workforce agility as an important research topic which

barely receives sufficient attention in previous agility studies. They emphasized that a

role of employees in agile organizations, knowledge carriers, was ignored by previous

agility studies. The work indicated that the knowledge workforce was the real element

that workforce agility concerns, and workforce agility is indispensable in knowledge in-

tensive industries.

2.1.2 Research Perspectives on Workforce Agility

The study of workforce agility has been examined from several angles in related

research. Investigation from the perspective of human factors was initiated from a ses-

sion entitled Human Factors in Agile Manufacturing, which was held at the 1995 Hu-

man Factors and Ergonomics Society Meeting in San Diego, CA. Plonka (1997), at

that conference, reported the functions of an agile workforce as coping with uncertainty

and responding to unexpected events. He claimed that incorporating human factors in

the study of workforce agility is important because human factors can comprehensively
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support a continuous development and training process with professional theories, ex-

periences, and practices. Further, he discussed potential agility-driven mechanisms for

knowledge workforce, such as worker selection, acquisition of new knowledge, accelerated

learning, and just-in-time delivery of training.

A representative study of workforce agility from the view of management is the

research by Sumukadas & Sawhney (2004), in which a theoretical, hierarchical model was

developed to interpret how workforce management practices (e.g., employee involvement,

training and employee motivation) contribute to the generation of workforce agility. Two

necessary components of a workforce agility framework were identified in this work.

First, the ability of employees to be agile was a function of skills or structure elements

of systems, which were obtained by training, job rotation, job enrichment, or teamwork.

Second, the willingness of employees to be agile could be stimulated by appropriate

rewards. The idea of using managerial practices to foster workforce agility shows that

the overlap between management and human factors is an active place for conducting

the study of workforce agility. Besides, they argued that workforce agility was not the

performance of workers. The intrinsic characteristic of workforce agility is its potential

impact on system performance, which suggests an idea of evaluating system profitability,

brought by workforce agility, rather than workforce agility.

Hopp & Van Oyen (2004) studied workforce agility from the view of cross train-

ing and the coordination of cross trained workforces. They believed that cross training

contributed to generating workforce agility since a cross-trained workforce represented

a flexible capacity. They developed a strategic framework of workforce agility, in which

four objectives (i.e., cost, time, quality, and variety) were identified. They additionally
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proposed a tactical framework including cross training skill pattern, worker coordina-

tion and team structure. Further, they classified major worker coordination policies

into five categories: (1) scheduled rotation developed by mathematical programming ap-

proaches and used for balancing lines, managing bottlenecks, and releasing ergonomical

stresses; (2) floating workers for production systems where “specialists are augmented

by a smaller number of generalists who dynamically float to the operation at which

they are needed;”(3) zoned worksharing for dealing with processing time variability; (4)

worker-prioritized worksharing for allocating workers of a team to tasks in real time

based on a prioritization of workers; and (5) craft approach. These researchers identi-

fied some research gaps and open problems, and thus they suggested several directions

for future work. First, they felt that human behavior, which had been greatly ignored

in previous research, should be considered. Second, previous work was mainly a study

on the operational level, and it dealt with uncertainty on relative small scales. They

suggested that future research should get insight into more uncertain environments and

should develop more dynamic policies. Lastly, they identified the necessity of developing

a micro-economic framework with costs incorporated for addressing workforce agility

strategy and tactics. As a valuable work comprehensively summarizing the literature of

workforce flexibility, it also identifies the insufficiency in the study of workforce agility.

Traditional cross training decisions have been challenged by Nembhard et al.

(2002a) and Nembhard et al. (2005a) who questioned the reliability of the optimality of

traditional workforce flexibility policies in a highly uncertain environment. They realized

that, when the business environment changed, an optimal cross training decision might

become suboptimal and a suboptimal decision possibly becomes optimal. They thus
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proposed to model workforce flexibility as flexible options and to formulate the cross

training decision as an optimal stopping time problem. The work showed that, in a

context where the product profit changed like an exponential Brownian motion process, a

profit increment referred to as RO value was created through strategically cross training.

Their work was a valuable attempt to utilize cross training, which was commonly used

for mitigating production related risks through cultivating workforce flexibility, as a new

tool for shielding manufacturers from market risks. More importantly, the work was

a usefyk prototype study of workforce agility in the sense that it identifies a frontier

whereon traditional solutions of workforce flexibility are no longer consistently effective,

and introduces a method-family named RO for exploring the frontier.

2.2 Real Options

2.2.1 A Brief Overview of Option Pricing

Options is a type of derivatives. A derivative is “a financial instrument whose

value depends on (or derives from) the value of other, more basic underlying vari-

ables”[Hull (2003)]. The underlying variable can be a traded asset (e.g., a stock), an

index portfolio, a futures’ price, a currency, or some measurable state variable (e.g., the

temperature at some location) [Broadie & Detemple (2004)]. Options are distinguished

from other derivatives, such as futures and forwards, in the sense that an option holder

has a right rather than an obligation in tradings. Options are broadly traded for purposes

of hedging risks, speculating future directions, or gaining some other financial benefits.
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Black & Scholes (1973) developed a mathematical model for pricing options and

managing risks. Merton (1973) provided an alternative proof for option pricing and

generalizes the pricing framework. Their work substantially pushes the development of

finance practices. “Paradoxically,”the mathematical model was developed, in theory,

without referring to any empirical option pricing data. Traders in the Chicago Board

Options Exchange (CBOE) begun, in 1997, to use Black-Scholes-Mertion model to spec-

ulate price and hedge risks in trading options. Publications and practices of option

pricing grow fast, witnessing an evolution both in academia and in the derivative mar-

ket. Merton and Scholes, thus, were awarded the 1997 Nobel Price in Economics for the

“Black-Scholes-Merton option pricing”theory and the related work (Black was ineligible

although he passed away in 1995). Meanwhile, they reviewed the past, examined the

current progress, and gave insight into the future of options pricing [Merton (1998), and

Scholes (1998)]. The journal of Management Science published, in 2004, an 50th anniver-

sary article about option pricing, in which Broadie & Detemple (2004) comprehensively

reviewed the option pricing literature, valuation models and applications till then, and

they further identified the latest directions for development.

2.2.2 From Financial Options to Real Options

The RO valuation is an extension of the option pricing theory to options on

real (i.e., non-financial) assets. However, the path from financial options to RO is not

straightforward. People, competent at trading options in the derivative market, may not

know how to identify and value RO [Amram & Kulatilaka (1999)]. Compared to financial

options, which are usually well-posed questions, RO involves real-world complicated
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applications. Great efforts are needed to identify the options, develop models, and probe

solutions, and this is why Amram & Kulatilaka (1999) emphasized that RO was “a way

of thinking.”

Some researchers have identified difficulties in using RO when they establish the

path from financial options to RO. Although classic RO models and real-world applica-

tions have been broadly reported [e.g., Dixit & Pindyck (1994), and Schwartz & Trigeor-

gis (2001)], Lander & Pinches (1998) still identified three major difficulties in modeling

and pricing investment opportunities using RO. First, existing RO models are not well

understood by practitioners. Second, some necessary modeling assumptions may be

violated in practice. Third, some mathematical issues limit the scope of applications.

Bowman & Moskowitz (2001) examined a case of strategic decision making using RO, on

which they conclude that the RO approach is still just a “theoretically attractive way to

think about flexibility inherit in many investment proposals.”Thus, seeking alternative

modeling methods and valuation frameworks, which are more ready for implementation,

to increase the width and depth of RO applications, is imperative.

Many researchers have contributed effort to introducing RO in a variety of engi-

neering areas through probing innovative RO applications. For example, to address the

need of organizations to measure the value of flexibility, Nembhard et al. (2000) proposes

using an RO framework for managing production system changes. This framework was

developed to use RO to evaluate the decision to use quality control charts [Nembhard

et al. (2002b)], to pursue product outsourcing [Nembhard et al. (2003)], to evaluate

supply chain decisions [Nembhard et al. (2005c)], and to model strategies aimed at re-

ducing the environmental impact for a manufactured product [Nembhard et al. (2005b)].
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A comprehensive overview of RO modeling and valuation by real-world users was pro-

vided by Miller & Park (2002) who felt that RO are in the early stage of development

where many components of financial option pricing are utilized. They emphasized that,

although financial options were a good foundation for RO, they should not limit the

promising future of RO. Thus, they suggested to base RO on the foundation of financial

options, properly combine RO with other useful tools and approaches as needed, and

ultimately make RO “its own unique framework of addressing decision-making in a world

of uncertainty.”

2.2.3 Real Options versus Discounted Cash Flow

Traditional discounted cash flow (DCF) techniques were broadly used to evaluate

projects. DCF techniques are based on the assumption of being certain about project

cash flows, which is not true when decisions are made under uncertainty [e.g., Kulatilaka

& Marcus (1992)]. The RO approach has the potential to solve the problem properly.

Thus, uncertainty is nothing decision makers should fear or to avoid, and they can take

advantages of it.

The trend that RO will be adopted broadly is manifested by how RO overcome

limitations of the traditional DCF approach. First, in the traditional DCF approach,

the net present value (NPV) of a project is calculated from a stream of expected net

cash flows at a “risk-adjusted”discount rate which reflects the risks for the cash flows

[e.g., Bernhard (1984), and Park & Sharp-Bette (1990)]. However, to properly estimate

an appropriate risk-adjusted discounting rate is difficult [e.g., Fama & French (1997),

and Miller & Park (2002)]. In the RO approach, risk neutral valuation (see Cox & Ross
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(1976)) is used as opposed to DCF to strategically evaluate decision flexibility under un-

certainty. Risk neutral valuation discounts future values using a risk free rate, which is

attained via a probability transformation from the actual probability of underlying vari-

able distribution to risk-neutral probability using Girsannov Theorem [Neftci (2000)]. As

a result, utility of risk preference is not needed in the RO approach. Second, the tradi-

tional DCF techniques, nevertheless, ignore the flexibility to delay decisions or modify

decisions when new information, opportunities, or threats come along the value chain.

The probability distribution of NPV would be reasonably symmetric in the absence of a

dynamic investment policy. The RO approach fully exploits advantages of flexibility in

decision making, and thus, it leads to an asymmetry in the NPV distribution. Thus, the

RO approach expands the value of investment opportunity by improving its upside po-

tential, while limiting downside losses relative to manager’s initial expectations under a

deterministic investment policy [e.g., Kulatilaka (1988), Aggarwal (1991), Ernst & Kam-

rad (1995), Kulatilaka & Trigeorgis (1994), Panayi & Trigeorgis (1998), and Kulatilaka

& Perotti (1998)]. Third, in the traditional DCF approach, high volatility represents

high risks and high losses, which is indicated by a high discounted rate. In the RO ap-

proach, however, high volatility represents high values of opportunity. So RO hold a very

different attitude towards uncertainty [Miller & Park (2002)]. Lastly, time compounds

the effect of the risk-adjusted rate in traditional DCF techniques. However, RO evaluate

long-term projects as more valuable based on the Black-Scholes model. RO overcome

many limitations of traditional DCF techniques, and thus they are gradually adopted in

many areas [Trigeorgis (1993), and Lander & Pinches (1998)].
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Miller & Park (2002) emphasize that DCF and RO are complementary decision-

making techniques. Despite the insufficiency of traditional DCF techniques, it is still a

necessary part of RO in some circumstances because some inputs of RO are provided by

DCF.

2.2.4 Capacity Planning Using Real Options

RO have been used to support capacity related decisions in highly uncertain

environments, either on a strategic level or on an operational level. McDonald & Siegel

(1985) showed that, when demand follows a Wiener process, a plant has the option

to shut down if production does not generate enough profits. Pindyck (1988) models

capacity expansion as RO for dealing with the irreversibility in capital investments,

the uncertainty in returns, and the opportunity costs in capacity planning. Majd &

Pindyck (1989) suggested properly utilizing operation flexibility, such as shutting down

and later restarting, to master production capacity in dynamic economic environments.

Abel et al. (1996) modeled choices in capacity expansion as call options and choices in

capacity extraction as put options. Dangl (1999) used the RO valuation to determine

the optimal timing of capacity investment and the optimal maximum capacity. His

work showed that uncertainty substantially increases investments in capacity and delays

the time to invest, even when uncertainty in demand is less substantial. Birge (2000)

identified benefits of adjustable capacity and applied results of the options pricing theory

to production planning. He incorporates risks in a planning model and correspondingly

adjusts capacity and resource levels. Not all implementations of RO in capacity planning

can be enumerated here, and comprehensive discussions on capacity planning using RO
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were provided by Trigeorgis (1996), Amram & Kulatilaka (1999), Schwartz & Trigeorgis

(2001) and many other researchers.

A growing trend has been observed that RO are used to determine the optimal

timing and scaling of capacity adjustments in high-tech companies [Johnson & Billington

(2003)]. Wu et al. (2005) anticipate the RO approach to be a promising method for plan-

ning capacity in high-tech industries, which are characterized by large cash exposures,

demand volatility, and changes in technology. They said that “each unit of capacity pro-

vides the firm options to produce a certain quantity of the product through its life cycle;

and such options are referred to as the operating options. The investment in capacity

is the premium for the option, in which the production cost corresponds to the exercise

price.”For example, Benavides et al. (1999) assumed that demand moved stochastically

over time, just like a Geometric Brownian Motion process. Based on that assumption,

they studied the optimization of capacity expansion in terms of timing, scale, and type

for IC manufacturing. The work indicated that to split the investment on capacity into

sequential small projects is more economical under conditions of uncertainty. However,

some difficulties appear when applying classic option pricing models and results to ca-

pacity planning in semiconductor manufacturing. For example, Bollen (1999) noted that

the standard Geometric Brownian Motion process is not appropriate for modeling the

stochastic demand for DRAM products because they are characterized by historically

short product life cycles and a well-defined bell-shaped pattern. Thus, he proposed a

stochastic demand model containing two Geometric Brownian Motion processes, one

with a positive drift rate connected to the other with a negative drift rate by a stochas-

tic switch. His study indicated that a better understand of the business and production
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environment of semiconductor manufacturing was needed in order to properly apply RO

to semiconductor manufacturing.

2.3 The PLC Phenomenon in Semiconductor Manufacturing

2.3.1 Market Environment Change

Demand straightforwardly manifests the characteristic of PLC phenomenon, and

it has been broadly studied for several decades. Social scientists have interpreted it as a

diffusion process, whereby a new product penetrates consumer categories that have dif-

ferent behaviors and adoption timing [e.g., Rogers (1962), and Katz et al. (1963)]. Polli

& Cook (1969) described the PLC as a time-dependent sales model which was rationally

supported by diffusion theory (Rogers (1962)) and was useful for marketing planning.

Diffusion theory motivated the model developed by Bass (1969), in which the PLC was

specified by the timing of adopting a new product and had a bell-shaped pattern for

demand or sales (and an S-shaped pattern in cumulative demand or sales). This model

was supported by historical data and its performance in forecasting [Bass (2004)]. Bass

(1995) additionally investigated reasons why sales have a bell-shaped pattern over the

course of the PLC by examining general attributes of marketing (e.g., price). This study

has some similarities with the work by Levitt (1965) who comprehensively described the

PLC phenomenon and analyzes the forces acting on it. Economists have concentrated

more on demonstrating the existence of the bell-shaped pattern using traditional eco-

nomic theories. For example, Russel (1980) noted a clear overlap between marketing

and economics when he replicated the bell-shaped pattern. He argued that the timing
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of adoption was determined by consumer heterogeneity. If income manifests individ-

ual heterogeneity, an approximately log-normal density function of population across

their incomes should exist, which is commonly seen in practice [e.g., Aitchison & Brown

(1969)].

Demand during the PLC seldom exhibits a smooth bell shape. It is actually

volatile beyond the pattern and even substantially deviates from it. Rosegger (1986)

emphasized that variations beyond the bell-shaped pattern were at least as important as

the pattern itself, and yet they might not be properly explained by diffusion theory. Bass

(2004) also felt that problems related to the stochastic PLC deserve additional attention.

Bollen (1999) developed an RO model for the PLC phenomenon. His work suggested a

way of incorporating the uncertainty of the PLC environment in decisions.

Existing models of underlying processes seemingly provide candidates for model-

ing the PLC phenomenon, such as Geometric Brownian Motion (GBM) processes, Pois-

son jump processes, mean-reverting processes, and combinations of these [Hull (2003)].

However, these models can not be applied directly. For example, Bollen (1999) showed

that a single GBM process with a constant positive drift rate was not a complete model

for demand during the PLC. Thus, he proposed a model containing two GBM processes,

one for the growth phase, and one for the decay phase connected with a stochastic switch.

The Bollen model captures the trend of demand movement and the uncertainty of it dur-

ing the PLC, so it can provide improved results over the previous research. However, the

Bollen model may have two obvious limitations. First, it ignores the fact that the speed

whereby a new product penetrates the market may actually be related to the market

size, the initial adoption level, and the length of PLC. These relations are properly built
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in the Bass (1969) model which is based on diffusion theory. Thus, the first limitation

possibly be remedied through adoption of the well-developed relations in the Bass model.

Moreover, incorporation of these two models empowers the Bass model as well, because

the volatility observed on the demand side could not be fully explained by diffusion the-

ory [Rosegger (1986)]. The second limitation of the Bollen model arises from the manner

in which it handles model uncertainty. For example, the length of the PLC is unknown

early in the PLC, so the belief about the length of the PLC is in a form of probability.

When moving along the PLC, more accurate information about the length of the PLC

should become available. However, the Bollen model never utilizes this possibility of

imformation improvement during the PLC. An extension, based on the methods of Bass

(1969) and Bollen (1999), would provides a more complete representation of demand

during the PLC by inheriting some beneficial properties of each.

2.3.2 Production Environment Change

The second clear characteristic of the PLC phenomenon observed in semiconduc-

tor manufacturing is process changes associated with adoption of production technology

advances. Process changes have been reported to interrupt learning, either on an indi-

vidual level or on an organizational level. Hatch & Mowery (1998) studied the relation-

ship between process changes and learning-by-doing in semiconductor manufacturing.

Learning-by-doing, defined by them, was “deliberate activities for improving yields and

reducing costs, rather than the incidental by-product of production volume.”They found

that process changes significantly disrupt ongoing learning activities in that they need
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engineering resources for solving problems arising in the new processes. Carrillo & Gai-

mon (2000) noted that process changes, which involved updating hardware/software

and modifying process procedures, will ultimately increase effective capacity. Mean-

while, they also found that process changes lower short-term capacity since productivity

decrease, equipment downtime, quality problems and any others were observed.

Process changes in high-tech industries were investigated in the work by Terwi-

esch & Xu (2004), wherein process changes and learning were taken as a conflict pair.

They noted that high-tech industries were often forced to bring products to market be-

fore manufacturing processes were full understood because of short PLCs and the rapid

price erosion. The gap between what processes are described in recipes and how the

processes are actually operate should be filled. The process by which productivity or

production quality increases is “learning”in this currence. However, in order to be com-

petitive among peers, many high-tech companies must often refine process recipes, which

is referred to as process changes. Sources of refinements are classified as internal and ex-

ternal technologies. The former includes R&D and process re-engineering, and the latter

leads to introducing or updating equipment and software. If products are introduced

to the market in a rush, process changes continue throughout the whole PLC, not at

one time. The development of new knowledge and routines is crucial to making process

changes succeed, and yet reduces the effective knowledge of the workforce (not because of

forgetting but of partially losing its relevance). Thus, an dynamic optimization problem

usually is formulized for determining the tradeoff between learning and process changes.

The research on process changes and learning indicated that workforce knowledge (WK)

exhibited clear dynamics in attempts to adopt production technology advances. Thus,
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management of a knowledge workforce in PLC environments should consider especially

the impact of WK dynamics (or the unreliable performance of the knowledge workforce)

on production.

2.4 Learning

Learning was first investigated in the airframe industry [e.g. White (1936), Asher

(1956), Alchian (1963), and Hartley (1965)]. This concept has been adopted as a man-

agement tool or an operational measurement by many other industries [see Hatch &

Mowery (1998)]. Learning, as a process of experience or knowledge accumulation, has a

variety of forms in different industries, for example, cost or price reduction [e.g., White

(1936), Hartley (1965), Spence (1981), Fudenberg & Tirole (1983), Lieberman (1984),

and Argote et al. (1990)], productivity rise [e.g., Mazur & Hastie (1978), and Nemb-

hard & Uzumeri (2000)], and quality improvement [e.g., Fine (1986), Tapiero (1987),

Mukherjee et al. (1998), and Serel et al. (2003)].

Levy (1965) conducted a taxonomy study on learning. He suggested classifying

learning into three categories: autonomous learning, planned or induced learning, and

random or exogenous learning. Autonomous learning is the improvement due to on-the-

job learning or training, whereas planned or induced learning is the result of a firm’s

managerial actions for increasing the productivity or reducing production cost. Random

or exogenous learning is beyond the firm’s control or expectation. Learning curves usu-

ally have three major proxy types. They are cumulative output [e.g., Spence (1981),

Fudenberg & Tirole (1983), and Lieberman (1984)], cumulative investments [e.g., Arrow
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(1962), Sheshinski (1967), and Rosen (1972)], and time [e.g., Cooper & Charnes (1954),

Rapping (1965), David (1970), and Stobaugh & Townsend (1975)].

2.4.1 Learning in Semiconductor Manufacturing

Yield improvement is the predominant form of learning in semiconductor manu-

facturing. Siebert (2003) investigated learning-by-doing in a PLC environment and noted

that the learning-by-doing effect is less important than expectation, and successive prod-

uct evolutions might be the reason. Terwiesch & Xu (2004) reached a similar conclusion

when they studied learning and the opposite, process changes, during production ramp-

up. They showed that yield droped substantially when production scale ramped up.

Weber (2004) felt that learning effectively raised the production profit because yield im-

provement was a process that engineering, technicians and managers engage to reduce

faults. These representative studies have demonstrated that creation and management

of problem-solving capacity is the essence of mastering yield and production revenues.

Differences between learning via problem-solving and learning-by-doing have been

reported by scholars from different perspective. Mody (1989) viewed learning as a con-

tinuous process of knowledge creation by teams of skilled engineers who are sent to shop

floors for trouble shooting. He showed that learning was a managerial practice for im-

proving production profits through knowledge generation and transfers, rather than a

mere by-product of production. Adler & Clark (1991) explicitly differentiated learning

via managerial actions from learning-by-doing by defining first-order and second-order

learning. Dorroh et al. (1994) took knowledge as a production input, not a by-product

of experience. They thereby differentiated investments in knowledge acquisition from
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the learning-by-doing, and further showed that the investments were costly. However,

the investments have long-term profits, since they will be paid off when the increased

learning rate meets future opportunities.

The problem-solving capacity, as an important driver for yield improvement, is

crucial to knowledge-intensive industries. Iansiti (1995) identified that the problem-

solving behavior of individuals drived the generation of new knowledge for new product

development. Gaimon (1997) found that the volume of a knowledge workforce and

the skill levels of the individuals in the workforce affect the output increment. So, he

quantifies the relationship between output and the knowledge workforce. Macher &

Mowery (2003) recognized that detailed engineering analyses of yield problems and the

implementation of corrections improved the performance of semiconductor manufactur-

ing effectively.

Adjusting the problem-solving capacity is less straightforward than the physi-

cal capacity. Problem-solving capacity is cultivated via workforce managerial practices

such as training, teaming or motivating. To provide an appropriate employee capac-

ity for stochastic demand, Anderson (2001) developed an optimal staffing policy which

involved training unproductive apprentices or laying off experienced employees. Bailey

(1998) discussed how skills and knowledge were created as employees team up to address

production problems at shop floors of fabrication. He studies three types of team struc-

ture in semiconductor manufacturing: continuous improvement teams (CITs), quality

circles (QCs), and self-directed work teams (SDWTs). He found that CITs leaded to the

highest direct or indirect productivity, however, the other two should not be dismissed.
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Sattler & Sohoni (1999) studied participative management in semiconductor manufac-

turing. They argued the reason that semiconductor manufacturing was a industry where

human resource management was important, and concluded that high level employees

(i.e., engineers) could focus on major improvement projects rather than troubleshoot-

ing exercises if lower level employees (i.e. operators and technicians) became involved

in problem solving and decision making. Similar results are reported by Appleyard &

Brown (2001) who showed that well-functioning teams, consisting of continuously trained

engineers and initially trained technicians, were crucial to achieving good performance

in fabrication.

2.4.2 Viewing Actions for Improving Learning as Investments

Many researchers suggested viewing actions for improving learning as investments

since they observed uncertainty in returns. For example, Dorroh et al. (1994) studied

the balance between allocating resources to the production of output and to the pro-

duction of knowledge. The former created an immediate revenue; whereas, the latter

aimed at potential future profits. Fine & Porteus (1989) showed that investments in

learning contributed to gaining strategic long-term profits. They suggested splitting the

investment in learning as a sequence of small investment opportunities over the time

horizon when returns from the investment were uncertain. Chand et al. (1996) showed

that employees’ efforts in identifying and solving problems on shop floors were a process

of knowledge creation and production improvement. Costs are associated with such ac-

tivities, because employees and equipment time that otherwise are used for producing

an immediate revenue are used. The costs are possibly reduced by long-term benefits.
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Similarly, Terwiesch & Bohn (2001) studied learning in high-tech industries where sales

prices fall rapidly. They considered deliberate experiments as learning activities which

occupied production capacities in the short term but had potential to create long-term

values. They, thereby, accepted exploration of trade-off between generating instant rev-

enues and improving learning as investments.

Some other scholars have treated the acquisition and retention of knowledge as

investments because efforts spent in knowledge management would be beneficial in the

future. For instance, Rosen (1972) claimed that knowledge is firm-specific, capital goods,

an input, and an output of production. He believed that a view of investment is neces-

sity because the remaining production revenue would be affected by the learning rate

which was determined by current volume of output. Dutton & Thomas (1984) classified

factors which leaded to process improvement into four categories, varying according to

origin (exogenous and endogenous) and type (autonomous or induced). They stated that

knowledge management behaviors of a company, such as investments in learning, influ-

enced the rate of process improvement. Hatch & Mowery (1998) studied how to improve

production yield through management of learning when new processes were introduced

into semiconductor manufacturing. They showed that learning in the early stages of pro-

duction was a function of engineering resources allocated to problem-solving activities.

Therefore, the management of knowledge workforce in semiconductor manufacturing is

capable of improving yield.
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Chapter 3

A Framework for Attaining RO-Based KWA

The rationale for using real options (RO) based knowledge workforce agility

(KWA) to release pressures that the product life cycle (PLC) phenomenon placed

on high-tech industries was described in the previous two chapters. RO-based KWA is

realized by accomplishing several tasks organized in a framework. This chapter presents

the framework wherein RO-based KWA is attained through modeling KWA as capacity

options in a knowledge workforce and optimizing KWA using the RO valuation. The op-

timization in the framework is informed by a model of the PLC phenomenon, is conveyed

through a model of the knowledge workforce, and is fulfilled by well-designed optimiza-

tion schemes. In order to make this chapter as focused as possible, basic background

materials and relative mathematical derivations are presented in Appendices A-I.

3.1 Modeling Demand Changes

Market demand conveys important information about customers, competitors, the

market, and even the manufacturer itself. However, the information is often reflected by

demand uncertainty, which can be separated into two components, generally. One source

of the uncertainty can be eliminated gradually through demand learning, with informa-

tion disclosure as a result. The other source of uncertainty consists of unpredictable

factors, for example, demand volatility, and so is irreducible.
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This thesis is interested in developing a demand model with the following charac-

teristics. (1)The model conveys quantitative information about the PLC phenomenon,

representing demand either with a closed mathematical form or a concisely numerical

layout. (2) The model inherits advantages of existing models and captures more realism

than prior models, so it can be fitted by real data and be used to interpret observations.

(3) The model has clear mathematical descriptions about both sources of uncertainty,

and thus it is informative for exploiting the advantage of KWA.

3.1.1 Demand Model Formulation

Demand during the PLC is modeled as a GBM process, a common type of un-

derlying process models in the RO literature [e.g., Pindyck (1988), Trigeorgis (1996),

Benavides et al. (1999), Bollen (1999), and Broadie & Detemple (2004)]. The evolution

of demand is addressed by the drift rate of the GBM process, and the stochasticity in

demand is represented by a standard Wiener process (see page 176-177 in Neftci (2000))

on the trend. More specifically, if Dt is the demand at time t during the PLC [0, T ]

(T is the length of PLC, which is uncertain), the relative change in demand during the

interval [t, t + dt] is shown in Equation (3.1).

dDt

Dt
= µt(M,D0, Tm)dt + σdWt (3.1)

In Equation (3.1), µt(M,D0, Tm) (µt will be the simplified notion in the remains of this

thesis) is the drift rate in demand. It varies over time and makes the expected demand

exhibit a bell shape over the PLC. In addition, it is parameterized by M , the expected
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cumulative demand, D0, the initial demand, and Tm, the time of demand maturity

(it happens when the ascending trend of demand stops and switches to a descending

trend). Wt is a Wiener process for modeling the unpredictability in demand. σ is the

demand volatility, which measures the scale of unpredictability. σdWt thus represents

the unanticipated part of the relative change in demand during [t, t+dt]. Any change in

Wt over the time interval dt, ∆Wt (= Wt+dt−Wt), satisfies ∆Wt = εt

√
dt (εt ∼ N(0, 1),

and E[εtεs] = 0 for t 6= s). Thus, ∆Wt ∼ N(0, dt) according to the Central Limit

Theorem [see page 177 in Neftci (2000)]. As a result, the relative change in demand

during time interval ∆T is normally distributed, as indicated in Equation (3.2).

Dt+dt −Dt

Dt
∼ N

(∫ t+dt

t

µsds, σ2dt

)
(3.2)

The variance of demand increases linearly over time in Equation (3.2), so an actual

demand trajectory over the PLC may deviate significantly from a perfect bell-shaped

pattern. Thus, Equation (3.2) better describes demand during the PLC than determin-

istic demand models.

3.1.2 The Bell-shaped Pattern of Demand over The PLC

The drift rate in demand, µt, specifies the trend rate of demand movement as

well as how quickly a new product penetrates the market. It is important information in

some RO problems wherein the traditional risk neutral valuation principle (Hull (2003))

does not work, and this thesis falls in this category. The tradition risk neutral valuation

principle assumes that the underlying process is correlated to some traded asset in the
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market, so the risk free interest rate, rf , can replace for the drift rate, µt. However, it is

difficult to find any traded asset in the market to which the demand of a new product is

correlated. A modified risk neutral valuation principle thus is adopted for dealing with

this difficulty. Now rf is only used in discounting expected future values, and µt is kept

in the RO valuation except that it is adjusted by λ, the market price of risk, to become

µt − λσ [Hull (2003)].

For demand over the PLC to take on a bell-shaped pattern, µt is modeled as a

linear decreasing function of time, as in Equation (3.3).

µt =
β(M,D0, Tm)2

Tm
− β(M,D0, Tm)2

T 2
m

t (3.3)

Appendix B shows how Equation (3.3) is derived. β(M,D0, Tm) (β will be the simplified

notation in the remains of this thesis) is the ratio of Tm to σTm
(Tm is uncertain, which

is indicated by a probability distribution, and σTm
is the standard deviation of Tm). It

describes the shape of the bell pattern, and it is a function of M , D0 and Tm according

to Equation (B.7).

The drift rates at different values of Tm are illustrated in Figure 3.1, along with

the corresponding expected demand curves. Figure 3.1 shows that demand tends to

rise/decay quickly if Tm is short, indicating that the speed whereby the product spreads

in the market is related to the length of the PLC. In addtion, the figure tells us that

the initial drift rate increases sharply when the PLC shrinks. So in one sense, the drift

rate function is a mathematical representation of the notion that short PLCs may pose

challenges to high-tech industries.
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Fig. 3.1. Expected Demand and Drift Rate in Demand Over The PLC

Demand at time t is obtained by applying Itô’s lemma (See Appendix A) and

integrating Equation (3.1), yielding the expression in Equation (3.4).

Dt = D0e

�
β
2

Tm

�
1− t

2Tm

�
− 1

2
σ2

�
t+σWt

(3.4)

Model parameters D0, M , Tm and σ are needed for expressing demand in Equation (3.4).

D0 is the only directly observable parameter. M is similar to the concept of the total

number of adopters in the Bass (1969) model, and the estimation of σ is well discussed

in the RO literature [e.g., Hull (2003)]. M and σ of the previous generations of product

can be obtained through fitting the demand model with history data, as Section 3.1.3

will demonstrate, and they are valuable references for the estimation of M and σ in the
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current generation. Tm, however, is unknown in the early PLC. Uncertain parameter

Tm is the other source of demand uncertainty. The demand distribution is condition on

Tm, indicating that the accuracy of the information about Tm impacts the knowledge

of demand distribution. Bayesian estimation is an approach for learning Tm through

observing demand continuously, as will be discussed in Section 3.1.4.

3.1.3 Demand Model Fitting and Verification

A sample of sales data during the PLC cited from Siebert (2003) is illustrated

in Figure 3.2. Assuming that sales data is a reasonable representation of demand, the

sample in Figure 3.2 can be used for demonstration of model fitting and verification.

Fig. 3.2. A Sample Trajectory of Stochastic Demand Over The PLC

This sample path exhibits stochasticity over the PLC instead of having a smooth

bell shape. It contains 44 records of quarterly demand (i.e., the time interval ∆T=0.25
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years), denoted as Di (i=0,1,. . . ,43), so there are 43 observations of relative demand

change, Di−Di−1

Di−1
(i = 1, . . . , 43). The linear regression is applied to Di−Di−1

Di−1∆T
to examine

the linearity of the drift rate function µt, to justify the Wiener process Wt, and to

fit model parameters. Results of the regression analysis are listed in Appendix C. A

regression function µ̂t = 1.68− 0.26t is obtained. The P -value of regression is less than

0.0001, R2 is equal to 0.75, and R2
adj

is 0.74, which suggest that the regression function is

statistically significant and is properly fitted. Assumptions about the regression residual

are no autocorrelation and of normal distribution N(0, σ2

∆T ). The Durbin-Watson statistic

equals 1.51, and the P -value for first order autocorrelation is 0.235, which means with

probability 23.5% we can reject the hull hypothesis of non autocorrelation. Although the

P -value is greater than 0.05, in a real case this p-value is fine. If we choose a drift rate

function which better describe the trend of demand change, the p-value will decreases.

Thus, the null hypothesis of no autocorrelation can be treated as valid. The P -value

of Anderson-Darling test is 0.172, so the normality assumption is proved to be fine.

Therefore, the existence of Wiener process Wt on the bell-shaped pattern is justified.

The regression function provides the estimates of β2

Tm
(the intercept of the regres-

sion function), β2

T 2
m

(the slope of the regression function), and σ2

∆T (the mean squared

error of regression), respectively. They are used in Equations (3.5)-(3.8) for estimation

of the model parameters.

Tm =
β2/Tm

β2/T 2
m

(3.5)

β =

√
β2

Tm
× Tm (3.6)
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σ =

√
σ2

∆T
×∆T (3.7)

M =
D0

√
2πTm

βe−0.5β2∆T
(3.8)

σ, Tm and β are estimated to be 0.24, 6.43 years and 3.29, respectively. Based on the

facts in regression, Equation (3.1) is justified as a reasonable model for the stochastic

demand illustrated in Figure 3.2.

3.1.4 Bayesian Estimation of Tm

Equation (3.3) shows that the demand distribution relates to a non-predetermine

parameter Tm, so the uncertainty in Tm intensifies the uncertainty in future demand.

Bayesian estimation has a contribution of improving the knowledge about future demand

through gaining more accurate information about Tm by learning demand.

Θ represents the uncountably infinite set containing all possible outcomes of Tm,

and θ is a value of Tm. X denotes the countably finite set consisting of all possible

values of Dt (∀t ∈ [0, T ]), and x is a possible observation of Dt. fDt+dt
(x̃|θ, x) represents

the distribution of future demand Dt+dt(dt ≥ 0), wherein x̃ is a possible value of future

demand. Equation (3.9) shows that fDt+dt
conditions on θ, the estimate of Tm, and x,

the observation of Dt.

fDt+dt
(x̃|θ, x) =

1√
2πdtσ

e
−

 
x̃−x

x −
 

β(M,D0,θ)
2

θ
−β(M,D0,θ)

2

θ2 (t+ dt
2 )−σ

2

2

!
dt

!2

2dtσ2

θ ∈ Θ, x ∈ X, ∀x̃ ∈ X

(3.9)
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The belief about Tm usually is in the form of a probability distribution, indicating

the uncertainty in Tm. Bayesian estimation makes the belief about Tm condition on x,

the observation of the current demand Dt, indicated as φTm
(θ|x). As Equation (3.10)

shows [see Berger (1985)], Bayesian estimation will update φTm
(θ|x) to φTm

(θ|x̃) in dt

when x̃, the subsequent demand after x, is observed.

φTm
(θ|x̃) =

fDt+dt
(x̃|θ, x)φTm

(θ|x)∫
θ∈Θ fDt+dt

(x̃|θ, x)φTm
(θ|x)dθ

x̃ ∈ X, ∀θ ∈ Θ (3.10)

Right after the update is accomplished, x̃ in Equation (3.10) turns to x, and correspond-

ingly, φTm
(θ|x̃) becomes φTm

(θ|x).

An initial belief about Tm is usually provided before a product enters the market

since some factors (e.g. the expected economic advantages in terms of “new”) provide

some information about how quickly the product will penetrate the market. The initial

belief is in the form of a probability distribution, φTm
(θ)(θ ∈ Θ). For example, Bollen

(1999) estimates Tm as normal distributed, whose mean is µTm
and standard deviation is

σTm
(i.e., N(µTm

, σ2
Tm

)). Therefore, φTm
(θ|x) at the beginning of the PLC is independent

of the initial demand, equivalent to φTm
(θ).

Figure 3.3 illustrates how Bayesian estimation improves the knowledge about Tm.

The top plot in Figure 3.3 displays the progress that the probability distribution of Tm

is updated by Bayesian estimation. The initial belief about Tm is a normal distribution

whose mean is five years with a standard deviation of one year. Bayesian estimation

updates the belief about Tm over the course of PLC, and the distribution of Tm is

narrowed and gradually stays around 3.77 years, the actual value of Tm. The bottom plot
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illustrates the estimation error during the process, which drops quickly. The observations

in Figure 3.3 inform us that Bayesian estimation is an effective way of improving the

knowledge about Tm and by extension, µt.

Fig. 3.3. Bayesian Estimation of Tm

3.2 Modeling WK Dynamics in Adoption of Technology Advances

Production processes have to be changed frequently to adapt to production tech-

nology advances during the PLC, either internal (e.g., internal research and development)

or external (e.g., new technology created outside the firm) [e.g., Terwiesch & Xu (2004)].

Process changes interrupt learning, either individual or organizational, during the PLC.

Workforce knoweldge (WK) thereby often lose partial relevance to what they attempt to
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fulfill, termed WK dynamics. Training workforce continuously is an approach to recover

WK. The amount of time spent on continuous training is manifest of the level of WK.

The less the relevant WK that the workforce have, the more the amount of time spent

on continuous training. Thus, this thesis describes WK dynamics in adoption of pro-

duction technology advances through modeling the change in training efforts during the

PLC. More specifically, the percent of labor time spent on continuous training (CTT),

ηt, is modeled to manifest how the knowledge workforce is influenced by the production

environment change.

3.2.1 The CTT Model Formulation

Unexpected arrivals of technology advances are discrete and unancitipated, and

a Poisson jump process is usually used to represent technology advances [e.g., Kortum

(1997), Ahn & E. (1988), and Boston & Pointon (1999)]. The training effort rises sharply

in adoption of technology advances, and thus ηt exhibits discrete upward jumps during

the PLC. ηt descends gradually in a decreasing pace after jump due to the learning

effect (i.e., WK increases during training, but at a reduced speed because opportunities

of improvement are exhausted gradually. As a results, ηt is assumed to decrease in

an exponential manner). ηt thus can be represented by a Poisson jump process plus a

mean-reverting process , as indicated in Equation (3.11).

dηt = αη (ηm − ηt) dt + σηdWηt + rηdNt (3.11)
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αη in Equation (3.11) is the reverting speed after jump, and it represents the learning

capability of the knowledge workforce. Nt is a Poisson process with the jump intensity

λη, and it accounts the number of unanticipated jumps of ηt up to t. rη is the jump size

which is assumed to be a constant in this thesis. ση is the volatility of the mean-reverting

process, and Wηt is a Wiener process. They together manifest the unpredictability in

the mean-reverting process. ηm is the equilibrium level of ηt.

Equation (3.12) is the integral form of Equation (3.11), and Appendix (D) shows

how it is derived.

ηt = e−αηtη0 +
(
1− e−αηt

)
ηm + ση

∫ t

0

eαη(s−t)dWηs + rη

∫ t

0

eαη(s−t)dNs (3.12)

η0 in Equation (3.12) is the initial value of ηt.

Equations (3.13) and (3.14) are the expected value of ηt (E[·] denotes the operator

of expected value) and the variance of it (V AR[·] represents the operator of variance),

respectively. Appendix E shows how E[ηt] and V AR[ηt] are derived.

E[ηt] = e−αηtη0 +
(
1− e−αηt

)(
ηm +

ληrη

αη

)
(3.13)

V AR[ηt] =
(
1− e−2αηt

) ληr
2
η

+ σ2
η

2αη
(3.14)

The expected value and the variance of ηt, as in Equations (3.13) and (3.14), reveal

the layout of ηt over the PLC. E[ηt] starts at η0 and goes to ηm + ληrη

αη
asymptotically.

V AR[ηt] begins at zero, increases over time in a decreasing pace, and ceases at
ληr2

η+σ2
η

2αη

asymptotically.
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3.2.2 Risk-Neutralized ηt

The Poisson process, Nt, has a positive trend ληt over time, so ηt is not a Mar-

tingale process (i.e., a trendless stochastic process). A compensated Poisson process is

defined by eliminating the trend ληt, as indicated in Equation (3.15) (See chapter 6 in

Neftci (2000)).

N∗
t

= Nt − ληt (3.15)

The market price of jump risk is zero because the jump risk can be assumed to

be diversified [Merton (1976)]. Thus, by replacing Nt with N∗
t

in Equation (3.12), the

risk-neutralized form of ηt is obtained, as in Equation (3.16).

ηt =e−αηtη0 +
(
1− e−αηt

)(
ηm −

ληrη

αη

)

+ ση

∫ t

0

eαη(s−t)dWηs + rη

∫ t

0

eαη(s−t)dNs

(3.16)

The expected value of the risk-neutralized ηt is e−αηtη0+
(
1− e−αηt

)
ηm, and the variance

of the risk-neutralized ηt is
(
1− e−2αηt

) ληr2
η+σ2

η

2αη
, correspondingly.

3.3 Formulation of Capacity Options in a Knowledge Workforce

Semiconductor manufacturing consists of three major phases: design and mask

creation, front-end processing (wafer fabrication) and back-end processing (assembling

and testing). The second phase is where the knowledge workforce contributes the most

to production quality improvement in way of solving problems arising from this phase.
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The PLC phenomenon causes an unstable and unpredictable demand on the knowl-

edge workforce and unreliable performance, and KWA is modeled as capacity options

in a knowledge workforce for addressing the difficulties posed by the PLC phenomenon.

Accompanying successive generation replacements, the whole workforces flow gradually

from old generations to new ones. The time window that more than two generations

are simultaneously in production is less than one year. Although the overlap of two

successive generations is longer than the overlap of three, the new generation, as the

most competitive product in the market, has a higher priority than the old one. Thus,

this thesis simplify the problem substantially by formulating a capacity planning deci-

sion for only one generation of product. Without further explanation, the “knowledge

workforce”, is referred to as the workforce who are solving problems in wafer fabrication

with which the decision is dealing. They are a subset of the whole workforces. Planning

the knowledge workforce involves with neither hiring nor firing employees in the whole

workforces. Knowledge workforce capacity (KW-capacity) is an appropriate metric for

specifying the impact of the knowledge workforce on production in this thesis study for

two reasons. First, in workforce planning the workforce volume is a major concern [e.g.,

Mody:1989, Dorroh-et-al:1994]. Second, only a team capable of performing the required

tasks is taken as a unit of KW-capacity.

3.3.1 The Unit of KW-Capacity

The knowledge workforce team up to solve problems in wafer fabrication. Thus, a

team is taken as the unit of KW-capacity. According to the work by Appleyard & Brown

(2001), the team is composed of skilled engineers, technicians, and operators, and each
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occupation accounts for about 1
3 . Engineers act as team leaders since they are responsible

for leading the processes of problem solving. Most of them have an undergraduate B.S.

degree in engineering or science, and they focus on discovering why problems happened

and how to handle them. Technicians, who usually have a technical high school or 2-

year technical college diploma, assist engineers with troubleshooting, tool installation,

and cleaning. Operators contributes less than the other two occupations. They usually

have a high school diploma without attending college, and their roles are monitoring the

process, collecting data, and conducting some simple statistical analyses. A team for

solving problem could be teamed up in different ways, as described in Bailey (1998).

3.3.2 Training for Acquisition/Retention of KW-Capacity

KWA neither is a natural characteristic of workforce nor could be bought in

the market or easily obtained by imitation. It is cultivated by practices of workforce

management [e.g., Plonka (1997), Bailey (1998), Sattler & Sohoni (1999), Appleyard &

Brown (2001), Anderson (2001), and Sumukadas & Sawhney (2004)]. Training is an

effective practice for acquiring/retaining KW-capacity. The time interval between two

successive opportunities of capacity adjustment, ∆T , equals the lead time of adjustment,

which determines how many opportunities of KW-capacity adjustment exist over the

PLC. During the PLC [0, T ] there are b T
∆T c steps. The capacity adjustment at step i is

determined at ti−1 (i.e., the beginning of the step), and it is fulfilled at ti (i.e., the end

of the step). Therefore, capacity options exist at ti (for i ∈ I =
{
0, 1, 2, . . . , b T

∆T c − 1
}
),

and they will expire at tb T
∆T

c. ci represents the KW-capacity delivered at ti. It lasts for

one step, and then it is updated to ci+1.
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The spillover of production knowledge and technologies from an old generation

to a new one is limited, and the significant drop in productivity during generation re-

placements is an evidence [e.g., Klenow (1998), and Terwiesch & Xu (2004)]. Thus, for

employees who are allocated to a new generation, the most of their previous knowledge

becomes irrelevant to their new positions. An initial training could effectively recover

the capability of knowledge workforce in the new positions. NIT (ci+1|ci) (NIT i is the

simplified notation in the remains of this thesis) is the number of teams which need the

initial training at during [ti, ti+1), as in Equation (3.17).

NIT (ci+1|ci) = max(ci+1 − ci, 0) (3.17)

Equation (3.17) indicates that the initial training is conducted only in case of capacity

expansion (i.e., ci+1 > ci).

Employees, specially engineers in teams, have to be trained frequently although

they have already received the initial training. This is because process changes in adop-

tion of technology advances make the WK lose partially relevance to tasks they attempt

to fulfill [Appleyard & Brown (2001)]. This type of training is referred to as the continu-

ous training. This thesis assumes that a team without the necessary knowledge or skills

has rare contributions to problem solving. The assumption is founded on a fact that the

obsolescence of WK is relatively homogeneous in the PLC environment. NCT (ci+1|ci)

(NCTi is the simplified notation in the remains of this thesis) represents the number of



51

teams which need the continuous training at during [ti, ti+1), as in Equation (3.18).

NCT (ci+1|ci) = min(ci, ci+1) (3.18)

Equation (3.18) indicates that, when the KW-capacity needs an expansion, all of the

current teams have to receive the continuous training, and the gap between ci and ci+1

is filled by the initial training. If the KW-capacity needs an extraction, only a portion

of the current teams have to receive the continuous training, and the remaining portion

(i.e., ci − ci+1) is either sent to meet requests from other generations or becomes idle

after the current jobs are finished.

xp(ci+1|ci, ηi) in Equation (3.19) (xpi will be used as the simplifed notation in the

remains of this thesis) represents the KW-capacity that are actually in problem solving

during [ti, ti+1). xpi is lower than ci, usually, because the continuous training deducts a

portion of ci that otherwise can be used to generate immediate production profits.

xp(ci+1|ci, ηi) = ci − ηi min(ci, ci+1) (3.19)

ηi in Equation (3.19) represents ηt during [ti, ti+1). The expression of xpi indicates that

adoption of technology advances unanticipatedly variates the capability of knowledge

workforce in problem solving. Thus, KWA is also manifested by the capability of gener-

ating desired KW-capacity when ηt is stochastic. Equation (3.19) additionally indicates

that the adjustments of KW-capacity during the PLC are linked as a chain.
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3.4 Quantifying KWA’s Impact Elements on Production

KWA would benefits a dynamic system. Meanwhile, the system has to pay for

it. Quantifying the elements of KWA impact on production is a necessary step towards

optimization of KWA.

3.4.1 Characterizing The Role of Knowledge Workforce

Yield is a commonly used measure of production quality in semiconductor manu-

facturing, which is the product of line yield (the proportion of non-scrapped wafers) and

die yield (the proportion of die on a non-scrapped wafer that pass tests). Yield manifests

how deep the gap is between what have been specified in the process recipe and how

the process is actually operated [e.g., Terwiesch & Xu (2004)]. The knowledge work-

force would fill the gap through solving problems in transfer of cutting-edge technologies

into products. Thus, yield can measures the role of knowledge workforce in production

quality improvement. The impact of knowledge workforce on yield can be specified by a

yield function wherein yield changes over KW-capacity

This thesis builds a yield function based on two notions. First, the marginal

return of the knowledge workforce would decrease when KW-capacity increases [e.g.,

Mody (1989), and Dorroh et al. (1994)]. The reason of this is that opportunities of yield

improvement are limited and will be exhausted progressively. Yield thus is a increasing

concave function of KW-capacity. Second, the marginal return of the knowledge work-

force drops substantially when the production ramps up, as indicated in relative work

[e.g., Terwiesch & Bohn (2001)]. Therefore, this thesis assumes the yield function as
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Equation (3.20).

y(ci+1, xwi|ci, ηi) = 1− e
−λy

xpi
xwi = 1− e

−λy
ci−ηi min(ci,ci+1)

xwi . (3.20)

λy in Equation (3.20) informs about the speed of yield improvement. xpi is the KW-

capacity in problem solving during [ti, ti+1), and Equation (3.19) has clarified the esti-

mation of it. xwi measures the number of wafer starts at that step, which represents

the production scale. Equation (3.20) shows that KWA, as capacity options in a knowl-

edge workforce, makes it possible to push yield to desired levels although the production

scale has to be changed substantially to adapt to the unstable and volatile demand dur-

ing the PLC. Equation (3.20) additionally indicates that the capacity options benefit

yield management through compensating the unreliable performance of the knowledge

workforce.

The way that this thesis models the impact of the knowledge workforce on pro-

duction is different from the literature [e.g., Mody (1989), and Dorroh et al. (1994)]. For

example, Mody (1989) formulates the reduction of variable cost as a results of cumulative

investments on the knowledge workforce, as indicated in Equation (3.21).

rt = ρNpte
−
R t
0

Npτ dτ (3.21)

Wherein ρ is a parameter representing the difference in plant cells. vc is the variable cost

per wafter in this thesis, and the variable cost per chip is v, which is equal to vc
ytNIC

(NIC

is the number of chips resided in a wafer). The variable cost models in Mody (1989)
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and in this thesis are compared in Table 3.1. To keep consistent in the comparison,

subscript t is used in both models to represent the time index. Table 3.1 indicates that

the variable cost is a decreasing convex function of the KW-capacity in both studies.

However, the comparison further shows that Equation (3.20) is especially designed for

the PLC environment since the yield function considers two additional issues. First, large

production scales would depress the effectiveness of the knowledge workforce. Second,

the instant KW-capacity Npt, rather than the cumulative capacity over time
∫ t
0

Npτdτ ,

causes the yield improvement, indicating that successive process changes during the PLC

discount the early investments on the knowledge workforce.

Table 3.1.
Comparing The Reduction of Variable Cost by Investments on KW-capacity

Mody(1989) The Thesis
∂v

∂xpt
−ρxpte

−
R t

0 xpτ dτ < 0 − λyvc

xwtNICy2
t

e−λy
xpt
xwt < 0

∂
2
v

∂x2
pt

ρ(x2
pt
− 1)e−

R t

0 xpτ dτ ≥ 0
λ

2
y
vc(2−yt)

x2
wt

NICy3
t

e−λy
xpt
xwt > 0

3.4.2 Costs in Acquisition/Retention of KW-Capacity

Identifying costs spent in generation of KWA helps keep rationality in utilization

of KWA. Based on the work by Appleyard & Brown (2001), this thesis assumes that

individuals who are dispatched to a new generation receive an one-month initial training

just before ahead of undertaking new responsibility, and engineers who are in charge of

problem solving and will continue the responsibility spend one week in the continuous
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training per month on average (i.e., E [ηt] = 25%). Costs involved in training, referred

to as KW-capacity acquisition/retention costs, are an important component of the costs

in wafer fabrication, as indicated in Figure 3.4. KW-capacity acquisition/retention costs

are separated into two components. The first component includes training expenses, and

the second component consists of production profit losses since training occupies produc-

tion resources (e.g., employees and equipment) that otherwise can be used to generate

immediate production profits. The costs are the payment for KWA, and they will be paid

off in two approaches. First, the costs make the expensive fixed costs recovered quickly.

A state-of-art fab plant costs $3.5 billions or even more, so semiconductor manufacturers

have a high operating leverage and require massive economies of scale. Second,the costs

of KWA substantially lower the variable production cost through improving production

quality.

Fig. 3.4. A Classification of Costs in Wafer Fabrication

This thesis assumes that every team allocated to a new generation is from the

previous generation. All employees in the team, including operators, technicians and

engineers, receive an initial training before they serve the new generation. Employees in
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the initial training can not take the previous responsibility, and thus a production profit

loss in the previous generation is caused, as calculated in Equation (3.22).

CIP (ci+1|ci) = aIP
1i

(
eaIP

2i NITi − 1
)

(3.22)

CIP (ci+1|ci) in Equation (3.22) will be simply notated as CIP
i

is the remains of this thesis.

Appendix F shows how Equation (3.22) and the parameters aIP
1i

and aIP
2i

are derived.

Equation (F.9) shows that aIP
1i

decreases quickly over time, and Equation (F.10) indicates

that aIP
2i

increases dramatically as time elapses. Thus, CIP
i

, the production profit loss

caused by the initial training, is observed to decrease and be more curved when moving

along the PLC, as displayed in Figure 3.5 which illustrates CIP
i

at three different time

in the PLC. The figure indicates that to obtain a new unit of KW-capacity in the early

PLC is more expensive than in the late PLC, and to instantly and substantially raise

KW-capacity will become more and more difficult along the PLC. The characteristic

of CIP
i

emphasize the importance of planning KW-capacity strategically over the PLC.

Suddenly raising or lowering KW-capacity due to the short sight would hurt production

profitability.

Unlike the initial training, the continuous training results in a production profit

loss in the current generation, which has been indicated by the difference between ci, the

available KW-capacity, and xpi, the actual KW-capacity in problem solving in evaluation

of periodic revenue. Thus, to evaluate this cost explicitly is not a necessity.

Except for the losses of production, training programs themselves involve some

expenses. CIT (ci+1|ci) (CIT
i

is the simplified notation in the remains of this thesis) and
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Fig. 3.5. Production Profit Loss due to The Initial Training

CCT (ci+1|ci) (CCT
i

is the simplified notation) represent the expenses of initial training

and of continuous training, respectively. This thesis formulates them based on three

notions. First, the training program at a large scale is more complex to be handled

than at a small scale. Second, workforce heterogeneity is more severe in a large group

of employees than in a small group. Third, the KW-capacity that an organization can

obtain is not infinite. Thus, it is reasonable to assume increasing marginal costs of

training. The more sever the three abovementioned issues, the larger the marginal

costs. This thesis thereby assumes CIT
i

and CCT
i

as quadratic functions, as illustrated

in Equations (3.23) and (3.24).

CIT (ci+1|ci) = aIT
0

sign(NIT i) + aIT
1

NIT i + aIT
2

N2
IT i

, (3.23)
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wherein aIT
(.)

are nonnegative parameters of the initial training cost function.

CCT (ci+1|ci) = aCT
0

sign(NCTi) + aCT
1

NCTi + aCT
2

N2
CTi

, (3.24)

wherein aCT
(.)

are nonnegative parameters of the continuous training cost function.

3.5 Optimization of KWA w.r.t. Demand Changes

To facilitate the presentation, this thesis first takes only market demand as the

underlying stochastic process that KWA intends to respond to. So, ηt is assumed as

deterministic during the PLC in this section. This assumption will be relaxed in the

next section.

3.5.1 The Optimization Problem

Agility should not be simply interpreted as short response time, low costs, suffi-

cient robustness, broad scope or other metrics [Dove (1995)]. A manufacturer will not

be competitive if it has to pay an overwhelming expense for emphasizing too much on

just one aspect. Agility is a balance among them at a strategic level. For a profit-driven

manufacturer, to maximize the expected NPV (or the expected NPV increment) through

optimization of KWA meets the goal of achieving long-term competition and profits.

This thesis models KWA as capacity options in a knowledge workforce, so KW-

capacity is a major decision variable. To be specific, confronting unanticipated demand

changes, the decision maker has to at least periodically review how many units of KW-

capacity should be built for the subsequent step so that demand at that step is met
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properly for pursuing long-term profitability. To plan KW-capacity for the subsequent

step, the decision maker has to additionally plan the capacity for any level of demand

at any remaining step because of two reasons. First, the demand forecast is in a form of

probability distribution and the variance of demand increases linearly over time. Second,

KW-capacity adjustments over the PLC are dependent.

The decision in optimization indicates that KWA is American options which have

no closed form solutions in optimization. Thus, the optimization of KWA is accomplished

numerically. This thesis pursues the optimization of KWA under demand uncertainty

using the RO valuation in below. It first approximately presents the distribution of future

demand using a binomial lattice because it is straightforward when the option valuation

is complex. After that a standard backward dynamic programming (DP) is conducted

on the binomial lattice. The backward DP optimizes capacity options by maximizing

the expected remaining value at every node of the lattice and for any possibility of

KW-capacity, ultimately leading to the maximization of the expected NPV.

3.5.2 The Optimization Scheme

The scheme of optimizing KWA under demand uncertainty can be named as

the repeated knowledge workforce planning because accuracy of the demand forecast is

conditioning on how much information about Tm the decision maker has. Decision bias

may be reduced by repeating capacity planning for the remainder of PLC when Bayesian

estimation updates the information about Tm. The pseudocode of the optimization

procedures is in below:

1. To find where capacity options exist
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estimate the decision horizon TD;

determine the interval between capacity adjustments ∆T ;

capacity options exist at ti (for i = 0, 1, . . . , ND − 1; ND =
⌊

TD
∆T

⌋
).

2. for i := 0 to ND − 1

observe Di;

obtain T̂mi, the Bayesian estimate of Tm, if i > 0;

build lattice Bi;

find optimal capacity c∗
i+1

with backward DP on Bi;

endfor

The decision horizon, TD, is estimated by searching for a point in the PLC whence

no further profit can be realized due to the price erosion. The quick erosion of sales

price over the PLC is another clear phenomenon over the PLC. The sales price for each

generation of product is high at the beginning of the PLC, but it falls rapidly and

monotonically during the PLC [e.g., Mody & Wheeler (1987), and Siebert (2003)]. This

thesis formulates the sales price in Equation 3.25.

pt = p0 exp
(
−λpt

)
(3.25)

p0 in Equation (3.25) is the initial price, and λp is the rate of price erosion. The

sales price in Equation 3.25 is a decreasing function of time but at a reduced pace(
∂pt
∂t < 0, ∂2pt

∂t2
> 0
)
, which consists with the notion in Siebert (2003). This thesis as-

sumes that the decision maker stops producing this generation of product after TD,

which means he/she only needs to consider decisions before TD.
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The lead time of the initial training, ∆T , is taken as the step size on the time index

in approximation of demand, so how many opportunities of KW-capacity adjustment

exist during the PLC depends on how long ∆T is. ∆T is about one month, relative

short compared to the PLC which is usually 10 years on average.

A unique lattice Bi is constructed for each opportunity of KW-capacity adjust-

ment, and all the lattices form a lattice topology BI = {Bi|i ∈ I = {0, 1, . . . , ND − 1}}.

Construction of BI over the PLC uses the newly updated Bayesian estimate of Tm, so

the time horizon of Bi (∀i ∈ I) is estimated in Equation (3.26).

TDi = min(TD, 2T̂mi)− i∆T (3.26)

Correspondingly, the number of steps in Bi is in Equation (3.27).

NDi =
⌊

TDi

∆T

⌋
=

⌊
min(TD, 2T̂mi)

∆T

⌋
− i (3.27)

T̂mi In Equations (3.26) and (3.27) is assumed as the middle of the PLC. 2T̂mi could

be shorter than TD, so min(TD, 2T̂mi) − i∆T is the proper estimate of the remainder

decision horizon from ti.

The backward DP is repeated on BI . That is, at t0, the beginning of the PLC,

KW-capacity is decided for all demand levels at any remaining steps based on lattice

B0 (µTm
is the best point estimate of Tm given that D0 is the only demand information

available). At ti (for i = 1, 2, . . . , ND−1), the newly coming demand Di makes it possible
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to obtain T̂mi using Bayesian Estimation. Then, Bi starts from Di and is based on T̂mi,

whereon KW-capacity is re-decided for all demand levels at any remaining steps.

3.5.3 Approximating Dt as A Binomial Lattice

Parameters of BI are functions of drift rate in demand, µt, due to the adoption

of modified risk-neutral valuation principle. The time dependency of µt will lead to a

variable time step if demand is approximated using the popular CRR lattice (see Cox

et al. (1979)). Approximation demand using a lattice with a variable step not only

violates the design of KWA but complicates the RO valuation. This thesis thus adopts

the JR lattice presented by Jarrow & Rudd (1983) to cope with the time dependency of

the drift rate. The drift rate in the JR lattice is represented by demand levels rather than

by the risk-neutral probability. As a result, a lattice with a constant step is capable of

approximating Equation (3.1) (A comprehensive comparison of lattices in the American

options valuation is discussed by Broadie & Detemple (2004)).

Figure (3.6) illustrates lattice Bi. The lattice starts at Di, the desecrate demand

coming at ti. At tik (∀k ∈ Ki = {0, 1, . . . , NDi − 1}), the end of step k on Bi (it is the

end of step i + k during the PLC as well), Bi has k + 1 unique levels of demand, which

are denoted as Dikj (∀j ∈ Jk = {0, 1, . . . , k}) in a descending order. The ratio of demand

increase and decrease at tik are calculated in Equation (3.28).

uik =
Dik+1j

Dikj
= e

�
β
2

T̂mi
− β

2

T̂2
mi

(tik+∆T
2 )− 1

2
σ2−λσ

�
∆T+σ

√
∆T

dik =
Di(k+1)(j+1)

Dikj
= e

�
β
2

T̂mi
− β

2

T̂2
mi

(tik+∆T
2 )− 1

2
σ2−λσ

�
∆T−σ

√
∆T

(3.28)
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Fig. 3.6. Lattice Bi Representing The Future Demand Since Di

The risk neutral probability is evaluated in Equation (3.29).

Prn =
e0.5σ2∆T − e−σ∆T

eσ∆T − e−σ∆T
(3.29)

Prn in Equation (3.10) approaches to 0.5 as ∆T goes to zero. The choices of uik , dik ,

and Prn as above insure that the binomial process has the same first two moments as

the lognormal process in Equation (3.1). Thus, when demand Di is observed, the future

demand since then is properly approximated by the binomial process Dikj in Equation
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(3.30).

Dikj = Die

�
β
2

T̂mi
− β

2

T̂2
mi

(ti+
k∆T

2 )−σ
2

2
−λσ

�
k∆T+(k−2j)σ

√
∆T

∀k ∈ Ki, j ∈ Jk
(3.30)

3.5.4 RO Valuation on A Binomial Lattice

At ti(∀i ∈ I), the optimal capacity, c∗
i
, accompanying the arrival of Di, becomes

available. Based on c∗
i

and Di, the optimal capacity for the subsequent step, c∗
i+1

, can

be attained within the action space C (C = {0, 1, . . . , UC} is a countable finite set) using

the RO valuation.

The RO valuation is a standard backward DP procedure, which is composed of the

optimizations of a well-defined valuation function in a backward order. The optimization

at tik (∀k ∈ Ki) is based on two state variables, Dik and cik , which are demand and

the KW-capacity at tik respectively. Since Bi enumerates all levels of Dik(∀k ∈ Ki), the

DP procedure on Bi is equivalent to maximizing the valuation function at any node at

tik (for k = NDi − 1, NDi − 2, . . . , 1, 0) and any possible value of cik . Equation (3.31)

expresses the valuation function at tik , which shows that decisions are the capacity for

the subsequent step, cik+1
and the current production scale, xwik .

V
(
cik+1

, xwik | Dik , cik

)
= ptik

min
(
Dik , NICxwiky

(
cik+1

, xwik | cik

))
− cvxwik − CIP (cik+1

|cik)− CIT (cik+1
|cik)− CCT (cik+1

|cik)

− EV
(
Dik , cik+1

)
Dik := Dikj ∃i ∈ I,∃k ∈ Ki,∀j ∈ Jk; cik := ∀c ∈ C

(3.31)
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The valuation function in Equation (3.31) calculates the expected remaining value

at tik given the decisions cik+1
and xwik made in the situation identified by states

Dik and cik . The valuation function indicates that capacity options in the knowledge

workforce at tik provide the opportunity to manipulate the expected remaining value.

V
(
cik+1

, xwik |Dik , cik

)
is composed of three parts. The first part is the periodic revenue

during [tik , tik+1
), which is the product of sales price ptik

and the periodic sales volume

min
(
Dik , NICxwikyik

)
. The second part consists of all explicit periodic variable costs,

including the production variable cost cvxwik , the production profit loss caused by the

initial training CIP
ik

, the expense of the initial training CIT
ik

, and the expense of the con-

tinuous training CCT
ik

. The last part EV
(
Dik , cik+1

)
is the expected maximum future

value given the current demand Dik and KW-capacity for the subsequent step cik+1
, as

evaluated in Equation (3.32).

EV
(
Dik , cik+1

)
=e−rf∆T

[
PrnV ∗

(
uikDik , cik+1

)
+(1− Prn)V ∗

(
dikDik , cik+1

)]
Dik := Dikj∃i ∈ I,∃k ∈ Ki,∀j ∈ Jk; cik := ∀c ∈ C

(3.32)

V ∗ in Equation (3.32) represents the maximum of valuation function at tik+1
condi-

tioning on the demand at tik and KW-capacity at tik+1
. Decisions on Bi (∀i ∈ I)

form a chain because Equations (3.31) and (3.32) indicate that the maximization of

V
(
cik+1

, xwik |Dik , cik

)
pertains to V ∗

(
uikDik , cik+1

)
and V ∗

(
dikDikj , cik+1

)
. Backward

recursion on Bi thus is a necessity for obtaining c∗
i+1

.
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The Backward recursion on Bi (∀i ∈ I) involves determining the optimal ca-

pacity options in the knowledge workforce, as illustrated in Equation (3.33), through

maximizing the valuation function in a back order (i.e., k = NDi − 1, NDi − 2, . . . , 0).

V ∗(Dik , cik) = max
xwik

∈W,cik+1
∈C

{
V
(
cik+1

, xwik |Dik , cik

)}

=ptik
min

(
Dik , NICc∗

wik
y(c∗

ik+1
, x∗

wik
|cik)

)
− cvx

∗
wik

− CIP
(
c∗
ik+1

|cik

)
− CIT

(
c∗
ik+1

|cik

)
− CCT

(
c∗
ik+1

|cik

)
− EV

(
Dik , c∗

ik+1

)
Dik := Dikj ∃i ∈ I,∃k ∈ Ki,∀j ∈ Jk; cik := ∀c ∈ C

(3.33)

ci∗k+1
and x∗

wik
in Equation (3.33) are the decision which maximizes the valuation function

in Equation (3.31). The backward recursion on Bi starts from ti(NDi−1)
, the beginning of

last step wherein the last chance of KW-capacity adjustment resides. Capacity options

will expire after that, so the expected future value at ti(NDi−1)
is zero, and no additional

capacity should be further invested (i.e., c∗
NDi

= 0). c∗
i+1

will be obtained at the end of

the backward recursion.

Appendix G justifies that x∗
wik

is a function of cik+1
. That is, x∗

wik
= gZ(cik+1

).

Thus, the backward DP on Bi is reduced to have only one decision variable cik (∀k ∈ Ki),
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and Equation (3.33) turns to Equation (3.34), correspondingly.

V ∗(Dik , cik) = max
cik+1

∈C

{
V
(
cik+1

, gZ(cik+1
)|Dik , cik

)}

= ptik
min

(
Dik , NICgZ(c∗

ik+1
)y(c∗

ik+1
, gZ(c∗

ik+1
)|cik)

)
− cvg

Z(c∗
ik+1

)− CIP
(
c∗
ik+1

|cik

)
− CIT

(
c∗
ik+1

|cik

)
− CCT

(
c∗
ik+1

|cik

)
− EV

(
D(ik), c

∗
ik+1

)
Dik := Dikj ∃i ∈ I,∃k ∈ Ki,∀j ∈ Jk; cik := ∀c ∈ C

(3.34)

3.5.5 Improving Computational Efficiency of DP Procedure

Computational inefficiency of DP procedure is a potential problem that the work

of this thesis confronts. The RO valuation repeats ND times, each time on a unique

lattice Bi. Bi has NDi(NDi+1)
2 nodes, on each of which the valuation function will be

evaluated (UC + 1)2 times. If the time spent on evaluating the valuation function for

one time is taken as the unit of computational effort, the computational effort of the RO

valuation on BI is (UC + 1)2
∑

i∈I
NDi(NDi+1)

2 . Thus, the computational complexity is

O(U2
C
N3

D
). Computational complexity can be reduced substantially either by reducing

the action space C or by enlarging the step size of BI . To enlarge the step size is not

realistic in this thesis. On one hand, the step size of BI has its own physical meaning,

so to change it is impractical. One the other hand, to enlarge the step size would reduce

the opportunities of KW-capacity adjustments, which conflicts with the essence of KWA.
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Therefore, to consider less possibilities in C is the way of speeding up the DP procedure,

and this idea can be realized by making a good guest on the optimal decision.

On one hand, C as the full decision space of cik+1
can be replaced by a reduced

decision space, [max(0, cik−∆c),min(UC , cik +∆c)], wherein ∆c is a small positive integer

representing the maximum deviation of cik+1
from cik . This substitution is based on a

fact that c∗
ik+1

is highly possible near cik since adjusting KW-capacity substantially either

makes the capacity expansion cost rises sharply or leads to severe loss from KW-capacity

insufficiency. On the other hand, C as the full state space of cik can be replaced by a

reduced state space [0,min(UC , ζDik)], wherein ζ is a positive parameter for pertaining

the demand unit to the capacity unit. The substitution is based on a notion that c∗
ik

is highly relevant to demand for avoiding the expensive holding cost from the excessive

KW-capacity and immediate the loss from KW-capacity insufficiency. ζ is chosen to

insure a sufficiently high yield for satisfying demand. Of course, to immediately reduce

KW-capacity to 0 is a possibility. Therefore, [0,min(UC , ζD)] is a subset of C with a

higher chance of containing c∗
ik

than C.

∆c and ζ can be determined in simulation studies. Solution accuracy will be

improved at a reduced rate when ∆c increases, which can be discovered in a simulation

study. ∆c thus can be determined according to the acceptable level of solution accuracy.

ζ can be obtained in a similar approach.

Figure 3.7 displays the reduced decision/state space and the full decision/state C

on two unique nodes in a binomial lattice to illustrate the difference. The figure shows

that the reduced state space varies with demand, and the reduced action space is much
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narrower than C. The computational effort is reduced by
(
1− 2 ∆c

UC+1

)
× 100% at least,

correspondingly.

3.6 Optimization KWA w.r.t. Demand Changes and WK Dynamics

Frequent, unexpected jumps of ηt manifest the major source of KW dynamics

in adoption of technology advances. ηt is another underlying process containing some

interests of KWA. This section considers uncertainties in Dt and in ηt when optimizing

KWA. To focus on how KWA reacts to ηt jumps, this section assumes that ση in Equation

(3.16) equals zero or ση � ληr
2
η
. ηt thus turns to be Equation (3.35).

ηt = e−αηtη0 +
(
1− e−αηt

)(
ηm −

ληrη

αη

)
+ rη

∫ t

0

eαη(s−t)dNs (3.35)

The optimization that additionally considers the underlying process in Equation

(3.35) does not substantially change the major framework in the previous section.

3.6.1 Approximating ηt as A Binomial Tree

Binomial process could be a reasonable discrete approximate of Poisson process

if the time step is small enough (see Appendix H). Assuming that [0, t) is divided into l

equal intervals in length of ∆T ′, and defining ω as e−αη∆T ′
, ηl in Equation (3.36) is the

discrete approximate of ηt.

ηl = ηl + rη
−→zl · −→ωl (3.36)
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Fig. 3.7. Replacing C with The Reduced Decision/State Space
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wherein

ηl = ωlη0 +
(
1− ωl

)(
ηm −

ωrηλη∆T ′

1− ω

)
, (3.37)

−→z l = [z1, z2 . . . , zl], (3.38)

−→ω l = [ωl, ωl−1, . . . , ω]. (3.39)

Equation (3.36) shows that ηl is separated into two parts. ηl is the deterministic trend

of ηl. rη
−→z l ·−→ω l represents the stochasticity of ηl. zk (k = Kl = {1, 2, . . . , l}) in Equation

(3.36) are independent and identical-distributed binomial variables for identifying the

status of jumps in the past l steps (e.g., zk = 1 indicates a jump happens in the kth step,

and no jump happens if zk = 0). Thus, −→z l is a vector variable which records the history

of jumps up to t. The magnitude of a jump will drop a little because of the learning

effect, which is manifested by mean-reverting of ηt after jump. ω measures the residual

effect of a jump in one step. For example, the residual effect of a jump happened in the

kth step ahead of t is reduced by a factor ωk. Thus, vector −→ω l specifies the residual

level of any possible jump up to t. rη
−→zl ·−→ωl thereby represents the accumulative residual

effect of η jumps up to t.

Vector −→ω l in Equation (3.36) has l unique elements and binomial variable vector

−→z l has 2l possible outcomes, so the dot product of them gives 2l possibilities. Thus,

Equation (3.36) has 2l possible outcomes, and it is equivalent to a binomial tree, as

Figure 3.8 illustrates. The binomial tree enumerates the 2l unique levels of ηl. If a jump

happens in the interval of [tl′−1, tl′) (i.e., the lth step), ηln, the nth level of ηl, either
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Fig. 3.8. A Binomial Tree Approximating The Risk-Neutralized ηt

jumps to η(l+1)(2n) or goes to η(l+1)(2n+1), as indicated in Equation (3.40).

ηu
l

= ωηl + (1− ω) ηm −
(
ωrηλη∆T ′)+ ωrη

ηd
l

= ωηl + (1− ω) ηm −
(
ωrηλη∆T ′)

ηl := ηln n = 0, 1, . . . , 2l − 1; ηu
l

:= η(l+1)(2n), ηd
l

:= η(l+1)(2n+1)

(3.40)

ηt is bounded within [0, 1], as indicated in Figure 3.8. Thus, Pη, the probability

whereby ηl jumps to ηu
l
, is defined in Equation (3.41).

Pη =



0 ηu
l

> 1

1 ηd
l

< 0

λη∆T ′ otherwise

(3.41)
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3.6.2 Replacing The Binomial Tree with A Group-Based Hybrid Tree

Binomial tree is computationally inefficient because the computational complexity

of a N-steps binomial tree is O(2N ). However, the variance of ηt is bounded asymptoti-

cally, as stated in Section 3.2. To represents such a variance using a binomial tree which

propagates quickly is not a necessity. This thesis suggests to replace the binomial tree

with a hybrid tree. Major difference between the binomial tree and the hybrid tree is the

way of choosing tree nodes for presenting uncertainty, which is similar to the selection

of nodes for representing subspaces in the branch and bound algorithm [Lawler & Wood

(1966)]. Some similar nodes in the binomial tree are combined and some nodes with

small values are approximated by zero, generating the hybrid tree. Thus, nodes of the

hybrid tree represent the state space more efficient and make the optimization problem

solved quickly.

The tree in Figure 3.8 enumerate 2l possibilities of ηtl′
. The speed whereby the

binomial tree propagates at tl′ is determined by the number of unique elements in the

sequence Sl(ω) =
{

ω, ω2, . . . , ωl
}

, as indicated in Equation (3.36). Although sequence

Sl(ω) has l unique elements, many of them just exhibit a trivial change when l is large

because the sequence will converge if l remains growing. This suggests to slow down

the propagation of the binomial tree through reducing the number of unique elements

in Sl(ω) when l is large. The result of this action is mergence of tree nodes. Further,

sequence Sl(ω) converges to zero if l is large enough, which indicates some elements

in the sequence can be approximated by zero when l remains growing. Accordingly,
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the binomial tree stops growing, ultimately. These ideas help reduce the computational

complexity of the binomial three, yet without severely impairing the solution accuracy.

Appendix I justifies that a ND-steps Binomial tree can be replaced by a three-

phases hybrid tree, approximately. That is, there exists two integers NT and NL, which

satisfy 0 < NT ≤ NL < ND and separate the PLC into three phases. Each phase has a

unique structure for representing the jump process. A hybrid tree that represents −→zl ·−→ωl ,

the unpredictability of ηtl′
(for 0 ≤ l < ND), is illustrated in Figure 3.9. The first phase

Fig. 3.9. A Hybrid Tree Representing The Unpredictability of ηt

of the hybrid tree consists of the first two steps, and it is a binomial tree. The steps three,

four, and five belong to the lattice-like phase, whereon some nodes of the binomial three

are combined. The strip phase has the last two steps, and the number of nodes stops
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growing in this phase. Neither the lattice-like phase nor the strip phase is a necessity,

so a three-phases hybrid tree is a generalized case.

Nodes on the hybrid tree can be grouped up based on similarity, forming a group-

based hybrid tree. Figure 3.10 displays the grouped hybrid tree in Figure 3.9. The

Fig. 3.10. The Group-Based Hybrid Tree

group-based hybrid tree is the same as the hybrid tree except that it uses a more clear

notation system, which benefits the analysis of complicated cases. Nodes of the group-

based hybrid tree which represents −→z l · −→ω l are denoted as Ωlmn, wherein the three

subscripts identify the node position. The first subscript is the discrete time index, the

second one is the between-group index, and the last one is the within-group index. For
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example, Ωlmn represents the nth element in the mth group at tl′ . Correspondingly, Ωlm

is the vector containing all the elements in the mth group, and Ωl is the vector consisting

of all the groups/elements at the lth step. The hybrid three has only one group in the

tree phase, the number of group increases one in every step in the lattice-like phase, and

in the strip phase no additional group is generated, as illustrated in Figure 3.10.

The group-based hybrid tree for representing −→z l · −→ω l is formulated in below and

is illustrated in Figure 3.10. The hybrid tree starts from one group with one element

zero, that is,

Ω0 = (Ω00) = (Ω000) = (0). (3.42)

In the tree phase, the group size is 2l at tl′ , as indicated in Equation (3.43).

Ωl =

 Ωl−1 + ωl

Ωl−1

 = (Ωl0) =



Ωl00

Ωl01

...

Ωl0(2l−1)


l = 1, 2, . . . , NT (3.43)

At the end of the tree phase, the “branch” of the hybrid tree, ΩNT
, forms, which

contains 2NT elements. The remainder of the group-based hybrid three is built based on

the branch.

Equation (3.44) shows how the lattice-like phase is built. The number of groups

increases one at every step in the lattice-like phase, but the group size is fixed, equal to

2NT . That is, Ωl contains l − NT + 1 groups (for NT < l ≤ NL), and the mth group,

Ωlm, equals the “branch” of the hybrid tree, ΩNT
, plus (l −NT −m) pieces of “leaves”
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, ωl
NT

, as illustrated in Equation (3.44).

Ωlm =



Ωlm0

Ωlm1

...

Ωlm(2NT −1)


= ΩNT

+ (l −NT −m)ωl
NT

l = NT + 1, NT + 2, . . . , NL; m = 0, 1, . . . , l −NT

(3.44)

The leaf at tl′ is the average of ωk (for k = NT + 1, . . . , l), as formulated in Equation

(3.45).

ωl
NT

=

∑l
k=NT +1

ωk

l −NT
(3.45)

The number of groups stops growing in the strip phase, and all the groups in

the strip phase are identical to the groups at the last step of the lattice-like phase, as

indicated in Equation (3.46).

Ωl = ΩNL
l = NL + 1, NL + 2, . . . , ND − 1 (3.46)

Arrows connecting groups in the group-based hybrid tree are arrow topologies

(indicated as “arrows”), each of which represents a group of regular arrows sharing

similarities. “Arrows”are very different across phases, and they are interpreted in below:

1. the tree phase (i.e., 0 ≤ l < NT )

One “arrow”goes out from Ωl0 and points to Ω(l+1)0. It represents that a pair
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of regular arrows starts from every Ωl0n (∀n ∈ Nl), one towards Ω(l+1)0(2n) with

probability Pη and the other towards Ω(l+1)0(2n+1) with probability 1− Pη.

2. the lattice-like phase (i.e., NT ≤ l < NL)

A pair of “arrows”goes out from Ωlm (∀m ∈ Ml). The first “arrow”starts from

the first half elements of Ωlm, and it goes towards Ω(l+1)m, the mth group at the

subsequent step. This “arrow”represents that two regular arrows start from Ωlmn

(for n = 0, 1, . . . , 2NT−1 − 1), one towards Ω(l+1)m(2n) with probability Pη and

the other towards Ω(l+1)m(2n+1) with probability 1− Pη. The other “arrow”starts

from the remain half elements of Ωlm, and it points to Ω(l+1)(m+1), the (m + 1)th

group at the next step. It represents that two regular arrows start from Ωlmn

(for n = 2NT−1, 2NT−1 + 1, . . . , 2NT − 1) , one towards Ω(l+1)(m+1)(2(n−2NT−1)) with

probability Pη and the other towards Ω(l+1)(m+1)(2(n−2NT−1)+1) with probability

1− Pη.

3. the strip phase (i.e., NL ≤ l < ND)

• A pair of “arrows”goes out from Ωl0, which is the same as the pairs in phase

two.

• A pair of “arrows”starts from Ωl(NL−NT ), which is almost the same as the

pairs in phase three except that they are towards groups NL − NT − 1 and

NL −NT , respectively.

• Two pairs of “arrows”start from each of the remaining Ωlm. One pair is the

same as these in phase two except that the probability of jump is reduced

by half. For the other pair of “arrows”, one “arrow”connects the first half
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elements of Ωlm to the Ω(l+1)(m−1), and the other “arrow”links the second

half elements of Ωlm to Ω(l+1)m. The probability of jump is also reduced by

half.

A hybrid tree has 2NT

(
1 + (NL−NT +1)(NL−NT )

2 + (ND −NL) (NL −NT + 1)
)
− 1

nodes. Thus, the computational complexity is about O(2NT (ND −NT ) (NL −NT )).

For example, the computational complexity is reduced about 96% if a seventeen-steps

binomial tree is replaced by a seventeen-steps hybrid tree, which has six steps in the tree

phase, four steps in the lattice-like phase, and seven steps in the strip phase. Therefore,

replacing a binomial tree with a hybrid tree substantially improves the computational

efficiency. Meanwhile, the hybrid tree will not severely impair the solution accuracy if it

is properly designed.

3.6.3 Approximating Dt and ηt as A Multi-Layer Lattice

Before taking CTT, ηt, as an underlying process, decisions at t are based on two

state variables, demand Dt and the available KW-capacity ct. Dt is the only underly-

ing process in such scenario, so a single lattice is capable of representing uncertainty

over the PLC. After ηt is considered as one addition underlying process, it becomes the

other state variable in the decision. A single lattice is insufficient for illustrating two

underlying processes. Multi-layer lattice is a form of representing multiple underlying

variables using lattices [Erickson (2000)]. One lattice/tree illustrates one underlying

variable, and then all the lattices/trees are combined to form a multiple lattice. Since ηt

and Dt could be discretely approximated by a hybrid tree and a binomial lattice, respec-

tively, a multi-layer lattice is constructed to approximate the two underlying processes.
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The between-layers variation represents the unpredictability in ηt and the within-layer

variation identifies the unpredictability in Dt.

Figure 3.11 demonstrates an example wherein a binomial lattice (for approximat-

ing Dt) is embedded in a binomial tree (for approximating ηt), forming a multi-layer

lattice. ∆T ′ is the time step of the binomial tree, and the time step of the binomial

lattice is ∆T . ∆T ′ and ∆T are properly chosen such that ∆T ′

∆T is a positive integer. ηlmn,

a unique level of CTT at tl′ (∀l ∈ L), is associated with a segment of demand lattice Dl

in Equation (3.47), forming a unique segment of the multi-layer lattice (ηlmn, Dl). This

segment is in the length of NLS = ∆T ′

∆T , beginning with lNLS demand levels, increasing

one level in every ∆T , and ending in (l + 1)NLS − 1 levels.

Dl =

Dij

∣∣∣∣∣∣∣∣
i ∈ Il = {lNLS , lNLS + 1, . . . , (l + 1)NLS − 1; }

j ∈ Ji = {0, 1, . . . , i}

 (3.47)

3.6.4 Optimization of KWA On A Multi-Layer Lattice

The optimization of KWA on two underlying processes is similar to the optimiza-

tion on one underling process. After applying some modifications to the work in Section

3.5.4, the optimization of KWA w.r.t. Dt is extended to the optimization w.r.t. Dt and

ηt. To make the discussion focused, here the length of PLC is assumed as known.

To articulate what the optimization on a multi-layer lattice is, the pseudo-code

for the optimization procedures is provided in below.

1. Design of the Multi-layer Lattice for approximating ηt and Dt

estimate the decision time horizon TD;
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Fig. 3.11. A Multi-Layer Lattice Representing ηt and Dt
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choose time step ∆T ′ and let ND =
⌈

TD
∆T ′

⌉
;

denote tl′ (for l ∈ {0, 1, . . . , ND − 1}) as the end of step l for ηt;

determine NT , NL and NLS .

2. Backward DP procedure on the multi-layer lattice

for l:= ND − 1 to 0

build demand lattice segment Dl using Equation (3.47);

backward DP procedure on
(
ηlmn, Dl

)
:

case1: NL ≤ l < ND(the strip phase)

∀ m ∈ {0, 1, . . . , NL −NT }, n ∈
{

0, 1, . . . , 2NT − 1
}

;

case2: NT ≤ i < NL(the lattice-like phase)

∀ m ∈ {0, 1, . . . , l −NT }, n ∈
{

0, 1, . . . , 2NT − 1
}

;

case3: 0 ≤ l < NT (tree phase)

m = 0,∀ n ∈
{

0, 1, . . . , 2l − 1
}

.

endfor

The pseudo-code indicates that major procedures of the optimization are the

design of the multi-layer lattice and the backward DP procedure which passes the strip

phase, the lattice-like phase, and the tree phase in sequence.

Two things have to be determined in design of the multi-layer lattice. The

first thing is to choose the step size in approximation of ηt. ∆T ′ should be chosen

as small as possible so that Binomial process approximates Poisson process better.

P {Xi = 2} =
e−λη∆T

′
(λη∆T ′)2

2! can be taken as an criterion of choosing ∆T ′. ∆T ′ is

chosen to make P {Xi = 2} small enough so that the possibility of jumping twice or

more can be ignored. The other thing is to determine NT and NL. After ∆T ′ is de-

termined, sequence SND−1(ω) =
{

ω, ω2, . . . , ωND−1
}

for constructing the hybrid tree is
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determined. An empirical method for determining NT is to examine the standardized

decrease in SND−1(ω), as formulated in Equation (3.48).

∆ωl =
ωl − ωl+1

ω − ωND−1
(3.48)

NT is chosen as where Equation (3.48) falls below a critical value δT (e.g., 5%). The

choice of NT identifies that remaining elements after ωNT in the sequence just have

a trivial change. NL is determined empirically too. Equation (3.49) calculates the

percentage of remaining elements in SND−1(ω) after ωl.

ωl
tail

=

∑ND−1
k=l+1

ωk∑ND−1
k=1 ωk

(3.49)

NL is chosen as where the remaining elements in SND−1(ω) account for less than δL

amount of all the elements in the sequence.(e.g., δL = 5%). NL identifies that elements

after ωNL is very small, and they can be taken as zeros.

The valuation function at ti (i ∈ Il) is in Equation (3.50). It has three state vari-

ables Di, ci and ηl, which are demand, the KW-capacity, and CTT at then respectively.

Decisions to make are the KW-capacity for the subsequent step ci+1 and the current
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production scale xwi.

V (ci+1, xwi|Di, ci, ηl) = V
(
ci+1, g

Z(ci+1)|Di, ci, ηl

)
=pti min

(
Di, NICgZ(ci+1)y

(
ci+1, g

Z(ci+1)|ci, ηl

))
− cvg

Z(ci+1)− CIP (ci+1|ci)− CIT (ci+1|ci)− CCT (ci+1|ci)

− EV
(
Di, ci+1, η

xη

l

)
ηl := ηlmn ∃l ∈ L,∀m ∈ Ml,∀n ∈ Nl; Di := ∀Dij ∈ Dl; ci := ∀c ∈ C

(3.50)

The corresponding optimal valuation function is in Equation(3.51).

V ∗ (Di, ci, ηl) = max
ci+1∈C

{
V
(
ci+1, g

Z(ci+1)|Di, ci, ηl

)}

=pti min
(
Di, NICgZ(c∗

i+1
)y
(
c∗
i+1

, gZ(c∗
i+1

)|ci, ηl

))
− cvg

Z(c∗
i+1

)− CIP (c∗
i+1
|ci)− CIT (c∗

i+1
|ci)− CCT (c∗

i+1
|ci)

+ EV
(
Di, c

∗
i+1

, η
xη

l

)
ηl := ηlmn ∃l ∈ L,∀m ∈ Ml,∀n ∈ Nl; Di := ∀Dij ∈ Dl; ci := ∀c ∈ C

(3.51)

ηlmn on the hybrid-tree are classified as different categories according to where

it may go. Thus, a parameter xη is added to the state variable ηl for identifying what

category a value of ηl belongs to, as shown in Equations (3.50) and (3.51). Evaluation of

EV (Di, ci+1, η
xη

l ) thereby is complicated. Table 3.2 lists formulates of EV (Di, ci+1, η
xη

l )

at any value of xη.
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Table 3.2.
Expected Maximum Future Value on The Multi-Layer Lattice

xη ηl := ηlmn ∃l ∈ Lxη ,∀m ∈ M
xη

l ,∀n ∈ N
xη

l EV (Di, ci, η
xη

l )

Lxη M
xη

l N
xη

l

0 l = ND 0 ≤ m ≤ NL −NT 0 ≤ n < 2NT 0

1 m = 0 0 ≤ n < 2NT−1 Equation (3.52)

2 2NT−1 ≤ n < 2NT Equation (3.53)

3 NL ≤ l < ND m = NL −NT 0 ≤ n < 2NT−1 Equation (3.54)

4 2NT−1 ≤ n < 2NT Equation (3.55)

5 0 < m < NL −NT 0 ≤ n < 2NT−1 0.5EV (Di, ci, η
1
l
) +

0.5EV (Di, ci, η
3
l
)

6 2NT−1 ≤ n < 2NT 0.5EV (Di, ci, η
2
l
) +

0.5EV (Di, ci, η
4
l
)

7 NT ≤ l < NL 0 ≤ m = l −NT 0 ≤ n < 2NT−1 EV (Di, ci, η
1
l
)

8 2NT−1 ≤ n < 2NT EV (Di, ci, η
2
l
)

9 0 ≤ l < NT m = 0 0 ≤ n < 2l EV (Di, ci, η
1
l
)

10 remains Equation (3.56)

EV
(
Di, ci+1, η

1
l

)
= e−rf∆T ′ [

PηPrnV ∗ (uiDi, ci+1, η
u1
l

)
+Pη(1− prn)V ∗ (diDi, ci+1, η

u1
l

)
+(1− Pη)PrnV ∗

(
uiDi, ci+1, η

d1
l

)
+(1− Pη)(1− Prn)V ∗

(
diDi, ci+1, η

d1
l

)]
η1

l
:= ηlmn ∃l ∈ L1,∀m ∈ M1

l
,∀n ∈ N1

l
;

ηu1
l

= η(l+1)m(2n); ηd1
l

= η(l+1)m(2n+1);

Di := ∀D�j
TD
∆T

k
−1

�
j
∈ Dl; ci+1 := ∀c ∈ C.

(3.52)
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EV
(
Di, ci+1, η

2
l

)
= e−rf∆T ′ [

PηPrnV ∗ (uiDi, ci+1, η
u2
l

)
+Pη(1− prn)V ∗ (diDi, ci+1, η

u2
l

)
+(1− Pη)PrnV ∗

(
uiDi, ci+1, η

d2
l

)
+(1− Pη)(1− Prn)V ∗

(
diDi, ci+1, η

d2
l

)]
η2

l
:= ηlmn ∃l ∈ L2,∀m ∈ M2

l
,∀n ∈ N2

l
;

ηu2
l

= η(l+1)(m+1)(2(n−2NT−1)); ηd2
l

= η(l+1)(m+1)(2(n−2NT−1)+1);

Di := ∀D((l+1)NLS−1)j ∈ Dl; ci+1 := ∀c ∈ C.

(3.53)

EV
(
Dj , cj+1, η

3
l

)
= e−rf∆T ′ [

PηPrnV ∗ (uiDi, ci+1, η
u3
i

)
+Pη(1− prn)V ∗ (diDi, ci+1, η

u3
i

)
+(1− Pη)PrnV ∗

(
uiDi, ci+1, η

d3
i

)
+(1− Pη)(1− Prn)V ∗

(
diDi, ci+1, η

d3
i

)]
η3

l
:= ηlmn ∃l ∈ L3,∀m ∈ M3

l
,∀n ∈ N3

l
;

ηu3
l

= η(l+1)(m−1)(2n); ηd3
l

= η(l+1)(m−1)(2n+1);

Di := ∀D((l+1)NLS−1)j ∈ Dl; ci+1 := ∀c ∈ C.

(3.54)

EV
(
Di, ci+1, η

4
l

)
= e−rf∆Tη

[
PηPrnV ∗ (uiDi, ci+1, η

u4
l

)
+Pη(1− prn)V ∗ (diDi, ci+1, η

u4
l

)
+(1− Pη)PrnV ∗

(
uiDi, ci+1, η

d4
l

)
+(1− Pη)(1− Prn)V ∗

(
diDi, ci+1, η

d4
l

)]
η4

l
:= ηlmn ∃l ∈ L4,∀m ∈ M4

l
,∀n ∈ N4

l
;

ηu4
l

= η(l+1)m(2(n−2NT−1)); ηd4
l

= η(l+1)m(2(n−2NT−1)+1);

Di := ∀D((l+1)NLS−1)j ∈ Dl; ci+1 := ∀c ∈ C.

(3.55)
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EV
(
Di, ci+1, η

10
l

)
= e−rf∆T ′ [

PrnV ∗ (uiDi, ci+1, η
10
l

)
+(1− Prn)V ∗ (diDj , ci+1, η

10
l

)
η10

l
:= ηlmn ∃l ∈ L10,∀m ∈ M10

l
,∀n ∈ N10

l
;

Di := ∀Dij ∈ Dl, i 6= (l + 1)NLS − 1; ci+1 := ∀c ∈ C.

(3.56)

Major changes in extending the optimization of KWA with one underlying process

(Dt) to the optimization with two underlying processes (Dt and ηt) are summarized in

below:

• the number of state variables in the yield function is changed from one to two: ct

and ηt;

• the number of state variables in the valuation function is changed from two to

three: Dt, ct, and ηt;

• the number of loops in the backward DP procedure is changed from one to two:

one for ηt and one for Dt;

• a single-layer lattice is replaced by a multi-layer lattice; and

• because of using the hybrid tree to approximate ηt, the expected future value has

a variety of formulations, according to what category the value of state variable ηt

belongs to.

The problem this section is not the most general case. However, The work in this section

will not change significantly if assumptions in this section are relaxed, which indicates

that major research work have been developed in this section. For instance, after re-

laxing the assumption that Tm is known, the optimization scheme becomes repeated



88

DP procedures on a family of multi-layer lattices. If ση is not equal to zero, the DP

procedure is still conducted on a multi-layer lattice. However, the number of layers in-

creases. Providing sufficient computing resources and techniques, the abovementioned

generalizations of this section are solvable.
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Chapter 4

Results of Research

Chapter 3 presented the model for attaining knowledge workforce agility (KWA)

during the product life cycle (PLC) using real options (RO). KWA is modeled as

American-type options. Thus, the optimization must be obtained numerically. No gen-

eral conclusion can be reached on any single numerical example. Thus, to bring the

completion of the research objectives of this thesis, this chapter assesses the significance

of the work through mathematical examination, study designs and detailed results anal-

yses.

4.1 System Settings and Study Overview

A simulated system of producing a new generation of DRAM product is set up to

facilitate obtaining necessary results of the research. In the simulated system, a series

of studies are designed to accomplish the results analyses and discussions.

4.1.1 System Settings

The simulated system is set up through parameterization. Major parameters

and corresponding values are listed in Table 4.1. These parameter values are chosen

based either on extensive literatures or on approximate reasoning to insure the numerical

demonstration sufficiently representative.
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Table 4.1.
List of Parameter Values in the Numerical Demonstration

Parameters Values

the mean of Tm (µTm
) 5years

the standard deviation of Tm (σTm
) 1year

the time interval for discretized demand (∆T ) 1
12year

the initial demand (D0) 0.5Munits/month

the demand volatility (σ) 0.2

the expected market size (M) 3000M units

the initial value of ηt (η0) 25%

the equilibrium value of ηt (ηm) 25%

the jump size of ηt (rη) 50%

the jump intensity of ηt (λη) 0.5/year

the reverting speed after jump (αη) log 2/year

the initial sales price (p0) $150

the speed of price erosion (λp) 0.25/year

the discounted rate (r) 12%/year

the risk-free rate (rf ) 8%/year

the price of market risk (λ) 10%

the fixed cost(F ) $3.843B

the production variable cost (cv) $2.8K/wafer

the startup cost for initial training (IT) (aIT
0

) $50K

the marginal cost for IT (aIT
1

+ xaIT
2

) (3875K + 500Kx)/team

the startup cost for continuous training (CT)(aCT
0

) $10K

the marginal cost for CT (aCT
1

+ xaCT
2

) (4000K + 200Kx)/team

the ratio of production loss in IT (aIP
it

) 13.9e−0.25tM

the speed of production loss in IT (aIP
2t

) 0.225e−2.3t+0.18t
2

M

the number of chips resided in one wafer(NIC) 140

the rate of yield improvement (λy) 23026wafers/team

the maximum production scale (W ) 700Kwafer starts/month

the maximum knowledge workforce capacity (C) 100teams
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Tm, the time of demand maturity, is normal distributed, with a mean of five

years and a standard deviation of one year in this generation. The value of µTm
and

σTm
are adopted from the work by Bollen (1999). Demand comes at the beginning of

each month, and it is 0.5 million in the first month during the PLC. Demand exhibits

stochastic behavior during the PLC, with a demand volatility of 0.2. The expected

cumulative demand of this generation is 3 billion. The estimates of D0, M , and σ are

based on the knowledge obtained in fitting the demand model.

The initial value of ηt is 25%, and it is equal to the equilibrium value. Jumps of

ηt happen like a Poisson process during the PLC. ηt jumps once in every two years, on

average, and the jump size is 50%. ηt decreases gradually after jumps, at a speed of ln 2

per year, that is, it decreases by half in every one year. Without real values to refer to,

thesis thesis makes reasonable assumptions about it, and uses sensitivity ananlyses to

reduce the bias caused by making assumptions.

The sales price is $150 at the beginning of the PLC, which decreases exponentially

during the PLC at a speed of 0.25 per year. The demand model is estimated based on

literatures such as Mody & Wheeler (1987) and Siebert (2003). The discounted rate of

cash flow of 12%, the risk-free rate is 8%, and the price of market risk is 10%, which are

all commonly used in extensive interatures.

The fixed production cost is $3.843B, which includes the cost of building the plant

and buying equipments, and ten-years labor cost. The variable cost averaged on each

wafer is $2.8K, which is composed of the material cost and the operation cost. These

values are based on the knowledge about semiconductor manufacturing. The cost for

starting up an initial training is $50K, and the marginal cost for training the xth team
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is $(3875K + 500Kx). The cost for starting a continuous training is $10K, and the

marginal cost for the xth team is $(4000K + 200Kx). The estimation of the production

loss uses parameters of the previous generation, the values of which are assumed to be

the same as in the new generation. In addition, the steady state yield of the previous

generation is 90%. Without real data, these values are assumed based on reasonable

reasoning from other type of costs and benefits.

How many chips can be put on a wafer is determined by the wafer size and

fabrication techniques. The number could be very different, from tens to thousands.

This thesis assumes 140 chips reside on one wafer in this generation, and the number

of chips out of them can pass the final test is represented by yield. The rate of yield

improvement is 23026 wafer starts per team, meaning that a 90% can be reached if on

average every 10k wafers are supervised by one team. The maximum production scale

is 700K wafer starts per month, and this generation can at maximum have 100 teams

for solving problems in the wafer fabrication. The values are assumed based on our

knowledge about semiconductor manufacturing.

Although this thsis has difficulty in obtaining a whole and systematic set of data,

the limited data in above and assumptions this thesis has made still can paritally support

the numerical demonstration of reseach results.

4.1.2 Overview of Studies for Assessing The Importance of Research

To obtain well-rounded conclusions about the work of this thesis, the analyses

and discussion of the research results are formed by four studies described below:
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1. articulating benefits of KWA in general PLC environments by way of analytically

examining the underlying stochastic processes with respect to the parameter space,

2. assessing the RO approach for attaining KWA through a comprehensive compari-

son of it to the other two representative agility-driven approaches under demand

uncertainty,

3. evaluating the expected profit growth that is generated by RO-based KWA from

various sources of uncertainty, and

4. examining the numerical methods that are designed for reducing the computational

complexity.

Whether the KWA has potential for improving business operations in PLC environ-

ments is explored in study 1. Study 2 further investigates if modeling KWA as RO and

optimizing KWA using the RO valuation techniques are the approach for using KWA

rationally and wisely. Study 3 subsequently defines and measures the financial reward

from adoption of RO-based KWA. The reliability of results is examined by study 4.

4.2 An Analytical Examination of The PLC Environment

An analytical examination of the underlying process models w.r.t. the parameter

space informs us what benefits that KWA has in more general PLC environments.

4.2.1 Benefits of KWA under Demand Uncertainty

The demand model in Equation (3.1) has four parameters: σ, Tm, D0 and M , each

of which represents one important characteristic of demand. σ is the demand volatility
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which measures the scale of stochasticity in demand. Tm is the time of the demand

maturity, which is approximately the middle of the PLC and thus informs us the length

of PLC. D0 is the initial demand, so it represents the initial adoption level of product. M

is the expected cumulative demand over the PLC, which measures the expected market

size. The percent change in demand over the change in any abovementioned parameter,

which is denoted as %∆Dt (·) (for distinguishing from the relative change of demand

over time ∆Dt
Dt

), informs us how on the generalized PLC environment.

Variation of Dt w.r.t. Change in σ

%∆Dt (σ), the percent change in Dt w.r.t. σ at t (t ∈ [0, T ]), is given in Equation

(4.1) according to Appendix J.

%∆Dt (σ) = e−
1
2
σ2t(2∆σ

σ
+1)+σWt(∆σ

σ ) − 1 (4.1)

To display how the demand distribution is varied with the growth in demand

volatility, the 99.6% range of %∆Dt (σ) over the PLC is illustrated at two levels of

increase in σ: 50% (the gridded area) and 100% (the striped area), as in Figure 4.1.

Two things are observed in Figure 4.1:

• an increase in the demand volatility is accompanied by an expansion in the demand

distribution, which is further widened over time yet at a reduced speed; and

• the demand distribution will extend further if the demand volatility remains grow-

ing, which is especially clear on the upper side of the distribution.
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Fig. 4.1. The Percent Change in Dt w.r.t. σ during The PLC

The observations indicate that the growth in demand volatility intensifies the desire for

KWA. Manufacturers who use KWA in highly volatile PLC environments are capable of

catching opportunities derived from the high demand and of reducing risks from holding

an access knowledge workforce when demand drops substantially.

Variation of Dt w.r.t. Change in Tm

The ith partial derivative of Dt w.r.t. Tm is estimated by Equation (J.17) in

Appendix J. Thus, the percent change in Dt w.r.t. Tm at any time t during the PLC,

%∆Dt (Tm), can be obtained using a Taylor expansion, as in Equation (4.2).

%∆Dt (Tm) =
∞∑
i=1

(
∆Tm
Tm

)i

i!

i−1∏
j=0

(
β2

β2 − 1
t

Tm

(
β2

(
t

Tm
− 1
)
− 1
)
− j

)
(4.2)
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To show how the shrink of PLC length changes the future demand, %∆Dt (Tm)

at three levels of decrease in Tm: −1%, −10% and −25%, and at any time during the

PLC are illustrated in Figure 4.2. The figure shows that:

Fig. 4.2. The Percent Change in Dt w.r.t. Tm during The PLC

• the shrink of PLC length is associated with the demand increase in early in the

PLC and with demand decrease later;

• a shorter PLC is accompanied by a larger change in demand, which is heterogeneous

over time.

The observations indicate that a shorter PLC places pressures on manufacturers since it

pushes a great amount of demand shifting to the early PLC. However, KWA turns the

pressures into opportunities for earning more profits because the sales price is also high
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in the early PLC. Therefore, manufacturers benefit from KWA in short PLCs, and the

effect is more clear when the PLC becomes shorter.

Variation of Dt w.r.t. Change in D0

The ith partial derivative of Dt w.r.t. D0 is calculated by Equation (J.16) in

Appendix J. Thus, the percent change in Dt w.r.t. D0 at any time t during the PLC,

%∆Dt (D0), can be evaluated using a Taylor expansion, as in Equation (4.3).

%∆Dt (D0) =
∞∑
i=1

(
∆D0
D0

)i

i!

i−1∏
j=0

(
β2

1− β2

(
2 +

t

Tm

(
2− t

Tm

))
− j

)
(4.3)

It is well known that pursuing a high initial adoption level is important, and yet

is expensive. To observe how the decrease of the initial adoption level changes the future

demand, %∆Dt (D0) at three levels of decrease in D0: −1%, −10% and −25%, and at

any time during the PLC are illustrated in Figure 4.3. The figure suggests the following:

• a drop of the initial adoption level causes an increase in demand,

• demand near the middle of the PLC is the most sensitive to the drop of the initial

adoption level while the least at either end, and

• demand will grow quickly if the initial adoption level keeps decreasing.

The observations indicate that pursuing a high initial adoption level may hurt demand

growth in the remainder of the PLC. A high initial adoption level is not a necessity since

manufacturers who use KWA can easily satisfy the demand growth although the growth

is very different over the PLC.
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Fig. 4.3. The Percent Change in Dt w.r.t. D0 during The PLC

Variation of Dt w.r.t. Change in M

The partial derivative of Dt w.r.t. M is attained in Equation (J.15) of Appendix

J. Thus, the percent change in Dt w.r.t. M at any time t during the PLC, %∆Dt (M),

can be obtained using a Taylor expansion, as in Equation (4.4).

%∆Dt (M) =
∞∑
i=1

(
∆M
M

)i
i!

i−1∏
j=0

(
β2

β2 − 1
t

Tm

(
2− t

Tm

)
− j

)
(4.4)

To find how the growth of the expected market size changes the layout of future

demand, %∆Dt (M) at any time during the PLC and at three levels of increase in M :

1%, 10% and 25%, are illustrated in Figure 4.4. The figure indicates that:

• the growth of the market size leads to a demand increase throughout the PLC,
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Fig. 4.4. The Percent Change in Dt w.r.t. M during The PLC

• demand in the middle of the PLC is the most sensitive to the growth of the market

size while the least at either end, and

• the pace of demand increase is relatively stable when the market size is growing.

The observations inform us that manufacturers with KWA feel no difficulty to meet the

varying demand increase over the PLC, which is caused by the growth of the expected

market size.

After examining the demand model with respect to the parameter space over the

PLC, KWA is shown to have potential for releasing pressures on manufacturers in pur-

suing the interests associated with the unstable and volatile demand during the PLC.

The pressures are often from volatile demand, from shorting the PLC, from low initial
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product adoption levels, or from the growth of market size. With KWA, manufactur-

ers are capable of reaching desired levels of knowledge workforce (KW) capacity to

accommodate changes in demand.

4.2.2 Benefits of KWA in KW Dynamics

The large and sudden increases in the percent of labor time spent on the continu-

ous training (CTT), ηt, caused by adoption of production technology advances is charac-

terized by the parameters rη, λη and αη in the CTT model. The jump size, rη, calibrates

the scale of the stochastic CTT jumps, The jump intensity, λη, measures the frequency

of the stochastic CTT jumps during the PLC, and the reverting speed after jumps, αη,

represents the learning capability of the knowledge workforce. The distribution of η over

the PLC may vary as the parameters change. The percent change in V AR [ηt] with

respect to any abovementioned parameter, which is denoted as %∆V AR(·) [ηt], will give

insight into the CTT jumps. %∆V AR(·) [ηt] is obtained by directly taking the difference

between the V AR [ηt] value before and after the parameter changes.

Variation of ηt w.r.t. Change in rη

%∆V ARrη
[ηt] is the percent change in the variance of ηt w.r.t. the jump size rη,

and the expression of %∆V ARrη
[ηt] is obtained in Equation (4.5).

%∆V ARrη
[ηt] =

1

1 +
σ2

η

ληr2
η

[(
∆rη

rη
+ 1
)2

− 1
]

(4.5)
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Equation (4.5) shows that %∆V ARrη
[ηt] is a nondecreasing quadratic function of the

percent change in rη. The relation is homogeneous over the PLC, and yet is heterogeneous

over
σ2

η

ληr2
η

which is a ratio manifesting the weight of the two sources of uncertainty in

ηt: the mean-reverting diffusion process and the Poisson jumping process. σ2
η
� ληr

2
η

indicates that the mean-reverting process is the major source of uncertainty in ηt. σ2
η
�

ληr
2
η

represents the scenario that the Poisson jumping process dominates in the sources

of uncertainty. Thus, analyses in this section use
σ2

η

ληr2
η

to calibrate the significance of the

jump effect.

To show how the change of rη impacts the ηt distribution at different values of

ση

ληr2
η

, the percent change in variance of ηt, %∆V ARrη
[ηt], over a range of ∆rη

rη
, [-100%,

100%], is illustrated in Figure 4.5. The shaded area in Figure 4.5 is the feasible region

Fig. 4.5. The Percent Change in V AR[ηt] w.r.t. rη
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of %∆V ARrη
[ηt] over the range of ∆rη

rη
, and the dashed lines identify the boundaries of

the feasible region. Figure 4.5 shows that:

• %∆V ARrη
[ηt] approaches (∆rη

rη
+1)2−1 as σ2

η
� ληr

2
η
, approaches 0 as σ2

η
� ληr

2
η
,

and passes the point (0,0) in the figure for any value of
σ2

η

ληr2
η

.

• V AR [ηt] will become more sensitive to the change in rη when
σ2

η

ληr2
η

decreases.

The observations indicates that, if the stochastic jumps dominate in the sources

of uncertainty in ηt, the ηt distribution would clearly expand at an increasing pace when

the jump size increases. Therefore, KWA benefits manufacturers in that it provides them

with the desired range of knowledge workforce (KW) capacity, which is expected to be

wide when a large jump size rη leads to a strong jump effect.

Variation of ηt w.r.t. Change in λη

%∆V ARλη
[ηt] is the percent change in the variance of ηt w.r.t. the jump intensity,

λη. Equation (4.6) is the expression of %∆V ARλη
[ηt].

%∆V ARλη
[ηt] =

1

1 +
σ2

η

ληr2
η

∆λη

λη
(4.6)

Equation (4.6) indicates that %∆V ARλη
[ηt] is a nondecreasing linear function of the rel-

ative change in λη. The relation is homogeneous over the PLC, and yet is heterogeneous

over the ratio
σ2

η

ληr2
η

.

To find how the change of λη affects the ηt distribution at different values of
σ2

η

ληr2
η

,

the percent change in variance, %∆V ARλη
[ηt], over a range of ∆λη

λη
, [-100%, 100%],
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is illustrated in Figure 4.6. The shaded area in Figure 4.5 is the feasible region of

Fig. 4.6. The Percent Change in V AR[ηt] w.r.t. λη

%∆V ARλη
[ηt] over the range of ∆λη

λη
, and the dashed lines identify the boundaries of

the feasible region. Figure 4.6 suggests the following observations.

• %∆V ARrη
[ηt] approaches ∆λη

λη
as σ2

η
� ληr

2
η
, approaches 0 as σ2

η
� ληr

2
η
, and

passes the point (0,0) in the figure for any value of
σ2

η

ληr2
η

.

• V AR [ηt] will become more sensitive to the change in λη when the ratio
σ2

η

ληr2
η

de-

creases

The observations indicates that, if the stochastic jumps dominate in the sources

of uncertainty in ηt, the ηt distribution would clearly expand at a constant rate when the

jump intensity increases. Thus, KWA benefits manufacturers in that it provides them
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with the desired range of KW-capacity, which is expected to be wide when a large jump

intensity λη leads to a strong jump effect.

Variation of ηt w.r.t. Change in αη

%∆V ARαη
[ηt] is the percent change in V AR [ηt] w.r.t. αη, which is obtained in

Equation (4.7).

%∆V ARαη
[ηt] = −

∆αη

αη

1 + ∆αη

αη

+
e−2αηt

(
1− e−2∆αηt

)
(
1− e−2αηt

) (
1 + ∆αη

αη

) (4.7)

Equation (4.7) indicates that %∆V ARαη
[ηt] is changing during the PLC.

To observe the change of the η distribution w.r.t. αη during the PLC, %∆V ARαη
[ηt]

over a ten-years time horizon, [0,10], is illustrated in Figure 4.7. The shaded area in Fig-

ure 4.7 is the feasible region of %∆V ARαη
[ηt], and the boundaries of the feasible region

are identified by the dashed lines. Besides the feasible region and the boundaries, Figure

4.7 further illustrates %∆V ARαη
[ηt] at two values of ∆αη

αη
: 50% and -50%, which are

indicated by solid lines.

Figure 4.7 shows that:

• The ηt distribution expands when αη decreases, and the expansion grows over the

PLC at a reduced rate.

• The more αη decreases, the quicker the ηt distribution is widened.

• When the maximum decrease of αη reaches(i.e., ∆α
α = −100%), %∆V ARαη

[ηt] is

bounded by 2αηt

1−e−2αηt − 1.
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Fig. 4.7. The Percent Change in V AR[ηt] w.r.t. αη during The PLC

The observations indicate that the adoption of production technology advances during

the PLC will substantially widen the ηt distribution progressively over time if the learn-

ing capability of the workforce is insufficient. The ηt distribution can quickly become

extremely wide if the learning capability is drastically reduced. KWA can partly reduce

the pressure of the insufficient learning capability, and it fulfills this mission by providing

a wide range of KW-capacity to compensate for the highly unstable performance of the

knowledge workforce in PLC environments.

Figure 4.7 also shows that:

• The ηt distribution shrinks at a reduced rate when αη decreases.

• As ∆α
α goes to infinity, %∆V ARαη

[ηt] approaches −100% asymptotically.

These observations indicate that the investment in workforce learning can enhance the

capability of manufacturers in controlling the performance of knowledge workforce in the
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PLC environment. However, the investment has diminishing returns. When manufac-

turers meet the bottleneck of improving the learning capability of the workforce, they

can switch to the investment on KWA for obtaining a better return on investment.

After examining the model of η w.r.t. the parameter space, KWA is shown to have

potential for compensating for the insufficiency of manufacturers in maintaining a stably

low η as they adopt timely production technology advances. KWA delivers this function

through providing manufacturers a wide range of KW-capacity to accommodate the

unstable and uncertain performance of the knowledge workforce. This function of KWA

is especially important when ηt exhibits strong effects in terms of having either a large

jump size or a high jump intensity, when the workforce learning capability is insufficient,

and when the return on investment of the learning capability becomes small.

4.3 An Assessment of The RO Approach for Attaining KWA

This section further assesses whether modeling KWA as RO and optimizing KWA

with the RO valuation techniques have merits. The evaluation is demonstrated under

the demand uncertainty.

4.3.1 The Study Design

The RO-based KWA is generated from knowledge workforce planning using RO.

There are many potential methods for workforce planning, and RO is not the only method

that can attain KWA through workforce planning. However, the RO approach may have

significant benefits over other approaches for attaining KWA. Thus, this section describes

a comparison study for examining this assumption. The study is demonstrated under



107

demand uncertainty, wherein the RO approach is compared to two other representative

approaches in terms of the KWA they attain. The first approach plans the knowledge

workforce through maximizing the cash flows anticipated upon a deterministic demand

forecast over the PLC. The demand forecast describes the trend of demand movement

during the PLC, so KW-capacity planned in this approach exhibits an adaption to the

demand change during the PLC. The Bass (1969) model has been more widely used to

forecast demand over the PLC, which actually uses DCF techniques. So, this approach

is termed the Bass forecast (BF) approach, and the KWA attained using the BF is

called BF-based KWA. In the BF approach KW-capacity at any time during the PLC

is determined before the beginning, and KW-capacity adjustments will follow exactly

the pre-planned schedule. The second approach is a chase-demand (CD) heuristic ap-

proach. The CD approach plans knowledge workforce through controlling yield within

an appropriate range [Uy, Ly]. No demand model is needed in the CD approach. How-

ever, KW-capacity is adjusted dynamically with regard to demand changes. Thus, the

CD approach acts as a greedy heuristic. The KWA attained in this approach is named

as CD-based KWA.

There are two reasons why CD and BF are chosen to be compared with RO. First,

These two approaches are representative. The Bass forecast model has been broadly

used by both industry and academy for decades. The chase demand approach is simple,

without any complex mathematical model, and it offers dynamics planning. Thus, it

exhibits potential advantages in dynamic systems and has been reported to be used

in industry. If the RO approach has significant benefits over these two representative

approaches, the significance of the work is clear. Second, the RO approach reduces
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the major limitations of these two approaches. The BF approach does not consider

the unpredictability in demand, which is formally addressed in the RO approach. The

CD approach is simple, whereas the RO approach is complex. However, if a significant

improvements is made by RO, there will be a rationale for using a complex approach to

plan the knowledge workforce in dynamic systems.

The comparison study is in three phases. A numerical example is generated in

the first phase, and the three approaches for attaining KWA are compared in terms

of the decisions (i.e., KW-capacity ct and the production scale xwt) and the outcomes

(i.e., yield yt, and net present value (NPV )). This numerical example pertains to the

simulation of a random trajectory of demand over the PLC. The capacity planning, either

in the RO approach or in the CD approach, is synchronous with the simulation. That is,

the KW-capacity for the subsequent step and the production scale for the current step

are determined immediately only after the current demand is observed. However, the

capacity planning is finished before the simulation in the BF approach. The numerical

example illustrates how the RO approach achieves an improvement.

The comparison in phase two is statistical. The simulation and the capacity

planning as in phase one now are repeated for 30 times (to satisfy the assumption that a

paired mean difference is either normal distributed or the number of paired observation

is no less than 30). The NPVs obtained in the three approaches, NPVBF , NPVCD and

NPVRO, are recorded in each simulation, and they are compared on the following three

aspects:

1. descriptive statistics(minimum, maximum, and mean),
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2. distribution, and

3. paired t tests in NPVCD−NPVBF = (vs. >)0, NPVRO−NPVBF = (vs. >)0 and

NPVRO −NPVCD = (vs. >)0.

These will illustrate if the RO approach creates the KWA rationally in response to the

demand uncertainty, and will show statistically whether the RO approach generates the

KWA pertaining to the highest production profit.

The study in phase three further examines the reliability of the RO approach

in more uncertain environments through replicating phase two at two higher levels of

the demand volatility σ. NPVBF , NPVCD and NPVRO are recorded in 90 runs of

simulation, with 30 replicates on each of the three levels of σ: 0.2, 0.4 and 0.6. Study

items in phase 3 includes:

1. the change in distribution, and

2. the change in the 95% confidence intervals of NPVCD−NPVBF , NPVRO−NPVBF ,

andNPVRO −NPVCD.

4.3.2 Demonstrating The RO Approach in A Numerical Example

This thesis uses a numerical example to given a first insight into how the RO

approach makes workforce planning different. To make the simulated random trajectory

of demand over the PLC pertain to the KW-capacity planned for it in any of the BF, CD

and RO approach, they are together illustrated in 4.8. Demand is represented by a thin

solid line, and is projected on the variables t and Dt in Figure 4.8. The KW-capacity

obtained by the three approaches are projected on the variables t and ct in the figure,
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with the BF , CD and RO approaches being indicated by a dashed line, a dotted line

and a solid line, respectively.

Fig. 4.8. Comparison of BF, CD and RO in terms of KW-capacity

The 4.8 shows that the KW-capacity in the BF approach clearly deviates from the

random trajectory of demand in early in the PLC. We recall that the Base forecast does

not contain information on demand uncertainty. The KW-capacity attained through

either the CD approach or the RO approach exhibits a more satisfaction to demand

when the sales prices is high. This observation informs us that the CD approach and the

RO approach remedy the deficiency of the BF approach. However, the figure displays

that the KW-capacities attained by the BF approach and by the RO approach drop

quickly in the late PLC, no longer satisfying all the demand. The workforce planning in

the two approaches hold a long-term view for earning production profit, and they base

this view on the maximization of the expected cash flows throughout the PLC. Thus, the
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observation illustrates the short-sighted view that the CD approach takes in workforce

planning.

To display what changes the RO approach makes, compared to either the BF

approach or to the CD approach, on the production scale decision, Figure 4.9 illustrates

the differences in the number of periodic wafer starts, ∆xWt, over the PLC, with the solid

line indicating the change that the RO approach makes compared to the CD approach

and with the dotted line indicating the change compared to the BF approach.

Fig. 4.9. Changes in The Production Scale RO Makes Compared to BF and CD

Figure 4.9 shows that the production scale is less built in the RO approach than

in the BF approach in the early PLC when excess KW-capacity is planned using the BF

approach. The figure also shows that the production scale is less in the RO approach

than in the BF approach in the late PLC when excess KW-capacity is built in the CD



112

approach. The observations indicate that not only the KW-capacity but the production

scale is planned appropriately in the RO approach.

To show what changes the RO approach brings to yield compared to the BF

approach and to the CD approach, the yields attained by the three approaches are

projected on the two variables t and yt in Figure 4.10, with BF, CD and RO being

indicated by the dashed line, the dotted line and the solid line, respectively.

Fig. 4.10. The Comparison of BF, CD and RO in terms of Yield

Figure 4.10 shows that the yield in the RO approach is lower than in the BF

approach in early PLC when excess KW-capacity is built in the BF approach. Figure

4.10 displays that the yield in the CD approach is lower and less stable than in the RO

approach in the early PLC, and the difference takes almost 6 years to be eliminated.

The figure further indicates a delay of production close in the CD approach. The RO
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approach exhibits rationality in cultivating KWA, which is manifested by the relatively

table and economical yield attained from the RO approach.

The improvements that the RO approach achieves compared to the BF approach

and to the CD approach are straightforward measured by the NPVs achieved in the three

approaches. In this example, NPVBF = $11.2B, NPVCD = $11.4B and NPVRO =

$13.7B, respectively. NPVCD is only 2.4% higher than NPVBF , whereas NPVRO is

22.7% higher than NPVBF and 19.9% higher than NPVRO. Thus, the RO approach

performs the best in this example, and the CD approach display a slight advantage over

the BF approach.

Through observing the changes that the RO approach brings to the decisions

and to the outcomes compared to the BF approach and to the CD approach in this

example, the RO approach is shown improving knowledge workforce planning in PLC

environments.

4.3.3 Capability of Attaining Profits under Uncertainty

NPVBF , NPVCD and NPVRO are replicated in 30 runs of simulation, and the

data are used for comparing the attitudes that the three approaches hold to risks as-

sociated with uncertainty in workforce planning. The minimum, mean and maximum

of NPVs in each approach are listed in Table 4.2. The table shows, although the BF

approach does not generate the smallest minimum NPV among the three approaches, it

results in the smallest mean and maximum NPV. Behind this observation is the fact that

the BF approach does not consider the possible deviations from the expected demand in

workforce planning. The maximum NPV is almost doubled in the CD approach relative
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to the BF approach. However, the minimum of NPVCD is negative, which is $10.2B less

than the minimum of NPVBF . This indicates that, when the CD approach betters the

BF approach, it also removes the advantage of the BF approach. As a result, the mean

of NPVCD $24.0B does not exhibit a clear rise when compared to the mean of NPVBF

$21.0B. The RO approach generates the highest minimum, mean and maximum NPVs

among the three approaches, indicating that the RO approach achieves an improvement

over both the BF approach and the CD approach.

Table 4.2.
Descriptive Statistics of The NPVs attained in BF, CD and RO (in Billion)

NPVBF NPVCD NPVRO

minimum $1.5 -$8.7 $7.7

mean $21.0 $24.0 $29.8

maximum $35.7 $70.7 $84.1

Further, the distributions of NPVBF , of NPVCD, and of NPVRO are fitted re-

spectively using the 30 replicates of NPV in that approach. Figure 4.11 illustrates the

NPV distributions within the data range. The figure clearly illustrates important ob-

servations. First, the BF approach generates the most narrow NPV distribution, which

confirms the fact that the BF approach is the most conservative approach of attain-

ing KWA. Second, the CD approach generates the widest NPV distribution. However,

NPVCD and NPVBF have a similar mode. Thus, the CD approach is the most aggressive

and the most risky approach of attaining KWA. Last, the NPVRO distribution exhibits

a clear shift towards the large side compared to the other two, indicating that the RO

approach is the most rational among the them. When countering threats accompanied
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with uncertainty, the RO approach is safer than the CD approach, and demonstrates less

sacrifice than the BF approach. When taking opportunities associated with uncertainty,

the RO approach is less aggressive than the CD approach, and is less conservative than

the BF approach.

Fig. 4.11. NPV Distributions in The BF, CD and RO Approaches

The BF, CD and RO approaches of attaining KWA are finally compared using

paired t tests. Items of test and results are listed in Table 4.3. The p-Value of the paired

t test for NPVCD − NPVBF = 0 is 0.112, greater than 5%, and the 95% lower bound

of the mean difference is less than zero. So, the CD approach is not statistically better

than the BF approach at a significant level of 5%. However, for any other paired t test,

the p-value is 0.000, and the 95% lower bound of mean difference is greater than zero.

Thus, the RO approach generates the highest expected NPV with statistical significance.
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The results of the paired t test indicate that the KWA attained from the RO approach

responds to risks the best.

Table 4.3.
Paired t Tests on NPVs in BF, CD and RO approaches

Test Item 95% LB of Mean Difference P-Value

NPVCD −NPVBF =(vs.>)0 -$1.09B 0.112

NPVRO −NPVBF =(vs.>)0 $5.28B 0.000

NPVRO −NPVCD =(vs.>)0 $3.53B 0.000

4.3.4 Robustness in More Uncertain Environments

NPVBF , NPVCD and NPVRO are based on 90 simulated runs, with 30 runs at

each of three levels of demand volatility: 0.2, 0.4 or 0.6. The data are used to compare the

reliabilities of the three approaches in more uncertain environments. The distributions

of NPVBF , of NPVCD and of NPVRO are fitted at three levels of demand volatility, and

illustrated in Figure 4.12. The figure shows that an increase in demand volatility makes

only the NPVBF distribution and the NPVCD distribution shift substantially towards

the low NPV side. This indicates that, of the three, only the RO approach produces

reliable KWA in highly volatile environments.

Further, to examine how the agility-driven capabilities of the three approaches

are impacted by the uncertainty scale, the 95% CIs of NPVCD −NPVBF , of NPVRO −

NPVBF , and of NPVRO−NPVCD are obtained and shown in Table 4.4. First, the 95%

CI of NPVCD − NPVBF contains zero at all the levels of demand volatility, whereas

95% CIs of NPVRO − NPVBF and of NPVRO − NPVCD are greater than zero at any
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Fig. 4.12. Reliabilities of the BF, CD and RO Approaches in More Volatile Environ-
ments

level of demand volatility. This confirms the observations in Figure 4.11 that the RO

approach generates reliable KWA in the more uncertain environments. Furthermore, a

linear regression model is fitted to show how much improvement the RO approach makes

compared to the other two approaches in more uncertain environments. The response

variable is E[∆NPV ], the expected NPV increase that the RO approach compares to

any other approach. The predictor variables are the demand volatility, σ, (at 0.2, 0.4

and 0.6) and the pair of agility-driven approaches, pair, (it is coded, with -1 indicating

E [NPVRO] − E [NPVBF ] and 1 indicating E [NPVRO] − E [NPVCD]). The regression

model is obtained in Table 4.5. The coefficient of the predictor variable pair is 0.101,

indicating that the between-pairs difference is not important at a 5% significance level.

As shown in Table 4.5, the regression model is E [∆NPV ] = 4.2 + 14.5σ in billion. The
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Table 4.4.
95% CI of Differences in NPVs in BF, CD and RO approaches

95% CI of Mean Difference in NPVs

σ = 0.2 σ = 0.4 σ = 0.6

NPVCD −NPVBF $3.0B ± $4.9B $2.0B ± $6.8B $0.2B ± $6.6B

NPVRO −NPVBF $8.8B ± $4.2B $10.6B ± $4.9B $13.2B ± $6.9B

NPVRO −NPVCD $5.8B ± $2.7B $8.6B ± $4.5B $13.0B ± $4.9B

model informs us that the RO approach raises the expected NPV, compared to either the

CD approach or the BF approach, at a rate of 14.5 billion per unit of demand volatility.

Table 4.5.
Regression Models of The Expected NPV Increase RO Makes compared to BF or CD

Regression Model P-Value R2 R2
adj

Coef of pair Coef of σ

E [∆NPV ] (billion) = 4.2− 0.867pair + 14.5σ 0.102 0.008 93.9% 89.8%

E [∆NPV ] (billion) = 4.2 + 14.5σ N/A 0.012 82.2% 78.5%

4.4 An Evaluation of The Profit Growth from RO-based KWA

The previous two sections have shown that RO-based KWA best benefits high-tech

industries in PLC environments in the previous two sections. This section subsequently

evaluates the expected profit growth that the RO-based KWA generates from various

sources of uncertainty in PLC environments.
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4.4.1 The Study Design

The profit growth from KWA is measured by KWA value. VAD and VAη denote the

KWA values under demand uncertainty and in WK dynamics, respectively. To examine

if KWA value is considerable in either source of uncertainty, VAD and VAη are separated.

In evaluation of VAD, ηt is assumed as a deterministic function of time and Dt is the

underlying process. KWA thereby copes with only demand uncertainty, and gives VAD.

To assume Dt is deterministic in evaluation of VAη is unrealistic. However, if KWA copes

with demand uncertainty with homogeneous policy, VAη can still be attained. Thus, in

evaluation of VAη, both Dt and ηt are underlying processes. VAη is disclosed by coping

with WK dynamics in different ways and yet in the same way for demand uncertainty.

Designing The Study for Measuring VAD

NPVFC is the NPV given by an optimal fixed KW-capacity, and NPVRO is the

NPV after adopting RO-based KWA. KWA value under demand uncertainty, VAD, mea-

sures the expected NPV increment after adoption of RO-based KWA, and is calculated

by taking the difference between the expected value of NPVRO and the expected value

of NPVFC in Equation (4.8).

VAD = E [NPVRO]− E [NPVFC ] (4.8)

E [NPVFC ] in Equation (4.8) is obtained through maximizing the expected NPV with

respect to demand modeled in Equation (3.4). Decision variables in the optimization are

the fixed KW-capacity and the duration of it (i.e., the time interval from the beginning of
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the PLC to where the capacity becomes zero). E [NPVRO] in Equation (4.8) is estimated

using the mean value of 30 replicates of NPVRO.

Further, VAD can be separated into two parts, as in Equation (4.9).

VAD = VRO + VBI (4.9)

The first part in Equation (4.9), VRO, is the increment of the expected NPV that KWA

obtained the demand stochasticity. The second part, VBI , is the increment of the ex-

pected NPV that KWA attains from Bayesian information on Tm. Equation (4.10) shows

VRO is calculated by taking the difference between E [NPVPR], which is the expected

NPV using RO valuation but with no Bayesian information on Tm (i.e., µTm
, the prior

information on Tm, is used demand model), and E [NPVFC ].

VRO = E [NPVPR]− E [NPVFC ] (4.10)

VAD is evaluated on two aspects.

1. VAD is estimated at three levels of σ: 0.2, 0.4 and 0.6, and at each level the t test

is used to examine whether VAD is greater than zero with statistical significance.

If VAD is greater than zero across the wide range of σ, the quantitative relation

between VAD and σ will be examined.

2. VAD is separated as VRO and VBI at the three levels of σ to identify the major

contributor of generating VAD, RO or the Bayesian estimation.
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Designing The Study for Measuring VAη

VAη, measures the expected NPV increment from adopting RO-based KWA with

respect to WK dynamics. If NPVη and NPVη denote the NPVs before and after us-

ing RO-based KWA to handle WK dynamics (i.e., the unreliable performance of the

knowledge workforce in adoption of production technology advances), respectively, VAη

is evaluated by taking the difference between the expected value of NPVη and the ex-

pected value of NPVη, as in Equation (4.11).

VAη = E
[
NPVη

]
− E

[
NPVη

]
(4.11)

E
[
NPVη

]
in Equation (4.11) is evaluated on a multi-layer lattice, whereas E

[
NPVη

]
is

on a single-layer lattice.

The evaluation of VAη involves examining whether a considerable profit growth

is attained when RO-based KWA is used to handle difficulties associated with WK

dynamics. VAη is possibly impacted by the uncertainty scale of the ηt jumps. The

changes in the jump size rη, in the jump intensity λη, and in the reverting speed after

jump αη have been shown in Section 4.2.2 to vary the distribution of ηt. So, the evaluation

takes the three parameters as factors, and each factor is represented by three levels:

• rη (%): 25, 50 and 75;

• λη (year−1): 0.25, 0.5 and 0.75;

• αη (year−1): 0.4, 0.7, 1.0.
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Because of the computational complexity, the evaluation examines the relation between

VAη and one factor at one time. In addition, the procedure of learning information about

Tm is omitted in the evaluation of VAη, so the evaluation takes Tm as a random block

and chooses three levels for Tm: 3 years, 5 years and 7 years. The value of Tm falls in

this range with 95% confidence.

4.4.2 KWA Value under Demand Uncertainty

Figure 4.13 illustrates the estimate of VAD, the KWA value under demand uncer-

tainty, and the 95% CI of the estimate at three levels of demand volatility: 0.2, 0.4 and

0.6. Furthermore, the estimates of VAD are separated as VRO (indicated by dark grey)

and VBI (indicated by light grey) in Figure 4.13.

Fig. 4.13. Changes in VAD and in Composition over A Range of Demand Volatility
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Figure 4.13 shows that the 95% CI of the estimate of VRO is consistently larger

than zero across the range of demand volatility in the figure, and the expected profit

growth from KWA under demand uncertainty is in units of 10 billion. Figure 4.13 further

shows the 95% CIs at the three levels of demand volatility overlap, so the increase of

demand volatility does not change VAD at the 5% significance level. However, the figure

displays the clear relations between σ and VRO/VBI , the components of VAD. That

is, when the demand volatility rises from 0.2 to 0.6, the ratio of VRO in VAD rises

from 59.7% to 87.7% at roughly a constant rate. The observations informs us that

expected profit growth that RO-based KWA generates is positive, even in highly volatile

environments. The observations further indicates that RO plays an important role in

generation of VAD, and the role of RO is indispensable when demand movement becomes

more difficult to be predicted. Meanwhile, the figure shows that the the ratio of VBI in

VAD decreases over the range of demand volatility. Bayesian estimate of Tm depends on

the demand distribution (see Equations 3.9-10), and a wide demand distribution may

lower the capability of Bayesian estimation. The demand distribution is wide when the

demand volatility is high, so it is possible that VBI decreases over the demand volatility.

The accuracy of VRO pertains to whether the underlying process is properly mod-

eled. Thus, an experiment is created to compare the demand model developed in this

thesis and the Bollen (1999) model in terms of the expected NPVs they generate. The

Bollen model does not build the relation between the drift rate in demand and the length

of PLC, and thus it provide biased information for knowledge workforce planning. So,

the expected NPV given by the demand model in Equation 3.4 is higher than the ex-

pected NPV given by the Bollen model. The increase of the expected NPV, ∆E[NPV ],
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is chosen as the response variable in the experiment, and the time of demand maturity,

Tm, is a random factor. Since both models are underlying process serving RO valuation,

demand volatility, σ, possibly does not affect the improvement of the proposed demand

model. To examine this assumption, σ is taken as another factor in the experiment.

Three levels are chosen for each factor:

• Tm: 3 years, 5 years and 7 years, and the value of Tm falls in this range with a

95% confidence;

• σ: 0.2, 0.4 and 0.6.

Results of the experiment are illustrated in Figure 4.14. The Figure shows that

the expected NPV increases after substitution of the Bollen model with the proposed

demand model. Figure 4.14 further suggests that increment of the expected NPV rises

substantially if the PLC length shrinks, possibly due to price erosion. The relation

between the ∆E[NPV ] and Tm is relatively homogeneous across the three levels of

demand volatility, indicating that σ is not an important predictor variable.

Regression models are fitted in Table 4.6 to confirm and analyze the observations

from Figure 4.14. The coefficient of σ in the first regression model in Table 4.6 is 0.671, so

σ is verified as an unimportant factor. The reason for this may be that both the demand

model and the Bollen model are Geometric Brownian motion processes and provide

accurate information on the demand stochasticity. The regression model ultimately only

contains one predictor variable, Tm, and the model is shown in Table 4.6. The model

informs us that the replacement of the Bollen model by the proposed demand model
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Fig. 4.14. Comparing The Proposed Demand Model to The Bollen Model

increases the expected NPV, and the increment raises about $6B for every one year that

the PLC length reduced.

4.4.3 KWA Value in WK Dynamics

Figure 4.15 displays the results of the experiment which is designed for evaluating

VAη, the KWA value from coping with WK dynamics. The figure is composed of three

plots, which illustrate the relations between VAη and each one of the parameters related

to the ηt jumps: the jump size rη, the jump intensity λη, and the reverting speed after

jump αη. The left plot displays VAη in nine treatments which are distinguished by the

three levels of rη (25%, 50% and 75%) at the three levels of Tm (3years, 5years and

7years). The other two plots are similarly constructed. The minimum of λη in Figure

4.15 is no less than one billion, indicating that to handle unreliable performance of

the knowledge workforce using KWA will gain a considerable financial reward. Figure
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Table 4.6.
Regression Analysis of The Expected NPV Increase from Modeling Demand Properly

Regression Model P-Value R2 R2
adj

Coef of σ Coef of Tm

∆E[NPV ](billion) = 87.3− 7.0σ + 12.0Tm 0.671 0.000 90.9% 87.8%

∆E[NPV ](billion) = 84.5− 12.0Tm N/A 0.000 90.6% 89.2%

4.15 further shows that VAη will rise when rη increases, when λη increases, or when αη

decreases. The observation indicates the value of agility is high when the ηt distribution

is wide, which is consistent to the analytical results in Section 4.2.2. In addition, the

figure displays a clear decrease in VAη when Tm increases, indicating that the role of

KWA is crucial in short PLC scenarios.

To quantify the relations observed in Figure 4.15, three regression models are

fitted and listed in Table 4.7. Each regression model corresponds to one plot in Figure

4.15. In all of the three regression models, the coefficient of Tm is -1.4 and the p-Value

for the coefficient is 0.000, indicating that at the significance level of 0.000 VAη raises

$0.7B for every one year that the PLC reduces. The coefficient of rη is 4.3 in the first

regression model, and the p-value for the coefficient is 0.02. So, at 2% significance KWA

value will increase $0.043B when the jump size increases 1%. The other two regression

models inform us that, with 98% confidence the growth of VAη is $0.62B if the jump

intensity increases 0.1 year−1, or with 95% confidence it is $0.24B if the reverting speed

after jump decreases 0.1 year−1.



127

Fig. 4.15. The relation between VAη and rη/λη/αη at Different lengths of PLC

4.5 An Examination of Numerical Schemes

Two numerical schemes are particularly designed for accommodating to the re-

search problems of this thesis. They are the dynamic decision/state space in Section 3.5.5

and the hybrid tree in Section 3.6.2. The former is for speeding up the dynamic pro-

gramming (DP) procedure, and the latter is for reducing the computational complexity

of binomial tree. The effectiveness of the designs is examined in this section.

4.5.1 The Study Design for Examining Numerical Methods

The Study on The Dynamic Decision/State Space

To show that the dynamic decision/state space speeds up the DP procedure with-

out significantly sacrificing the solution accuracy, the dynamic decision/state space is

compared to the fixed decision/state space in terms of the expected NPV, E[NPVRO],
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Table 4.7.
Regression Models of VAη

Factor Fitted Model of VAη P-Value R2 R2
adj

(billion dollars) block(Tm) factor

rη VAη = 10.1− 1.4Tm + 4.3rη 0.000 0.02 93.3% 91.1%

λη VAη = 9.1− 1.4Tm + 6.2λη 0.000 0.02 95.4% 93.8%

αη VAη = 13.5− 1.4Tm − 2.4αη 0.000 0.05 94.4% 92.6%

and the computational time, Tcpt. The computational complexity of the DP procedure

on a binomial lattice is a function of the decision time horizon, and thus the two de-

cision/state spaces are compared at seven different lengths of PLC, from Tm = 2 to

Tm = 8 and the value of Tm falls in this range with 99.6% confidence. At each level of

Tm, a binomial lattice with the decision time horizon of 2Tm is built to represent demand

during the PLC. The backward DP procedure is conducted on the lattice twice, and each

time a different decision/state space is used. The changes in E[NPVRO] and in Tcpt after

adopting the dynamic decision/state space are recorded for analysis.

Studies on The Hybrid Tree

The ends of the tree phase (NT ) and of the lattice-like phase (NL) are important

designs of the hybrid tree, and they are results of trading off efficiency and accuracy.

The hybrid tree in this thesis has seventeen steps. NT and NL are chosen as the end

of step six and the end of step ten, respectively. An experiment is designed to evaluate

whether the values of NT and of NL are properly chosen. The expected NPV, E
[
VAη

]
,

is chosen as the response variable in the experiment. NT and NL are the two factors,

and three levels are chosen for each one:
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• NT (steps): 5, 6 and 7;

• NL (steps): 8, 10 and 12.

∆T ′, the step size in the numerical approximation of ηt, is another important

design of the hybrid three. Although the solution accuracy is improved as ∆T ′ decreases,

the computational time increases substantially. So, the computational efficiency and the

solution accuracy have to be considered in the design of ∆T ′. ∆T ′ is chosen as a half year,

so a ten-years PLC at most has seventeen steps. To examine if ∆T ′ is well calibrated,

KWA value in WK dynamics, VAη, and the computational time, Tcpt, are compared at

two levels of ∆T ′: 1
2 years and 1

3 years.

4.5.2 Examining The Dynamic Decision/State Space

Table 4.8 displays the losses of the expected NPV and the reductions of the

computational time after substituting the fixed decision/state space with the dynamic

decision/state space at seven levels Tm. Results in Table 4.8 shows that after using

Table 4.8.
Examining The Effectiveness of Dynamic Action/State Space

Tm (year) Loss of E[NPVRO] Reduction in Tcpt

2 1.28% 89.45%

3 0.32% 90.02%

4 0.15% 89.41%

5 0.06% 89.31%

6 0.02% 89.58%

7 0.00% 89.94%

8 0.00% 90.62%
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the dynamic decision/state space the computational time is reduced by at least 89%,

whereas the expected NPV is lowered by at most 1.5%. The observation suggests that

the dynamic decision/state space substantially speeds up the DP procedure without

significantly sacrificing accuracy.

4.5.3 Examining The Design of The Hybrid Tree

Figure 4.16 illustrates the main effect plots of VAη for examining the designs of

NT , the end of the tree phase, and of NL, the end of the lattice-like phase. Figure

Fig. 4.16. Main Effect Plots for VAη in Design of Hybrid Tree

4.16 shows that VAη is lowered when NT increases, and VAη rises when NL increases.

The observation indicates that the substitution of the binomial tree with the lattice-like

structure leads to the overestimation of VAη, and the substitution of the binomial tree

with the strip structure causes the underestimation of VAη. By comparing the two main
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effect plots, VAη is found to be more sensitive to choices of NT than to NL. Moreover,

the main effect plots show that VAη almost stops decreasing when NT is greater than

six, and the pace of VAη increase is substantially reduced when NL is great than ten.

Observations in Figure 4.16 indicate that NT = 6 and NL = 10 are appropriate for the

hybrid three.

Two choices of ∆T ′, the step size in the numerical approximation of ηt, are com-

pared in Table 4.9. The comparison in Table 4.16 shows that the probability that more

Table 4.9.
Comparision of Step Sizes in Approximation of ηt

Step Size (∆T ′) PX = 0 PX = 1 PX ≥ 2 NT NL VAη($) Tcpt(sec.)
1
2year 77.9% 19.5% 2.7% 6 10 3.7B 34634
1
3year 84.7% 14.1% 1.2% 9 15 5.7B 151889

than one jump occurs is reduced from 2.7% to 1.2% when ∆T ′ is reduced from 1
2 years

to 1
3 years. As a result, the expected NPV increases $2B at a cost increasing the com-

putational time by a factor of five. Results in Table 4.9 suggests that, to attain a higher

expected production profit through reducing the step size in the numerical approximation

of ηt, some alternate computing techniques maybe needed.
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Chapter 5

Conclusions and Future Work

This thesis investigated the reason why the product life cycle (PLC) phenomenon

placed significant pressures on high-tech industries. High-tech industries relied heav-

ily on the knowledge workforce in transferring cutting-edge technologies into products.

However, market changes and production technology advances happened frequently and

unpredictably during the PLC, causing difficulties in predicting an appropriate demand

on knowledge workforce and in maintaining reliable performance. Knowledge workforce

planning in PLC environments thereby was not easy, and this made high-tech industries

apprehensive of the unexpected changes and incapable of matching the rapid pace of

change.

This thesis identified knowledge workforce agility (KWA) as a desirable advan-

tage of high-tech industries which operate in PLC environments. This thesis found that

previous research on KWA was limited, and the linkage of KWA to workforce flexibility

was incomplete. It thereby accomplished several critical tasks to have realized the ad-

vantage of KWA. This thesis chose real options (RO) as the approach of exploiting KWA

since it found that RO captured the essence of KWA– options in manipulating knowl-

edge capacity, a human asset, or a self-cultivated organizational capability for pursuing

interests associated with change. Accordingly, this thesis formulated workforce knowl-

edge (WK) dynamics in adoption of technology advances and market demand change as
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underlying stochastic processes during the PLC. It modeled KWA as capacity options in

a knowledge workforce and developed a RO approach of workforce training (either initial

or continuous) to generate the options. This thesis finally implemented RO valuation

methods and techniques to optimize KWA and to maximize the expected reward from

KWA.

Results from an analytical examination of the underlying process models with

respect to the parameter space identified that KWA had potential to reduce negative

impacts and generate opportunities in an environment of volatile demand, and to com-

pensate unreliable performance of knowledge workforce in adoption of technology ad-

vances. The benefits of KWA were especially important when confronting highly volatile

demand, a low initial adoption level, shrinking PLCs, a growing market size, intense and

frequent WK dynamics, insufficient learning capability of employees, or diminishing re-

turns from investments in learning. Furthermore, comparisons among three approaches

of attaining KWA under demand uncertainty showed that RO-based KWA was better

than KWA derived either from the chase-demand heuristic or from the Bass forecasting

model, in that RO-based agility leaded to a stably higher yield, to a consistently larger

NPV, and to a NPV distribution that was more robust to highly volatile demand. Thus,

RO-based KWA made high-tech industries operate more effectively. Finally, a quantita-

tive evaluation of the KWA value verified that RO-based KWA created a considerable

profit growth, either under uncertainty in demand or in WK dynamics. In evaluation,

RO modeling and the RO valuation were identified to be crucial in creation of KWA

value. This thesis illustrated the effectiveness of the numerical methods used for solving

the dynamic system problem.
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5.1 Contributions

The research reported in this thesis was a clear demonstration of how to cultivate

and optimize KWA in PLC environments with a view of RO. It provided an innovative

solution for knowledge workforce planning in rapidly changing and highly unexpected

environments. The work of this thesis was representative of studying KWA in PLC

environments using quantitative techniques, where there was a dearth of quantitative

studies in the literature. It exploited the benefits of KWA by optimizing KWA, and

meanwhile, it boosted the profit growth through maximizing the expected reward from

KWA. More specifically, the major contributions of the work were as follow.

1. The establishment of a model of the relation among KWA, RO and the PLC phe-

nomenon, which probed into a new frontier of knowledge workforce management.

2. The formulizations of the demand model which combines diffusion theory and

Brownian motion processes, and of the CTT model which directly addressed WK

dynamics in adoption of technology advances. These model made optimization of

KWA better informed.

3. The characterization of the role of knowledge workforce in unstable production en-

vironments, and the formulation of costs in attaining KWA. These calibrated every

aspect that KWA impacted production and provided an approach for quantifying

the benefits of KWA.

4. The development of a RO approach for workforce training. It delivered an opti-

mal solution of generating KWA for high-tech industries, allowing for improved



135

knowledge workforce planning. The KWA attained via this approach leaded to a

considerable profit growth compared to the agility derived either from the simple

chase-demand heuristic or from the Bass forecasting model.

5. The avoidance of computationally expensive numerical procedures for attaining

RO-based KWA, yet still keeping a reasonable accuracy in the solution.

5.2 Future Work

5.2.1 Limitations and Improvement Directions

This thesis research confronts some difficulties which are hard to be overcome.

Limitations thereby exist, causing biases in the results obtained from the thesis research.

Some future work is suggested by my thesis committee, which would either help reduce

the limitations of the thesis work or probe into interesting directions. They are discussed

in below.

1. To obtain a set of systematic data for fitting models and for examining the ef-

fectiveness of the thesis work. This thesis study is short of real data for fitting

models. In addition, it has difficulties to obtain a whole data set for numerically

demonstrating research results. Parameter values in Table 4.1 are not provided

by one empirical study. Some of them are used in literatures and referred by this

thesis. For the remains, this thesis has to make a reasonable guess. Fitting mod-

els with real data will help verify model formulations, justify model assumptions,

and provide estimates of model parameters. The effectiveness of the new approach
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proposed by this thesis can be demonstrated and examined by comparing it to the

previous business solution.

2. To improve the computational efficiency for large size problems. Although the com-

putational complexity has been reduced by this thesis, it still exhibits limitations.

The problem of computational complexity will be more severe when confronting

large size problems. Better designed algorithms or advanced computing techniques

should be implemented to improve the computational efficiency.

3. To design sophisticated experiments capable of studying general statistical models

and of conducting comprehensive sensitivity analyses. This thesis does not design

experiments capable of studying multiple variables and their interactions because

it is time consuming to fulfill the complex experiments. After the computational

efficiency is improved, it will be possible to obtain more treatments. Thus, ex-

periments should be redesigned for developing general statistical models or for

conducting comprehensive sensitivity analyses, so accurate quantitative relations

will be discovered through experimentation.

4. To investigate possibilities that KWA influences rather than yield in production.

This thesis studies KWA at a planning level, and uses yield to characterize the

impact of KWA on production. Yield improvement is an organizational learning.

KWA not only benefits organizational learning, but individual learning. When the

thesis work is extended to at an operational level, how KWA improves individual

learning should be specified.
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5. To develop methods for estimation of model parameters without history data.

This thesis never discusses the estimation of model parameters without history

data. Using models built on history data to inform decisions pertaining to long-

term profits may be problematic because the future could be substantially different

from the past or from the current. For example, the demand volatility may change

significantly because of technology advances in the future, and the estimate based

on history data is possibly invalid in such scenarios. Thus, how to estimate model

parameters without history data or how to correct the estimates would be an

interesting research topic.

5.2.2 Extensions of The Thesis Work

Possible extensions of this work are discussed below, but not are limited to them.

Extension to The Service Sector

Training and planning service providers are crucial in the service sector because

service enterprises rely heavily on service providers to meet service requests. Many

service providers are skill-based, so service enterprises are highly sensitive to changes in

service requests. Seasonality has been a commonly observed PLC phenomenon in the

service sector. It causes rapid and unanticipated changes in service requests, either in

width or in depth. Thus, similar to the manufacturing sector, the service sector also

bears pressures from the PLC phenomenon, and KWA may be beneficial.

KWA may be more desirable in the service sector than in the traditional manufac-

turing sector, and this has been manifested by following features of service enterprises.
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• PLCs in the service sector are shorter than in the manufacturing sector.

• Service providers interact with the customers more directly and in more diversified

channels in the service sector than in the traditional manufacturing sector.

• The calibration of the roles/performance of service providers is harder in the service

sector than in the traditional manufacturing sector. On one hand, the output

of service enterprises usually is intangible. On the other hand, investments on

service quality improvement are instant and irreversible, whereas the rewards of

the investments are long term and uncertain.

No surprisingly as extending the work of the thesis to the service sector, there

will be many new elements. Some examples are below:

1. mathematical models of service systems that capture great realism and make the

re-engineering of service systems well informed,

2. the schemes of training and allocating service providers in the re-engineering of

service systems,

3. mechanisms for improving the performance of service providers, and

4. the measurements for the roles, the performance, and the impacts of service providers.

Extension to Endogenous Problems

The sales price and demand were treated as exogenous in this thesis, which is a

common assumption in finance but is not in many other areas, because the assumption
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ignores a fact that knowledge workforce management can have marketing issues, technol-

ogy advances with operations connected at the firm level. Thus, taking the sales price,

demand, and WK dynamics as endogenous is more realistic, and this would be a valuable

extension of this thesis since the role of KWA is broadened. After they are endogenized,

the study of this thesis becomes a stochastic optimal control problem, including the

following requirements:

1. the investigation of relations among workforce issues (e.g., availability, heterogene-

ity, quantity, quality, skill sets, training, teaming up, or the others), marketing

issues (e.g., demand, and sales price), and technology issues (e.g., technology ad-

vances),

2. descriptive models of underlying processes, which exhibit how practices in knowl-

edge workforce management influence marketing and technology issues, and in

further, interact with operational decisions,

3. the formulation of the stochastic optimal control problem, and

4. algorithms for efficiently solving the optimal control problem, which states real-

word decisions, and thus is complicated to be analyzed or solved.

The extension is not only just derived from this thesis but a valuable extension of

the work which formulated the investment on knowledge workforce as a static optimal

control problem[e.g., Mody (1989)].
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Extension to Decisions on The Operational Level

This thesis discussed a knowledge workforce planning problem that involved one

source of workforce and one task (or position). A natural extension is to use RO for

studying scheduling problems, which is usually on an operational level and could be

extremely complex. Although the extension is challenging, a promising future of it is

foreseen. This is because some traditional approaches, such as mathematical program-

ming, heuristic algorithm, and even the stochastic programming, have clear limitations

in highly uncertain scenarios, whereas RO exhibit great advantages.

The most straightforward example is the cross training decision that various

sources of workforce have to be trained to be capable of working on different tasks

or a similar task but at different places (channels, stations, and the others). The de-

cision maker has to determine when to train sources of workforce for various types of

tasks (or positions). Demand (or service requests) come to different tasks (or positions),

like some stochastic processes. Thus, the KW-capacity on each task/position, as well

as the composition of the knowledge workforce, has to be changed to meet interests as-

sociated with change. From the view of the workforce, the skill sets of the individuals

are expected to vary over time too. The goal of cross training in such scenario is to

form a dynamic workforce constitution, whereby the workforce is consistently agile to

the change in demand (or service requests).

Variations of this thesis

The research problem in this thesis can be solved using some other RO valuation

methods or techniques. For example, this thesis approximately displayed the underlying



141

processes using binomial lattice/tree, whereon the backward dynamic programming was

conducted to optimize KWA. In practice, Monte Carlo simulation or partial differential

equation also solve the problem well.

The work of this thesis will be varied if the underlying processes change. Several

examples are discussed below.

1. WK dynamics is the only underlying process, which is a mean-reverting diffusion

plus a stochastic jumping process. A multi-layers lattice can approximate it, and

the computational complexity is the same as in this thesis.

2. WK dynamics is the only underlying process, which it is a mean-reverting diffusion

process plus a stochastic jumping process. However, the jump size is not a constant.

A multi-layers lattice can approximate this underlying process, but each layer has

a unique distribution.

3. WK dynamics in 1 and demand are both underlying processes. A multi-layers

lattice can still approximate the underlying processes, however, the computational

complexity is higher than in this thesis.

4. WK dynamics as in 2 and demand are both the underlying processes. The RO

valuation should be extremely complex.

The more sources of uncertainty a decision confronts, the more difficult it is to be ana-

lyzed and solved. This thesis would not recommend to generalize the problem as much as

possible, since the generalization may be neither necessary nor computational efficient.

This thesis could not enumerate every subject or direction of future research. It

demonstrated several to show the promising future of RO-based KWA. Future research
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opportunities could involve a combination of the abovementioned extensions, or they

could be in some other interesting directions.
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Appendix A

Itô’s Lemma

The derivation of Itô’s Lemma has been provided in the extensive options liter-

ature [e.g.,Neftci (2000), and Hull (2003)].Itô’s Lemma is briefly introduced here as an

important tool used in this thesis.

Itô’s Lemma is a result of stochastic calculus for determining the differential of a

function of certain stochastic process.

St represents a generalized Wiener process, as in Equation (A.1).

St = a(St, t)dt + b(St, t)dWt. (A.1)

If f(St, t) is a function with continuous second derivatives, it is a generalized Wiener

process too.

The Itô’s Lemma gives the differential of f(St, t), as in Equation (A.2).

df =

(
∂f

∂t
+ a

∂f

∂St
+

1
2
b2 ∂2f

∂S2
t

)
dt + b

∂f

∂St
dWt (A.2)
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Appendix B

Derivation of The Drift Rate Function µt

The spread of a new product in the market is similar to a diffusion process, so the

diffusion theory is utilized in formulation of µt in this thesis. The expected cumulative

demand over time, M , measures how saturated the product is in the market during the

PLC. It usually exhibits an S-shape over the PLC, in general [e.g.Rosegger (1986)]. There

are many sigmoid functions which can be used to describe the S-shaped pattern (e.g.

logistic function, error function, or cumulative distribution functions of many statistic

distributions). This thesis uses the cumulative distribution function (cdf) of normal

distribution to model the cumulative demand over the PLC since this cdf can describe

µt with a simple form. Using different sigmoid functions will not significantly alter the

major work in derivation of ηt.

Demand, Dt, is modeled as a Geometric Brownian motion (GBM) in Equation

(3.1), thus the natural logarithm of demand, ln Dt, is a Brownian Motion (BM) process.

The differential of lnDt is obtained by applying Itô’s Lemma (see A), yielding the

expression in Equation (B.1).

d lnDt =
(

µt −
1
2
σ2

)
dt + σdWt, (B.1)

The drift rate in demand can be derived easily from Equation (B.1).
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E[Dt] represents the expected demand at t. According to Equation (B.1), the

differential of ln E[Dt] is obtained in below.

d lnE[Dt] = µtdt, (B.2)

indicating that

µt =
E[Dt]

′

E[Dt]
. (B.3)

E[Dt] during the PLC is formulated as the distribution of expected cumulative

demand over the PLC, as indicated in Equation (B.4).

E[Dt] = Mφt (B.4)

φt in Equation (B.4) is the probability density of E[Dt] which is normal distributed

over time. Thus, φt models the bell shape of E[Dt] over the PLC. The time of demand

maturity, Tm, is where E[Dt] reaches the peak, so Tm is the taken as the expected value

of φt. E[Dt] approaches zero at the either ends of the PLC (i.e., t = 0 or t = T ), whereby

Tm/β (β is a shape parameter whose value is around 3) is the estimate of the standard

deviation of φt. Thus, the formulation of φt is obtained in Equation (B.5).

φt =
1

√
2π Tm

β

e
− (t−Tm)

2

2(Tm
β )2

(B.5)
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By plugging Equations (B.5) and (B.4) into Equation (B.3), the expression of µt

is obtained, as in Equation (B.6).

µt =
β2

Tm
− β2

T 2
m

t. (B.6)

β in Equation (B.6) is determined in evaluation of Equation (B.4) at t = 0 when E[Dt]

equals D0. As a result, β is the solution of the implicit function of β in Equation (B.7).

f(β, M, D0, Tm) = βe−
β
2

2 − D0

√
2πTm

M
= 0. (B.7)

In case that demand is discrete, coming at the interval of ∆T , D0 in Equation (B.7) can

be replaced by D0/∆T if ∆T is small enough.
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Appendix C

Demand Model Fitting

According to the Equations (3.2) and (3.3), the relative change of demand in

a time interval ∆T , Di+1−Di

Di∆T has a normal distribution N( β2

Tm
− β2

T 2
m

t, σ2

∆T ). Thus, the

demand model in Equation (3.1) is verified through fitting a linear regression model

using the time series Di+1−Di

Di∆T . Results from running the regression procedure on SAS

9.1 are listed in below.
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Appendix D

Derivation of ηt Formulation

To obtain the formulation of ηt through integrating dηt in Equation (3.11) is

difficult. f(ηt), a function ηt, is built in Equation (D.1) for derivation of ηt.

f(ηt) = ηte
αηt (D.1)

The differential of f(ηt) is obtained in Equation (D.2).

df(ηt) =
∂f

∂t
dt +

∂f

∂ηt
dηt +

1
2

∂2f

∂η2
t

(dηt)
2 + · · · = αηηte

αηtdt + eαηtdηt (D.2)

By plugging Equation (3.11) into Equation (D.2), the differential of f(ηt) turns to be

the expression in Equation (D.3).

df(ηt) = eαηtαηηmdt + eαηtσηdWηt + eαηtrηdNt. (D.3)

Though integrating Equation (D.3), the expression of f(ηt) is attained, as in Equation

(D.4).

f(ηt) = f(η0) + ηm

(
eαηt − 1

)
+ ση

∫ t

0

eαηsdWηs + rη

∫ t

0

eαηsdNs (D.4)

Replacing f(η) with ηte
αηt in Equation (D.4), and then multiplying both sides of the

equation by e−αηt, ηt is obtained, as illustrated in Equation (3.12).
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Appendix E

Derivation of The Mean and The Variance of ηt

E [ηt] = E
[
e−αηtη0 +

(
1− e−αηt

)
ηm

+ση

∫ t
0

eαη(s−t)dWηs + rη

∫ t
0

eαη(s−t)dNs

]
= e−αηtη0 +

(
1− e−αηt

)
ηm

+E
[
ση

∫ t
0

eαη(s−t)dWηs

]
+ E

[
rη

∫ t
0

eαη(s−t)dNs

]
= e−αηtη0 +

(
1− e−αηt

)
ηm

+ση

∫ t
0

eαη(s−t)E
[
dWηs

]
+ rη

∫ t
0

eαη(s−t)E [dNs]

= e−αηtη0 +
(
1− e−αηt

)
ηm + rη

∫ t
0

eαη(s−t)ληds

= e−αηtη0 +
(
1− e−αηt

)
ηm + ληrη

(1−e−αηt)
αη

= e−αηtη0 +
(
1− e−αηt

) (
ηm + ληrη

αη

)

(E.1)

V AR [ηt] = V AR
[
e−αηtη0 +

(
1− e−αηt

)
ηm

+ση

∫ t
0

eαη(s−t)dWηs + rη

∫ t
0

eαη(s−t)dNs

]
= V AR

[
ση

∫ t
0

eαη(s−t)dWηs

]
+ V AR

[
rη

∫ t
0

eαη(s−t)dNs

]
= σ2

η

∫ t
0

e2αη(s−t)V AR
[
dWηs

]
+ r2

η

∫ t
0

e2αη(s−t)V AR [dNs]

= σ2
η

∫ t
0

e2αη(s−t)ds + r2
η

∫ t
0

e2αη(s−t)ληds

=
(
1− e−2αηt

) ληr2
η+σ2

η

2αη

(E.2)
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Appendix F

Derivation of Production Profit Loss In Initial Training

A team receives an initial training right before they are sent to serve in a new

generation. Employees in the team do not take the previous responsibility during the

training, which may lead to a production profit loss.

A team allocated to the current generation is assumed as coming from the previous

generation. Figure F.1 illustrates the relation between the time index of the current

generation, t, and the time index of the previous generation τ . Let ti indicate the end

Fig. F.1. The Time Indices of Two Successive Generations

of the ith steps in the current PLC, τj denote the jth steps in the previous PLC, and

they actually represent the same time. The current generation starts ∆L later than the

previous generation, so τj can be estimated using Equation (F.1).

τj = ti + ∆L (F.1)
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The derivation of the production profit loss in the initial training is in an assumed

scenario in below. The KW-capacity for problem solving at τj in the previous generation

is x̃pj , and the production scale is x̃wj . Thus, yield of the previous generation is evaluated

in Equation (F.2), wherein λỹ is the rate of yield improvement in the previous generation.

ỹj = 1− e
−λỹ

x̃pj
x̃wj (F.2)

However, x(≥ 0) teams in the previous generation is requested to receive the initial

training at τj to prepare for serving the current generation. This causes a change in x̃pj ,

denoted as ∆x̃pj , and x is approximately equals −∆x̃pj . Thus, ỹj is lowered correspond-

ingly, and the change in ỹj is calculated in Equation (F.3)

∆ỹj =
(

1− e
−λỹ

x̃pj−x

x̃wj

)
−
(

1− e
−λỹ

x̃pj
x̃wj

)
= e

−λỹ
x̃pj
x̃wj − e

−λỹ
x̃pj−x

x̃wj

= −e
−λỹ

x̃pj
x̃wj

(
e
λỹ

x
x̃wj − 1

) (F.3)

The output change of the previous generation at τj is obtained by scaling ∆ỹj with

x̃wjÑIC (ÑIC is the number of chips resided in a wafer in the previous generation), as

indicated in Equation (F.4).

∆Õj = −x̃wjÑICe
−λỹ

x̃pj
x̃wj

(
e
λỹ

x
x̃wj − 1

)
(F.4)
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The production profit loss due to the initial training thus is attained, as illustrated in

Equation (F.5).

∆ṽj = p̃jÕj = p̃j x̃wjÑICe
−λỹ

x̃pj
x̃wj

(
e
λỹ

x
x̃wj − 1

)
= ãIP

1j
exp

(
ãIP

2j
x− 1

) (F.5)

p̃j in Equation (F.5) represents the sales price of the previous generation at τj .

ãIP
1j

in Equation (F.5) varies over time because it is not only a function of time

but contains two time varying variables, x̃wj and x̃pj . ãIP
1j

can be simplified based on two

notions. First, when the current generation is introduced, yield of the previous generation

has a large chance to have reached a relatively stable level E[ỹ]. exp
(
−λỹ

x̃pj

x̃wj

)
thus is

approximated as a constant, 1 − E[ỹ]. Second, x̃wj can be estimated based on D̃j , the

demand for the previous generation of product at τj . That is, x̃wj is approximated

by D̃j

ÑIC ỹj
, respectively. Although D̃j and ỹj are stochastic, they can be replaced by

the expected values, E[D̃j ] and E[ỹ]. The replacements are reasonable since, when

the current generation is introduced, the previous generation soon becomes a secondary

product. Thus, the stochasticity in the previous generation is not a major concern in

development of the current generation. The replacement substantially simplifies the

problem without severely impairing the solution accuracy. Procedures for simplifying

ãIP
1j

are illustrated in Equation (F.6).

ãIP
1j

= p̃j x̃wjÑICe
−λỹ

x̃pj
x̃wj = p̃j

D̃j

ÑIC ỹj

ÑIC

(
1− ỹj

)

= p̃j

E[D̃j ]

ÑICE[ỹ]
ÑIC (1− E[ỹ]) = p̃jE[D̃j ]

(
1

E[ỹ]
− 1
) (F.6)
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Similarly, ãIP
1j

is simplified in Equation (F.7).

ãIP
2j

=
λỹ

x̃wj
=

λỹ

D̃j

ÑIC ỹj

=
λỹÑICE

[
ỹj

]
E
[
D̃j

] (F.7)

The production profit loss in Equation (F.5) is evaluated under the time index of

the previous generation. To obtain the formulation under the time index of the current

generation, as illustrated in Equation (F.8), aIP
1j

and aIP
2j

have to be transfered to aIP
1i

and aIP
2i

via Equation (F.1).

∆vj = aIP
1i

(
exp

(
aIP

2i
x
)
− 1
)

(F.8)

aIP
1i

and aIP
2i

are obtained in Equations (F.9) and (F.10), respectively.

aIP
1i

= p̃∆LD̃∆L

(
1

E[ỹ]
− 1
)

e
−
�

β̃
2

T̃2
m

∆L+0.5σ̃2+λp̃− β̃
2

T̃m

�
ti− β̃

2

2T̃m
t2i (F.9)

aIP
2i

=
λỹÑICE[ỹ]

D̃∆L exp
(
−
(

β̃2

T̃ 2
m

∆L + 0.5σ̃2 − β̃2

T̃m

)
ti − β̃2

2T̃m
t2
i

) (F.10)

D̃∆L and p̃∆L in Equations (F.9) and (F.10) are the demand and the sales price of the

previous generation when the current generation starts. β̃, T̃m, λp̃, and σ̃ are model

parameters of the previous generation.
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Appendix G

Formulating Optimization with Single Decision Variable

The optimization of KWA on lattice Bi (∀i ∈ I) has two decision variables,

the KW-capacity cik+1
and the production scale xwik (∀k ∈ Ki). However, it can be

formulated as an optimization with single decision variable cik+1
. Let W = {0, 1, . . . , UW }

represent the finite integer set which consists of all possible values of xwik , and R+W =

[0, UW ] represent the closed set defined on R. Let all possible values of cik+1
form a finite

integer set C = {0, 1, . . . , UC}. fZ : (W × C) → R is the periodic profit function, which

is denoted as f : (R+W ×C) → R if assuming xwi ∈ R+W . f is used in formulation of the

optimization with single decision variable because it makes the mathematical derivation

easy. However, results based on f can be inherited by fZ .

The periodic output function at tik , simply denoted as Oik , is calculated in Equa-

tion (G.1).

O
(
cik+1

, xwik |cik , Dik

)
= NICxwik

1− e
−λy

cik
−ηik

min

�
cik

,cik+1

�
xwik

 (G.1)

Accordingly, the periodic profit function f at tik is obtained in (G.2).

f
(
cik+1

, xwik |cik , Dik

)
=ptik

min
(
Dik , Oik

)
− cvxwik − CIP

(
cik+1|cik

)
− CIT

(
cik+1|cik

)
− CCT

(
cik+1|cik

) (G.2)
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If f is proven as a concave function on R+W , x∗
wik

exists in R+W and it is a function of

cik+1
. The optimization of KWA whereby turns to have just one decision variable.

Equation (G.2) shows that f is not smooth on R+W . Let RA
+W

be the subset

of R+W when Dik ≥ Oik , and RB
+W

be the subset of R+W when Dik ≤ Oik . So,

RA
+W

∪ RB
+W

= R+W , and RA
+W

∩ RB
+W

= 0. The concavity of f is examined on the

complements of R+W , RA
+W

and RB
+W

, separately.

When Dik ≥ Oik , the first and second order partial derivatives of f w.r.t. xwik

are illustrated in Equation (G.3) and (G.4), respectively.

∂f

∂xwik

=− cv + ptik
NIC

1− e
−λy

cik
−ηik

min

�
cik

,cik+1

�
xwik



− e
−λy

cik
−ηik

min

�
cik

,cik+1

�
xwik

ptik
NICλy

(
cik − ηik min

(
cik , cik+1

))
xwik

(G.3)

∂2f

∂x2
wik

= −e
−λy

cik
−ηik

min

�
cik

,cik+1

�
xwik

ptik
NIC

(
λy

(
cik − ηik min

(
cik , cik+1

)))2

x3
wik

(G.4)

Equations (G.3) and (G.4) indicate f is a twice-differentiable function on RA
+W

, and the

second order partial derivative of f w.r.t. xwik is negative, so f is concave on RA
+W

.

When Dik ≤ Oik , the first and second partial derivatives of f w.r.t. xwik are illustrated

in Equation (G.5) and (G.6), respectively.

∂f

∂xwik

= −cv (G.5)

∂f

∂xwik

= 0 (G.6)
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f is a linear functionon RB
+W

according to Equations (G.3) and (G.4), so f is concave

on RB
+W

. f on R+W is the minimum of two concave functions, which is still concave.

The concavity of f on R+W is justified.

A concave function must have a local maximum, which is a global maximum too.

Thus, x∗
wik

exists on R+W such that f
(
cik+1

, x∗
wik
|cik , Dik

)
≥ f

(
cik+1

, xwik |cik , Dik

)
.

Accordingly, x∗
wik

is a function of cik+1
, as indicated in Equation (G.7).

x∗
wik

= g(cik+1
) (G.7)

The valuation function in Equation (3.31) is maximized by c∗
ik+1

and x∗
wik

together,

as illustrated in Equation (G.8).

V ∗(cik+1
, xwik |cik , Dik) = V (c∗

ik+1
, x∗

wik
|cik , Dik)

= max
cik+1

∈C,xwik
∈R+W

V (cik+1
, xwik |cik , Dik)

(G.8)

c∗
ik+1

pushes V to V ∗(cik+1
, xwik |cik , Dik) through maximizing V (cik+1

, g(cik+1
)|cik , Dik)),

as illustrated in Equation (G.9).

V ∗(cik+1
, xwik |cik , Dik) = V (c∗

ik+1
, x∗

wik
|cik , Dik) = V (c∗

ik+1
, g(c∗

ik+1
)|cik , Dik)

= max
cik+1

∈C
V (cik+1

, g(cik+1
)|cik , Dik)

(G.9)

fZ is a subset of f since it is the discrete concave function corresponding to f .

fZ whereby is concave on W , and it inherits abovementioned properties of f . Thus,
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x∗
wik

∈ W exists on W such that fZ
(
cik+1

, x∗
wik
|cik , Dik

)
≥ fZ

(
cik+1

, xwik |cik , Dik

)
.

The relation x∗
wik

= gZ(cik+1
) is obtained, accordingly. Thus, the optimization of can be

formulated as having single decision variable cik+1
.
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Appendix H

Approximation of Poisson Process as Binomial Process

Poisson Process, Nt, accounts the number of jumps happening in [0, t). If this

interval is divided into l steps in length of ∆T ′, the number of jumps in the kth step

(i.e., [tk−1, tk)), Xk, is calculated in Equation (H.1).

Xk = Ntk −Ntk−1
(H.1)

Equation (H.1) indicates that Nt is the sum of Xk (∀k = 1, 2, . . . , l), as illustrated in

Equation (H.2).

Nt =
l∑

k=1

Xk (H.2)

Thus, Xk satisfies Equation (H.3).

P (Xi = x) =


1− λη∆T + 0(∆T ) x = 0

λη∆T + 0(∆T ) x = 1

0(∆T ) x > 1

(H.3)
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Equation (H.3) indicates that Xk approximates to the Binomial variable Z in

Equation (H.4) if ∆T ′ is small.

Z =


1 w.p.t. λη∆T

0 w.p.t. 1− λη∆T

(H.4)

zk represents the outcome of Z at the kth step, then
∑l

i=1
zk has a Binomial

distribution, as indicated in Equation (H.5).

P

{
l∑

k=1

zk = n

}
= C l

n

(
λη∆T

)n (1− λη∆T
)l−n

n = 0, 1, . . . , l (H.5)

It is well known that

lim
l→∞

P

{
l∑

k=1

zk = n

}
=

e−ληt
(
ληt
)n

n!
. n = 0, 1, . . . (H.6)

Equation (H.6) indicates, when ∆T ′

t is small enough, Binomial process is a reasonable

discrete approximation of Poisson process.
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Appendix I

Justifying The Design of Group-Based Hybrid Tree

Infinite sequence S∞(ω) =
{
ω, ω2, . . .

}
converges to zero asymptotically since

0 ≤ ω = e−αη∆T ′
< 1. That is, a small positive real value δL and a large positive integer

NL exist such that |ωnL − 0| < δL for any nL > NL. Moreover, S∞(ω) converges to zero

at a decreasing speed. Thus, a small positive real value δT and a large positive integer

NT exist such that |ωnT +1 − ωnT | < δT for any nT ≥ NT .

A sequence SND
(ω) =

{
ω, ω2, . . . , ωND

}
is used to construct a ND-steps binomial

tree for approximating ηt (∀t ∈ [0, T ]). If the number of steps that the binomial tree

have is large enough (e.g., 0 < NT ≤ NL ≤ ND), SND
(ω) acts in a manner similar to

S∞(ω). Thus, −→ω l can be reasonably approximated by −→ωhl in Equation (I.1).

−→ωhl =



[
ωl, ωl−1, . . . , ω

]
1 ≤ l ≤ NTωl

NT
, . . . , ωl

NT︸ ︷︷ ︸
l−NT

, ωNT , . . . , ω

 NT < l ≤ NL

0, . . . , 0︸ ︷︷ ︸
l−NL

, ωNL

NT
, . . . , ωNL

NT︸ ︷︷ ︸
NL−NT

, ωNT , . . . , ω

 NL < l ≤ ND

(I.1)

ωl
NT

in Equation (I.1) is the average of ωk (NT + 1 ≤ k ≤ l), as indicated in Equation

(I.2).

ωl
NT

=
1

l −NT

l∑
k=NT +1

ωk (I.2)
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The error of approximation −→ω l with −→ω hl is finite. Equation (I.3) gives the bound-

ary of the error when it is measured as Manhattan distance (i.e., 1-norm distance in the

Euclidean space Rl).

||−→zl · −→ωhl −−→zl · −→ω l||1 ≤



0 1 ≤ l ≤ NT

(l −NT ) δT NT < l ≤ NL

(l −NL) δL + (NL −NT ) δT NL < l ≤ ND

(I.3)

A hybrid tree is built based on the approximation of −→ω i with −→ω hi in Equation

(I.1). Equation (I.1) indicates that the hybrid tree in the first NT steps is a binomial

tree. From step NT + 1 to distinguish the slight differences among ωk (∀k = NT +

1, NT + 2, . . . , l) is not a necessity. Thus, from step NT + 1 to NL the hybrid tree has

a lattice-like structure (i.e., some tree nodes are combined, but the number of unique

nodes is still growing). After step NL ωl is so small such that it can be treated as zero.

Thus, since step NL + 1 the hybrid tree has a strip structure (i.e., some tree nodes are

combined, and meanwhile, the tree stops generating now nodes).

The replacement of −→ω l by −→ωhl leads to a slight reduction in the mean and the

variance of ηt, as indicated in Equations (I.4) and (I.5).

∆E
[
ηtl

]
= rηE [−→z l · (−→ω l −−→ωhl)] ≤


0 0 < l ≤ NL

(l −NL)δT rηλη∆T ′ NL < l ≤ ND

(I.4)

Equation (I.4) shows that the error of E[ηt] is zero before tNL
, and increases linearly

after then at a speed of δT rηλη∆T ′. Thus, the error of E[ηt] can be lowered through
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delaying the strip phase or through reducing the step size of hybrid tree.

∆V AR
[
ηtl

]
= r2

η
V AR [−→z l · (−→ω l −−→ωhl)]

≤



0 0 < l ≤ NT

r2
η
λη∆T ′ (1− λη∆T ′) (l−NT−1)δ2

T
2 NT < l ≤ NL

r2
η
λη∆T ′ (1− λη∆T ′) ( (NL−NT−1)

2 δ2
T

+ (l −NL) δ2
L

)
NL < i ≤ ND

(I.5)

Equation (I.5) shows that the error of V AR[ηt] is zero till tNT
, increases linearly between

(tNT
, tNL

] at a speed of 0.5r2
η
λη∆T ′ (1− λη∆T ′) δ2

T
, and still increases linearly after tNL

yet at a speed of r2
η
λη∆T ′ (1− λη∆T ′) δ2

L
. Thus, the error of V AR[ηt] can be reduced

through delay the lattice-like phase and the strip phase, or through reducing the step

size of hybrid tree.
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Appendix J

Derivation of Demand Model Sensitivity

The demand model in Equation (3.4) contains four parameters: σ, M , D0 and

Tm. Demand is varied by the change in any of the four parameter. %∆Dt(·), the relative

change in demand w.r.t. each of the parameters, identify the demand model sensitivity.

The formulation of demand change caused by a change in σ is obtained directly

by taking the difference between the two values of demand, as indicated in Equation

(J.1).

∆Dt = D0e
R t
0

µsds− 1
2
(σ+∆σ)2t+(σ+∆σ)Wt −Dt = Dt

(
e−

1
2
σ2t(2∆σ

σ
+1)+σWt(∆σ

σ ) − 1
)

(J.1)

Multiplying both sides of Equation (J.1) with 1
Dt

yields the expression of %∆Dt(σ), as

illustrated in Equation (4.1).

The formulation of demand change caused by a change in any other three pa-

rameters, however, can not be obtained in the same way as attaining %∆Dt(σ). The

reason is that M , D0 and Tm are parameters in the implicit function of β, as indicated in

Equation (B.7). Thus, the formulation of %∆Dt(·) w.r.t. each of the three parameters

is derived through Taylor expansion.
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f(β) is a function of β, as illustrated in Equation (J.2). it is the portion that

contains β in the implicit function of β.

f(β) = β exp

(
−β2

2

)
(J.2)

Equation (B.7) indicates that β is a function of M , D0 and Tm. Thus, the partial

derivatives of Dt with respect to M , to D0, and to Tm can be obtained using Equations

(J.3-J.5), respectively.

∂Dt

∂M
=

∂Dt

∂β

dβ

df(β)
∂f(β)
∂M

(J.3)

∂Dt

∂D0
=

Dt

D0
+

∂Dt

∂β

dβ

df(β)
∂f(β)
∂D0

(J.4)

∂Dt

∂Tm
= Dtβ

2

(
− t

T 2
m

+
t2

T 3
m

)
+

∂Dt

∂β

dβ

df(β)
∂f(β)
∂Tm

(J.5)

Equations (J.3-J.5) indicates that ∂Dt
∂β , dβ

df(β) ,
∂f(β)
∂M , ∂f(β)

∂D0
and ∂f(β)

∂Tm
have to be found to

obtain the expressions of %∆Dt(·).

First, according to Equation (3.4), the partial derivative of Dt w.r.t. β is obtained

in Equation (J.6).

∂Dt

∂β
= Dtβ

t

Tm

(
2− t

Tm

)
(J.6)

Second, whether dβ
df(β) exists should be examined. f(β) is differentiable on R, and

Equation (J.7) gives the derivative of f(β) on R.

df(β)
dβ

=
(
1− β2

)
e−

β
2

2 . (J.7)
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Equation (J.7) indicates that f(β) is a monotonic decreasing function on [1,∞). β in

the demand model is around 3 which is in this range, so the inverse function of f(β),

f(β)−1, is differentiable for all f(β) defined on [1,∞), and

dβ

df(β)
=

df−1(β)
df(β)

=
1

df(β)
β

=
1

1− β2 e
β
2

2 . (J.8)

Third, based on Equation (B.7), the partial derivatives of f(β) with respect to

M , to D0, and to Tm are obtained as in Equations (J.9-J.11).

∂f(β)
∂M

=
D0

√
2πTm

−M2 (J.9)

∂f(β)
∂D0

=
√

2πTm

M
(J.10)

∂f(β)
∂Tm

=
D0

√
2π

M
(J.11)

By plugging Equations(J.6), (J.8), (J.9), (J.10), and (J.11) into Equations (J.12-

J.14), the first order partial derivatives of Dt with respected to M , to D0, and to Tm are

obtained in Equations (J.12-J.14), respectively.

∂Dt

∂M
=

Dt

M

β2

β2 − 1
t

Tm

(
2− t

Tm

)
(J.12)

∂Dt

∂D0
=

Dt

D0

β2

1− β2

(
2 +

t

Tm

(
2− t

Tm

))
(J.13)

∂Dt

∂Tm
=

Dt

Tm

β2

β2 − 1
t

Tm

(
β2

(
t

Tm
− 1
)
− 1
)

(J.14)
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From the first order partial derivatives of Dt in Equations (J.12-J.14), the high

order partial derivatives of Dt with respect to M , to D0, and to Tm are obtained in

Equations (J.15-J.17).

∂iDt

∂M i
=

Dt

M i

i−1∏
j=0

(
β2

β2 − 1
t

Tm

(
2− t

Tm

)
− j

)
(J.15)

∂iDt

∂D0
i

=
Dt

D0
i

i−1∏
j=0

(
β2

1− β2

(
2 +

t

Tm

(
2− t

Tm

))
− j

)
(J.16)

∂iDt

∂Tm
i

=
Dt

Tm
i

i−1∏
j=0

(
β2

β2 − 1
t

Tm

(
β2

(
t

Tm
− 1
)
− 1
)
− j

)
(J.17)

Provided with any order partial derivative of Dt wth respect to M , to D0, and to Tm,

Taylor expansion gives the formulation of %∆Dt(·), as illustrated in Equations (4.4),

(4.3), and (4.2).
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