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ABSTRACT 

  

 Water channeling, one of the primary reservoir conformance problems, is caused 

by reservoir heterogeneities that lead to the development of high-permeability streaks and 

fractures. These streaks and fractures prevent large amounts of oil from being recovered. 

The ultimate objective of this research was to provide comprehensive insight into 

designing better particle gel treatments intended for use in large openings, including open 

fractures, high permeability streaks, and conduits to increase oil recovery and reduce 

water production.  

 An intensive laboratory study was conducted to better understand the injection 

and placement mechanisms of millimeter and micron size preformed particle gels (PPGs) 

through thief zones. Core flooding experiments were also conducted to investigate the 

effectiveness of micron-size PPGs to correct the heterogeneity within reservoirs. The 

effectiveness of combined conformance control (gel), stimulation treatments (acid), and 

mobility control treatments (polymer) were examined for their ability to increase oil 

recovery from non-cross flow heterogeneity cores. 

 A PPG partially blocks a large channel rather than fully blocking it. A PPG pack 

permeability of oil was much more than PPG pack permeability of water. The gel formed 

a cake on the low-permeability layers, reducing their permeability. Fully swollen gel 

particles had better injectivity than did partially swollen particles with a larger diameter 

size. The PPG was used successfully used to correct both non-cross and cross flow 

heterogeneity problems. Combined PPG with either acid or polymer showed promise 

results of increasing oil recovery.  
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1. INTRODUCTION 

1.1. STATEMENT AND SIGNIFICANCE OF THE PROBLEM  

 Excess water production has long been considered a major problem leading to the 

life-shortening of oil and gas wells and operational problems. An estimated average of 

three barrels of water are produced for each barrel of oil produced worldwide (Bailey et 

al., 2000). The total cost related to separating, treating, and disposing of unwanted water 

is approximately $50 billion per year (Hill et al., 2012). Water can flow into the wellbore 

as a result of either near-wellbore problems or reservoir-related problems (Seright et al., 

2001). The mechanisms that contribute to this undesired water production must be fully 

understood before the appropriate treatment can be chosen. High permeability streaks, 

fractures, conduits, and fracture-like features can expedite undesirable water channeling 

and early water breakthrough during water flooding. As a result, large amounts of oil 

remain un-swept as a large water flood bypasses oil-rich un-swept zones/areas.  

 Gel treatments have been proven as a cost-effective chemical conformance 

control technology that can be used to reduce the fluid flow in these large open features. 

The application of this technology can assist with controlling water production, 

significantly increasing the oil production, extending the economic life of a reservoir. In-

situ bulk gels traditionally have been used for this purpose.  However, preformed particle 

gels have recently attracted much attention because they can solve some of the problems 

associated with in-situ gel systems. These problems include the dilution and dispersion of 

the gallant and the chromatographic separation of the gallant solution. (Chauveteau et al., 

2001, 2003; Coste et al., 2000; Bai et al., 2007a, 2007b). 
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 Commercial preformed gels currently available include millimeter-size particle 

gel (PPG), microgels, and submicron gels. The differences between each are primarily 

related to particle size, swelling ratio, and swelling time. The millimeter-size particles are 

not only more distinguishable but also more reliable than other types of particle gels 

when plugging large pore opening features (Imqam et al. 2014). It is estimated that PPGs 

have been used to treat more than 5,000 wells (Bai et al. 2013).   

 A gel treatment’s success depends heavily on the gel’s ability to extrude through 

fractures and channels during the placement process. Thus, understanding the 

mechanism, performance, and behavior of gel propagations and plugging efficiencies 

through these high permeability streaks is the key to a successful conformance control 

treatment.  

 The primary objective of this research was to provide a comprehensive study of 

gel treatment optimization to solve excess water production problems and increase oil 

recovery. 

 

1.2. EXPECTED IMPACTS AND CONTRIBUTIONS 

Results obtained from this research will promote using the PPGs for conformance 

control in mature reservoirs as the mechanism and the performance of PPGs extrusion 

through high permeability streaks and fracture were deeply investigated. Understanding 

the mechanism and performance of PPGs are a crucial to obtaining a better blocking 

efficiency and improving conformance control objectives. The results gathered from this 

work can be used to optimize the PPGs design as it requires for achieving a successful gel 

treatment and will aid to select future conformance control candidates.  
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 The following information were provided from the research: 

• The factors that could affect extrusion and placement through high-permeability 

zones and fractures were identified. Reservoir property factors such as permeability, 

fracture width, permeability contrast ratio, flow communication between layers, and 

pore throat size were each studied. The PPG’s properties factors including brine 

concentration (gel strength), particle size, gel concentration, PPG injection pressure, 

PPG slug volume, and injection velocity were also investigated. 

• The mechanisms and factors that help to reduce water cut and increase oil recovery 

during PPG treatments were investigated. These mechanisms include study the 

disproportionate permeability reductions and investigate the oil recovery incremental. 

Both homogenous and heterogeneity experimental models (crossflow and non-cross 

flow formations) were assembled to accomplish these objectives. 

• Studied the mechanisms associated with PPG injection (e.g., retention and 

dehydration) and studied the mechanisms associated with PPG placement (e.g., 

washout and dehydration). 

• Based on lab results data, empirical correlation models were built and inserted into a 

simulator for better gel optimization and performance predictions. Regression 

techniques were used to develop these models. 

  

1.3.  OBJECTIVES 

 The primary objective of this research was to develop a mechanistic 

understanding of particle gel systems to increase oil recovery and reduce water 

production. Extensive core flooding experiments were performed to better understand gel 
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particle extrusion mechanism, process, and performance through high permeability 

streaks and fracture. This research evaluated the effect of two different particle gel sizes 

ranges, millimeter and micron sizes.  The following objectives were established for this 

research activity: 

• Determined the factors that impact the permeability of gel pack permeability. A 

gel pack that has a desired permeability can be designed by selecting proper gel 

strength and particle sizes at reservoir pressures. Gel pack permeability is very 

important for gel treatment success because an optimized gel treatment design 

target on reducing the permeability to the degree as planned.  

• During particle gel propagation into desired formations (high permeability), 

portion of gel formed a cake on low permeability. Therefore, this research 

determined what factors affect the gel cake damage to the low permeability 

formations and evaluated the effectiveness of using acid stimulations to remove 

such damage. 

• The factors that impact gel extrusion and placement through conduits were 

investigated. Two fluid phases (oil and water) flew through the conduit were 

investigated to determine to what degree PPGs reduce channel water 

permeability as compared to its oil permeability.  

• The factors that can significantly affect gel propagation through high permeability 

formations were explored. Thus, particle gel’s mechanism and performance were 

evaluated in terms of gel injectivity, gel retention, gel dehydration, gel wash-out, 

disproportionate permeability reduction, and oil recovery incremental during gel 

injections.  
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• A particle gel’s ability to correct heterogeneity formations was studied in both 

heterogeneity natures, cross flow and non-cross flow formations. Two 

experimental models were used to study a gel’s ability to reduce water 

production and increase oil recovery from low permeability or non-swept zones. 

• Based on these intensive experiments work, empirical correlations models were 

developed for not only better gel rheology predictions but also better gel 

optimizations. The results obtained from these experiments were used to build 

and validate a simulator developed (UT-Gel) for gel treatment purposes. 

• Particle gel were combined with additional technologies (e.g., stimulation and 

mobility control treatments) to investigate the effectiveness of utilizing these 

treatments with conformance control technology. This combination then was 

used to gain a better oil incremental from the un-swept rich oil low permeability 

zones. 

 The results gathered from this research provide a comprehensive knowledge and 

insight into particle gel mechanisms and performance that increase oil recovery and 

generate additional revenue.   

 

1.4. SCOPE OF THIS WORK  

This research was primarily a laboratory study that was conducted to investigate 

factors affecting the particle gel propagation and plugging efficiency of the gel intended 

for use in super K formations (e.g., fractures, channels and/ or conduits, and large 

permeability streaks).  Core flooding experiments assist in understanding the prevailing 

mechanism and performance of particle gel propagation through these porous media. The 
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experiment also provided the necessary data required to develop and validate a reservoir 

simulator to obtain better design and optimize gel treatment in field conformance 

applications. Figure1.1 shows the constructions of the main experiments performed to 

accomplish the research objectives. 

 

 

 

Figure 1.1—Scope of the research. 
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2. LITERATURE REVIEW 

2.1. RECOVERY MECHANISMS   

 There are three main mechanisms to produce oil: primary recovery, secondary 

recovery, and tertiary recovery.  Primary oil recovery involves naturally occurring 

reservoir characteristics or properties that induce the flow of oil. Such mechanisms 

include solution and gas cap drive, water drive, gravity drainage, and a combination of 

the aforementioned primary oil recovery mechanisms.  Primary recovery accounts for 12-

15% of the original oil in place (OIIP). The primary recovery methods become 

inadequate in sustaining economic production rates as oil reservoirs become depleted. 

 Secondary recovery mechanisms typically involve the injection of either gas or 

water into reservoir in an attempt to pump the oil out of the reservoir.  Secondary 

recovery accounts for 15-20% of the OIIP. Both primary and secondary oil recovery 

methods can generally achieve up to 35% recovery of the original volume of oil in place.  

(Green & Willhite, 1998)   

 Heterogeneity within a reservoir is one of the primary reasons neither primary nor 

secondary recovery mechanisms can retrieve large amounts of hydrocarbon recovery. 

Reservoir heterogeneities lead to the development of high-permeability streaks. These 

streaks include open fractures, fracture-like features, caves, worm holes, and conduits. 

These high-conductivity areas inside the reservoir only occupy a small fraction of the 

reservoir but it captures a significant portion of injected water. As a result, large amounts 

of oil remain un-swept as large water injections bypass oil-rich un-swept zones/areas. 
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  In the United States, 45% of the discovered oil reserves are unrecoverable by 

secondary recovery technologies. They are instead targeted by Enhanced Oil Recovery 

(EOR) methods. Enhanced Oil Recovery makes it possible to recover more oil by 

improving the efficiency of oil displacement while rehabilitating the primary recovery 

mechanism.   

The following formulae represent the factors that are responsible for increasing oil recovery: 

                          ER = ED × EA × EI  ..................................................  (2.1) 

where ER is the total recovery efficiency, ED is the displacement efficiency, EA is the areal 

sweep efficiency, and EI is the vertical efficiency. 

  Enhanced Oil Recovery is classified into three main categories: gas injection, 

chemical injection, and thermal recovery. Each EOR method targets the manipulation of 

a reservoir force to reduce the residual oil and/or remaining oil.  

 Enhanced Oil Recovery methods focus on increasing either displacement 

efficiency by reducing residual oil saturation in swept regions or sweep efficiency by 

displacing the remaining oil in un-swept regions. Residual oil saturation is a function of 

the capillary number, which is the ratio of viscous force to capillary force. Oil in un-

swept regions can be recovered by (1) increasing the viscosity of the displacing fluid, (2) 

reducing oil viscosity, (3) modifying permeability, and/or (4) altering wettability.  

 This study was conducted in an attempt to use chemical treatment to modify 

heterogeneity inside reservoirs. Hence, oil recovery would increase by improving sweep 

efficiency and reducing excessive water production. 



9 

 

 

2.2.  EXCESSIVE WATER PRODUCTION 

 Water production associated with oil and gas production is becoming a major 

technical, environmental, and economical problem worldwide. Water production can 

shorten the productive life of oil and gas wells creating severe problems (e.g., equipment 

corrosions, hydrostatic load, and sand fine migrations).  It is estimated that over 15 

billion barrels of water are produced annually, approximately eight barrels of water are 

produced for each barrel of oil (Environmental Protection Agency, 2000). Worldwide, an 

averages of three barrels of water are produced for each barrel of oil (Bailey et al. 2000). 

The total cost to separate, treat, and dispose of the unwanted water is estimated to be 

approximately $50 billion per year (Hill et al. 2012). 

Excessive water production becomes prevalent as reservoirs becoming more 

mature. This increase impacts on the profitability of hydrocarbon assets. Fully 

understanding the mechanisms responsible for undesired water production is crucial to 

designing efficient solutions to the problem. 

A large number of mechanical, completion, and chemical treatment technologies 

are available to mitigate water related problems. These technologies decrease undesired 

water production. They also increase hydrocarbon productions rates significantly and 

extend the reservoir’s economic life. 
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2.2.1. Mechanisms of Unwanted Water Production.  Many different things 

contribute to unwanted water productions. Understanding the nature of water production 

is the primary key in controlling it. Therefore, an effective strategy can be formulated to 

control water productions if the water production mechanism is understood (Seright et al. 

2001). The flow of water into a wellbore can occur along two types of paths. Water can 

flow into the wellbore through paths that is separate from hydrocarbons path. Water can 

also be co-produced with oil. This production typically occurs later in the life of a water 

flood when the reservoir becomes more mature.  

The sources of co-produced water can occurs either due to water exist naturally 

inside reservoirs (e.g., aquifers and formation waters) or due to water injected into 

reservoir from external sources. For water to flow through reservoirs, water saturations 

should exceed the connate water saturations. The relative permeability to water increases 

as water saturation increase beyond the connate water saturation. Water production 

becomes even higher due to the reservoir heterogeneity. Reservoir heterogeneity can 

result in water channeling through high permeability streaks including fractures, conduits, 

faults, and discontinuous layers. Channeling can be further exacerbated by lower water 

viscosity (as compared to oil) particularly during a water flood. 

2.2.2. Cause Water Production Problem. Water production problems issues are 

related to one of the problems: near well bore problems and/or reservoir related problems. 

The causes of the excessive water production are summarized in Table 2.1. 
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Table 2.1—A summary of the factors that lead to excessive water production. 

Near-wellbore Problems Reservoir-related Problems 

Casing leaks Coning or cresting 

Channel behind pipe High permeability streaks 

Shutting- off perforations Fracturing job went to water zone 

Lost circulations while drilling/work over Watered-out zone 

Completion into water zone Channel from injector 

Temporary chemical isolation Fractures, fissures, voids, and conduits 

 

2.2.2.1. Near wellbore problems. They can occur as a result of either mechanical 

or completion problems. They tend to occur early in the well’s life. 

2.2.2.1.1. Mechanical problems.  Poor mechanical integrity within the casing 

such as holes created by corrosion, wear/splits due to flaws, excessive pressure, and 

formations deformation contributes to leaks (Figure 2.1). These leaks allow unwanted 

water to enter the casing, causing water to rise unexpectedly. Temperature logs and water 

analysis comparisons may be used to locate the source of the leak. 

 

Figure 2.1—Mechanical problem (Bailey et al.  2000). 
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2.2.2.1.2. Completion problems.  Common completion problems include 

channels behind casing, completions too close to water zone, and fracturing out of zone. 

• Channels behind casing 

 Channel behind casing (Figure 2.2) is developed as a result of either poor cement-

casing or poor cement-formation bond. This problem can occur at any time during well’s 

life, it likely occurs just after the well is either completed or stimulated. Unexpected 

water production at these times strongly indicates that a channel may exist. Temperature, 

noise, and bond logs can verify the existence of this problem. 

 

Figure 2.2—Channel behind casing (Bailey et al.  2000). 

 

• Completions too close to water zone 

 Completion into undesired zones, where water saturations are higher than connate 

water saturations, allows for immediate water production (Figure 2.3). Perforations made 

above the original water-oil or water-gas contact, throughout the coning or cresting allow 

the water to be produced more quickly and easily. The logs, core data, and driller daily 

report should be reviewed to determine the cut-off point of moveable water. 
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Figure 2.3—Completion close to water zone (Bailey et al.  2000). 

 

• Barrier breakdowns 

 Hydraulic fractures may cause barrier breakdown near the wellbore, leading to 

excessive water production through the well. This barrier could be a natural barrier such 

as dense shale layers that separate the different fluid zones. 

2.2.2.2. Reservoir-related problems.  They can be the result of channeling 

 through higher permeability zones or fractures. They can also be related to coning, 

cresting, reservoir depletions, and fractures out of zones. They typically occurred during 

the later in the well operators’ life. 

2.2.2.2.1. Channeling through high permeability streaks or fractures. Water 

channeling is the result of reservoir heterogeneities that lead to presence of high 

permeability streaks. Fractures, fractures like-features, and conduits are the most 

common causes of channeling. Channels can emanate via natural fractures from either a 

natural water drive, or induced fractures (from water flooding mechanisms), or related 

operations. High permeability streaks result in a premature breakthrough of water, 
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leaving behind large quantities of oil that remain un-swept in low permeability zones. As 

the driving fluid sweeps the higher permeability intervals, permeability to subsequent 

flow of fluid becomes even higher; which end up with increase of water-oil ratios through 

the life cycle of the well.  

2.2.2.2.2. Coning and cresting. Water coning in vertical wells and water cresting 

 in horizontal wells (Figure 2.4) both occurs when the producing formations are located 

above a water zones and by when pressure gradient declined near the well bore. This 

decline pressure draws the water from low connected zones toward the wellbore. Water 

can break into the perforated or open hole sections, displacing either all or part of the 

hydrocarbons. 

  

 

Figure 2.4—Water coning vs cresting (Bailey et al.  2000). 

 

2.2.2.2.3. Reservoir depletions. If the problem is caused by reservoir depletion, 

 there is a very little chance that can be done to reduce water productions as economical 

amounts of hydrocarbon must be present to produce. Generally at the later stage of 

Water coning Water cresting 
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production, the focus on water control will shift from preventing to reducing water 

production cost. 

2.2.2.2.4. Fracturing out of zone. When the hydraulic fracture was not designed 

properly, the fracture unintentionally extends and breaks into water zones. Therefore, 

coning or cresting through fracture can result in an early breakthrough of water. 

Increasing water productions substantially. A spinner survey, a tracer survey, and well 

testing can each be used to detect such problem.  

 

2.3.  WATER PRODUCTION DIAGNOSTIC PROBLEM 

 Several technologies can be used to control undesired water production. Each of 

these technologies requires a different approach. The appropriate selection of the water 

control technology is dependent on a correct diagnostic of the water production problem.  

Incorrect, inadequate, or incomplete diagnostics are the primary reasons that water 

control treatments become ineffective (Seright et al. 2001).  

 The nature of the problem must identified correctly before it can be treated 

successfully. The reasons for incorrectly identified problem include: 

• Incorrect assumption that all water production problem can be effectively treated 

by one type of treatment  

• Uncertainty about the methodology for the diagnostic, 

• Lack of time or money to perform the diagnostic on marginal well. 

 Understanding not only fluid movement through reservoirs but also how that fluid 

interacts with a wellbore are the primary keys to achieving successful water treatment. 

Seright et al 2001 categorized the various types of water productions diagnostic based on 
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extensive reservoir and completion engineering studies. They proposed a gaudiness for 

performing effective water problem diagnostic from least to most difficult. This proposal 

approach is summarized in Figure 2.5. 

Figure 2.5—A diagnostic approach to water production. 
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 Understanding the water production problem is the key to successfully 

implementing and designing a water shut-off treatment. In their proposal, they suggested 

that first step in the diagnostic process is to ask if water production problem is available. 

An unexpected increase in water cut indicates a water production problem. Plots of water 

oil ratio (WOR), fluid production versus time, and reservoir simulations studies can each 

be used to identify the development of water production problem. If water breakthrough 

is experienced early in the well’s life, then completion problem should be examined first 

to determine possible reason for the development. If water entry occurs at later stage in 

the well’s life, either mechanical or reservoir problems should be investigated first.  

 It must next be determined whether or not, the problem is caused by either leaks 

or channel behind pipe. The methods most commonly used to diagnose this problem 

include mechanical integrity tests, temperature surveys, production logs, cement bond 

logs, and noise logs. The mechanical integrity test is conducted by pressurizing up the 

annulus between the casing and the tubing to determine whether or not the pressure will 

hold. Cement bond logs are produced by several types of acoustic logging tools to 

evaluate the cement condition and to diagnostic the problems associated with channels 

behind casings. The method most commonly used to repair casing leaks involves either 

cement or mechanical patches. When the leak is quite small (e.g., pinhole or thread leaks) 

gel treatment, however, are more successful than these two applications because gel can 

transport easily through these small leaks and block them. Problem created by flow 

behind pipe can treated by cement. Cement can perform extremely well for this type of 

application if the channel to be plugged is not too narrow; a gel is a better solution when 

narrow channels are encountered. 
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 Fluid flow around the wellbore identified either radial or linear. A linear flow is 

associated with channeling through fractures or fracture-like features. A radial flow is 

associated with flow in an un-fractured reservoir. Core and log analyses, pulse tests and 

pressure transient tests, and internal trace studied can be used to define this flow. Seright 

et al. 2001 proposed a simple and inexpensive method used to determine the flow around 

well bore. They proposed the injectivity/productivity calculation based on Darcy equation 

to identify the flow behavior: 

 

If the flow is linear, then 

   q/∆p >> ∑ kh / [141.2 µ ln (re/rw)]  ................................ (2-2)  

If the flow is radial, then 

 q/∆p ≤ ∑ kh / [ 141.2 µ ln (re/rw)]  ................................. (2-3)                                               

 

 This calculation will not always distinguish between a radial and a linear flow. It 

can, however, provide an indication of the flow geometry near the wellbore. Gel 

treatments can potentially correct this problem.  These treatment rely on the gel’s ability 

to reduce the water permeability much more than oil permeability. 

 The possibility of a cross-flow between a reservoir strata must be addressed once 

the fracture-like features are eliminated as the cause of water production problems. If the 

fluids can cross-flow between adjacent water and hydrocarbon strata, gel treatment may 

not be used effectively. In contrast, if fluid cannot cross-flow between adjacent strata, gel 

treatment can be used effectively. Several methods are used to assess whether or not 
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cross flow exists between strata. These methods include pressure test between zones, 

logs, injection/production profile, simulation, and seismic data. 

 The main reason for the industry failure to control unwanted water production 

was a lack of understanding of the different problems and the consequent application of 

inappropriate solutions. The key to successful water control production is the proper 

diagnostic of the problem. Several different analytical techniques can be used to 

distinguish between the different sources of unwanted water production. These 

techniques employ various types of information including water /oil ratio, production 

data, and logging measurements. The following subsections include a brief discussion on 

the most three commonly used diagnostic methods:  diagnostic plots, logging 

measurements, and numerical methods. 

2.3.1. Using Plots. Graphical plots of data are visual displays that assist in 

defining a water problem’s source during the well’s life. In the oilfield application, the 

operator can quickly identify the problem where the plots can be drawn by hand or using 

spreadsheet software. Many plot shapes can be used to identify and determine a water 

problem’s source. 

2.3.1.1. Water/oil ratio vs time-WOR, WOR derivative plots. A Log- log plot 

of the (WOR) vs time were found to be effective when attempting to identify the 

production trends and problem mechanisms behind water production (Chan, 1995). The 

derivative of the WOR vs time can be used to determine when the excessive water 

production is produced by water coning or multilayer channeling. Several examples use 

WOR vs time plots to identify water problems are shown in Figures 2.6 and 2.7. Plots 
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such as these can often quickly confirm other testing. They can also help illuminate other 

possible causes. 

 

 

Figure 2.6—Water channeling vs water coning (Chan, K.S. 1995). 

 

 

Figure 2.7—Mechanical communication (Hill et al. 2012). 
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2.3.1.2. Oil production versus time. Production decline curves help to observe 

and better understand the occurrence of water production during the well’s life. This type 

of curves show the change in oil production over the time to determine when oil 

production reach peak or economic limit. They also indicate when water injection is 

needed.  

2.3.1.3. Fluid recovery plot-WOR vs cumulative oil. A semi-log plot of WOR 

vs cumulative oil production shows that water production is a function of oil production. 

The area under the curve represents the total water production. A sharp increase in WOR 

can indicate a problem (e.g., casing leak or water breakthrough in the water–drive 

reservoir/ water flood). A high WOR associated with low cumulative oil production can 

indicate a channeling problem. 

2.3.1.4. Hall plot-cumulative pressure vs. cumulative injection volume. The 

Hall plot-cumulative pressure vs. cumulative injection volume is most often used to 

analyze injection wells. It can also be used to analyze fluid injection treatments in 

production wells. These plots provide information on water channeling and formation 

fractures.  Changes in the slop of the plotted line indicate a change in resistivity 

associated with fluid injection in the reservoir. 

2.3.1.5. Rate vs time. A plot of various rates vs. time can assist in determining 

specific occurrences associated with producing wells. These rates include water 

production, water-oil ratio, water injection rates, and cumulative water injection. 

Different rates versus time are often plotted on the same graph to determine the 

relationship between variables. 
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2.3.1.6. Nodal analysis plot. Analysis of flowing wellbore and associated piping 

is known as NODAL analysis. It is frequently used to evaluate the effect of each 

component in flowing production system from bottom of well to the separator. This 

analysis is used to locate the excessive flow resistance that produces severe pressure 

losses in the tubing system. 

2.3.2. Using Logs. Well logs are often used to identify water production 

problems. The different problems responsible for water production as well as the 

suggested logs that can be used to identify them are shown in Table 2.2 shows. Open hole 

and production logs are often used to identify both the water saturation and water source. 

 

Table 2.2—A summary of the diagnostic logs used to identify water problems. 

          Problem type 

Proposed Logs 

Open 

hole 

logs 

Casing 

Logs 

Cement 

Evaluation 

logs 

Pulsed 

Neutron 

Logs 

Production 

logs 

Casing leak  √  √ √ 

Channel behind pipe √  √ √ √ 

Coning or Cresting √    √ 

High permeability streaks √    √ 

Water out zone √    √ 

Completion near water zone √   √ √ 

Fracture out of zone   √ √ √ 
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2.3.3. Using Numerical Method. Using well test evaluations that simplify the 

complex results gained from numerical simulator would be beneficial. It can properly 

quantify the effect of treatment by determining the treatment volume, the degree of 

mobility reduction, and skin damage. Results obtained from the numerical simulator can 

be simplified into several equations including the mathematical definitions of rate, 

pressure, and time behavior in dimensionless forms.  

 

2.4.  CONFORMANCE CONTROL TREATMENT  

2.4.1. Conformance Control Technology.  Conformance control is defined as  

the application of processes in reservoirs and wellbores that reduce unwanted water 

production, enhance hydrocarbon recovery efficiency, and satisfy a broad range of 

reservoir and environmental objectives. It achieves these goals by either reducing or 

plugging water/gas produced as a result of high permeability streaks, fractures, and 

fracture –like features. Conformance control can improve the profitability as follows:  

• Extend the well’s economic life  

• Reduce the well operation’s maintenance cost 

• Reduce the environmental concerns and cost 

 Conformance control treatment should be performed before serious damage 

occur. Input from those with varying expertise (e.g., geologists, petrophysicists, reservoir 

engineers, chemists, facilitators, and economists) should be sought as part of this process.  

 Liu et al. (2006) proposed that conformance control can be classified into six 

categories: unselective water shutoff, profile control, selective water shutoff, integrated 
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profile control treatments for multiple wells in one block, in-depth fluid diversion, and 

combined technology. 

2.4.2. Types of Conformance Control Treatments.  Any solution that is 

 proposed to control water production must be made with a solid of understanding the 

options available, the working mechanisms involved pros, cons, capabilities, and 

limitations. Three main conformance control solutions can be used to address excess 

water and gas production problems: mechanical solutions, completion solutions, and 

chemical solutions. 

2.4.2.1. Mechanical solutions. Mechanical solutions are often used to address  

many near wellbore problems, such as casing leak, flow behind pipe, rising bottom water, 

and watered out layers without cross- flow. These solutions include mechanical 

seal/isolation using hardware or cement. Figure 2.8 shows the using of mechanical plug 

back tool to shut near wellbore water shutoff. 

 

Figure 2.8—Mechanical plug back tool (Bailey et al.  2000). 
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2.4.2.2. Completion solutions.  Alternate completions such as multilateral well, 

 sidetracks, coiled-tubing isolation, perforation, and dual completion can be used to solve 

various water problems such as water coning, incomplete areal sweep, and gravity 

segregation. An example of using perforation and dual completion used to solve excess 

water production created by coning problems is illustrated in Figure 2.9. 

 

    

Figure 2.9—Perforation and dual completion to solve water coning (Bailey et al.  2000). 

 

2.4.2.3. Chemical solution. Mechanical and completion solutions can provide a 

 seal not only in the well’s hardware but also in large near wellbore openings. However, 

there are cases where it is desirable to achieve matrix or small fissures penetration of the 

sealing materials. These instances could include small cement channels/fissures, natural 

fractures, and vertical coning through the matrix. A chemical solution is the only solution 

that can be applied to these problems. 
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 Chemical solutions can be classified by either chemical type or by functionality. 

Chemicals classified according to type of chemical are as follow: 

• In organic gels 

• Resins/elastomers 

• Monomer systems 

• Polymer gels (sealant type, cross-linked rigid/flowing polymer gel, relative 

permeability modifiers, and flowing gels (cross-linked)) 

• Ungelled polymers/viscous systems 

• Viscous flooding (with polymer, optionally foamed) 

Chemicals classified according to functionality are as follow: 

• Sealant  (either temporary or long lasting/durable) 

• Relative permeability modifiers (liquid) 

• Weak sealant relative permeability modifiers 

• Either mobility control or flow diverting chemical flooding system (viscous, 

selective plugging) 

2.4.3. Chemical Placement Techniques and Equipment. Placement techniques  

used in treating unwanted water and/or gas production should be chosen on a well-by-

well basis. The following five techniques are typically used for treatment placement: Bull 

heading, mechanical packer, dual-injection, Iso-flow, and transient. 
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2.4.3.1. Bull heading. The most simple economical treatment placement method 

 involves operators injecting the treatment through the existing tubulars. This treatment 

may seal not only the intended water zone but also the oil zone. An illustration of the bull 

heading treatment sealed both zones is given in Figure 2.10. 

 

 

Figure 2.10—Bull heading treatment (Halliburton, 2002). 

 

2.4.3.2. Mechanical packer placement/inflatable packer placement. An 

 Operator can use mechanical packers, bridge plugs, or selective zone packers to isolate 

either the perforations or a portion of an open hole completion into which treatment will 

be placed. Figure 2.11 show this method can protect the critical perforation in the 

adjacent oil sand from sealant invasion. 
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Figure 2.11—Packer placement (Halliburton, 2002). 

 

2.4.3.3. Dual-injection placement. The dual-injection placement technique (as 

 shown in Figure 2.12) offers efficient placement control. Operators can use the well 

tubular to inject treatment fluid down both the tubing and the annulus. This non-sealing 

fluid should be compatible with the hydrocarbon –producing zone. 

 

 

Figure 2.12—Dual-injection placement (Halliburton, 2002). 
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2.4.3.4. Isoflow placement. The operator direct the treatment solution into the 

 selected interval while protecting the hydrocarbon –producing by simultaneously inject 

non-sealing, formation compatible fluid that contain radioactive tag down the annulus 

(Figure 2.13). A gamma-ray detection tool is run down the well (inside the tubing) and 

placed at the interface (between the upper non-sealing and lower sealing point in the 

well) before the treatment is run. Operator can manipulate the pump rate of the tubing 

and annulus fluids to adjust the location of the interface. 

 

 

Figure 2.13—Isoflow placement (Halliburton, 2002). 

 

2.4.3.5. Transient placement. Transient placement techniques (as illustrated in  

Figure 2.14) use cross- flow to help eliminate entry into unwanted intervals. These 

treatments are injected into the zones that will be sealed. 
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Figure 2.14—Transient placement (Halliburton, 2002). 

 

2.5. CHEMICAL SOLUTIONS: GEL TREATMENTS AND POLYMER 

FLOODING APPROACHES 

 Water flooding is a secondary recovery mechanism that is used to displace oil not 

recovered during the primary recovery mechanism. Water flooding, however, is often 

associated with problems caused by unwanted water production. This unwanted water 

production becomes more severe when the reservoir becomes more mature. The 

heterogeneity that exists inside reservoirs is created by channeling through high 

permeable layers. This heterogeneity lead to unfavorable water productions. Excess water 

production cause a number of problems, including increased disposal costs and harsh 

environmental issues. Therefore, improving the reservoir’s sweep efficiency is an 

important issue that must be addressed to minimize unwanted water production during 

the water flooding mechanism. 
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 Polymer has long been used as an improved oil recovery method. Polymer 

flooding addresses the unfavorable mobility ratio that exists between the displaced and 

displacement fluids in the heterogeneity reservoirs. 

 Seright et al. (1994) classified polymer techniques into two categories: traditional 

polymer floods and gel treatments.  Gel treatment are used to meet a very different 

objective that for the traditional polymer flooding as depicted in Figure 2.15. Both are 

ultimately intended to improve sweep efficiency. In the traditional polymer flood, want to 

the injected polymer solution penetrate as far as possible into the low permeability un-

swept zones. In contrast, in gel treatment, want gallant or gel penetration to be minimized 

in the less-permeable oil rich zones. 

 A clear distinction can be also made between gel and polymer chemical 

composition. Gel treatments often use both a crosslinker and small gallant volume. 

Polymer flooding often involves relatively large banks of uncrosslinked polymer 

solutions. 

 

            

Figure 2.15—Polymer flooding vs. gel treatment functionality. 

 

 

 

 



32 

 

 

 This section also discusses the most common concepts used in the polymer and 

gel process. It includes equations which can be used to characterize the polymer and gel 

processes.  

2.5.1. Mobility Ratio Concept. The mobility ratio concept described by Craig 

(1980) is defined as the mobility of the displacing phase to the mobility of the displaced 

phase. In water flooding mechanism can be written as: 

 

                 Mw-o = λw / λo =(kw µo)/ (ko µw)............................... (2-4)  

 If this ratio is divided by the absolute permeability, the water-oil mobility ratio 

can be rewritten as: 

 

                Mw-o = λw / λo =(krw µo)/ (kro µw) ............................ (2-5)  

where Mw-o is the mobility ratio to water and oil, λw is the mobility to water, λo is the 

mobility to oil,  krw is the relative permeability to water and kro is the relative 

permeability to oil.  

 If the mobility ratio is greater than unity, because µw is less than µo, water flows 

at a higher velocity through the path of least resistance and breaks through into producing 

well prematurely.  

 Polymers are added, primarily, to increase the water viscosity so that the mobility 

ratio become either less than or close to unity.  
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2.5.2. Resistance Factor Concept. The resistance factor is used to characterize 

the behavior of different polymers and/ or gels in response to an increase in pressure 

during the polymer and/or gel injection. A resistance factor is defined as the ratio of 

mobility of water to the mobility of gel or polymer (Pye, 1964): 

 

       Fr = λw / λgel = Kw/µw / Kgel/µgel  ....................................(2-6) 

 
where λw and λg represent the mobility of water and gel, respectively and kw and kg 

represnt the water and gel, permeability.  

 At any given injection rate, Fr can also be expressed as the pressure drop during 

the gel injection to the pressure drop during water injection: 

 

              Fr = ∆pgel/ ∆pwater...........................................................  (2-7) 

2.5.3. Shear Rate through Capillary Tubes. The maximum shear rate at the 

pore wall in the capillary tube can be used to calculate the shear rates on the gel flowing 

in tube (Zaitoun et al. 2012).  

 

          γ = 8v/D  ........................................................................ (2-8)                                                                         

where γ is the shear rate, v is the superficial velocity, and D is the conduit’s inner 

diameter. This equation assumes both laminar and a single flow phase. 
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2.5.4. Shear Rate through Core Matrix. The shear rate on the fluids flowing 

through a non-fractured core can be calculated as (Lake, 1989): 

 

       � = � �
�√� 	∅   ................................................................... (2-9)  

where γ is the shear rate (sec-1), q is the flow rate (cm3/sec), A is the cross sectional area 

(cm2), K is the permeability (cm2), and ϕ is the porosity (dimensionless) 

2.5.5. Shear Rate in an Unconsolidated Porous Media. A capillary bundle 

model in a porous media can be used to calculate the shear rate on the fluid flowing 

through sand packed cores (Chauveteau and Zaitoun. 1981). 

 

   �� = � 	
∅ �

�.�
  ...............................................................(2-10) 

The shear rate at the wall pore in the unconsolidated porous media can be obtained via: 

 

          � = � � �
�   ...............................................................(2-11) 

where r is the average porous radius (cm), k is the permeability (cm2), ϕ is the porosity 

(dimensionless), γ is the shear rate (sec-1), v is the superficial velocity (cm/sec), and � is 

the pore structure’s shape parameter characteristic ( � = 2.5 for a packed beds of angular 

grain, � = 1.7 for a pack of large spheres having same diameter). 
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2.5.6. Residual Resistance Factor Concept. The residual resistance factor (Frr) 

describes the ability of a gel to reduce the permeability to water or oil phase. It can be 

defined as the ratio of either water or oil phase permeability before and after particle gel 

treatment. 

 

    Frrw =  (kw/µw)before/(kw/µw)after  ...................................(2-12) 

     Frro =  (ko/µo)before/(ko/µo)after  ......................................(2-13) 

where Frrw and Frro are the residual resistance factors to water and oil (dimensionless), 

respectively, Kw is the permeability to water (md), Ko is the permeability to oil (md), µo 

is the viscosity to oil (cp), and µw is the permeability to water (cp). 

 At any given injection rate, Fr can also be expressed as the pressure drop during 

the gel injection to the pressure drop during water injection: 

 

        Frrw = (∆pw) after/ (∆pw) beforer  ......................................  (2-14) 

        Frro = (∆po) after/ (∆po) beforer  ........................................(2-15) 

where (∆pw) after  is the pressure drop to water after the gel treatment (psi), (∆pw) before is 

the pressure drop to water before gel treatment(psi), (∆po) after  is the pressure drop to oil 

after gel treatment (psi), and (∆po) before is the pressure drop to oil before gel treatment 

(psi). 
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2.5.7. Gel Adsorbed Layer Thickness. The adsorbed gel layer thickness (e) is 

derived from the permeability reduction. It can be calculated as (Zaitoun and Kohler. 

1988): 

 

             � = �� (1 − ������.��)  ............................................(2-16) 

 

2.6. GEL TREATMENT FOR CONFORMANCE CONTROL TREATMENT 

 Gel treatment is one of the most effective and cost-effective means available to 

decrease the water production and improve the reservoir homogeneity in mature oil fields 

(Seright and Liang. 1994). Gel treatments are designed by adding a small concentration 

of crosslinker to the polymer solution to link polymer molecules.  

 In-situ gels are traditionally used to control reservoir conformance. A mixture of 

polymers and crosslinkers known as gallants is injected into the target formation. It forms 

a gel to fully or partially seal the formation at reservoir conditions (Sydansk and Moore 

1992). This technology, however, has several disadvantages such as a lack of gelation 

time control, gelling uncertainty due to shear degradation, chromatographic separation 

between polymer and crosslinker, and dilution by formation water and minerals that 

restrict its applications for conventional reservoirs (Chauveteau et al., 1999, 2001, 2003. 

Coste et al. 2000. Bai et al. 2007a, 2007b). 

  Newer gel systems recently have been developed to overcome these drawbacks. 

These newer gels have a better performance than previously used gels. The new gels are 

formed at surface facilities and then injected into target zones with no need for gelation to 

occur in the reservoir conditions. These gels have different commercial product names: 
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Preformed Particle Gels (PPG), microgels, Bright water, and pH sensitive polymer 

microgels. Preformed particle gels are superabsorbent crosslinking polymer particles that 

can swell up to 200 times their original size when placed in brine. These PPGs are a 

millimeter-sized particles that are formed at the surface. They are then dried and crushed 

into small particles before they are injected into a reservoir (Coste et al. 2000. Bai et al. 

2007a, 2007b). A micorgels is injected fully water soluble, non-toxic, soft, stable and size 

controlled micogels into a reservoir. It has a particle size between 10 and 1000 nm 

(Chauveteau et al. 1999, 2001, 2003; Rousseau et al. 2005; Zaitoun et al. 2007). 

Temperature sensitive polymer microgels (known as Bright water)    are submicron gel 

particles. They are injected into the reservoir with cool injection water relative to the 

reservoir temperature itself. As the polymer passes through the reservoir, it gradually 

picks up heat from the surrounding warmer reservoir rocks. As it heats up, the polymer 

begins to expand to many times its original size, blocking pore throats and diverting 

water behind it (Pritchett et al., 2003. Frampton et al, 2004. Morgan 2007. Yanez et al, 

2007. Garmeh et al. 2011) .The pH sensitive polymer microgels use pH change as an 

activation trigger. The gel begins to adsorb water as the pH increases, swelling up to 

1000 times its initial volume (Al-Anazi et al. 2002. Huh et al. 2005. Benson et al. 2007). 

 Gels have traditionally been placed near the wellbore of production or injection 

wells, as shown in Figure 2.16 to correct interlayer heterogeneity or fractures. Near-well 

bore treatments are ineffective, however, if a cross-flow exists between adjacent layers.  

Newer trend in gel treatment was recently developed to apply in-depth diversion 

conformance control (Seright 2004; Frampton 2004; Sydansk 2005; Chang 2004; 

Rousseau 2005; Bai et al. 2007). These gels can penetrate deeply into high-permeability 
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streaks, channels, or fractures to create kind of resistance to water flow through these 

features. This water is thus diverted to recover more oil from the un-swept low permeable 

zones as shown as depicted in Figure 2.17.   

 

 

Figure 2.16—Gel treatment in heterogeneous formation without a crossflow (Liu et al. 
2006). 

 

 

 

Figure 2.17—Near wellbore vs. in-depth treatment. 

 

  A gel’s properties are primarily dependent on the gel’s chemical composition, 

including the polymer concentration and the degree of crosslinking. The following 

describes the two main types of gels used in the oil industry. 
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2.6.1. In-situ Gel (Traditional Gel System). In-situ gels are crosslinked 

polymers composed of several chemical materials including polymers, crosslinkers, and 

additives. Corresponding to some internal or external stimulation, the crosslinking agent 

connects itself to two adjacent polymer molecules linking them together either 

chemically or physically. The liquid formulation of this composition is known as a 

gelant. The gallant in an in-situ system is injected into the formation, and the gel forms 

under reservoir conditions. The gelant can crosslink to form a gel under various 

conditions including an increasing temperature and a changing  pH. Both a gelant’s 

composition and surrounding conditions can be used to control gel strength. This strength 

can be either weak or very strong, as depicated in Figure 2.18. In-situ gels have been used 

widely to control conformance, but their crosslinking reactions are strongly affected by 

degradation. 

 

 

Figure 2.18—Gel composition (Seright, 1996). 
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2.6.2. Preformed Gel Systems. Gel is formed in surface facilities before 

injection. The gel is then injected into reservoirs. No gelation occurs in the reservoir. 

The new trend of using a preformed gel can help overcoming several of the drawbacks 

associated with in-suit gel systems. These drawbacks include the following: 

1. Crosslinking reactions that are strongly affected by:  

• shear by pump, a wellbore, and porous media, 

• the adsorption and chromatography of chemical compositions, and 

• the dilution of formation water. 

2. Possible damage on the un-swept low permeability oil zone  

 The different kinds of preformed gel systems used in the oil industry are listed 

with their respective developer and field applications in Table 2.3. 

 

Table 2.3—A summary of preformed gel systems. 

Name Developer Particle Size Applications 

Bright Water® Chevron, BP and Nalco Sub-Micro (< 1 µm) 60+    injectors 

Microgel IFP Micro (1-10 µm) 10+  producers 

PPG 

PetroChina, 

MS&T, and Halliburton 

Millimeter 

(10 µm to millimeters) 

5,000+ 

Injectors in China 

pH Sensitive 

polymer 

UT Micro Not reported 
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 The primary differences between all of the current commercially preformed gels 

include particle size, swelling ratio, and swelling time. 

2.6.2.1. Bright water. An industry consortium (BP, Chevron and Nalco) 

developed Brightwater®. It is now commercialized by Tiorco (Nalco Company). 

Brightwater® was first tested in Indonesia in 2001. A number of treatments have since 

been performed in Alaska, the North Sea, and Argentina. 

 Brightwater® can be defined as a sub-micron particulate chemistry that can be 

injected downhole with the injection water as a one-time batch. It can be deployed with 

conventional chemical injection equipment and requires no modification to the existing 

water injection system. The particle’s sizes are significantly small (~0.5 micron) allowing 

the particles to propagate through the rock’s pores with the injected water. The polymer 

gradually warms toward the reservoir temperature as it passes through the reservoir. It 

expands to many times its original volume (a factor of four to ten depending on salinity), 

blocking pore throats and diverting any water behind it (see Figure 2.19). Various grades 

of chemistry are available depending on the targeted thief zone properties, water salinity, 

and reservoir temperature (Roussennac et al. 2010). 

 

 

 

 

 

 

 



42 

 

 

 

 

Figure 2.19—Mode of activation of the particulate reagent (Ohms et al. 2009). 

                                 

2.6.2.2. Microgel. Baker coined the term “microgel” to describe cross-linked 

polybutadiene latex particles. The word micro referred to the gel particles size which has 

a diameter that is less than 1000 nm. Baker microgel referred to the ability of the particles 

to swell in organic solvents. Bakers emphasized that microgels have incredibly high 

molecular weight polymer networks. Thus, each gel particle has an individual polymer 

molecule. A definition of microgel has been revised and it can be defined as colloidal 

dispersion of gel particles. Microgels have the following features: 

• Microgels fall within the particle size range of 10–1000 nm 

• Microgels are dispersed in a solvent 

• Microgels are swollen by the solvent 

• Microgels have stable structures. Either covalent or strong physical forces 

stabilize the polymer network. 
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 Chauveteau et al. (1999) introduced a new concept that consists of injecting fully 

water soluble, non-toxic, soft, stable, and size-controlled microgels into the reservoir. 

Microgels specifically designed for water shutoff (WSO) treatments do not contain toxic 

products and can be produced to be fully self-repulsive. They adsorb onto rock pore 

surface by forming soft monolayers with a thickness equal to their size. This size can be 

adjusted as desired during the manufacturing process. As a consequence, water 

permeability can be reduced as desired.      

 These microgels were found to reduce water permeability strongly by forming 

thick adsorbed layers that are so soft that oil permeability is unaffected. Microgel 

chemistry is chosen to be insensitive to pH and salinity variations (Chauveteau et al. 

2004). Microgels are used for both water shutoff and conformance control operations. 

2.6.2.3. Preformed particle gel (PPG). The gel in PPG systems is formed in a 

surface facility before it is injected into a reservoirs; no gelation occurs in the reservoir. 

They belongs to the family of superabsorbent polymers (SAP), which are different from 

un-swollen in situ gels. PPG can absorb a large quantity of an aqueous solution, the 

polymers must be only slightly cross linked so that polymer chains can be flexible 

enough to expand in a wide space.  

 PPG can be swelling over a hundred times their weight in liquids (Figure 2.20) 

and not easy to release the absorbed fluids under pressure. 
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Figure 2.20—PPGs before and after swelling. 

 

 A PPG’s particle size is adjustable from a scale of micrometers to millimeters. 

The particles have a swelling ratio of 30-200 times the original volume. The brine 

solutions concentration can be adjusted to control the particles size. The particle’s 

resistance to salt permits the use of all salt types and concentrations.  Particles are 

resistant to temperature up to 110 ºC.  

2.6.2.4. pH sensitive polymer. Al-Anazi and Sharma (2002) were first proposed 

the use of pH sensitive polymers for conformance control purposes. They observed that 

swelling properties of polyelectrolytes (such as polyacrylic acid) are very sensitive to pH, 

ionic change, and polymer concentrations. They shrink to a low viscosity in acidic 

conditions. In contrast, they begin to swell and adsorb water as the pH increase. Their 

volume can also increase up to 1000 times its original volume. Al-Anazi and Sharma 

(2002) explained the chemistry theory involved when particle swell (see Figure 2.21). 

The interaction between the ions occurs when the carboxylic group (COOH) in the 

polyacrylic acid is ionized. This ionization causes negatively charged group (COO-) 

After Swelling Before Swelling 
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repulsion on the polymer chain. This electrostatic repulsion force causes the polymer to 

uncoil and stretch increasing its solution viscosity. 

 

 

Figure 2.21—Swelling of Polyacrylic acid swelling within ionization (Al-Anazi and 
Sharma 2002). 

 

2.7. PREVIOUS WORK ON GEL TREATMENT TECHNOLOGY 

On water flooding process, water preferential flow through the high permeability, 

fractures, and large channels; cause a large amount of recycling of water without much 

benefit to oil production. A PPGs millimeter-sized particles (10 um~mm) make it not 

only more distinguishable but also more reliable than other types of particle gels in 

plugging large channeled features (Imqam et al. 2014). A gel treatments success depends 

heavily on the gel’s ability to reduce the conductivity of these large channel features. 

Thus, understanding both the mechanism and the factors affecting the gel’s ability to 

resist water flow through these features is the key to a successful conformance control 

treatment. 
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 Many researches have been conducted to study the rheology and the factors 

affecting   gel resistance to water flow. Grattoni et al. (2001) conducted a series of 

experimental studies to link polymer gel properties (such as gel strength and polymer 

concentrations) to flow behavior. They found that permeability is a function of both water 

flow rate and polymer concentration. Yang et al. (2002) developed a mathematical model 

for the flow of water through channels impregnated with a polymer gel. Their results 

indicate that a gel’s intrinsic properties (such as gel reference permeability and elastic 

index) control water flow behavior. Zhang and Bai (2011) demonstrated that millimeter-

sized particles form a permeable gel pack in opening fractures rather than form full 

blocking.  

This research addresses the effect of brine concentration, particle size, oil 

viscosity, and load pressure on the permeability of PPG pack inside large channeled 

features. In additions, it evaluates the ability of particle gel to reduce these channel 

conductivity when the gel is subjected to load pressure. 

 Numerous studies have been conducted in an attempt to evaluate in-situ gel 

propagation through fractures. Seright (1995, 1997, 1998, 1999, and 2001) studied both 

bulk gel placement and the mechanism behind gel propagation through fracture systems. 

Liu and Seright (2000) identified a correlation between gel rheology and the extrusion 

properties of gels in fractures. Ganguly et al. (2001) conducted a series of experiments to 

determine the effects of fluid leak-off on gel strength when placed in fractures. Sydansk 

et al. (2005) characterized the transport of partially formed gels in fractures. Wang and 

Seright (2006) examined whether or not the use of rheology measurements to evaluate 

gel properties in fractures is an acceptable substitute for extrusion experiments as a way 
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to reduce costs. Wilton and Asghari (2007) worked to determine how to improve bulk gel 

placement and performance through fractures. They applied a Cr (III) acetate pre-flush to 

investigate whether or not a stable gel can be formed within a fracture without gallant 

leak-off. McCool et al. (2009) investigated the effect of shear on flow properties during 

the placement of gallants in fractures. No one, however, has studied either the 

performance or the mechanism of PPG extrusion and placement in conduit systems. Only 

Zhang and Bai (2011) have investigated PPG extrusion through fractures. They studied 

PPG injectivity and plugging efficiency when the fracture width was less than the gel 

particle size. The objective of this current research is to conduct an in-depth examination 

of several factors that can have an important impact on the PPG extrusion mechanism and 

placement performance in conduits system. It discusses PPG injection through 

fractures/conducts which have pore throat sizes equal to, less than, and larger than PPG 

size. 

  When gels are placed throughout target zones, water permeability decreases 

significantly and water flow into the well is minimized. However, if oil is produced from 

a reservoir through these zones, gel permeability will not be decreased significantly. This 

phenomenon is called Disproportionate Permeability Reduction (DPR). This 

phenomenon has examined previously and many studies have been conducted to evaluate 

the gel performance in presence of oil productions (Liang et al. 1993, 1995; Liang and 

Seright, 1997; Grattoni et al. 2001; Willhite et al. 2002; Nguyen et al. 2004; Seright, 

2006; Seright, 2009).  To the best of knowledge, neither of these studies or previous 

works had used PPG as a conformance material in their investigations, nor studied the 
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performance or mechanism of PPG extrusion and placement in conduit and high 

permeability streaks reservoirs.  

This research intend to examine in-depth several factors such as particle size, gel 

strength, permeability of unconsolidated sand, and conduit pore size effect on DPR 

properties, gel extrusion, and placement through conduit and unconsolidated sandstone 

formations. Alternate banks of both brine and oil were used to determine the extent to 

which PPGs can reduce water permeability more than oil permeability within conduit and 

high permeability streaks. 

 In spite of the successful applications of PPGs in plugging large features, there is 

still need to combine this technology to produce more oil from the low permeable rich 

zones. This research studied the efficient of combining conformance control treatment 

using PPG and mobility control using Polymer. Conformance control combined with 

either CO2 or surfactant application have been previously investigated. Few studies, 

however, have evaluated conformance control with mobility control. Richard et al. (2014) 

indicated that a large substantial benefit to use crosslinked gel treatment before 

introduced the polymer applications. Their field results conducted in the Buffalo Coulee 

reservoir shows large incremental in oil recovery reached 10 to 15%. Dong et al (2008) 

indicated that oil recovery could be enhanced 2-4% OIIP over the polymer flooding for 

some Daqing well with layers no cross flow. These field applications motivate to conduct 

more work to understand the mechanism and evaluate effectiveness of using PPG with 

mobility control to increase oil recovery from both high and low permeability zones. A 

new heterogonous model experiment was conducted during this research to have a better 
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understanding of combining these two technologies to gain more oil recovery from swept 

and un-swept areas. 

 In both cross flow and no cross flow strata, a small portion of gel still propagates 

into un-swept low-permeability zones in spite of the millimeter-sized gel preferentially 

entering into fractures or fractures features channels. Gel penetrates into un-swept zones 

and forms a cake on the surface of low-permeability layers. This gel cake adversely 

affects oil production by reducing the permeability of the near wellbore region. The 

extent of formation damage depends on the gel properties and the rock permeability 

interactions (Elsharafi and Bai, 2012). 

 Several laboratory studies have been conducted using oxidizers and enzymes to 

understand and mitigate the damage caused by using crosslinked polymer fluids. Carr and 

Yang (1998) introduced flow back analysis to evaluate polymer damage-removal 

efficiency. Crews and Huang (2010) proposed a new technique that uses nanoparticle–

associated surfactant in brine that generates crosslinked-polymer-like fluid viscosity to 

enable the removal of residual polymer in hydraulic fractures. Sarwar et al. (2011) 

provided a guideline for gel degradation studies using oxidizers and enzymes to optimize 

the breaker type while also optimizing the concentration at specific temperatures. Reddy 

(2013) studied the filter cake characterization using zirconium-crosslinked fracture fluids 

and developed a non-oxidizer gel breaker that can actively decrosslink the crosslinked gel 

structure by reacting with the crosslinking agent rather than only breaking down the 

polymer chain. These works spend a large quantity of time and effort to optimize the 

breaker system for the particular well conditions and fluid requirements. Most of this 

work was conducted to optimize hydraulic fracturing fluid and thus obtain a better 
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performance. Few studies evaluated this breaker during the conformance-control 

treatments. 

This research proposed a different method than the other applications by 

combining acidizing with conformance treatments to improve oil recovery from low-

permeable zones and enhance the injection profile in mature oil fields. Some field 

applications reported promising results from combining water shutoff and stimulation 

technologies to improve oil recovery. Zhao et al. (2004) evaluated several acid systems to 

be compatible with three kinds of plugging agents to use in different reservoirs. Their 

results obtained from Weicheng and Mazhai oilfields show a better injection profile and 

better oil increase in responding wells. Turner and Zahner (2009) conducted a field study 

in Sockeye field, offshore California, on the applications of combining chromium 

crosslinked polyacrylamide gels and acid stimulation. Combining both treatments 

lowered water production and increased the oil rate in a manner that neither technique 

would yield on its own. Kosztin et al. (2012) presented a combine technology of water 

shut-off and acid stimulation in a mature field in North Oman. The results show a large 

increase in oil production and a decrease in the average water cut. 

 These studies did not use particle gels combined with acid stimulation. Therefore, 

this research examines the effectiveness of using hydrochloric acid to remove the damage 

caused by particle gel penetrating into low-permeability zones. Additionally, this research 

proposed combined gel with acid stimulation to increase oil recovery from low 

permeability layers, consequently a new heterogonous model will be also conducted to 

evaluate how much oil recovery would be obtained from combining water shutoff and 

acid treatments. 
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Gel was pumped into large permeability zones to reduce their permeability to 

obtain more oil from un-swept low-permeable zones. Acid was pumped to remove the gel 

cake formed in un-swept rich oil zones; thus, more oil can be recovered. The combined 

technologies increased oil production from both low and high permeable formations.  

During these intensive evaluations of combined gel with acid treatments, swelling ratio, 

deswelling ratio, effect of pH, and gel strength in acid were investigated. A core flooding 

experiments were carried out to more fully understand the factors affecting gel cake 

forming on the surface of different low-permeability cores.  

 In summary, this research conducted an intensive experiment work to understand 

and evaluate the PPG propagation and placement mechanisms in high permeability and 

fracture reservoirs. The research started by evaluate factors effect on gel properties and 

rheology by studying the concept of gel pack permeability. Numerous experiments were 

conducted to evaluate the PPG injection through different media, namely conduit and 

unconsolidated sand pack models. Several experiment were then conducted to evaluate 

water and oil propagation through gel after placement within conduit and unconsolidated 

sand pack models. Finally, a novel combination between PPG treatment, stimulation 

treatment, and mobility control conducted in heterogenetic experiment models to evaluate 

the effectiveness of using PPG with these two combination technologies. 
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3. EFFECT OF GEL PACK ON OIL AND WATER FLOW 

3.1. INTRODUCTION 

 Gel pack permeability is a new concept is introduced through this study. It 

introduced to study factors that have a significant effect on particle gel propagation 

through either super-k or fracture systems. Gel was found that partially plugs undesired 

formations rather than fully blocking. This section investigates what factors significantly 

effect on particle gel pack permeability. This investigation is a crucial for a successful gel 

treatment because it gives an idea about how much gel pack permeability can minimize 

the permeability of the target zone. As the behavior of gel pack permeability was fully 

understood, an intensive lab work was then conducted to evaluate gel extrusion through 

fractures and high permeability streaks to study the mechanism and behavior of particle 

gel propagation through these features. 

3.2. OBJECTIVES AND TECHNICAL CONTRIBUTIONS 

 This topic aimed to provide an intensive insight on the gel rheology properties for 

PPG during water and oil flow. The following are summaries of the objectives of this 

section and expected technical contribution gained from this investigation. 

• Determine the PPG pack permeability for different fluid flow phases. 

• Examine the effect of change brine concentrations, particle gel sizes, oil viscosity, 

and injection flow rates on PPG pack permeability. 

• Study the effect of compressed gel on the blocking efficiency of PPG.  

• Determine the PPG pack compressibility under the different load pressure. 
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• This investigation is very important for a gel treatment to be successful where gel 

treatment target is to reduce the undesired permeability formations to the level as 

we planned. 

• The findings from this topic will be used to optimize a particle gel conformance 

control design. A gel pack with the desired permeability can be designed by 

selecting both gel strength and particle sizes that correspond with reservoir 

pressures.  

• It is first time to report that gel particles usually form permeable gel pack in fluid 

channels rather than fully block these fluid channels. 

To accomplish these objectives, this section is presenting results obtained 

from conducting a serious of experimental work to measure the PPG permeability 

for different flow phases and understand which factors significantly impact the 

blocking efficiency of PPG.  

3.3.  GEL PACK DESCRIPTIONS 

 Previous fracture transparent model Figure 3.1 indicates that the PPG propagated 

like a piston along the fracture, and gravity did not change the shape of the front of the 

PPG if the particle size was larger than or close to the fracture width. The fracture 

transparent model was constructed of two acrylic plates with a rubber O-ring between 

them. Bolts and nuts were used to fix the two plates and control the fracture width. On 

one side of the plate, a hole functioned as an inlet for the injection of the brine and PPG; 

on the other side, another hole provided an outlet to discharge the brine and PPG. The 

model was transparent so that the movement of the PPG and brine would be clearly 

visible. In the case of the large channeling features, such as conduits, wormholes, and 
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caves, understanding the gel pack permeability mechanism and determining which 

factors have a significant effect on the strength of the gel pack permeability is also 

needed to have a better PPG treatment design through these large feature systems. This 

section describes factors that affect the gel pack permeability inside large channels and 

evaluates the gel pack compressibility in the presence of load pressure. The load pressure 

in this study refers to the pressure developed by a piston movement to compress the gel 

particles inside a transparent channel model. 

 

 

Figure 3.1—PPG propagates like a piston (Zhang and Bai, 2011). 

 

3.3.1. Gel Pack Permeability. The PPG pack permeability was determined by 

 measuring the differential pressures and flow rates while injecting brine through the gel 

pack-filled channel tube. The gel pack permeability was fitted according to the power law 

as follows: 
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              KPPG = ko νn  .................................................................... (3.1) 

 
where KPPG is the preformed particle gel pack permeability, ko is the intrinsic 

permeability, ν is the superficial velocity, and n is the gel elasticity index.  

 The permeability is a function of the flow velocity, following a nonlinear 

relationship. The link between velocity-dependent permeability and gel rheology has 

been proven experimentally, where increased brine injection flow rates enlarge the flow 

pathways within the PPG by elastic deformation. Power law behavior is usually observed 

when non-Newtonian fluid flows through a rigid porous medium. However, the brine 

used in this study is a Newtonian fluid, so the power law model can only be applied to the 

elastic properties of the PPG.  

 The intrinsic permeability and elasticity index are functions of fluid and gel 

properties. If n equals zero, the permeability would not be velocity dependent; this could 

be the case if the PPG acted like a rigid porous medium. The deformability/elasticity of 

the PPG increases when n is greater than 0. 

3.3.2. Gel Pack Compressibility. Gel pack compressibility is defined as the 

 ability of gel particles to move closer to each other when the load pressure is applied 

against them. PPGs swollen in different brine concentrations were used to measure 

compressibility. The gel pack compressibility was measured by pouring gel particles 

inside the transparent model. The initial volume of gel inside the model was measured 

before applying the load pressure. A piston was then used to compress the gel by 

imposing different load pressures on the gel particles. For every load pressure that was 

tested, the gel continued to compress until no further water loss was produced from the 

gel as effluent. The change in volume and the pressure drop across the gel were both 
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measured. This procedure was repeated for every brine concentration. In addition, the gel 

pack compressibility (Cppg) was calculated for every load pressure based on the following 

equation: 

 

             Cppg = �!
"# ∗ ∆"

∆&'
  ........................................................... (3.2) 

where Cppg is the PPG pack compressibility (Psi-1), Vo is the initial PPG volume before 

compression (cm3), ΔV is the change in PPG volume after compression (cm3), and ΔPg is 

the change in pressure across the gel (psi). 

 

3.4.  EXPERIMENTAL MATERIALS 

3.4.1. Preformed Particle Gel (PPG). A super absorbent polymer (SAP) was 

 used as the preformed particle gel for this study. The particle was synthesized by a free 

radical process using acrylamide, acrylic acid, and N, N’-methylenebisacrylamide. Most 

PPGs reach full  swelling in half an hour, but a field operation usually take a few hour to 

a few months, so fully swelling particles were used in experiments. The primary 

characteristics of the PPG used for the experiment are listed in Table 3.1.  

Table 3.1—Typical characteristics of PPG. 

Properties Value 

Absorption of Deionized Water (g/g) >200 

Apparent Bulk Density (g/l) 540 

Moisture Content (%) 5 

pH Value 5.5-6.0 (+/- 0.5; 1% gel in 0.9% NaCl) 
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 Various sizes of PPG were selected for experiments: 18-20, 20-30, 50-60, and 80-

100 mesh. Table 3.2 illustrates the PPG size distribution before and after being swollen in 

1% NaCl solution. 

 

Table 3.2—PPG size before and after being swollen in 1% NaCl. 

No PPG (mesh size) PPG size before being swollen, µm PPG size after being swollen, mm  

1 18-20 850 42.5 

2 20-30 600 30 

3 50-60 250 12.5 

4 80-100 150 7.5 

 

3.4.2. Brine Concentrations. Sodium chloride (NaCl) with three concentrations  

(0.05, 1, and 10 wt %) was used to prepare the swollen gels. Figure 3.2 depicts the PPG 

before and after being swollen in different brine concentrations.  

 

Figure 3.2—PPG (30-mesh size) before and after being swollen in different brine 
concentrations. 
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 The brine concentration was carefully selected according to the gel strength and 

swelling ratio where the gel prepared in the low salinity brine had less strength and more 

swelling ratio than the gel prepared in the high salinity brine. Table 3.3 illustrates the 

swelling ratio and gel strength measurements for different brine concentrations. Storage 

moduli (G´) for the PPG prepared in different brine concentrations were measured at 

room temperature (23oC) using a rheometer (Figure 3.3). The sensor used for 

measurements was PP335 TiPoLO2 016, with a gap of 0.2 mm between the sensor and 

the plate. G' were measured at a frequency of 1 Hz for each sample. 

 

Table 3.3—PPG swelling ratio and strength measurements of 30 mesh size. 

 

 

Figure 3.3—Gel strength measurement instrument. 

No Brine concentration, % NaCl 
PPG concentration, 

wt % 
Swelling ratio Gel strength, pa 

1 0.05 0.60 165 515 

2 1 2.0 50 870 

3 10 4.0 25 1300 



59 

 

 

3.4.3. Oil Viscosity. Three oils with different viscosities were used in this study. 

 Their oil viscosities measured at certain temperatures are shown in Table 3.4 

 

Table 3.4—Oil viscosity used for experiments. 

Oil Viscosity at 70 OF ( cp) 

Low Viscosity 1.5 

Medium Viscosity 37 

High Viscosity 195 

 

3.5.  EXPERIMENTAL SETUP 

 An apparatus was built to evaluate the factors impacting the permeability of the 

gel pack, as presented in Figure 3.4. The apparatus (simple channel) was built from an 

acrylic transparent tube and its square cross–section was 5.06 cm2 and 26.5 cm long. 

Different brine concentrations and oil viscosities were injected into the PPG-filled 

transparent tube, using a syringe pump. Two caps with four stainless steel rods and nuts 

were used to hold the transparent tube channel. The core sample was fitted inside the tube 

with an O–ring to prevent any leakage of gel that might occur during brine injection. A 

piston made from an acrylic rod was located at the top of the tube to compress the gel 

inside the channel tube. A hole inside the piston was made to permit brine and oil to be 

injected through the gel after it was compressed. Two pressure gauges were connected, 

one at the inlet and the other at the bottom of the gel, to measure the differential pressure 

across the PPG. 
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Figure 3.4—PPG pack permeability setup.  

                                                                                          

3.6.  EXPERIMENTAL PROCEDURE 

 A consolidated sandstone core was fitted at the bottom of the channel tube model 

to prevent gel movement from reaching the outlet.  Swollen PPG was then placed inside 

the transparent tube model. Six different injection fluid flow rates (0.1, 0.2, 0.3, 0.4, 0.5, 

and 0.6 ml/min) were used for each experiment to measure the PPG pack permeability.  

 A piston was then fitted inside the channel, and the gel was compressed at eight 

different load pressures: 75, 125, 150, 175, 200, 225, 250, and 275 psi. At each load 

pressure, the same injection flow rates were used to measure the gel pack permeability. 

The pressure drop across the PPG, the change in the length of the gel, and the fluid 

produced at the outlet were all recorded at the ambient temperature. In addition, to study 

the effect of load pressure on gel strength measurements, a sample of gel was taken 

before and after the gel was compressed. 
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3.7. RESULTS AND ANALYSIS 

3.7.1. PPG Pack Permeability Measurements. This section discuss the effect of  

brine concentration, particle gel size, and oil viscosity on gel pack permeability 

measurements. 

3.7.1.1. Brine concentration effect. Stabilized pressures for each concentration  

of brine were obtained at the different injection flow rates (Figure 3.5).  The results 

showed that the stabilized pressure of the PPG rose as the flow rate increased. This 

increase, however, was significant only at a low flow rate (0.1 to 0.3 ml/min). For 

example, in the case of no piston effect, the stabilized pressure for the gel swollen in 10% 

brine started to increase from 1 psi to 2.8 psi at low flow rates (0.1 to 0.3 ml/min). At 

high flow rates (0.4 to 0.6 ml/min), the pressure slightly increased from 3.5 to 4.1 psi. 

Additionally, Figure. 3.5 provides a gel stabilized pressure comparison between the brine 

concentrations of 0.05% NaCl and 10% NaCl before and after the load pressure was 

introduced. The results showed that the pressure measurement at 0.05% did not increase 

significantly after the gel was compressed to 275 psi as compared to the results for the 

10% solution. The pressure measurement increased almost 1 psi for the former and 

almost 13 psi for the latter. This behavior revealed that the permeability of a strong gel 

(swollen in a high brine concentrations) decreased more rapidly than that of a weak gel 

(swollen in a low brine concentrations) if high pressure was applied. All the 

measurements of gel particle compression were performed until 275 psi because it was 

observed that the gel pack permeability became almost at higher pressure. The results 

suggest that strong gel applications in an oil field will be more effective than weak gels at 

controlling water production. 
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Figure 3.5—Stabilized pressure for brine concentrations before and after load pressure. 

 

The PPG pack permeability calculated for the different brine concentrations was 

determined according to the power law equation and plotted as shown in Figure 3.6. At 

the initial load pressure, gel swollen in 10% NaCl started with a higher gel pack 

permeability than did gels swollen in either 0.05% NaCl or 1% NaCl. The gel pack 

permeability with a 10% brine concentration started at 103 md before the gel was 

compressed. The gel compressed gradually when the load pressure was applied. The gel 

pack permeability began to decrease continuously until 200 psi, it fluctuated between 5 

and 7 md. The gel pack permeability with a 0.05% NaCl brine began at 20 md before the 

load pressure was applied. It started decreasing after the load pressure was applied. When 

the load pressure reached 175 psi, the gel pack permeability had a different trend. It 

started to form channels inside the gel, and the permeability increased to 11.8 md. When 
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the pressure was released, the gel network reformed and the gel pack permeability 

continued to decrease after the gel compressed to 200 psi.  

 

 

Figure 3.6—PPG pack permeabilities with different brine concentrations. 

 

Figure 3.6 indicates also that the strong gel had a higher gel pack permeability 

than did a weak gel before the load pressure was introduced. At a high load pressure, 

however, the gel pack permeability exhibited a different trend. The decrease in the PPG 

pack permeability with a high gel strength was significantly less than that of the PPG 

pack permeability with a low gel strength.  

 Tables 3.5, 3.6, and 3.7 summarize both the permeability and elasticity 

measurements for the different brine concentrations as determined by using the power 

law equation. The elasticity index for the PPG varied between 0.7 and 0.9 for weak gels, 

while for strong gels, it varied between 0.3 and 0.8.  
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Table 3.5—PPG pack permeability measurements for 0.05% NaCl. 

P (psi) Intrinsic Permeability, ko (md) Elasticity Index R2 

No load 19.987 0.8417 0.9916 

75 14.105 0.7792 0.991 

125 13.316 0.7555 0.9803 

150 11.196 0.9418 0.9924 

175 11.856 0.9661 0.9986 

200 14.594 0.7939 0.9901 

225 13.201 1.381 0.9159 

250 10.182 0.9003 0.9693 

275 9.1823 0.9444 0.9961 

 

Table 3.6—PPG pack permeability measurements for 1% NaCl. 

P (psi) Intrinsic Permeability, ko (md) Elasticity Index R2 

No load 27.114 0.8399 0.992 

75 19.185 0.8464 0.9964 

125 15.035 0.7729 0.9956 

150 11.889 0.8575 0.9988 

175 10.345 0.8055 0.9849 

200 9.1845 0.8934 0.9937 

225 8.2749 0.9505 0.999 

250 7.4038 0.9349 0.9963 

275 7.4382 0.9192 0.997 
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Table 3.7—PPG pack permeability measurements for 10% NaCl. 

P (psi) Intrinsic Permeability, ko (md) Elasticity Index R2 

No load 103.53 0.311 0.9372 

75 74.323 0.1297 0.9699 

125 22.643 0.4809 0.9287 

150 12.809 0.6346 0.9743 

175 6.4912 0.5848 0.9308 

200 3.3611 0.8532 0.9963 

225 7.5038 0.7202 0.9833 

250 5.9863 0.6923 0.9659 

275 5.4555 0.7136 0.9606 

 

3.7.1.2. Preformed particle gel size effect. Various particle sizes were used to 

 investigate how the PPG size affects the permeability measurements. Particles of all 

experimental sizes were swollen in the same brine concentrations (1% NaCl). Figure. 3.7 

reveals that the PPG pack permeability was affected by particle size. Large particle sizes 

had a lower gel pack permeability than did smaller particle sizes across all of the load 

pressure ranges. The gel pack permeability with a particle size of 20-30 mesh was 27 md 

before adding the load pressure. The gel pack permeability then started to decrease 

gradually after the load pressure was introduced. The permeability decreased to almost 8 

md at 200 psi. Gel with a particle size of 80-100 mesh had a gel pack permeability of 33 

md before applying the load pressure. Permeability then decreased to almost 20 md at 

200s psi.  
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Figure 3.7—PPG pack permeabilities with different particle sizes. 

 

In addition, the results showed that the PPG pack permeability before applying 

the load pressure was much larger than the PPG pack permeability after applying the load 

pressure. The PPG pack permeability decreased significantly when the load pressure was 

first applied. The permeability then became almost constant because the gel particles 

were compressed substantially, forcing them closer to one another during the earlier 

stages of the applied load pressure and less during the later stages. Similarly, this new 

finding indicated that the PPG pack permeability would have lower permeability at 

reservoir pressure conditions than it would at surface conditions. It also suggested that 

using smaller particles in the conformance control treatment would not result in a better 

gel resistance to water flow inside the high permeability channels. 
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3.7.1.3. Oil viscosity effect. Gels swelled at the same brine concentration (1%)  

and had the same particle size (30 meshes) were prepared to investigate the effect of 

changing oil viscosity on PG pack permeability. Figure 3.8 indicates that gel pack 

permeability to oil improves as oil viscosity increase. At 1 ft/day, PG pack permeability 

measurement for oil with 1.7 cp was 192.2 md and it improves to 2254 md when oil 

viscosity increase to 37 cp. Oil with high viscosity cause more deformation of gel more 

than oil with low viscosity, consequently easier for oil to open channel and pass through 

it. PG pack permeability measurement to oil was also found to be velocity dependent and 

permeability increased as velocity increased. 

 

 

Figure 3.8—PPG permeability as a function of oil viscosity.  

 

3.7.1.4. PPG pack permeabilities for oil viscosities and 1% brine. PPG pack 

permeability measured for different oil viscosities and 1% brine at the same particle size 
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30 mesh sizes was compared in Figure 3.9. Results indicate that PPG pack permeability 

to oil is much bigger than PPG pack permeability to water. PPG pack permeability for 

195 cp is almost 100 times PPG pack permeability for 1% brine. PPG pack permeability 

was found to increase with oil viscosity and results suggest that PG has a significant 

potential of success in viscous oil reservoirs. 

   

 

Figure 3.9—PPG pack permeabilities for brine and oil. 

 

Results shown in Figure. 3.10 indicate that gel permeability improved as the oil 

viscosity increased. The Gel pack permeability measured of flowing oil with 1.5 cp had 

started with 209 md and decreased to 26 md when pressure load was applied. When oil 

viscosity increased for example to 195 cp, gel pack permeability was began at 4788 md 

and decreased to almost 2650 md when pressure load was applied. Thus, the more 
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viscous the oil, the more the PG deformed then the easier for the oil to open channel and 

flow through it. Based on this finding, PG has large potential of success in high viscous 

oil reservoir applications.   

 

 

                    Figure 3.10—PPG pack permeabilities for different oil viscosities. 

 

3.7.2. Gel Pack Permeability Reduction. This section presents a comparison 

between the gels pack permeability determined before and after load pressure for both 

effects of brine concentration and particle size. The results obtained from this comparison 

are important to quantifying the change in the gel permeability and the rheology that 

occurred during the PPG compression.  

3.7.2.1. Reduction of PPG pack permeability for brine concentrations. The 

effect of brine concentration on the PPG pack permeability can be expressed using the 

Permeability Gel Reduction (KGR) factor. It can be defined as the ratio between the PPG 
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pack permeability measured after using the load pressure (KGA) and the PPG pack 

permeability measured before the load pressure (KGB). This concept, which is expressed 

in a percentage, is used to determine how much the PPG permeability can be decreased. 

Table 3.8 illustrates the permeability results obtained for 30-mesh size PPG 

swollen in three different brine concentrations. The results indicated that the KGB 

increased as the brine concentration increased. When the load pressure was applied, 

however, the KGA decreased as the brine concentration increased. Consequently, the 

PPG permeability reduction (KGR %) rose as the gel strength increased. The KGR for a 

gel swollen in 0.05% NaCl was 54.05%; the KGR for a gel swollen in 10% NaCl was 

94.73%.  These results suggested that the plugging efficiency can be improved if a strong 

gel is selected for the conformance control treatment.  

 

Table 3.8—Reduction of PPG pack permeability as a function of brine concentration. 

Particle Size (mesh) 
Brine Concentration, % 

NaCl  
KGB KGA@275psi KGR (%) 

30 0.05 19.987 9.1823 54.05 

30 1 27.114 7.4382 72.56 

30 10 103.53 5.455 94.73 

 

3.7.2.2. Reduction of PPG pack permeability for particles sizes.  Table 3.9 

displays the effect of different particle sizes on the PPG pack permeability reduction. 

Particles of various sizes were swollen in the same brine concentration (1% NaCl). The 

findings show that the PPG pack permeability before and after applying the load pressure 
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was greater for smaller particle sizes than for larger particle sizes. The PPG permeability 

reduction (KGR %) did not significantly change for the experimental particle sizes. 

Compared with the effect of brine concentration, particle size had less effect on the KGR.  

 

Table 3.9—Reduction of PPG pack permeability as a function of particle size. 

Brine Concentration 

% NaCl 

Particle Size 

(mesh) 
KGB (md) KGA@275 psi KGR (%) 

1 18-20 22.201 6.167 72.2 

1 20-30 27.114 7.4382 72.56 

1 50-60 27.351 16.846 38.4 

1 80-100 32.756 19.592 40.1 

 

 

3.7.2.3. Reduction of PPG pack permeability for oil viscosities. Reduction of 

particle gel permeability for different oil viscosities was also obtained in this study. Table 

3.10 summarizes the PPG pack permeability results for different oil viscosities at the 

same particle size. PPG permeability to oil before and after applying load pressure is 

increasing with increasing of oil viscosity. Additionally, these results indicate that the 

permeability reduction (KGR %) of high oil viscosity is less than it is for less oil 

viscosity. For example, oil injections with 195 cp had gel permeability reduction 44.57% 

while oil with less viscosity (1.5cp) had gel permeability reduction 87.5%. This result is 
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reporting a very unique feature for PPG for controlling excess water production in high 

viscous oil reservoirs.   

 

Table 3.10—Reduction of PPG pack permeability as a function of oil viscosity. 

Particle size (mesh) Oil viscosity (cp) kGB (md) KGA@275 psi KGR (%) 

30 1.5 209.55 26.041 87.5 

30 37 2222 555.14 75 

30 195 4788.4 2654.2 44.57 

 

3.7.3. PPG Strength. A rheometer was used to measure the strength of the gel  

swollen in 0.05, 1, or 10% NaCl. Figure. 3.11 presents the PPG strength measurements 

before and after the load pressure was applied. G`A and G`B are gel strengths measured 

before and after the load pressure was introduced, respectively. The results suggested that 

the gel strength increased as the brine concentration and load pressure increased. 

Analogously, this result revealed that the gel strength would increase when gel is injected 

into the target formation under reservoir pressure conditions. 
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Figure 3.11—PPG strength before (G`́B) and after (G`A) load pressure. 

 

3.7.4. PPG Compressibility Measurement. The results obtained from the 

experiments demonstrated that the PPG can be compressed at various values based on 

both different brine concentrations and load pressures. Gel compressibility was obtained 

and plotted in Figure 3.12 for the different brine concentrations. The PPG for all brine 

concentrations had a large compressibility value at the beginning of the introduced load 

pressure. For instance, the PPG swollen in 10% NaCl had a compressibility of 0.0037 psi-

1 at 75 psi and then decreased gradually to 0.00172 psi-1 at 275 psi. The findings obtained 

from the compressibility measurements are consistent with data obtained from the PPG 

pack permeability measurements. At the initial load pressure of 75 psi, the gel 
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compressibility of the solution with 10% NaCl was 0.0037 psi-1, while the gel 

compressibility of the 1% brine concentration at 75 psi load pressure was only 0.000527 

psi-1. The compressibility for both brine concentrations 1% NaCl and 10% NaCl is fairly 

fitted by Equation 3.3 and Equation 3.4, respectively, as follows: 

 

          Cppg = 0.0091 P-0.614  ..................................................... (3.3) 

           Cppg = 0.0437 P-0.573  ...................................................... (3.4) 

 

 

Figure 3.12—PPG compressibility (psi-1) and load pressure (psi). 

 

Additionally, the results in Figure 3.12 indicated that the compressibility for a 
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permeability measurement process. Data also suggested that PPGs swollen in high brine 

concentrations are more compressible than PPGs swollen in low brine concentrations. 

The average PPG compressibility obtained for all brine concentrations ranged between 

0.0003 psi-1 and 0.003 psi-1. Table 3.11 shows the procedure for finding the 

compressibility in relation to the load pressure.  

 

Table 3.11—Compressibility of 30-mesh size with1% NaCl. 

P (psi) L Vo V2 Delt V Delt P Cppg (Psi-1) 

75 22.5 118.5093 113.9513 4.55805 73 0.000527 

125 22.4 118.5093 113.4448 5.0645 123 0.000347 

150 22.3 118.5093 112.9384 5.57095 147 0.00032 

175 22.1 118.5093 111.9255 6.58385 173 0.000321 

200 21.9 118.5093 110.9126 7.59675 198 0.000324 

225 21.7 118.5093 109.8997 8.60965 223 0.000326 

250 21.6 118.5093 109.3932 9.1161 250 0.000308 

275 21.5 118.5093 108.8868 9.62255 273 0.000297 

 

3.8. DISCUSSION 

 This section discusses four major findings: PPG pack permeability, PPG 

deformations, PPG compressibility, and PPG elasticity. 
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3.8.1. PPG Pack Permeability is Velocity Dependent.  The PPG pack  

permeability was obtained for water flow through the gel-filled channel tube. The Darcy 

law for flow through porous media (Equation 3.5) was used to measure the PPG pack 

permeability: 

                         ( = )
* = �+,-

./   ............................................................. (3.5) 

 

where Q (cm3/s) is the flow rate, A (cm2) is the cross-sectional area, ∆-(atm) is the 

pressure drop over the length L (cm) of the gel, µ (cp) is the fluid viscosity, and K (md) is 

the permeability.  

Because the gel is composed of shear-thinning or pseudo plastic materials, the 

PPG pack permeability measurements for the different brine concentrations and particle 

sizes were not constant. Instead, the measurements revealed that the PPG was velocity 

dependent, following a nonlinear relationship. Additionally, the PPG permeability was 

dependent not only on the velocity of the brine injected but also on the elasticity index of 

the gels. Therefore, all results for the PPG permeability were fitted according to the 

power law model. We also observed that increases in the injection flow rate caused a rise 

in the gel pack permeability and also deformed the gel in a manner that was proportional 

to the applied pressure.  

3.8.2. Preformed Particle Gel Deformations. The water and oil flow through  

gels demonstrated a different trend in gel pack permeability measurements. This might 

happen due different level of gel deformation during fluid flow. The change in both PPG 

permeability and rheological properties can be explained as follows: 
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3.8.2.1. PPG strength.  Results obtained from the rheometer (Figure 3.11) show 

 that the gel rheology changed after the load pressure was introduced. This feature is an 

advantage for the PPG because the gel became stronger than it was at surface conditions. 

Thus, a better water flow control can be achieved in large channeled reservoirs. Also gel 

strength results obtained for oil flow through gel as shown in Figure 3.13 suggested that 

gel strength in oil have also an effect on gel pack permeability values.  The gel strength 

for oil was less than for water; consequently gel with less strength has higher 

permeability than gel with high strength. This might add another reason for why gel 

permeability to water is decrease more than to oil. 

 

 

                     Figure 3.13—PPG strength before (G`́B) and after (G`A) load pressure. 

 

Gel strengths measured after the load pressures were correlated with the PPG 

pack permeability are shown in Figure. 3.14. The power law model equation for the gel 
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pack permeability was obtained as a function of gel strength. The gel strength for oil was 

less than for water; consequently gel with less strength has higher permeability than gel 

with high strength. This might add another reason for why gel permeability to water is 

decrease more than to oil. The primarily results also indicate that PG strength increased 

after the load pressure was applied. 

 

 

                Figure 3.14—Intrinsic gel pack permeability as a function of storage modulus.  

 

3.8.2.2. PPG compressibility. The PPG compressibility plays a crucial role in  

controlling water production. If the gel can be compressed using a high pressure, the 

plugging efficiency of the gel will be increased. This happens because the gel particles 

can move closer to each other and minimize the possibility that there is any open pore 

size during water flow. Consequently, water will be trapped behind the gel and cannot 

move further.    
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 The results demonstrate that the PPGs can be compressed at different values 

based on the gel strength difference. This is the first study to report this feature of the 

PPG, and more research is needed to compare the traditional gel compressibility with the 

PPG.  

3.8.2.3. PPG elasticity. The elasticity index for the PPG at different gel strengths  

was measured after applying the load pressure (Table 3.12). These findings reveal that 

the gel storage model (G`) increased as the elasticity index decreased. The blocking 

efficiency of the PPG was significantly affected by the gel strength. Gels with high 

storage moduli would be preferable for conformance control field applications. 

 

Table 3.12—PPG permeability as a function of elasticity index and storage model. 

Brine concentration % 

NaCl 
Effective Permeability Elasticity Index Storage Moduli G ́ (Pa) 

0.05 9.1823 0.944 650 

1 7.4382 0.919 920 

10 5.455 0.713 1360 

 

Results have shown also PPG shrinks in oil and swells in water. PPG pack 

permeability to oil was much higher than PPG to brine. One of the reasons to this 

difference in permeability is that PPG intends to shrink in oil and swell in brine. 

Figure 3.15a show dry gel can be swelled in brine many times of its original size 

which help to reduce the PPG pack permeability to water. However, Figure 3.15b show 

PPG water base after saturated with oil for three weeks, the gel volume decrease 
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dramatically to the half of original PPG volume. This decrease in gel particle size allows 

easily movement of oil through gel and cause gel permeability to oil increase compared 

to water. 

 

                

Figure 3.15—Illustrates how PPG volume shrinks in oil and swells in brine. 

 

3.9.  CONCLUSIONS 

 During these investigations of factors affecting the gel pack permeability formed 

inside large channeled features, the following are conclusions observed from the study: 

• A PPG partially blocks the large channel rather than fully blocking it. The PPG 

will do so because the gel can formed channels for water to pass through. 

Therefore, we strongly recommend that operators in the field consider the effect 

of both particle size and brine concentration when designing PPGs for water 

production control purposes. 

• Gel-plugging efficiency is affected by particle size selection. Our results indicated 

that gel resistance to water flow improved when larger particles were selected. 

• Brine concentration had a significant effect on the PPG resistance to water flow. 

We observed that strong gels had a lower permeability than did weak gels. 
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Therefore, a strong PPG would be the right choice for more effectively plugging 

an undesired zone than a weak gel.  

• Brine concentration had a more pronounced effect on the PPG pack permeability 

than did gel particle size. 

• The gel pack permeability decreased significantly at the beginning of the 

compression process. Then, after the gel became slightly rigid because of the load 

pressure effect, the compressibility reduction became less obvious.  The PPG was 

compressible between 0.0003 psi-1 and 0.003 psi-1. This compressibility varied 

according to both brine concentration and particle size.  

• The PPG strength increased as both the brine concentration and the load pressure 

increased. A weak gel creates internal channels more easily than a strong gel 

when the PPG is subjected to continuous load pressure. 

• Gel pack permeability is lower at reservoir conditions compared to the gel pack 

permeability at surface conditions. The gel pack permeability measurements 

registered a few hundred millidarcies before the load pressure was applied; the gel 

permeability decreased to less than 10 md after the load pressure was introduced. 

• PPG pack permeability measurements indicate that the PPG pack permeability of 

oil is much more than PPG pack permeability for water. PPG pack permeability of 

oil is increased as oil viscosity increased which imply that PPG can be applied 

successfully in viscous oil reservoirs. 
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4. EVALUATE THE EFFECTIVENESS OF USING ACID TO REMOVE GEL 

CAKE 

4.1. INTRODUCTION  

In both cross flow and no cross flow strata, a small portion of gel still propagates 

into un-swept low-permeability zones in spite of the millimeter-sized gel preferentially 

entering into fractures or fractures features channels. Gel penetrates into un-swept zones 

and forms a cake on the surface of low-permeability layers. This gel cake adversely 

affects oil production by reducing the permeability of the near wellbore region. The 

extent of formation damage depends on the gel properties and the rock permeability 

interactions (Elsharafi and Bai, 2012). This section is discussing the effective of using 

Hydrochloric acid to mitigate/remove gel filter cake damage anticipated on the low 

permeability zones. 

4.2. OBJECTIVES OF AND TECHNICAL CONTRIBUTIONS 

• Examines the effectiveness of using hydrochloric acid to remove the damage 

caused by particle gel penetrating into low-permeability zones.  

• Evaluate the interaction between particle gel and hydrochloric acid. The swelling 

ratio, deswelling ratio, effect of pH, and gel strength is investigated.  

• Establish core flooding experiments to fully understand the factors affecting gel 

cake formation on the surface for different low-permeability cores. 

•  Various concentrations of HCL along with variations in pH is used to obtain an 

optimum acidizing treatment.  

• Results from this experiment will be used to assist to improving conformance 

results and improving oil recovery from low permeability rich oil zones. 
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4.3.  EXPERIMENTAL DESCRIPTION 

4.3.1. Preformed Particle Gel. Superabsorbent polymer was used as the PPG to 

 conduct the experiments. Its main chemical component is potassium salt of crosslinked 

polyacrylic acid/polyacrylamide copolymer. Dry PPG with a size of 30 mesh was 

selected to be swollen in different brine concentrations.  

4.3.2. Hydrochloric Acid (HCl). HCl from Fisher Scientific was diluted with 

 distilled water to obtain concentrations of 5%, 10%, 15%, and 20%. A 10% HCl solution 

was diluted again with water to prepare solutions with pH values of 1.3, 3, and 5.5. 

4.3.3. Berea Sandstone. A variety of Berea sandstone, having a diameter of 2.5  

cm and length of 4.5 cm, was used for the experiments. The core was placed in the oven 

at around 45oC for an entire night before it was vacuumed and then saturated with brine.  

4.3.4. Rheometer. The storage moduli (G`) for gel swollen in brine and acid were 

 measured at room temperature (around 23oC) using a rheometer. After being swelled in 

brine and deswelled in acid, gel strengths were measured and compared to see if the gel 

strength in acid increased or decreased after acid treatment. The sensor used for 

measurements was PP335 TiPoLO2 016, with a gap of 0.8 mm between the sensor and 

the plate. G` were measured at a frequency of 1 Hz for each sample. 

 

4.4.  EXPERIMENTAL SETUP 

Figure. 4.1 is a schematic model used to carry out the experiments. It is comprised 

of a syringe Isco-pump used to inject brine concentrations and gel through the 

accumulator into a Hassler core holder. Berea sandstone was placed inside the holder, 

and the confining pressure was adjusted to have a minimum of 500 psi difference above 
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the injection pressure. Spacers five cm long were placed inside the core holder in front of 

the core to allow gel placement at the sand face of the core. An injection pressure gauge 

was installed at the inlet of the core holder to measure the brine injection pressure during 

the experiment. Test tubes were mounted at the effluent to collect the brine produced 

during the injection processes.  

 

 

Figure 4.1—Experiment setup for gel filter cake removal. 

 

4.5. EXPERIMETAL PROCEDURE 

The experimental procedure was divided into two main steps. The first step was to 

investigate the interaction between HCl and the PPG. The second step was to evaluate the 

gel cake damage that occurred during the gel treatments and assess the gel cake-removal 

efficiency after the acid treatments. 
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4.5.1. Interaction between the Hydrochloric Acid and the PPG. A 0.5 ml of 

600 µm dry gel was immersed in 49.5 ml of different brine concentrations (0.05%, 

0.25%, 1%, and 10%) of NaCl at room temperature to determine the swelling capacity of 

the PPG with time. The swelling ratios of the PPG in different brine solutions were 

obtained using this equation: 

 

              Swelling capacity = :;�:<
:<

  ......................................... (4.1) 

where V2 is the final volume of the gel sample after swelling and V1 is the initial volume 

of the gel sample before swelling. 

To measure the swelling capacity of the same dry PPG size (600 µm) in relation 

to the acid concentration, solutions of 49.5 ml were prepared using different HCl 

concentrations (5%, 10%, 15%, and 20% by volume). In addition, the 10% HCl 

concentration was used to prepare varying pH values to examine the effect of pH on the 

swelling capacity measurement. The pH values of these solutions were adjusted by 

adding water and precisely checked using a pH meter. Samples of gel were collected after 

swelling in brine and after deswelling in acid and were placed on the disc of the 

rheometer to measure their strength. 

Samples of fully swollen gels from different brine solutions were collected and 

placed in test tubes to measure the gel deswelling in different acid concentrations and at 

different pH levels. The deswelling capacity was measured against time, and the volume 

change was visibly monitored. The deswelling capacity of the PPG can be calculated 

using this equation: 
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    Deswelling capacity = :?�"@
:?

×  100   ........................ (4.2)    

where Vi is the initial volume of the swellable gel sample and Vf  is the final volume of the 

gel sample after deswelling. 

Finally, after measuring the deswelling capacity of the gel in acid, the gel inside 

the tubes was flushed with ten cycles of the same brine composition to test if the gel 

could be swelled again when it contacted the same brine solution. 

4.5.2. Evaluation of Gel Cake Damage and HCl Performance. Core flooding  

was carried out to evaluate the damage caused by the gel cake and the effectiveness of 

using HCl to remove this damage. Core flooding started by performing filtration test 

experiments to monitor and assess the buildup of the gel cake and ended by evaluating 

the performance of HCl in mitigating the formation of the gel cake. The procedure used 

for the filtration test experiment is briefly described below: 

1) The Berea sandstone with a permeability range of 4 to 65 md was placed in the 

oven at around 45oC for an entire night before it was vacuumed and then saturated 

with 1% NaCl.  

2) The core was put in a Hassler core holder and subjected to a confining pressure. 

The average absolute permeability of the core was measured using flow rates of 

0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, and 3 ml/min. 

3) A 60-ml solution of completely swellable PPG in brine was injected through a 5-

cm spacer and placed facing the core. Saline water was injected again, with flow 

rates of 0.5, 0.75, 0.5, 1, 0.5, 1.25, 0.5, 1.5, 0.5, 1.75, 0.5, 2, 0.5, 3, and 0.5 ml per 
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min. The rationale for repeating the 0.5 ml per minute flow rate after each other 

flow rate was to determine whether or not the core was damaged further when the 

flow rate was increased. 

4) A filtration curve was constructed by recording the cumulative brine produced as 

effluent as a function of time for every injection brine flow rate.   

5) The gel was removed from the core holder, and the permeability of the core was 

measured again to determine the effect of the gel cake on the core permeability 

reduction. 

 Finally, after completing the filtration test experiments, the core was soaked in 65 

gm of HCl for 12 hrs and replaced in the holder to measure the permeability after the acid 

treatments. 

4.5.3. Evaluation of the Gel Cake Formed and Removed.  Gel that was swelled 

 in brine concentrations of 0.05%, 1%, and 10% was used to evaluate the gel cake 

strength for each core permeability range. Different cycles of the same brine solution 

were flooded to demonstrate if the gel cake would damage the core further when the flow 

rate was increased. For each flow rate, the brine produced as the effluent was collected 

every two minutes to monitor the gel cake-buildup during the injection process. 

Darcy’s law was applied to calculate the core permeability before and after 

treatments. The permeability can be obtained using Equation 4.3.  

 

                            C = � D E
� ∆-  .................................................................... (4.3) 



88 

 

 

where q is the flow rate (ml/sec), µ is the brine viscosity (cp), L is the length of the core 

(cm), A is the cross-sectional area (cm2), and ∆p is the pressure drop across the core 

(atm). 

 The core permeability after the introduction of the gel can be expressed as the 

core permeability reduction, which is defined as the relationship between the initial 

permeability and the permeability after the introduction of the gel, and can be calculated 

using Equation 4.4.  

    CFG =  	H�	I
	H × 100  ..................................................... (4.4) 

where kRD is the core permeability reduction (%), ki is the initial core permeability (md), 

and ka is the core permeability after adding the gel (md). 

The core sample was removed carefully from the holder, and only one centimeter 

of the core face was submersed within the HCl. The core permeability was measured to 

observe the change in permeability after the acid treatments. Equation 4.5 was used to 

calculate the retained permeability obtained after soaking for various times in acid. 

 

  CFJ =  	K
	?

× 100  ........................................................... (4.5) 

where kRT is the core permeability retained (%), ki is the initial core permeability (md), 

and kf is the final core permeability after applying the acid (md). 
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4.6. RESULTS AND ANALYSIS  

To investigate which factors caused more damage to the core and to make the HCl 

stimulation more efficient, we first studied the interaction between the PPG and the acid 

in terms of the swelling ratio, gel strength, and deswelling ratio. The information 

obtained from this interaction provided a deep understanding of the factors that caused 

more damage to the core and the factors that would help to mitigate such damage. Core 

flooding was then performed to confirm the results obtained from the interaction study 

and to quantitatively evaluate the core damage and the HCl efficiency. 

4.6.1. Interaction between HCl and PPG Measurement. The swelling ratio, gel 

strength, deswelling measurements for PPG in brine and acid are discussed in the 

following subsections. 

4.6.1.1. Swelling capacity measurement. Superabsorbent polymers are lightly 

 crosslinked networks of hydrophilic polymer chains. Polymer networks carrying 

dissociated, ionic functional groups help substantially to hold a large amount of water and 

swell while maintaining the physical dimension structure. PPG can swell and contract in 

response to structural factors and properties of the swelling medium. Structural factors 

include charge, degree of ionization, crosslink density, and hydrophobicity, while the 

swelling medium properties include pH, ionic strength, and the counter ion and its 

valency. This section will focus more on discussing the effect of the medium properties 

on the degree of PPG swelling than on the structural factors. 

Dry PPG was placed separately in test tubes filled with different brine 

concentrations and different HCl concentrations. The stable swelling ratio was computed 

for each concentration. Figure 4.2 shows the influence of the brine concentration and acid 
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concentration on the swelling capacity. The PPG showed normal swelling ratio behavior; 

its swelling capacity initially increased with time and then attained equilibrium swelling 

capacity (ESC).  The swelling degree is generally determined as a balance between water 

absorption (due to the hydrophobicity of polymer chains) and network elasticity 

(proportional to crosslink density). 

          

Figure 4.2—Swelling ratio of gel in different brine and HCl concentrations. 

 

The swelling pressure of PPG (Π) is determined by a summation of the osmotic 

pressure Πosm and the elastic pressure Πelastic (Rubinstein et al., 1996) 

 

 Π = Πosm+Πelastic  ..................................................................... (4.6) 

The osmotic pressure acts to swell the gel, while the elastic pressure (shear 

modules) restricts the swelling. The osmotic pressure consists of two contributions, one 
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from polymer-solvent mixing (Πmixing) and the other from the mobile ion concentration 

(Πions). 

 

                      Πosm = Πmixing+Πions   .............................................................. (4.7) 

The results indicate that the particles swelled much more in brine compared to 

acid. The swelling ratio for the PPG swollen in brine reached 165 ml/ml when it was 

swollen in a 0.05% brine concentration. In contrast, the swelling ratio for the PPG 

swollen in acid reached only 9 when it was swollen in 5% HCl. The swelling ratio for the 

gel particles swollen in both brine and acid increased as the concentrations for both 

decreased. The concentration change had a very clear effect on the swelling ratio for 

brine compared to acid. The swelling ratio rose by a factor of two (from 81 to 165 ml/ml) 

when the brine concentrations decreased from 0.25% to 0.05%. However, the swelling 

ratio increased 1.2 times (from 7 to 9 ml/ml) when the acid concentrations decreased 

from 20% to 5%. As the brine concentration decreased, the PPG swelled more, became 

weaker, and began to soften. This decrease in gel strength is likely the result of the gel 

absorbing a large amount of water and also presumably due to the static electric repulsive 

force and charge balance. At low salt concentrations, the electric repulsive force will 

separate the gel molecules and create more space for water to enter (Bai et al., 2007a).  

The ESC data obtained from Figure 4.2 was used in Figure 4.3 to show how brine 

and HCl concentration correlations can be applied to predict the ESC values of both 

concentrations. Figure 4.3 illustrates that the higher the concentration, the smaller the 

ESC value. Equation 4.8 is the correlation obtained to predict the ESC of the gel swollen 
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in brine, while Equation 4.9 is the correlation to predict the ESC of gel swollen in HCl. 

Both correlations were fitted with the power law model, with high R2 accuracy. 

 

      ESC = 53.084 × Cbrine 
-0.352    ......................................... (4.8) 

    ESC = 12.077 × CHCl
-0.181  .............................................. (4.9) 

where ESC is the equilibrium swelling capacity, Cbrine is the sodium chloride 

concentration in wt. %, and CHCl is the HCl concentration in vol. %. 

 

                

Figure 4.3—Effect of brine concentration and HCl concentration on the ESC. 

 

A 10% HCl concentration was diluted to get three buffer solutions with pH values 

of 1.3, 3, and 5.5. The swelling ratio of the PPG composite in the different pH solutions 

was determined according to Equation 4. 1. Figure 4.4 shows that the swelling rate of the 

PPG reached its highest value within 10 minutes; later, the swelling rate decreased and 
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the curves became flatter. The solutions of varying pH had a pronounced effect on the 

swelling capacity. The swelling ratio of the PPG decreased significantly when the pH 

decreased to 1.3. The high repulsive of –NH2
+ – and – NH3

+ – groups in the acidic media 

increased the swelling ratio of the PPG as a result of an increase in the separation 

between the molecules in the gel, which created more space for water to enter; however, 

after the pH decreased too much, a screening effect of the counter ions (i.e., Cl─) shielded 

the charge of the cations and prevented an efficient repulsion. The concomitant release of 

ions sharply reduced the internal osmotic pressure, thus reducing the water absorbency 

(Mahdavinia et al., 2004; Zhao et al., 2005). 

 

 

Figure 4.4—Swelling ratio of the PPG as a function of pH. 

 

Figure 4.5 provides a comparison of the effects of brine concentration, acid 

concentration, and pH on the swelling degree as a function of ionic strength. The ESCs 

obtained at each brine and HCl concentration level were plotted against the ionic 
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strength. The results indicated that the ESC decreased as the ionic strength increased. The 

ESC was less affected by a change in acid concentration/pH than by a change in NaCl 

concentration. The swelling degree started to slow down when the ionic strength of the 

solution approached 1 M. The swelling ratio remained almost constant or changed only 

slightly when the ionic strength was larger than 1 M. 

 

 

Figure 4.5—Swelling ratio of the PPG as a function of ionic strength. 

 

4.6.1.2. Gel strength measurements. To investigate the influence of acid on the 

 PPG strength, a rheometer was used to measure the strength of the PPG before and after 

introducing the acid. Figure 4.6 shows the measurement of the PPG storage modulus for 

gels swollen in different brine concentrations and compared with the same gels deswelled 

in 10% acid concentrations. The results show a significant increase in gel strength for all 

brine concentrations after acid treatment compared to the gel before it was treated with 

acid. 
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The gel strength measured for the 10% brine concentration increased to five times 

more than it had been before acid treatments. In addition, the PPG swollen in higher salt 

concentrations was much stronger than the PPG swollen in lower salt concentrations, 

both before and after applying acid. There are two possible reasons for this increase in gel 

strength. First, the elastic pressure of the PPG was more dominant than the osmotic 

pressure for the PPG swollen in high brine concentrations, as shown in Figure 4.2 and 

Equation 4.6. Hence, the swelling ratio was restricted, which caused an increase in gel 

strength. Second, the screen effect reduced efficient water absorbency, which resulted in 

the PPG shrinking and its strength increasing. 

 

 

Figure 4.6—Gel strength measurements before and after introducing HCl. 

 

4.6.1.3. Deswelling capacity measurement.  The deswelling of the PPG is an  

important effect that should be considered in designing a gel breaker so that the gel cake 

formed on the low-permeability zones can be mitigated. PPG, after being fully swollen in 
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different brine concentrations, was placed inside test tubes filled with acid to observe the 

acid’s ability to deswell the gel. Figure 4.7 illustrates the gel deswelling in four HCl 

concentrations for gels swollen in different brine concentrations. The results suggest that 

gel deswelling is highly dependent on the brine concentration. The PPG swollen in the 

lower salt concentrations deswelled more in the HCl than the PPG swollen in the higher 

salt concentrations. The deswelling ability reached approximately 85% on average when 

the gel was swollen in 0.05%, 0.25%, and 1% salt concentrations. This overall 

percentage, however, decreased to around 60% when the gel was swollen using a 10% 

salt concentration. This decrease is likely because the PPG swollen in the lower salt 

concentration has low gel strength while the PPG swollen in the higher salt concentration 

has high gel strength. The gel deswelled in different HCl concentrations exhibited a 

similar deswelling ability to the gel swollen in the same brine concentrations. It is likely 

that this occurred because the acid concentrations had almost the same pH.  

Several additional measurements were also performed using the same brine 

concentration but employing 10% acid with pH values of both 3 and 5. The PPG did not 

deswell in a medium of pH 3 and above; instead, the PPG swelled to more than its initial 

volume. 
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Figure 4.7—PPG deswelling as a function of acid and brine concentration. 

 

4.6.1.4. Gel swollen capacity in brine after the deswelling process. After the  

gel deswelling in acid was completed, we further investigated to determine whether the 

gel would still absorb water when it again contacted water with the same salinity. After 

the acid application process, the deswellable PPGs in the 10% HCl solution were again 

placed in test tubes filled with the same brine composition as the gel. The PPG was 

washed with a variety of brine cycles, and for each cycle, the pH was measured precisely. 

The PPG was washed with the same composition of brine until the PPG reached the 

original pH of the brine, which was 5.5. When no change in volume was observed after 

the pH of the PPG reached 5.5, the PPG was left to swell overnight. The volume changed 

for each cycle; the equilibrium swelling capacity ratio for each brine concentration is 

listed in Table 4. 1. The results show that the PPG swelled slightly, and its swelling ratio 

increased as the brine concentration decreased. The lack of swelling could be due to the 

substantial decrease in repulsion between polymer chains in an acidic solution medium. 
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And under such an acidic condition, the anionic carboxylate groups were protonated, 

which might cause a negligible polymeric network collapse, resulting in a polymer 

residue in solution. For the purpose of the swelling ratio calculations, V1 is the final gel 

volume after deswelling in 10% HCl. The PPG swollen in the 0.05% brine solution 

reached an ESC value of 3.1, compared to 0.08 for the PPG swollen in a 10% brine 

concentration. 

Table 4.1—Measure of the swelling ratio after the PPG was immersed in 10% HCl. 

Brine 
concentrations,%  

Initial volume 
of  swellable 

PPG, ml 

Volume of 
PPG after 

deswelling in 
10% acid, ml 

PPG after being re-immersed in the same brine solution 

Flushed cycles  
pH 

change 

Gel 
volume, 

ml 

Equilibrium 
swelling 

capacity ratio 

0.05 20 1 

1st 1 1 

3.1 

2nd 3 1 

   

3rd 5 1 

4th 5 1.5 

5th 5 1.5 

6th 5.2 1.9 

7th 5.5 3 

8th 5.5 4 

9th 5.5 4 

10th, kept overnight 5.5 4.1 

0.25 20 3 

1st 1 3 

0.53 

2nd 3 3 

3rd 3.5 3 

4th 5 3 

5th 5.3 3 

6th 5.3 3.7 

7th 5.5 4 

8th 5.5 4.3 

9th 5.5 4.5 

10th, kept overnight 5.5 4.6 

1 20 5 

1st 1 5 

0.18 

2nd 3 5 

3rd 4 5 

4th 4.5 5 

5th 5 5 

6th 5 5 

7th 5.3 5.5 

8th 5.5 5.7 

9th 5.5 5.8 

10th, kept overnight 5.5 5.9 

10 20 8 

1st 1 8 

0.08 

2nd 2.5 8 

3rd 3 8 

4th 3.5 8 

5th 4.5 8 

6th 4.8 8.4 

7th 5 8.5 

8th 5.5 8.7 

9th 5.5 8.7 

10th, kept overnight 5.5 8.7 
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4.6.2. Evaluation of the Gel Cake Damage and HCl Performance. The results  

obtained from the interaction between the PPG and the brine as shown in Figures 4.2 and 

4.6 indicated that the PPG swollen in high brine concentrations had a lower swelling ratio 

and a higher gel strength than the gel swollen in low brine concentrations. Consequently, 

we predict that the gel swollen in the low brine concentrations (low gel strength) might 

cause more damage to rock due to the gel’s softness and its ability to penetrate into small 

pores. 

In terms of HCl performance, the first investigations showed that the PPG did not 

swell much in acid compared to brine, and its strength could increase as much as 95%, as 

did the gel swollen in 0.05% solution. This result, which was obtained from the acid 

interaction with the gel, provides a clue about the ability of HCl to mitigate gel damage, 

especially (as shown in Table 4.1) that the PPG could not swell again significantly after 

being treated with acid.  

To have a better understanding of the interaction between the gel and the acid, 

core flooding experiments were performed to confirm and validate the results obtained 

from the interaction process. Experiments investigated the effect of brine concentration, 

injection flow rates, and core permeability on the gel cake formed. The effect of acid 

concentration and pH was examined to evaluate the impact of these two factors on the 

efficiency of acid in removing the gel cake. The two parameters used to evaluate both 

effects were the permeability reduction as a result of the gel cake formation and the 

retained permeability as a result of the HCl acid treatment. 
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4.6.2.1. Filtration measurement results.  This section discusses the filtration test  

results obtained to test brine concentration and core permeability effects. Filtration is 

defined as the relationship between the cumulative filtration brine volume and the time 

during which the brine injection took place. Fifteen injection flow rates were used to 

create the filtration curves. Filtration tests were performed to determine if it were possible 

to form an external or an internal gel cake (or both) on the surface of the core during the 

brine-injection process. If the relationship between cumulative water filtration and time 

was nonlinear, it meant that a gel cake had formed.  

4.6.2.1.1. Effect of brine concentration and core permeability. Nine core 

 flooding experiments were conducted to evaluate gel cake/HCl performance. Figure 4.8 

depicts filtration results obtained for the PPG swollen in 0.05% NaCl and 10% NaCl 

concentrations. A 21.8 md of core permeability was used for the PPG swollen in 0.05% 

brine, and a 42 md was used for the PPG swollen in 10% brine. 

  Figures 4.8a and 4.8b summarize the results obtained for the cumulative filtration 

brine volume as a function of time using the various injection brine flow rates. Results of 

the repeated injection flow rate (0.5 ml/min) clearly indicated that three regions occurred 

during the filtration test. The first region, gel cake formation occurred early in the brine-

injection process. This can be determined by the nonlinear increasing trend shown in the 

cumulative filtration brine volume with time. The second region is the transition region, 

which occurred for only a short specific time. The third is the flow through already gel 

cake formed region, which identified by the linear increasing trend shown in the 

cumulative filtration curves. This linear trend indicated that the gel cake would not grow 

in size with increased injection flow rates and time. 
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 Figure 4.8a shows the results for the gel swollen in the 0.05% brine solution, 

where a nonlinear trend continued to increase until around 20 minutes, and then the trend 

became linear for all flow rates. This trend signaled that a severe gel cake had formed 

during the early injection process. For the purpose of making filtration results more 

visible and clear, the findings for the repeated flow rate of 0.5 ml/min are drawn 

separately on the top left side of the Figure. In addition, a comparison was made between 

the results obtained from the repeated flow rates after the gel treatment with the results 

obtained from the initial brine injection flow rate of 0.5ml/min before gel treatment 

(shown in the line of connected dots). 

All of the repeated 0.5 ml/min flow rates showed a nonlinear relationship at the 

beginning of the filtration process. There was not a big discrepency in filteration curve 

trends for the repeated flow rates, which implies that the rise in the injection flow rates 

during the filtration test did not signifcantly increase/decrease gel cake formation. 

Additionally, the difference in the filtration result trend between the repeated (0.5 

ml/min) injection flow rates and the initial injection flow rate (0.5ml/min)  could be used 

to assess the core damage percentage. 

Figure 4.8b shows the results for the gel swollen in the 10% brine solution, where 

a nonlinear relationship between the cumulative volume and the injection time was only 

seen during the first 0.5 ml/min after the gel was first introduced. The first flow rate (0.5 

ml/min) after the gel treatment showed that the gel cake formed at the beginning of the 

gel treatment process; after the flow rates increased, the repeated 0.5 ml/min curves 

changed to become linear. 
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Similarly to the gel swolen in 0.05% brine, an increase in injection flow rates for 

the gel swollen in 10% brine, did not substantially increase/decrese the gel cake damage. 

The filtration curves obtained from the repeated injection rates were closer to the original 

filtration curve obtained from the initial 0.5 ml/min, indicating a low percentage of 

damage to the core. 

Comparing Figures 8a and 8b, reveals that gel swollen in 0.05% brine caused 

more gel cake damage to the core than gel swollen in 10% brine. This conclusion was 

inferred by comparing the nonlinear filtration curves obtained from the repeated brine 

injection flow rate of 0.5 ml/min for both gels. 

  

 (a) Gel swollen in 0.05% NaCl.                                                (b) Gel swollen in 10% NaCl. 

 

Figure 4.8—Filtration results for PPG swollen: 0.05%, and 10%. 
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Figure 4.9 shows a comparison between the brine injection stable pressure 

measured during the filtration process for both salinities. The injection pressure for the 

gel swollen in the 0.05% NaCl concentration rose signifcantly with the flow rates when 

compared to the gel swollen in the 10% NaCl concentration. This high injection pressure, 

which reached 2500 psi, indicates how the gel cake could create a large back pressure 

during the treatments. For example, during the filtration test experiment, this high 

injection pressure reached the upper limit of the pump pressure, which prevented 

obtaining the cumulative volume data for the injection rate of 3 ml/min, as shown in 

Figure. 4.8a.  

 

 

Figure 4.9—Injection pressure for two salinities during the filtration test. 

 

The filtration test results displayed in Figurs 4.8 and 4.9 show that an external or 

an internal gel cake was formed and that its strength and damage percentage to the core 

varied and depended on the brine concentration range. The gel swollen in the low brine 
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concentration exhibited more of a tendency to damage the core compared to the gel 

swollen in the high brine concentration. 

4.6.2.1.2. Effect of injection flow rates. Referring to the filtration measurement  

results shown in Figure 4.8, damage was only observed in the first few gel injection flow 

rates. Thus, increasing the gel injection flow rate did not cause further damage to the 

core. It is believed that channels were created that allowed the brine to flow easily 

through the gel. Figure 4.10 is a simple sketch illustrating four sequences of the effect of 

injecting brine through the PPG: (1) The “static” sequence occurs when the gel is first 

placed on the surface of the core sample. The sorting of the PPGs is controlled by the gel 

strength and particle size. Gel particles are not unlike other solid particles in terms of 

retaining uniformity of shape. (2) The “particle compresses and penetrates” sequence 

occurs when the brine is first injected through the particles; at this time, the particles 

compress by moving closer to each other, and some of the gel penetrates a little bit into 

the cores. The degree of penetration is dependent on the ratio of the PPG size to the pore 

throat size. If the gel penetrates into the core, an internal gel cake is formed in addition to 

an external gel cake. If the PPGs do not penetrate, then only an external cake is formed. 

Depending on the strength of the gel cake, back pressure can occur as a result of 

restricting the fluid propagation. The back pressure is likely to cause the gel to be more 

rigid and can lead to high injection pressure. (3) The “initiate channel” sequence occurs 

as the brine begins to form internal microchannels inside the PPG network. The pressure 

required to create these microchannels depends on the gel strength. As the injection flow 

rates increase, the brine filtered at the outlet also increases as a result of creating these 

microchannels. (4) The “channel formed” sequence occurs because as the injection flow 
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rates increase, the channel becomes a little larger; this explains linear relationship that 

was observed during filtration measurements when the injection flow rates increased. The 

network inside the gel reforms, and the channel closes when the driving force becomes 

less than the bending force between the particles.  

  

 

Figure 4.10—The four sequences occur when brine is injected through PPGs.  

 

4.6.2.2. Results for permeability reduction and permeability retained. To 

 quantitatively determine the gel damage caused by the gel cake, the permeability 

reduction was used to express the damage. The gel cake-removal efficiency caused by the 

acid stimulation was expressed as the permeability retained. After the gel was removed 

from the core holder, different cycles of water having the same composition as the gel 

were injected through the cores, and the stabilized injection pressures were obtained for 

each flow rate. Two ranges of core permeabilities (Figures 4.11 and 4.12) were used to 

observe the permeability change on the permeability reduction caused by the gel cake. 

Figure 4.11a shows the injection stable pressure results obtained for the range of 

permeability from 3 to 4.5 md. The brine injection pressure rose as the salt concentration 

decreased. The injection pressure increased approximately five times (from 50 to 250 psi) 

as the salt concentration decreased from 10% to 0.05%. This increase is likely due to the 

1) Static 
2) Compresses and 

Penetrates 

3) Initiate Channel 4) Channel Formed 
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formation of clay minerals on the surface of the core as a result of the lower salt content 

used. Also, the softness and deformability of the swollen PPG in the lower salt 

concentration enabled the gel to invade a short distance into the pore throat. Figure 4.11b 

illustrates how the brine concentration affects the permeability reduction. The 

permeability reduction rose as the brine concentration decreased. Almost a 90 percent 

permeability reduction was observed when the gel was placed in the lower brine 

concentration; however, only a 29.5 percent permeability reduction was observed for the 

high brine concentration. Results from these two Figures suggest that gel swollen in high 

brine concentration exhibited less ability to damage the core than gel swollen in low brine 

concentration. 

 

               

(a) (b) 

Figure 4.11— Injection pressure and permeability reduction of permeability range 3 to 
4.5 md. 
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Figure 4.12a shows the injection stable pressure results obtained for the range of 

permeability from 21.8 to 27.2 mD. The injection pressure rose significantly as the brine 

concentration decreased. Higher injection pressure occurred in this range of permeability 

compared to the permeability range in Figure 4.11a. This increase reveals that gel can 

penetrate into areas with high core permeability more deeply than if it is placed into areas 

of low core permeability. As a result, Figure 4.12b shows that the decrease in core 

permeability is more significant in high-permeability cores than it is in low-permeability 

cores.  

 

       

                    (a)                                                                                             (b) 

Figure 4.12— Injection pressure and permeability reduction of  permeability range 21.8 
md to 27.2 md. 

 

Comparing the two ranges of permeability shown in Figures 4.11 and 4.12 the gel 

swollen in 0.05% brine exhibited significant damage as both ranges of permeability 
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reached above 90%. When the permeability increased to a range of 21.8 to 27.2 md, the 

permeability reduction rose from 29.5% to 85% for the gel swollen in the 10% brine. 

Consequently, the brine injection pressure increased significantly as the gel cake caused 

more damage to the core. The injection stable pressure increased as the brine 

concentration decreased, and the injection stable pressure rose more significantly as the 

permeability of the core increased. 

Elsharafi and Bai (2012), reported that the invasion of low-strength PPG into low-

permeability rocks was usually less than 3 mm. Therefore, samples of the face-damaged 

cores were immersed into less than 1 cm in length of 10% acid concentrations to remove 

the gel cake of this expected length. Table 4.2 lists the results obtained for the effect of 

the brine concentration on the core permeability reduction and retention. Permeability 

after the soaking time was retained with greater than approximately 94 percent for all 

brine concentrations and permeability ranges. These results from the core flooding 

process are consistent with findings observed in the interaction process as shown in Table 

4.1. Results from the interaction show that the gel did not swell again significantly after 

being flushed with the same brine compositions; consequently, a higher percentage of 

retained permeability was expected. These findings suggest that acid can be used 

effectively to retain low-permeability formations during the conformance-control 

treatments. 

Two HCl concentrations were evaluated during the core flooding measurements 

to investigate how much the retained permeability could be increased after the acid 

treatments. The retained permeability that was gained after the acid treatments did not 

result in a significant difference in the gel-removal efficiency. For a permeability of 7.8 
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md, acid treatment only retained 98.7% when the acid concentration was 5%; it increased 

only slightly, to 104.5%, when the concentration increased to 10% for the same range of 

permeability (4.4 md). This suggests that both concentrations could be effectively used to 

mitigate gel cake formation. This is an advantage because engineers would not have to be 

concerned about corrosion and adding an inhibitor to prevent the problems associated 

with the use of high acid concentrations. 

Changes in pH were also investigated to observe the effect on the core-retained 

permeability. Table 4.2 also provides the results obtained for pH values of 1.3 and 5.5 for 

gel swollen in a 10% brine concentration. The pH had a pronounced effect on the amount 

of core permeability retained. Solutions with lower pH values had a stronger effect on the 

amount of permeability retained than those with a higher pH. At a pH of 1.3, the retained 

permeability reached 108.6% compared to a very small retained permeability (0.5%) for a 

pH of 5.5. It can be inferred that the pH has a significant effect on removing damage and 

should be carefully selected during acid treatment process. 
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Table 4.2—Permeability reduction and retention for gel swollen in different brine 
concentrations treated with different HCl concentrations and pH.  

 

Core 

Brine 

Concentration 

% 

HCl 

Concentration 

% 

pH 

Permeability, md Permeability 

Reduction, 

% 

Permeability 

Retained, % Absolute 
After 

Gel 

After 

Acid 

A 10 10 1.3 25.5 3.80 27.7 85 108.6 

B 10 - 5.5 42 0.24 0.23 99.4 0.5 

C 0.05 10 1.3 3.5 0.3 3.3 91.4 94.2 

D 1 10 1.3 4.3 0.5 4.1 88.3 95.3 

E 10 10 1.3 4.4 3.1 4.6 29.5 104.5 

F 0.05 10 1.3 21.8 0.08 20.87 99.8 95.7 

G 10 5 1.3 7.8 0.7 7.7 91 98.7 

 

X-Ray Diffraction (XRD) quantitative analysis was performed on all core samples 

to gain knowledge about the core mineralogy before used them. Analysis revealed that 

some cores were composed of kaolinite and ankerite (carbonate cement) with quartz, 

while others were not. Table 4.2 shows that the retained permeability for some core 

samples exceeded 100%. This significant improvement in core permeability occurred 

because the HCl reacted with both the gel cake and rock. The presence of ankerite in core 

samples A and E increased the retained permeability above 100% because it easily 

dissolved when it reacted with the HCl. This dissolved solution created more spaces and 

increased the original porosity and permeability of the cores. The results also showed that 

the retained permeability for some core samples was less than 100%. The mineral content 

of these core samples only included quartz and kaolinite. Quartz and kaolinite are inert or 
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insoluble in most geochemical environments; this explains the retained permeability 

being less than 100%.  

 

4.7. DISCUSSION   

This work was designed to understand the interaction between preformed particle 

gels and hydrochloric acid. We also conducted core flooding experiments to determine 

the effect of the gel strength and core permeability on both the degree of damage and on 

the stimulation process. We observed that acid stimulation can be used successfully to 

mitigate the damage in un-swept, low-permeability formations that are rich in oil. This 

finding can significantly assist in optimizing the design of PPG treatments.  

This work sought to find a method to treat the possible gel cake formed on the 

surface of low-permeability formations when injecting PPG using the bullhead placement 

technique. We proposed using hydrochloric acid to mitigate the adverse consequences of 

the gel cake being formed on the surface of low-permeability zones. Our findings showed 

that a very small amount of acid was required to remove the gel cake because the 

millimeter-sized PPG tends to form a limited gel cake on middle- and low-permeability 

porous media. Therefore, for field applications, we only recommend injecting a very 

small volume of acid (e.g., 0.5 m3) to soak the near wellbore. In practice, a large amount 

of PPG is usually used for conformance control. If even a small amount of acid enters the 

high-permeability zone where a large amount of PPG is injected, it will not affect the 

conformance-control treatment result. 

Additional work was conducted (see section 8) to investigate the performance of 

combining these two technologies to gain more oil from low-permeability formations. To 
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evaluate how much oil recovery would be obtained from combining water shutoff and 

acid treatments, in future studies, a new model was tested by investigating two parallel 

formations having low and high permeabilities. Section 8 assess also the possible side 

effect of acid treatment reducing the gel-blocking effectiveness in high-permeability 

zones/pathways. The heterogeneity model was developed as shown in Figure. 4.13 to 

emulate the case when there is no crossflow between layers. It is proposed that the gel be 

pumped into large permeability zones (thief zones) to reduce their permeability so as to 

obtain more oil from un-swept low-permeable zones. Pumping acid to remove the gel 

cake formed in un-swept zones that are rich in oil allows more oil to be recovered. The 

combined technologies will then increase oil production from both low- and high-

permeable formations.  

 

 

Figure 4.13—Schematic for non-crossflow experiment.  

 

4.8. CONCLUSION  

 The main objective of this study was to conduct a comprehensive evaluation of 

the effectiveness of combining the use of hydrochloric acid and preformed particle gel to 
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gain a better conformance control. The interaction between the HCl and the PPG was 

investigated in terms of the swelling ratio, deswelling ratio, and gel strength. Core 

flooding was conducted simultaneously to evaluate the gel cake formed and the 

performance of HCl in mitigating this cake formation. The following conclusions can be 

drawn: 

• The gel and acid interaction demonstrated that the PPG swelling capacity 

decreased as the brine concentration and acid concentration increased. A change 

in acid concentration did not correlate with a difference in the PPG deswelling for 

the same brine concentrations. Solutions with a change in pH had a significant 

effect on gel deswelling, where a pH above 1 was correlated with an ineffective 

gel deswelling ability. 

• The gel strength increased as both brine concentration and acid concentration 

rose. The gel strength measured after the acid treatment was stronger than it was 

before the acid was introduced. 

• The PPG did not swell significantly after the HCl treatment when it was flushed 

with different cycles of brine. This low swelling ratio decreased the chance of the 

PPG damaging low-permeable cores. 

• The filtration test results indicated that the PPG formed a permeable surface gel 

cake on the low-permeability cores. The cake formed was strongly dependent on 

both the brine concentration and the rock permeability. The formation of a gel 

cake reduced the permeability to a significant degree if the brine concentration 

was low and the rock permeability was high. 
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• The filtration test results showed that no further damage would occur as the 

injection flow rates increased. Four sequences were observed during brine 

injection through the gel: static, compress and penetrate, initiate channel, and 

channel formed. 

• The amount of permeability retained was calculated after stimulation treatments 

and, on average, reached more than 95 percent of the original permeability for all 

the various brine concentrations and rock permeability ranges. Additionally, core-

damaged permeability was effectively removed when the pH was around 1. 

• Hydrochloric acid showed promising results when joined with gel treatments as 

an effective technique to remove the gel cake formed on low-permeability zones, 

and hence, to improve the conformance-control objectives. 
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5. PARTICLE GEL PROPAGATION THROUGH OPEN CONDUIT  

 

5.1. INTRODUCTION 

The success of gel treatments depends heavily on the gel’s ability to extrude 

through fractures and channels during the placement process (Seright, 1999a and 1999b). 

Thus, understanding both the mechanism and the behavior of gel extrusion is the key to a 

successful conformance control treatment. 

 

5.2. OBJECTIVES AND TECHNICAL CONTRIBUTIONS  

 The objective of this work is to conduct an in-depth examination of several 

factors that can have an important impact on the PPG extrusion mechanism and 

placement performance in opening conduits. The following summarizes the detailed 

objectives and expected technical outcomes of this work. 

• Examines the effect of the conduit’s opening size and brine concentration (PPG 

strength) on the injectivity index, resistance factor, gel dehydration, particle 

opening ratio, gel wash-out, and plugging efficiency. 

• Determine the matching ratio measured between gel particle size and conduit 

opening size. 

• Study the effect of gel strength on the blocking efficiency of PPG. 

• Determine the residual resistance factor (Frr) for water flow through PPG filled 

the conduit. 
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• This work will provide a significant guidance about how to better design 

millimeter-size particle gel treatments for large openings, like open fractures, 

cave, worm hole and conduits. 

• Based on the laboratory data, correlation models were developed to quantitatively 

calculate the resistance factor as a function of particle strength, passing ratio, and 

shear rate. The two developed models will be embedded into an existing reservoir 

simulator (UT-gel) for particle gel treatment optimization design and performance 

prediction. 

 

5.3. EXPERIMENTAL DESCRIPTION 

5.3.1. Preformed Particle Gel. A superabsorbent polymer was used as a PPG to 

 conduct the experiments. The particle was synthesized using acrylamide, acrylic acid and 

N, N’-methylenebisacrylamide by a free radical process. Dry particles with a mesh size 

of 30 were swollen in different concentrations of NaCl brine (0.05%, 0.25%, 1%, and 

10%). The brine concentration was carefully selected based on the swelling ratio and the 

gel strength after swelling, as shown in Table 5.1.  

 

Table 5.1—Summary effect of brine concentration on PPG. 

 

 

 

 

 

No Brine concentration, %NaCl PPG concentration, wt % Swelling ratio Gel strength, pa 

1 0.05 0.60 165 515 

2 0.25 1.25 80 657 

3 1 2.0 50 870 

4 10 4.0 25 1300 
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 PPG swollen in low NaCl concentrations will have high swelling ratio and low 

gel strength. PPG concentration was determined using the initial weight of dry gel 

divided by the final weight of completely swollen gel. PPG concentration is changed as a 

result of the brine concentration effect. 

5.3.2. Tubes. Tubes five feet (1.5 meter) long with varying internal diameters 

 (10.922, 3.048, 1.752, and 0.774 millimeters) were used to emulate different conduit 

sizes. Three pressure taps were mounted along the tube to monitor PPG propagation 

performances. The internal diameters were carefully selected to be larger than, equal to, 

and smaller than the swollen particles.  

5.3.3. Microscope. A microscope as shown in Figure 5.1 was used to determine 

 the particle size before and after particle extrusion through the conduit models. An image 

analysis technique was used to obtain the particle gel size distribution.  

 

 

Figure 5.1—Microscopic instrument. 
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5.3.4. RheoScope Device. Storage moduli (G´) for PPG prepared in different  

brine concentrations were measured at room temperature (23 oC) using a rheoscope. The 

PPG strength was measured before and after gel propagation into the conduit to 

determine the effect of the extrusion process on strength. The sensor used for 

measurements is PP335 TiPoLO2 016 with a gap of 0.2 mm between the sensor and the 

plate. G' were measured at a frequency of 1 Hz for each sample. 

 

5.4. EXPERIMENTAL SETUP  

Figure 5.2 provides the schematic of the conduit model used to conduct the 

experiments. This model contained a syringe pump that was used to inject brine and gel 

through the accumulator into a five-foot tube. The tube was divided into three sections, 

the first two of which were two feet long, with last section being one foot long. Effluent 

gel and brine were both collected to evaluate the gel’s properties after the extrusion. 

 

 

Figure 5.2—Schematic of the conduit model.  
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5.5. EXPERIMENTAL PROCEDURE  

Dry PPG’s of 30 mesh size were placed in different concentration brines and left 

overnight to swell fully. A sieve was used to allow the swollen gel to separate from the 

excess brine solution. The gel then was packed into a stainless steel accumulator so that it 

could be injected into a conduit model. The gel injection process at the ambient 

temperature is summarized as follows: 

The PPGs were injected into different internal tubes at the same designed 

velocity. Table 5.2 summarizes the velocities used for the different inner diameters. The 

gel initially was injected at a high velocity, which then was reduced gradually for all 

experiments. The pressure needed to be stable for each gel injection velocity. Following 

pressure stabilization, gel samples were taken for each gel injection velocity to measure 

gel strength and particle size. Finally, when the gel injection process was complete, the 

same concentration brine was injected into the tube filled with particles from a low to a 

high velocity to determine gel resistance to water flow. 
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Table 5.2—Gel velocities designed for each conduit inner diameter. 

Conduit inner diameter, mm Injection flow rate, ml/min Injection velocity, ft/day 

10.922 

39.2 1979 

29.2 1476 

19.2 970 

9.8 495 

4.9 247 

3.9 198 

1.9 99 

1 49 

0.2 10 

3.048 

3 1928 

2.3 1446 

1.5 964 

0.75 482 

0.37 241 

0.30 193 

0.15 96 

0.07 48 

0.01 10 

1.752 

1 1931 

0.75 1448 

0.5 966 

0.25 483 

0.125 241 

0.1 193 

0.05 96 

0.025 48 

0.005 10 

 

  

5.6. RESULTS AND ANALYSIS  

PPGs swollen in four different concentration brines were injected into three sizes 

of conduits at various injection velocities to investigate the effect of brine concentration 

(related to gel strength) on injectivity, the resistance factor, and the threshold pressure. 

The resistance factor and gel injection pressure data were used to develop new correlation 

models for PPG to predict the resistance factor and the initial stable injection pressure 

during gel extrusion in conduits. 

5.6.1. Injectivity Index Calculation. An injectivity index was obtained 

 as a function of the brine concentration, injection velocity, and conduit inner diameter to 

observe the behavior of PPG that had extruded through the conduit systems. Figure 5.3 
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shows the effect of the brine concentrations and gel injection velocity on the gel injection 

pressure through three different sizes of conduits. At the same injection velocity, the gel 

injection pressure increased as the brine concentration increased. This occurred because 

PPG swollen in low brine concentration swelled more and became weaker than the PPG 

swollen in high brine concentration. The gel injection volume required to achieve stable 

pressure is varied; it depends on the brine concentration and the conduit inner diameter 

size. Large volume of gel was injected as the gel become stronger and the conduit inner 

diameter become smaller. In conduit inner diameter 1.752 mm for gel injected at velocity 

1931.26 ft/day, PPG injected pore volume required to get stable pressure increased from 

11.5 PV to 33.9 PV when brine concentration increased from 0.05% NaCl to 10% NaCl. 

 The results also show that the gel injection pressure increased as the injection 

velocity increased. This increase in the gel injection pressure became insignificant when 

the gel injection velocity exceeded 500 ft/day. This suggests that the gel injection 

pressure did not increase linearly through all of the gel injection velocities, but rather 

tended to reach a plateau after a certain injection velocity. This insignificant increase 

most likely occurred because of the gel slip that can occur when extruding through 

conduits at a high velocity (Seright, 1997). Our results were consistent with Seright 

(1997, 1998) for gel extrusion through tubes where he observed that gel injection 

pressure became independent of injection velocity after a specific velocity value. 
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Conduit inner diameter 1.752 mm        Conduit inner diameter 3.048 mm           Conduit inner diameter 10.922 mm 

Figure 5.3—PPG injection pressure as a function of brine concentration and conduit 
diameter. 

 

The data from Figure 5.3 were used to obtain the gel injectivity index through the 

conduit systems. PPGs with a high injectivity index required a lower injection pressure to 

be propagated through the conduit. In this study, the injectivity index increased as the 

brine concentrations decreased, as shown in Figure 5.4. This likely occurred as a result of 

the swelling ratio effect. PPGs swollen in low brine concentrations contain a high 

percentage of aqueous phase and a low percentage of solid phase. This composition 

allows PPGs swollen in low brine concentrations to be more injectable than PPGs 

swollen in high brine concentrations. These results also indicate that the injectivity index 

increased as both the conduit inner diameter and the velocity increased. For the conduit 

size, this behavior is easy to understand, but for the velocity, this occurred because the 

gel followed the shear thinning or pseudo plastic behavior in the conduit systems.  
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 Conduit inner diameter 1.752 mm          Conduit inner diameter 3.048 mm          Conduit inner diameter 10.922 mm                                          

Figure 5.4—Injectivity index results. 

 

5.6.2. Resistance Factor Calculation. In analogy to porous media 

 experiment, resistance factor (Fr) was estimated from the injectivity index and geometry 

of the conduit, namely QL/A∆P for the brine and the gel injection. It can be defined as 

the ratio of the particle gel injection pressure drop to the brine injection pressure drop at 

the same flow rate and can be calculated from the following equation: 

 

            Fr = ∆p&&L / ∆pMNOPQ   .................................................... (5.1) 

 

where ∆p&&L  is the PPG injection pressure drop and ∆pMNOPQ is the brine injection 

pressure drop before PPG placement. 

 PPGs swollen in four different concentrations of brines were injected into three 

conduits at various injection velocities to determine the effect of brine concentration and 
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injection velocity until the injection pressure became stable. Then the injection continued 

at reduced velocities. A stable pressure was recorded at each injection velocity. Figure 

5.5 indicates that for all gel velocity injections, Fr increased as the brine concentration 

and conduit inner diameter increased. The Fr measured across all three conduits became 

an independent factor on velocity when it exceeded 500 ft/day. The Fr value for the gel 

swollen in 10% NaCl extruded in 10.922 mm was 99133; it then decreased substantially 

to 3364 as the velocity increased from 10 ft/day to 500 ft/day. However, as the velocity 

increased above 500 ft/day, the Fr values decreased only slightly during the gel injection 

process. 

 

 

Conduit inner diameter 1.752 mm          Conduit inner diameter 3.048 mm           Conduit inner diameter 10.922 mm 

Figure 5.5—Resistance factor as a function of brine concentration and conduit inner 
diameter. 
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threshold pressure (Pt) is the minimum pressure required to initiate gel flow through the 

conduit. Figure 5.6 illustrates the relationship between the threshold pressure and the 

particle opening ratio. Strong gel requires a higher threshold pressure than weak gel in 

order for it to pass through an opening. The result obtained agrees with Seright (1997, 

1998) who observed that some threshold pressure was required before the gel would 

extrude through a given opening size. The data also suggest that when the particle 

opening ratio exceeded two, the threshold pressure for both strong and weak gel 

increased much less compared to when the ratio was below two. This may have occurred 

for two reasons. First, the swollen particle dehydration during extrusion process may 

have reduced the size of the particles as the ratio increased. Secondly, the gel particles 

broke into small pieces, which may lead to smaller increases in the threshold pressure 

with increasing particle opening ratio. 

 

  

Figure 5.6—Effect of particle opening ratio on threshold pressure. 
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5.6.4. Stabilized Gel Injection Pressure vs Particle Opening Ratio. After the 

 PPGs passed through the conduit, gel was injected continuously until the injection 

pressure stabilized. The injection pressure of the stable gel was measured as a function of 

the gel strength and particle opening ratio, as shown in Figure 5.7. The results show that 

the stable injection pressure increased with the gel strength and particle opening ratio. 

The gel strength had a significant effect on the stability of the injection pressure, more 

than did the particle opening ratio. The gel injection pressure increased by around ten 

times (100 to 1320 psi) when the gel strength approximately doubled from 515 to 1300 

pa. The injection pressure only tripled (191.7 to 590 psi) when the particle opening ratio 

approximately doubled from 0.72 to 1.26 at the gel strength of 1300 pa. 

 

  

Figure 5.7—Stabilized injection pressure as a function of particle opening ratio and gel 
strength. 
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5.6.5. Correlation Models. Having correlation models that can predict the  

resistance factor (apparent viscosity) and stabilized injection pressure for PPGs during 

gel treatments is important to quantify gel transport process. Such models not only can be 

inserted into a simulator to yield better predictions of PPG performance, but also can 

provide results more quickly, as conducting all of these experiments in the lab would be 

time consuming and would require a great amount of effort to achieve reliable results. 

5.6.5.1. PPG resistance factor model.  Polymer or polymer gel viscosity is 

 often expressed as a function of shear rate; therefore, we tried to correlate the resistance 

factor with shear rate. In the paper, we use the maximum shear rate at the pore wall to 

obtain shear rate values and the equation is given as follows (Zaitoun et al 2012): 

 

  γ = 8v/D ........................................................................  (5.2) 

where γ is the shear rate, v is the superficial velocity, and D is the conduit inner 

diameter.  

The data in Figure 5.5 was reorganized to Figure 5.8 after converting velocity to 

shear rate. It can be seen that all data is in the same line for the particle prepared by the 

same concentration brine even though their particle opening ratios are different, 

indicating that Fr was independent of conduit inner diameter. This phenomenon is not 

very surprising because we know the polymer gel viscosity is a function of shear rate but 

does not depend on the gap between cylinder and spindle when we measure the bulk gel 

viscosity.  
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                              0.05% brine concentration                             0.25% brine concntrations 

 

        

                        1% brine concentration                                10% brine concentration 

Figure 5.8—Resistance factor for gel swollen in brine concentrations as a function of 
both shear rate and particle opening ratio. 
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A good fit was noticed using power law equation for resistance factor results 

plotted against shear rate. The fit is even better with a particle opening ratio greater than 

one or equal to one. Therefore, the developed model will includes the data for particle 

opening ratios greater than and equal to one. The resistance factor obtained as a function 

of the shear rate can be expressed as:    

   

                  Fr = M γ-E  ...................................................................... (5.3) 

where M and E are constant coefficients related to brine concentration and particle 

opening ratio, both were obtained from gel extrusion through conduits. Table 5.3 

summarizes the results obtained for both M and E for each brine concentration. 

 

Table 5.3—Fitting equations for resistance factor for each brine concentration. 

Brine concentration, %NaCl M E R2 

0.05 1618.4 0.62 0.98 

0.25 2917.9 0.61 0.97 

1 3643.7 0.596 0.98 

10 7128.5 0.588 0.96 

 

To develop a general correlation that can be used to predict the resistance factor 

for all brine concentrations, both constant coefficients M and E need to be determined. 

Table 5.3 indicates that E was not affected very much by brine concentration but M was 

strongly affected. To obtain these coefficients, both constants were plotted as a function 

of the brine concentration(C), as shown in Figure 5.9. Power-law equation was used 

again to obtain the proper fitting correlation for the coefficients.  
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The constant coefficient (M) was fitted with goodness of fit of 99%: 

     M = 3831.3 C0.2709   ....................................................  (5.4) 

 

The constant coefficient (E) was fitted with goodness of fit of 96%: 

                                

      E = 0.6001 C-0.01  ............................................................ (5.5)   

 

    

Figure 5.9—The constant coefficients as a function of brine concentration.  
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    ................................. (5.6) 

The obtained correlation also can be expressed as a function of the gel strength. 
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concentrations; the following correlation was fitted with goodness of fit of 99.7% to 

expresses the relationship between brine concentrations and gel strength: 

 

                       C= 3×10-17 G´ 5.6391  .............................................................  (5.7)                                                                              

Then, the correlation can be modified to be a function of gel strength (G´):  

 

          Fr = 3831.3 × (3 × 10�!W ]´�.Z_X! )�.�W�Xγ��.Z��! (_×!�\<` a` c.def<)\ �.�!
  .... (5.8) 

External data that were not included in the newly developed model were used to 

not only validate but also ensure the accuracy of the correlation. Figure 5.10 provides a 

comparison between the Fr obtained from the new model and the measured data obtained 

from lab measurements. The Fr measurements from external lab experiments were for gel 

extruded through different particle opening ratios ranging from 1.02 to 6.29.  There was 

good agreement over the entire resistance factor, which indicates that the newly 

developed correlation can be used successfully to predict the resistance factor of PPGs 

extruded through open conduit systems. 

 

 

 

 

 

 



132 

 

 

                                      

                    Gel swollen in 0.05%                                                 Gel swollen in 0.25% 

             

                                                            Gel swollen in 1%                                                     Gel swollen in 10% 

Figure 5.10—Comparison between resistance factors measured in the lab and data 
obtained from the correlations. 
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5.6.5.2. PPG stabilized injection pressure model. The data in Figure. 5.7 were 

 drawn in log-log scale as shown in Figure 5.11, and were fitted well using the following 

power law equation: 

 

              POPh = i(Dg/Dp)k  .....................................................  (5.9) 

where Pinj is the initial stable injection pressure in psi, and a and b are coefficient factors 

obtained for PPGs extruded through different particle opening ratios. Table 5.4 shows the 

results obtained for these two factors for the different gel strengths. 

 

 

Figure 5.11—Stable injection pressure as a function of particle opening ratio and gel 
strength. 
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With fitting equations obtained for the various particle opening ratios and gel 

strengths, PPG’s stable injection pressure can be evaluated quantitatively to obtain a 

better prediction of the PPG injection pressure in conduit systems. 

 

Table 5.4—Fitting equations for stable injection pressure. 

Gel strength, pa a b R2 

515 24.669 1.6987 0.99 

657 61.055 1.6686 0.99 

870 90.713 1.6484 0.99 

1300 305.49 1.6156 0.98 

 

To develop a general correlation that can predict the PPG’s stable injection 

pressure for all gel strengths, another regression analysis was performed to correlate these 

two coefficients with the gel strengths, as shown in Figure 5.12. Then, a and b were 

substituted into the new general fitting equations. 

         

Figure 5.12—The correlation coefficients (a) and (b) as a function of gel strength. 
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Finally, the general form of the new correlation that can be used to predict the 

initial stable injection pressure in conduit systems can be written as: 

                                      POPh = 2 × 10�Z G´�.�X�� (Dg/Dp)�._�Z! L´\n.nce
  ........... (5.10) 

A validation test, as described in Table 5.5, was performed to ensure the accuracy 

of the new model. Various ranges of particle opening ratios were not included in the 

developed correlation used to test the model. The initial injection pressures measured in 

the lab for four gel strengths in different particle opening ratios were compared with 

values obtained from the correlation. The relative error indicates that the new correlation 

can be used with relatively negligible error to determine the stable injection pressure for 

gel strengths of 515, 657, and 870 pa. While the correlation can be used for a gel strength 

of 1300 pa, the relative error is higher. 

Table 5.5—New developed model validation for initial stable injection pressure.  

Gel strength 

(pa) 
Dg/Dp 

Initial stable injection pressure 

(psi) 
Relative Error (%) 

Measured Calculated  

515 

2.78 120 125 -4.1 

4.74 326 311 4.6 

3.49 184.3 184.9 -0.3 

657 
2.03 153 137 10.4 

3.46 375 334 10.9 

870 
1.82 218 233.5 -7.1 

2.29 339.5 340.8 0.38 

1300 
0.72 183.3 145 20.8 

1.58 440 517 -17.5 
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5.6.6. Resistance to Water Flow after Gel Placement in Conduits. After gel  

placement within the conduit system, brine was injected with different velocities, from 

low to high, to extrude the gel inside a conduit. In this way, four parameters were 

systematically obtained to characterize particle blocking behavior to water. These four 

sequence parameters include the pressure gradient peak, critical water breakthrough 

pressure, residual resistance factor, and plugging efficiency.  

5.6.6.1. Pressure gradient peak (PGP). PGP is defined as the pressure gradient  

at which the gel began to move and washout from the conduit as a result of brine 

injection. Figure 5.13 provides an example of the brine injection pressure gradient at each 

section through the gel swollen in 0.05% concentration brine within a conduit inner 

diameter of 10.922 mm. Brine was injected through the gel at a velocity of 9.89 ft/day. 

Gel washout and water movement were measured by observing the pressure changes in 

all three sections and monitoring both the effluent produced gel and brine. In all 

experiments, we noticed that the injection pressure gradient in all sections increased 

sharply until reaching a certain peak, at which point it began to decline. This peak 

indicates the point at which gel failure and washout began to occur in each section 

(Seright, 2003). After each peak, the pressure gradient declined significantly before 

becoming stable in all sections. In the first section, the peak occurred at 1.85 psi/ft after 

0.03 PV of brine was injected. While in the second section, the pressure gradient peak 

occurred at 1.05 psi/ft after injecting 0.04 PV of brine. In the last section, the peak 

occurred at 0.53 psi/ft after injecting 0.05 PV of brine. Then after injecting 0.15PV of 

brine, the water pressure gradient in all sections became stable. The pressure gradient 
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variations in all three sections exhibited a difference in gel movement and washout along 

the conduit systems. 

The conduit inner diameter was checked visibly after the brine injection process 

was complete. For gel swollen in 0.05% NaCl, about 20% of gel was found remaining 

inside the conduit while for gel swollen in 10% NaCl about 70% of gel was found 

remaining inside the same conduit inner diameter size. This remaining volume suggests 

that the conduit was filled with a concentrated immobile gel. 

 

 

Figure 5.13—Brine injection gradient through gel in three sections for 10.922 mm 
conduit.  
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concentrations exhibit more stability inside the conduit than gel swollen in low brine 

concentrations when subjected to the same injection velocity. 

 

Table 5.6—Brine concentrations effect on gel movement at 9.62 ft/day. 

Brine concentration, 

%NaCl 

Brine injected volume for 

peak, PV 

Pressure gradient peak through brine 

injection, psi/ft 

0.05 0.12 4.25 

0.25 0.31 7.85 

1 0.52 12.05 

10 0.67 25.6 

 

Table 5.7 summarizes the results obtained from the injection of brine through gel 

swollen in 10% brine for three conduit inner diameters. Differing from the results 

obtained in large conduit opening, these results indicate that gel washout began to occur 

in a small conduit inner diameter when both a high injection pressure gradient and large 

volume of water were applied. Gel washout began to occur through an opening of 1.752 

mm when 1.17 PV of brine was injected and the pressure gradient reached 245.3 psi/ft. In 

contrast, the gel injected through a larger opening size (10.922 mm) began to move when 

0.16 PV of brine was injected and the pressure gradient was only 4.9 psi/ft. These 

findings indicate that less gel movement occurred in smaller conduit diameters than in 

larger conduit diameters.  
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Table 5.7—Conduit diameter effect on gel extrusion for gel swollen in 10% NaCl. 

Inner diameter, 

mm 

Brine injected volume for peak, 

PV 

Pressure gradient peak through water injection, 

psi/ft 

10.922 0.16 4.9 

3.048 0.67 25.6 

1.752 1.17 245.3 

 

5.6.6.2. Critical water breakthrough pressure (PCW). PCW is defined as the 

 pressure at which the first drop of water can be seen from the outlet. Figure 5.14 

provides information about this variable as a function of both the brine concentration and 

conduit inner diameter. The small water breakthrough pressure indicates that water could 

start propagate easily through the gel. This result suggests that as the gel became stronger 

(swollen in high brine concentration), the water breakthrough pressure increased. 

Differences in water breakthrough are clear when comparing weak gel (swollen in low 

brine concentrations) against strong gel. Figure 5.14a shows the water breakthrough 

measurement for gel swollen in different concentration brines when gel was placed 

within a 3.0488 mm opening. When gel was swollen in 0.05% brine, water was able to 

pass through it at 8.8 psi. Water could not pass through gel swollen in 10% brine until the 

pressure reached 46 psi. Figure 5.14b shows the results obtained for water breakthrough 

through gel swollen in 0.05% brine concentration as a function of different conduit sizes. 

Water was less likely to pass through a smaller pore opening than a larger opening. Water 

passed through a 10.922 mm opening at a pressure of 2.1 psi, and through a 1.752 mm 

opening at a pressure of 60.2 psi. 
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a. Conduit inner diameter 3.0488 mm                          b. Gel swollen in 0.05% brine concentration 

Figure 5.14—Critical water breakthrough pressure as a function of brine concentration 
and conduit inner diameter. 
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resistance factor as a function of brine concentration and brine velocity. Frrw increased 

as the gel strength and conduit inner diameter increased. Figure 5.16 shows the gel 

plugging efficiency as a function of the brine concentration and brine velocity. The PPG 

plugging efficiency increased when a strong gel was selected as a plugging agent for 

large conduit sizes. The results suggest that gel swollen in 10% brine can provide a 97% 

plugging, as compared to 76% plugging for gel swollen in 0.05% brine for a conduit with 

0

5

10

15

20

25

30

35

40

45

50

0.05 0.25 1 10

W
a

te
r 

B
re

a
k

th
ro

u
g

h
 P

re
s

s
u

re
, 
p

s
i

Brine Concentration, % NaCl

0

10

20

30

40

50

60

70

10.922 3.0488 1.752

W
a

te
r 

B
re

a
k

th
ro

u
g

h
 P

re
s

s
u

re
, 
p

s
i

Conduit Inner Diameter, mm



141 

 

 

inner diameter of 1.752 mm. This percentage increased to 98% for the former and 93% 

for the latter when gel was placed into a large opening (10.922 mm). These findings 

indicate that the plugging efficiency of the PPG did not decrease significantly in spite of 

the gel washout occurring after gel placement.  

Conduit inner diameter 1.752 mm          Conduit inner diameter 3.048 mm        Conduit inner diameter 10.922 mm 

Figure 5.15—Residual resistance factor as a function of brine concentration and conduit 
inner diameter. 

 

 

   Conduit inner diameter 1.752 mm          Conduit inner diameter 3.048 mm        Conduit inner diameter 10.922 mm 

Figure 5.16—Plugging efficiency as a function of brine concentration and conduit inner 
diameter. 
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5.7. DISCUSSION 

When investigating particle injection, many researchers are interested in the 

passing ratio, which is the ratio of the particle size to the pore throat size at which the 

particle can pass through a constriction. For stiff, hard particle, this question is easy to 

answer. Extensive experimental results have shown that stiff particles can pass through 

pore throats only if their particle sizes are less than 1/9 of the pore size. However, 

swollen gel particles are deformable and breakable, so they can pass through porous 

media much easier than stiff particles. Swollen gel particle transport mechanism through 

porous media exhibit different patterns of behavior (Bai et al., 2007).  Table 5.8 provides 

the ratio of particle size to opening size (Dg/Dp), as well as the particle size before and 

after extrusion. Weak particles still were able to transport through the opening when the 

Dg/Dp was as high as 6.3 but required a relatively high injection pressure gradient of 

12.5 psi/ft in order to do so. These results are consistent with Seright (1997) where he 

observed that pressure gradient increased significantly with decreased tube diameter. 

Table 5.8—Particle opening ratio measurements results. 

Gel 
strength, 

Pa 

Particle gel 
size before 
extrusion, 

mm 

Pore 
opening 
size, mm 

Dg/Dp 
Gel particle 
size after 
extrusion, 

mm 

Gel Particle 
size 

decrease, % 

Gel threshold 
pressure 
gradient, 

psi/ft 

Gel Injection 
stable pressure, 

psi 

   

515 4.88 

10.922 0.44 3.57 26.8 0.1 6.8 

3.048 1.60 2.58 47.13 0.65 51 

1.752 2.78 2.391 51 1.1 112 

0.774 6.3 0.902 81.51 12.5 680 

657 3.56 

10.922 0.32 2.90 18.5 0.2 9.2 

3.048 1.16 2.17 39.04 0.85 76 

1.752 2.03 2.19 38.4 2.1 203 

870 3.2 

10.922 0.29 2.30 28.1 0.21 11.5 

3.048 1.04 1.99 37.81 1.2 105 

1.752 1.82 1.87 41.5 2.8 230 

1300 2.21 

10.922 0.20 1.945 11.99 0.25 20.1 

3.048 0.72 1.808 18.19 2.3 191.7 

1.752 1.26 1.923 12.98 3.5 590 

0.774 2.85 1.73 21.7 26.2 1320 

 



143 

 

 

The results shown in Table 5.8 indicate that gel particle size was reduced after 

extrusion when Dg/Dp larger than, equal to, and even smaller than one. Figure 5.17 

shows particle sizes measurement before and after extrusion for the sample with gel 

strength of 515 pa. The weak gel particles experienced a significant decrease in particle 

size, up to 81.5%, when they moved through conduit with a 0.774 mm opening for 

Dg/Dp equal to 6.3. However, a strong gel decreased only by 21.7% when moving 

through the same conduit size but with Dg/Dp equal to 2.85. Based on previous 

knowledge (Bai et al., 2007), this particle size reduction could be explained by two 

reasons: breakdown, dehydration or both. To determine if the particle size reduction was 

caused by gel dehydration, we collected effluent particle gel samples from 3.048 mm 

conduit, where Dg/Dp have smaller than and equal to one, measured their strength and 

also placed them in the same concentration brine to observe their reswelling. Figure 5.18 

shows how much the gel volume increased at different injection rates for four different 

strength gels. The results show that the weakest particles can regain 50% of water, while 

the strong gels can regain only approximately 20% of water, indicating that weak gel can 

be dehydrated more than strong gel during conformance control treatments. In another 

words, the weakest particles shrunk 50% of its original volume while the strongest one 

shrunk 20% when they passed through the conduit. The strength measurement taken after 

extrusion, shown in Figure 5.19 also indicates that the gel became more concentrated due 

to water loss from its cluster. When we compared the significant reduction in particle size 

to the gel particle volume shrunk, we observed that gel particle size reduction was caused 

by both particle breakdown and dehydration.  
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Figure 5.17—PPG size distributions and images for gel with strength of 515 pa before 
and after extrusion. 

 

 

Figure 5.18—Particle volume increased after soaking in same brine. 
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Figure 5.19—Particle storage moduli (G`) after extrusion. 

 

5.8. CONCLUSION  
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research: 
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significantly after a specific ratio. Additionally, the gel strength impacted the gel 

injection pressure more than did the particle opening ratio. 

• Two new empirical correlation models were successfully developed to predict 

both PPG resistance factor and stable injection pressure. 

• The resistance factor measurements are not dependent on the particle opening 

ratio when it is measured against shear rate. 

• PPG blocking performance increased as the gel strength and conduit inner 

diameter increased. This finding reveals that the conduit size conductivity can 

significantly decrease if a strong gel is selected for the conformance treatment.  

• Weak gels can be injected into large particle opening ratio with relative small 

increase in injection pressure compared to strong gels. Weak gels break into small 

sizes so it could pass through.  

• Weak gels tend to dehydrate more than strong gels. The gel becomes stronger 

after the extrusion process, as a result of the dehydration mechanism. 

• PPG size can be reduced during transportation through conduits due to 

dehydration and breakdown.   
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6. DISPROPORTIONATE PERMEABILITY REDUCTION THROUGH 

FRACTURE 

 

6.1. INTRODUCTION 

When gels are placed throughout the fracture or conduit, water permeability 

decreases significantly and water flow into the well is minimized. However, if oil is 

produced from reservoir through conduit, oil permeability will not be significantly 

decreased. 

 

6.2.  OBJECTIVES AND TECHNICAL CONTRIBUTIONS  

 This work intends to examine in-depth several factors such as particle size, gel 

strength, and conduit pore size effects on DPR properties and gel extrusion through 

conduit systems.  

• Alternate banks of both brine and oil were used to determine the extent to which 

PPGs can reduce water permeability more than oil permeability within conduit 

systems. 

• Examine the effect of brine concentrations, particle gel sizes, and injection flow 

rates on PPG injection pressure. 

• Determine the residual resistance factor (Frr) for oil and water during the 

different multiple injection cycles. 

• Evaluate different DPR mechanisms using PPG as a diver agent materials 

• The results obtained from this work can be used to provide a better understanding 

of preformed particle gel performance when two phase fluids propagate through 
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fractures filled with gel. It could also use for better selections of particle gel 

placement through fractures or conduits.  

 

6.3. EXPERIMENTAL DESCRIPTION 

6.3.1. Preformed Particle Gel. Super-absorbent polymer (SAP) was used  

as a PPG sample. PPG is comprised primarily of potassium salts with crosslinked 

polyacrylic acid / polyacrylamide copolymer.  

 Two sizes of particle gels, 20-30 and 100-120 mesh size, were selected for the 

experiments. Table 6.2 illustrates the size distribution of the PPG before swelling, as 

determined by a sieving test. 

 

Table 6.1—Size distribution of particle gel. 

Sieves (mesh) Size (microns) 

20-30 850-600 

100-120 150-125 

 

6.3.2. Brine Concentrations and Oil Viscosities. Sodium chloride (NaCl) with  

four concentrations (0.05, 0.25, 1, and 10 wt% NaCl) was used to prepare the swelling 

gels. The brine concentration was selected carefully according to both the swelling ratio 

and the gel strength; the high-salinity brine resulted in high gel strength and a low 

swelling ratio, as presented in Table 5.1. Two oils with viscosities of 37 and 195cp were 

used in the study. 
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6.3.3. Tubes. In this experiment, stainless steel tubes with internal diameters of  

0.12 inches and 0.069 inches were used to represent fractures. These tubes were 

originally 20 ft long and were cut into 5 ft in lengths. 

  

6.4. EXPERIMENTAL SETUP  

Figure 6.1 presents the experimental apparatus, which consisted of a syringe 

pump used to inject brine, gel, and oil through the accumulator into a fracture model. The 

fracture model was essentially five long tubes with two different internal diameters. A 

check valve was used at the inlet of the fracture model to ensure that no back flow of gel 

occurred when pressure was released from the pump. A 0.5-micron filter was installed at 

the outlet of the tube to ensure that no gel washout occurred during either the brine or the 

oil injection process. Pressure sensors were connected at both the inlet and the outlet to 

measure the differential pressure across the gel. 

 

 

Figure 6.1—Schematic diagram of PPG placement in fractures. 
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6.5. EXPERIMENTAL PROCEDURES  

First, we obtained the effects of brine concentrations (gel strength), particle size, 

and fracture width on the gel extrusion and DPR behavior through fractures. PPGs with 

mesh sizes of 20-30 swollen in 0.05%, 0.25%, 1%, and 10% brine solution were extruded 

through tubes with internal diameters of 0.069 inches. From high to low, nine flow rates, 

3.0246, 2.2684, 1.5123, 0.7561, 0.3781, 0.3025, 0.1512, 0.0756, and 0.0151ml/min, were 

used to extrude the PPG. Stable PPG injection pressures were achieved and resistance 

factors determined for each flow rate. Then, a filter was installed at the outlet, and PPG 

was injected again and compressed through the tube until the injection pressure reached 

100 psi. The same type of brine used to prepare the swollen PPG then was injected. Oil 

with a 37 cp viscosity was injected after each injected brine concentration. Residual 

resistance factors for both water and oil were determined during the experiments.  

The second objective of this study was to understand gel performance under a 

sequence of brine and oil cycles. PPGs with mesh sizes of 20-30 swollen in 1% NaCl 

were extruded through a tube with a diameter of 0.12 inches using the nine different flow 

rates. Stable pressure was achieved for each gel injection rate. After a filter was installed 

and the PPG was compressed, brine and oil cycles were alternated in sequence. Both 

brine and oil were injected through the tube model with seven flow rates starting from 

low to high: 0.0151, 0.0756, 0.1512, 0.3025, 0.3781, 0.7561, and 1.5123 ml/ min. This 

sequence can be summarized in the following steps: 

1) Concentration of 1% NaCl (first cycle) was injected with seven flow rates through 

PPG-filled tubes. Stable pressure was achieved for each flow rate, and the residual 

resistance factors for water (Frrw) were determined. 
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2) Oil with a 37 cp viscosity was injected to displace water inside the gel. Residual 

resistance factors for oil (Frro) were obtained for the seven flow rates. 

3) Oil with a 195 cp viscosity was injected, and the Frro were again obtained for each 

flow rate.  

4) 1% NaCl brine (second cycle) was injected after the injection of oils with same flow 

rates, and Frrw was calculated. 

5) After the second cycle of brine injection, oil with a 37 cp viscosity was injected again 

to obtain the Frro. 

6) High-viscosity (195 cp) oil was injected, and the Frro were determined. 

7) Finally, 1% NaCl brine (third cycle) was injected in the same model with the same 

flow rates to determine the Frrw. 

The above seven steps were repeated using PPG with a mesh size of 100-120 

swollen in the same NaCl concentrations (1%). 

 

6.6. RESULTS AND ANALYSIS 

Data showing the effects of the gel particle size, gel strength, and fracture width on 

gel extrusions and placements were obtained. These data include the PPG injection 

pressure, resistance factor, residual resistance factors, and results for the brine and oil 

cycles. 

6.6.1. PPG Injections and Residual Resistance Factor. This section 

 presents and discusses the results obtained for the injection pressure and residual 

resistance factors for the effects of gel strength, particle gel size, and fracture width. 
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6.6.1.1. Stabilized PPG injection pressure versus injection rate.  The stable  

pressure measurements obtained during the gel extrusion process were recorded and 

plotted against the PPG injection flow rate for each different gel strength and particle 

size. Figure 6.2 a illustrates the stable injection pressure of the gels for gel storage moduli 

of 515, 657, 870, and 1300 pa injected through a tube with an internal diameter of 0.069 

inches. Figure 6.2 b presents the measurements taken for both 20-30 mesh size and 100-

120 mesh size injected through a fracture 0.12 inches wide. The results show that the 

stable injection pressure for each flow rate increased as the gel strength and particle size 

increased. For instance, a particle gel with a 100-120 mesh size had a stable pressure of 

65 psi at a gel injection rate of 3.0256 ml/min, while a particle gel with a 20-30 mesh size 

had a stable pressure of 71 psi at the same injection flow rate. This increase in pressure 

occurred because larger particles are more resistant to flow through fractures than smaller 

particles. This behavior, however, was most pronounced at low flow rates. This finding 

could imply that at a high injection rate, the stable pressure for both particle sizes is an 

independent factor.  

The stable pressure for all of the gel strengths and particle sizes increased 

significantly as the injection rate increased. Though to an insignificant extent, the 

pressure continued to build up as the PPG injection rate increased. The results also 

indicate that as the gel strength increased, reaching the stable pressure for each injection 

rate required more time.  
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                     (a)  20-30 mesh size PPG                                  (b) PPG swollen in 1% NaCl 

Figure 6.2—Stable pressures versus injection rate for gel strengths and particle sizes. 

 

6.6.1.2. Resistance factor calculation. PPG is a shear thinning or pseudo plastic 

 material. The resistance factor (Fr) is used to measure PPG resistance to flow when it 

extrudes through fractures. Similar to the porous media experiment, Fr was estimated 

from the injectivity index and geometry of the fracture. It can be defined as the ratio of 

the particle gel injection pressure drop to the brine injection pressure drop at the same 

flow rate.  

The resistance factor was calculated during the gel extrusion process against the 

velocity for each different gel strength and particle size. Figures 6.3a and 6.3b illustrate 

the resistance factor results obtained for different gel strengths and gel particle sizes, 

respectively. The PPG resistance factor increased as the gel strength and gel particle size 

increased. For example, at a velocity of 29 ft/day, the Fr of gel strengths 515, 657, 870, 

and 1300 pa were 74981, 158294, 208282, and 291595, respectively. The Fr determined 
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for each PPG strength decreased sharply as the superficial velocity increased. For 

instance, the resistance factor for 100-120 mesh size was 8750 at a velocity of 10 ft/day. 

When the velocity was doubled, the resistance factor decreased substantially to 1683. 

The data in Figure 6.3 were fitted according to the power law equations. Table 6.2 

lists the fitting equations for the resistance factors obtained for both effects. The elasticity 

index (n) measured for the effects of gel strength were plotted against the storage moduli, 

as presented in Figure 6.4. As the gel strength increased, the gel elastic value decreased. 

 

        

                     (a) 20-30 mesh size PPG                           (b) PPG swollen in 1 % NaCl 

Figure 6.3—Resistance factor calculated for both gel strength and gel particle size in a 
log-log scale. 
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Table 6.2—Summary of fitting equations for resistance factor measurements. 

Storage Moduli G ́ (Pa) Particle Size(mesh) Fitting Equations Elasticity Index (n) R2 

515 

20-30 

FR = 490150 u -0.530 0.530 0.986 

657 FR = 955622 u -0.525 0.525 0.996 

870 FR = 1E+06 u -0.50 0.50 0.988 

1300 FR = 1E+06 u -0.437 0.437 0.981 

870 
20-30 FR = 238927 u -0.829 0.829 0.997 

100-120 FR = 22514 u -0.547 0.547 0.957 

 

 

Figure 6.4—Elasticity index as a function of gel strengths. 
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6.6.1.3.1. Effect of gel strength on DPR.  Figure 6.5a illustrates the Frrw 

determined for brine injected through different strength PPGs. The results indicate that 

the gel strength does affect the Frrw; the Frrw increased as the gel strength increased. As 

the gel strength increased from 515 pa to 1300 pa, the increase in the Frrw became 

significant. After determining the Frrw, oil was injected through the same internal 

diameter with the same velocity to obtain the Frro. Figure 6.5 b depicts the 

measurements of oil with a viscosity of 37 cp injected through swollen PPGs. The results 

indicate that the gel strength also affects the Frro; the Frro increased as the gel strength 

increased. For all of the gel strengths, the Frro was less than the Frrw. 

 

  

                       (a)                                                                               (b) 

Figure 6.5—Residual resistance factor for brine and oil.  
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6.6.1.3.2. Effect of opening size on DPR.  PPGs with a mesh size of 20-30 

swollen in a 1% NaCl solution were used to observe the effect of the fracture width on 

the residual resistance factors. Figure 6.6 a and b presents the results obtained from 

injecting a 1% NaCl solution and 37 cp oil through gel placed in fractures 0.069 and 0.12 

inches wide. These data suggest that Frrw and Frro increased as the fracture widened. 

Frro was less than Frrw regardless of the fracture width. 

 

       

                          (a)  Inject 1% brine                                                   (b) inject 37 cp oil 

Figure 6.6—Residual resistance factor for brine and oil as a function of both flow rate 
and fracture width. 
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 Seven velocities were used to inject brine, and the stable pressure was observed at 

each. Figure 6.7a illustrates the Frrw determined for the two particle sizes as a function 

of superficial velocity. The Frrw for both particle sizes decreased as the velocity 

increased. This decrease was significant at a low velocity. For example, the Frrw value at 

100-120 mesh size decreased from almost 200,000 to 50,000 as the velocity increased 

from 10 to 50 ft/day. The results also suggest that the Frrw was greater for larger than for 

smaller particle sizes. The power law equation was used to fit data for the Frrw. The 

following are equations that fit well for the two particle sizes: 

 

         Frrw = 6E+06 u-0.936     for 20-30 mesh size ..............  (6.1) 

      Frrw = 2E+06 u-0.995      for 100-120 mesh size  ........... (6.2) 

 

 After the Frrw values were determined, oils with different viscosities (37 cp and 

195 cp) were injected consecutively to determine the Frro. Figures 6.7b and c illustrate 

the Frro measurements for both particle sizes at different oil viscosities. Both figures 

indicate that the Frro determined for the two PPG mesh sizes decreased as the superficial 

velocity increased. The change in particle size does not appear to have a significant effect 

on the Frro when compared to the first cycle of brine. For the oil with a viscosity of 37cp 

injected with a velocity of 10 ft/day, the Frro measurements for both 20-30 mesh and 

100-120 mesh particle sizes was 4900 and 3400, respectively. The results also indicate 

that the Frro decreased as the oil viscosity (at the same given particle size) increased. The 

power law equation was used to fit the results obtained for the Frro values. The Frro for 
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the different oil viscosities and particle sizes are described using Equations 6.3, 6.4, 6.5, 

and 6.6: 

Residual resistance factor equations for 37 cp: 

  Frro=50498u-1.059         for 20-30 mesh size    .............. (6.3) 

   Frro =19606u-1.004           for100-120 mesh size ..............  (6.4) 

Residual resistance factor equations for 195 cp: 

                       Frro = 11283 u-1.083     for 20-30 mesh size ..................  (6.5)  

   Frro = 3720 u-1.004        for 100-120 mesh size    ........... (6.6)       

                                                              

 

         a). First 1% brine cycle             b). First 37cp oil cycle                  c). First 195 cp oil cycle 

Figure 6.7—Frrw and Frro determined for the first cycles.  
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was injected at a constant flow rate of 0.3025 ml/min. The differential pressures (stable 

pressure) across the gel and the water loss from the gel were measured. The pressure 

began to build during the early stages of oil injection, eventually reaching 53 psi before 

falling and finally fluctuating between 3 and 7 psi. When compared to the first water 

cycle injection process, the differential pressure at the same flow rate (0.3025ml/min) 

was 29 psi. This significant drop in pressure suggests that gel could fail during the oil 

injection process. 

 Cumulative water loss data from the gel during the oil injection process were 

collected. Figure 6.8 shows that the cumulative water loss from the gel began to build 

rapidly until the cumulative oil injected reached approximately 150s ml. The cumulative 

water loss then began to level off at 14 ml. We continued to inject oil until observing a 

stable pressure across the gel to ensure that no more water loss would occur.  

 

 

Figure 6.8—PPG breakdown during two-phase flow. 
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6.6.2.1. Frro and Frrw obtained from first cycle. Figure 6.9 depicts the 

comparison of the first cycle of 1% brine with the first cycle of two oil viscosities to 

identify the extent to which gel can reduce permeability to water more than to oil. 

 The results show that the residual resistance factor was much lower during oil 

injection than during water injection. At a velocity of 10 ft/day, the Frrw to water was 

653414, and the Frro for oil with a viscosity of 195cp was 930, which means that the 

Frro decreased by around 700 times. A number of reasons may exist for this 

phenomenon; some of the reasons observed in our experiments will be explained in the 

Discussion section.  

 

 

Figure 6.9—Comparisons between Frrw and Frro during the first cycle of flooding. 
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6.6.2.2. Brine and oil reinjection measurements. After the first cycles of brine 

 and oil injections were completed, we continued to inject multiple cycles of brine and oil 

through the same gel sizes. Figure 6.10a shows the results obtained for the second brine 

cycles. The Frrw measurements observed during the second water injection cycle were 

almost the same for both particle sizes. For instance, the Frrw measurements for particle 

sizes 20-30 and 100-120 were 544.5 and 726, respectively, at the same velocity (964 

ft/day). In this example, the oil may have dehydrated both particle sizes to the same 

extent. The effect of different particle sizes on the Frrw was not significant after oil was 

injected through the gel. The following Frrw measurements were taken during the second 

water injection cycle for both particle sizes: 

 

                         Frrw = 2E+06 u-1.216        for   20-30 mesh size  ............ (6.7)                                  

                       Frrw =7. 25E+05 u-1.004   for   100-120 mesh size  ........ (6.8)    

                                             

 Comparing Equations (6.1) and (6.2) with (6.7) and (6.8), respectively, indicates 

that the residual resistance factor for brine decreased substantially after the oil injection 

cycle was complete. 
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a) Second 1% brine cycle                    b). Second & First 37cp oil cycle).       C) Second & First 195cp oil cycle 

Figure 6.10—Frrw and Frro determined for the second cycles.  

 

 Figures 6.10 b and c provides a comparison of the Frro determined during the 

first and second oil injection cycles, respectively. The results obtained during the second 

oil injection cycle for both oil viscosities suggest a decrease in the Frro, even when 

compared to the first cycle. This decrease indicates further gel breakdown, thus 

continuously increasing the gel’s permeability during oil injection. For example, the Frro 

determined for oil with a viscosity of 37 cp at the same velocity (100 ft/day) decreased 

almost two times less than the Frro measured during the first oil injection cycle. The 

Frro was 407 for the first oil injection cycle and 203 for the second. Frro measurements 

were taken during the second oil injection cycle for both oil viscosities, as follows:  

 Residual resistance factor for 37 cp:  

                   Frro = 31743 u-1.079  .....................................................  (6.9)                                                                                                               
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 Residual resistance factor for 195 cp:  

       Frro = 10434 u-1.177  ..................................................... (6.10)                                                                                                      

 The effect of oil viscosity on the Frro was noticeable when comparing Equation 

(6.5) with Equation (6.3) and Equation (6.10) with Equation (6.9). The Frro with a high 

oil viscosity was less than the Frro with a low oil viscosity for both cycles. These results 

indicate that gel has great potential for success in heavy oil field applications.        

6.6.2.3. Comparing the Frrw obtained for all three brine cycles. Figure 6.11  

compares the results from the first, second, and third water cycles for the same particle 

size. A third water cycle was injected after the second oil cycles. The Frrw measurements 

taken during the third brine cycle indicate a slight decrease when compared to the Frrw 

measured during the second brine cycle. For instance, at a velocity of 10 ft/day, the Frrw 

for the second cycle was 127052; it decreased slightly to 108902 during the third cycle. A 

comparison of all three water cycles indicates that Frrw decreased substantially after the 

first oil injection. The Frrw for both the second and third cycles were very similar. These 

measurements indicate further particle gel breakdown but to a lesser extent than during 

the second cycle. The Frrw measurement obtained during the third water injection cycle 

was: 

 

 Frrw = 2E+06 u-1.212 ....................................................  (6.12)   
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Figure 6.11—Frrw determined for the different 1% brine cycles. 

 

6.6.3. Injection Pressure over DPR Processes. The alternative injection 

 pressures for both brine and oil were recorded during their injection through the gel-

filled fracture. Figure 6.12 illustrates the injection pressure for cycles of 1% NaCl and 

195 cp oil through PPG with a size of 20-30. These injection pressures built up during the 

flooding cycles. The results also indicate that the injection pressure for water increased as 

more cycles of water were performed. These injection pressure increases, however, were 

insignificant at different oil cycles. The injection pressure recorded during the first water 

cycle peaked at approximately 2227 psi, while after a cumulative volume of 700 ml of oil 

was injected, the pressure dropped slightly to 2135 psi. Sequential cycles of brine, oil, 

and brine were injected with almost the same volume into PPG. After injecting 700 ml, 

the pressure peaked at approximately 2590 psi for the second brine cycle, 2290 psi for the 

second oil cycle, and 2860 psi for the third water cycle. 
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Figure 6.12—Injection pressure over oil and water flood cycle. 

 

6.7. DISCUSSION 

 The study presented in this paper investigated the behavior of PPG extruded 

through a fracture during two-phase flow. The DPR mechanisms have been investigated 

extensively by several researchers. Table 6.3 summarizes the DPR mechanisms, gels, and 

investigators in the relevant literature. The following is a summary of the mechanisms 

observed during PPG placement inside a fracture. 

 Mechanism 1 in Table 6.3 considers gels that swell when they come into contact 

with brine and shrink when they come into contact with oil. In their visualization studies, 

Liang et al. (1995) did not observe any volume changes in the gel at atmospheric 

pressure. They conducted the same experiment at 1500 psi and still found no significant 

macroscopic changes during alternating exposures of the gels to brine, oil, and 
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compressed CO2. However, PPG showed a different trend. In visualization studies with 

PPG at atmospheric pressure, a significant volume changes was observed. In brine, dry 

gel swelled to many times its original size, which helps to increase the residual resistance 

factor for water. However, when swollen particle gel was placed in a glass container 

filled with oil for three weeks, the gel volume decreased dramatically to half of its 

original PPG volume. This shrinkage of the gel particle size volume allows oil to move 

easily through gel and causes the residual resistance factor to oil to decrease compared to 

water.  

 Many researchers have investigated the effect of capillary forces and gel elasticity 

(Mechanism 5). Al-Sharji et al. (1999) found that the flow of water and oil through gel 

was controlled by the elasticity of polymer gels. The results for the flow of oil and water 

through PPG showed the same trend. The flow of oil through gel had a different elasticity 

index than the flow of water through gel. The effect of dehydration (Mechanism 8) was 

observed when the first cycle of oil was injected through PPG (see Figure. 6.8). The 

pressure began to decrease substantially during the oil injection process. The 

experimental data suggest that the oil dehydrated the PPG by displacing water from the 

gel structures and creating new flow channels inside the gel.  
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Table 6.3—Mechanisms proposed for disproportionate permeability reductions. 

No Mechanism Gel Investigators 

1 
Gel swells in water but 

shrinks in oil 

Cr(III)–acetate-HPAM; 
Xanthan gum-Cr(III) gels; polyacrylamide 

polymers; PPG 

Liang et al.; Dawe and 
Zhang; Gales et 

al.;Sparlin and Hagen; 
Imqam et al. 

2 Wall effects 
polyacrylamide polymers; water and oil based 

gels 

Zaitoun et al.; Liang 
and Seright; Liang et 

al. 

3 
Gravity affects gel 
locations in pores 

Glyoxal / cationic polyacrylamide (CPAM) Liang et al. 

4 
Gels change rock 

wettability 

Nonionic polyacrylamide (PAM); resorcinol-
formaldehyd; Cr3+  (chloride)-xanthan; 

Cr3+(acetate)-polyacrylamide; colloidal silica 

Zaitoun et al.; Liang et 
al 

5 
Effect of capillary forces 

and gel elasticity 
Cr (III)-acetate-HPAM; bulk polymer gel; 

PPG 

Liang and Seright; Al-
Sharji et al.; Imqam et 

al. 

6 
Segregated pathway 

theory 
Polymer; water and oil based gels; HPAM & 

crosslinker 
White et al.; Liang and 
Seright; Nilson et al. 

7 Lubrication effect 
PAM and polysaccharide polymers; 

polyacrylamide polymers 
 

Zaitoun and Kohler; 
Sparlin and Hagen 

8 Gel dehydration PPG; acetate/HPAM 
Imqam et al; Dawe 

and Zhang; Willhite et 
al 

9 

During brine injection, 
polymer leaches from the 

gel and significantly 
decreases the brine 

mobility 

Cr (III)-acetate-HPAM Liang and Seright 

10 
Pore blocking by gel 

droplets 
water and oil based gels Liang and Seright 

 

 In this study, gel strength was established as an important factor/mechanism for 

PPG that greatly affects the DPR. Results obtained from rheometer measurements, as 

shown in Figure 6.13 suggest that gel strength measurements taken after the oil and water 

flowed through PPG also affected the DPR mechanism. The results indicate that the gel 

strength for oil was much less than for water; consequently, gel with less strength has a 

lower residual resistance factor than gel with high strength. 



169 

 

 

 

Figure 6.13—Particle gel strength as a function of oil and brine flow. 

 

6.8. CONCLUSION 

 This work investigated the characterization of disproportionate permeability 

reduction for PPG placed in closed fractures. The following conclusions were drawn 

from this investigations: 

• The particle gel injection pressure increased as the particle size, gel strength, and 

flow rate increased but decreased as the fracture width increased. 

• Elasticity indices (n) were successfully obtained and fitted as a function with gel 

strength. The results indicated that as the gel strength increased, the gel elastic value 

decreased. 

• The results also indicated that the greater the gel strength, the more time is needed to 

achieve a stable pressure for each injection rate. Additionally, wider fractures require 

less time to reach a stable pressure than do narrower fractures for each injection flow 

rate. 
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• The Frro was always much less than the Frrw during all alternating water and oil 

floods. The DPR also increased with increases in the oil viscosity, particle size, gel 

strength, and fracture width. 

• The first oil injection (first cycle of oil) can significantly degrade the gel properties. 

This finding explains why the residual resistance factor Frrw obtained from the 

second brine cycle decreased significantly compared with the Frrw obtained from 

the third brine cycle.  

• The injection pressure for different water cycles increased as more water cycles were 

performed. However, these injection pressure increases were not significant at 

different oil cycles. 

• A different disproportionate permeability reduction mechanism of the particle gel 

was investigated. The gel strength greatly affected the DPR and is an important 

parameter that should be considered. 
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7. MICRON-SIZE PARTICLE GEL PROPAGATION THROUGH SUPER K 

PERMEABILITY STREAKS 

 

7.1. INTRODUCTION  

In the absence of profile modification, injection water transports into high 

permeability zones bypassing the rich saturated oil in low permeability zones. As a result, 

a considerable portion of oil remained un-swept, adversely impacting oil recovery. In an 

attempt to evaluate PPG effectiveness as a diversion materials, systematic intensive 

experimental studies were performed not only on homogenous sand cores but also on 

heterogeneity cores including non-cross flow and cross flow heterogeneities sand cores. 

The results obtained from the study of homogenous super K sand cores are discussed in 

the following section. Those obtained from the study of heterogeneity are discussed in 

Sections 8 and 9. 

The experiments results and developed correlation models obtained from the 

study of homogenous super k will aid to select future conformance control candidates and 

optimize the particle gel treatment design for large scale field projects. 

  

7.2. OBJECTIVES AND TECHNICAL CONTRIBUTIONS 

The experiments conducted as part of this study were used to investigate the PPG 

injection process and the effects of PPG to water and oil permeability. They were also 

used to evaluate a PPG’s ability to improve oil recovery. The objectives of this section 

were organized in three sub-sections as follows: 
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7.2.1. Study PPG Injection Process.  PPG swollen in different brine 

concentrations were injected into two ranges of sand permeability to determine the 

following: 

• Examine the effect of unconsolidated sand pack permeability, gel strength, gel 

size, and gel concentrations on the gel injection pressure. 

• Study the effect of injection flow rate on the PPG injection pressure. 

• Determine the gel threshold pressure (defined as the minimum pressure required 

to enable gel to propagate through high permeability streaks). 

• Study associated mechanisms with PPG injections (e.g., retention and adsorption). 

• Numerous studies have been conducted to evaluate commercial gels transport 

through super K sand permeability but none of these previous studies investigated 

either the performance or the mechanism of PPGs transport and placement. 

7.2.2. Study Disproportionate Permeability Reduction.  Cycles of brine and oil 

were injected sequentially after PPG injection and placement in sand cores to: 

• Determine the effect of unconsolidated sand pack permeability, gel strength, gel 

size, and gel concentrations on the DPR. 

• Examine the effect of sand pack permeability, gel strength, and gel concentrations 

on the gel blocking behavior. 

• Study the mechanisms (e.g., dehydration and washout) associated with water and 

oil flow through a PPG. 

7.2.3. Study PPGs Ability to Improve Oil Recovery.  Sand cores were saturated  

with oil and then flushed with water until they reached residual oil saturations to:  



173 

 

 

• Explore which factors significantly affect the use of micron-size particle gels to 

reduce water channeling and enhance oil recovery from super-K sand 

permeability formations.  

• Compare water cut and oil recovery results obtained during water flooding with 

the results obtained after PPG treatments were introduced.  

• Study the effect of unconsolidated sand pack permeability, gel strength, gel size, 

and gel concentration on the oil recovery improvement.  

• Evaluate the decrease in remaining oil saturation during the water flooding cycles 

and PPG treatments. 

• Numerous studies have been conducted to evaluate commercial gels transport 

through super K sand permeability but this study is the only work investigated the 

performance and the mechanism of PPGs to increase oil recovery. 

 

7.3. EXPERIMENTAL DESCRIPTION 

7.3.1. Preformed Particle Gel. A superabsorbent polymer was used as a  

PPG to conduct the experiments. Dry particles with mesh sizes of 170-200 and 80-100 

were swollen in a 1% NaCl brine concentration. Gel concentrations of 800 and 2000 ppm 

were used. 

7.3.2. Brine Concentration and Oil Viscosity. Both 0.05 and 1 wt%  Sodium  

Chloride (NaCl) were used for brine flooding and to prepare the swollen PPGs. Oil with a 

viscosity of 37 cp at 70 °F was used to saturate the sand pack model. 

7.3.3. Magnetic Stirring Vessel. An accumulator with a1200 ml capacity and a 

maximum adjusted impeller speed of 1800 r/min (Figure 7.1) was used to inject PPGs 

into a high permeability sand pack model. The impeller was placed at the bottom of the 
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accumulator so that the PPGs remained dispersed in brine before they were injected into 

the model. 

 

 

Figure 7.1—Stirring vessel accumulator. 

 

7.3.4. Sand Packs. Silica sand were used to obtain different permeability sand 

 packs. A Vibrator machine (see Figure 7.2) was used to pack the sand carefully to obtain 

the desired permeability. A mesh size of 10-18 and 20-30 were used to obtain 

approximately 65.4 and 26.5 Darcy, respectively. The size distribution of the silica sand 

used in the experiments, as determined in a sieving test are listed in Table 7.1. 
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Figure 7.2—Vibrator machine. 

 

Table 7.1—Size distribution of silica sand. 

Sieves (mesh) Size (microns) 

10-18 1000 

20-30 600 

 

7.4. EXPERIMENTAL SETUP 

The experimental setup used in this study (see Figure 7.3) constructed from a 

stainless steel tube 91.4 cm in length and 2.5 cm in diameter. It was packed with different 

sand grains to test the effect of various Super-K permeabilities on PPG injection process. 

A syringe pump was used to inject suspension PPG, brine, and oil from an accumulator to 

the sand pack model. Four pressure transducers were mounted on both the inlet and along 

sand pack to monitor the pressure behavior during the brine flooding and gel treatment 
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processes. Test tubes mounted at the model outlet were used to record the PPGs and 

oil/brine production volumes at effluent.  

 

 

Figure 7.3—A micron size PPG injection apparatus. 

 

7.5. EXPERIMENTAL PROCEDURES  

Several procedures were followed when conducting the water flooding and PPG 

treatment processes. These procedures are described briefly below: 

7.5.1. Preparing and Saturating Sand Pack Models. A vibrator machine was 

 used to prepare different sizes of silica sand so that the desired sand pack permeability 

could be obtained. Sand grains poured inside the tube after fastened the tube’s end with a 

screen filter to prevent migrating sand during the flooding processes. San was poured at a 

regular rate, then vibration was kept constant until the entire tube was filled with sand. 

The sand pack models were then vacuumed for at least 1 hr before being fully saturated 

with 1% NaCl to determine pore volume, porosity, and permeability. The sand pack 

model was next flushed with brine at different injection flow rates (1, 2, 3, 4, 5, 6, and 7 

ml/min) to ensure that the model 100% was saturated with brine. 
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Oil viscosity with a 37 cp was injected from the accumulator into the sand pack at 

2 ml/min to determine both the oil initial in place and the connate water saturation. Oil 

was injected until no water was produced and the injection pressure became stable. A 

variety of oil injection flow rates (1, 3, 4, 5, 6, and 7 ml/min) was then injected to 

determine the effective oil permeability at connate water saturation.  

7.5.2. First Water Flooding. Brine was injected into super-K permeability at a 

 rate of 2 ml/min to simulate secondary oil recovery conditions. Oil and water 

productions at effluent were recorded every 3 ml. The brine was injected into the sand 

packs until no oil was produced and the brine injection pressure became stable. Both oil 

recovery and water cut were determined during the first water flooding. Super-K 

permeability was flushed again with brine at flow rates of 1, 3, 4, 5, 6, and 7 ml/min to 

determine the effective water permeability at residual oil saturation.  

7.5.3. PPG Treatment. Swollen suspended PPGs were injected into sand packs at 

 a rate of 2 ml/min after the first water flooding processes were completed. The PPG was 

injected until began produced in effluent and the PPG injection pressure became stable in 

all four pressure sensors. The gel injection pressure, gel threshold pressure, and gel 

breakthrough pressure were all recorded so that the gel propagation’s mechanisms 

through super-K permeability at different injection conditions could be diagnosed. The 

PPG injection was then resumed at different flow rates (1, 3, 4, 5, 6, and 7 ml/min) to 

study the effect of injection flow rates and calculate the gel resistance factor. The volume 

of oil and water productions at the outlet were collected to determine the oil recovery 

increase or water cut decrease during gel treatment. 
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7.5.4. Second Water Flooding. Brine was injected at 2 ml/min after the PPG 

 treatment was complete to test the gel’s resistance to water flow. Brine was injected also 

at different cycles to determine if there was any oil left unproduced after the gel 

treatment. The injection started from low to high flow rates and the repeated injection 

cycles were from high to low flow rates. The rational of these brine cycles was to 

determine the gel strength effect on water flow resistance. A series of brine cycles was 

run until no discrepancies occurred between the repeated cycles. 

7.5.5. Second Oil Injection. Oil was injected again into Super-K permeability at 

 a rate of 2 ml/min to determine how PPG reduced the permeability to water more than 

oil. Oil was injected into sand packs to ensure that no water was produced and the oil 

injection pressure remained stable. Both water production and injection pressure were 

measured during the second oil injection. Super-K sand permeability was flushed again 

with variety cycles of oil at flow rates of 1, 3, 4, 5, 6, and 7 ml/min to determine the 

effective oil permeability at residual water saturation.  

7.5.6. Final Water Flooding. Brine was injected at the same injection rates 

 (2ml/min) to determine the gel blocking behavior to water after the oil was transported 

through the PPG. Brine was injected until no oil was produced and the pressure became 

stable in all of the pressure sensors. 

The above procedures were repeated for each experiment. The oil recovery factor, 

water cut, resistance factor, residual resistance factor to water and oil, and injection 

pressures were all determined for the Super-K permeability sand pack models. 
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7.6. RESULTS AND ANALYSIS 

This section presents results obtained for the effects of sand pack permeability, 

gel concentration, brine concentration, and particle size. For each of these effects, the 

injection pressure, passing measurements, resistance factors, PPG blocking to water flow, 

oil recovery and water cut measurements, and PPG resistance to water and oil flow were 

all determined. 

7.6.1. PPG Injection Pressure Measurements. The effects of sand pack 

permeability, gel concentration, brine concentration, and gel size on PPG injection 

pressure are discussed as follow: 

7.6.1.1. Effect of unconsolidated sandstone permeability. Preformed particle 

 gels were injected through the sand pack until they were produced at effluent and the 

injection pressure became stable. Figures 7.4 and 7.5 show the injection pressure 

recorded at the different sections of the sand pack for both permeability of 26.5 and 65.4 

Darcy. Injection pressure was recorded during PPG injection at injection rate of 2 

ml/min. The injection pressure recorded at the first section (P1) indicates the pressure 

increased gradually and fluctuated during the injection process. More than 15 PV of PPG 

was injected before injection pressure became stable for both permeabilities. As the PPG 

began to produce at effluent, the PPG injection continued until the injection pressure 

became stable at each section.  

The PPG injection pressure increased as the sand permeability decreased. The 

injection pressure became stable at approximately 1600 psi for a permeability of 26.5 

Darcy. It decreased significantly to approximately 25 psi for a permeability of 65.4 

Darcy. The PPG injection pressure became stable for each section of the sand pack 
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though it did so with different pressure drops (see Figures 7.4 and 7.5). A significant 

pressure drop was observed between the measured pressure at P1 and pressures in the 

remaining sections. The injection pressure drop was not as significant between the last 

sections as it was in the first section. In a permeability of 26.5 Darcy, the injection 

pressure recorded at P1 became stable at approximately 1600 psi while at P2, P3, and P4 

were 600 psi, 450 and 30 psi, respectively. Similarly, in the permeability of 65.4 Darcy, 

the injection pressure recorded at P1 got stable at around 25 psi, while at P2, P3, and P4 

were 10 psi, 7 psi, and 4 psi respectively. The differences in injection pressure measured 

at the sand face, P1, and pressure measured in other sections, indicated a significant 

pressure drop at the sand face compared to the other sections. The pressure drop between 

sections decreased as PPG deeply transported into sand cores. Additionally, pressure drop 

measured for the last sand sections pressure change decreased less when the sand 

permeability increased. 

 

Figure 7.4—Gel injection pressure for k=26.5 Darcy. 
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Figure 7.5—Gel injection pressure for k=65.4 Darcy. 

 

7.6.1.1.1. Effect of permeability on injection pressure.  The injection pressure 

 recorded at the sand face for both permeabilities were drawn separately in Figure 7.6. 

The injection pressure was greater at a low permeability than it was at a high sand 

permeability. Injection pressure might be got stable early during the PPG injection 

process. This finding, however, neither indicate that the PPG began producing at effluent 

nor indicated that PPG injection reached the final stable pressure. The pressure became 

stable at 1000 psi in permeability of 26.5 Darcy, after 5 PV of PPG was injected. The 

injection pressure increased, however, after PPG injection increased above 5 PV. Thus, 

the PPG injection pressure should be monitored through all sections to determine when 

the stable pressure will occur. Either retention or PPG accumulation during the injection 

process may have a role in this mechanism at this stage.  
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Figure 7.6—Effect of sand permeability on the sand face injection pressure. 

 

7.6.1.1.2. Effect of injection flow rates. As the PPG visibly produced at effluent 

 and pressure got stable at all the different sections, PPG was continued to inject through 

sand pack but at different injection rates (Figure 7.7). The PPG was injected initially at 

low flow rate. This rate was increased gradually. A stable pressure occurred at each 

injection rate. The PPG injection pressure was increased as the injection rate increased. 

The injection pressure recorded at a low permeability was much greater than that 

recorded at a high permeability for each flow rate. Seven flow rates were used to inject 

the PPG through the sand pack. A sharp increase in PPG injection pressure was noticed 

for permeability of 26.5 Darcy. This sharp increased, allowed only to use four injection 

flow rates (only flow rates less than 4ml/min). The injection pressure at 4 ml/min 
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increased significantly and got stable at around 2500 psi. The injection pressure recorded 

for each permeability fit the power law equations relatively well. 

 

 

Figure 7.7—The effect of the injection flow rate on the PPG injection pressure. 
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approximately 1600 psi, while the injection pressure recorded for a concentration of 800 

ppm was approximately 170 psi. The pressure drop across the sand pack section was 

nearly similar for both concentrations because the PPG was injected in the same sand 

permeability nearly. A considerable pressure drop was noticed for both gel concentrations 

for the pressure recorded in the sand face. A smaller pressure drop between sections was 

recorded for the last sections. The gel injection pore volume required to produce the gel 

at effluent and obtain a stable pressure for both gel concentrations was varied according 

to the PPG concentration. The PPG that was prepared with a low concentration required a 

significantly larger amount of gel pore volume than did the PPG prepared with a high 

concentration. The PPG produced at effluent and the pressure got stable after 

approximately 37 PV of PPG injection for 800 ppm. In contrast, less than 17 PV of PPG 

injection was required for the PPG prepared with a high concentration. 

 

 

Figure 7.8—The gel injection pressure for a PPG concentration of 800 ppm. 
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Figure 7.9—The gel injection pressure for a PPG concentration of 2000 ppm. 

 

7.6.1.2.1. Effect of gel concentrations on injection pressure. The injection  

pressures at the sand face recorded for both gel concentrations (800 and 2000 ppm) is 

illustrated in the Figure 7.10.  A significant difference in the PPG injection pressure and 

PPG injection volume measurements were noticed for the both gel concentrations. This 

finding reveled that a smaller gel concentration is more efficient than larger concentration 

in terms of the PPG injectivity. But smaller PPG concentration required larger PPG 

volume to propagate deeply. Stable pressure should be monitored carefully, and the 

injection should not be stopped until the pressure stability is detected in other sensors.  
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Figure 7.10—The effect of the PPG concentration on the sand face injection pressure. 

 

7.6.1.2.2. Effect of injection flow rates.  The PPG continued to inject after the  

PPG breakthrough at effluent and the pressure became stable in all sections, but at 

different flow rates (Figure 7.11). PPG was injected at different flow rates to test the 
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from 5 to 7 ml/min, injection pressure increased only by 1 fold. The power law equation 

was successfully used to fit the injection pressure data as a function of the injection flow 

rates. 

 

 

Figure 7.11—The effect of the injection flow rate on the PPG injection pressure. 
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until discharged at the effluent and pressure became stable in all of the sand pack 

sections. The gel swollen in 1% NaCl was stronger than gel swollen in 0.05%. Thus, the 

gel injection pressure in the former was twice that in the latter.  The gel injection pressure 

for the gel swollen in 1% NaCl reached approximately 1600 psi. The gel swollen in 

0.05% NaCl reached approximately 800 psi.  

A significant drop in injection pressure occurred between the injection pressure 

measured in the sand face and the other sections. The injection pressure recorded in the 

last sections for the gel swollen in a 1% NaCl solution was higher and more visible than 

pressure drops recorded for gel swollen in a 0.05%.  A very small pressure change was 

recorded between the last sections in the 0.05% solution. This small change in pressure 

could be explained by the gel rheology of gels swollen in different NaCl concentrations. 

The gel swollen in the 1% solution was stronger than the gel swollen in 0.05%. Thus, the 

strong PPG needed larger driving forces to push it along the sand packs than the weak gel 

needed. Also the monitored gel production at effluent showed that gel swollen in 0.05% 

solution broken into very small tiny pieces less than gel swollen in 1% solution. As a 

result, small change in pressure during PPG propagated along the sand packs was noticed 

for gel swollen in lower brine concentration.  
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Figure 7.12—The gel injection pressure of the PPG swollen in a 1% NaCl. 

 

 

Figure 7.13—The gel injection pressure of the PPG swollen in a 0.05% NaCl. 
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7.6.1.3.1. Effect of brine concentrations on injection pressure. The injection  

pressures measured at the sand face for gels swollen in 0.05 and 1% NaCl solutions are 

plotted in Figure 7.14. The injection pressure measured for the gel swollen in 1% was 

twice as high as that swollen in 0.05%. This finding indicates that gels swollen in a small 

NaCl brine concentration have better injectivity than gels swollen in a large brine 

concentrations. Results also show that less gel pore volume was required to reach 

injection stable pressure for gel swollen in low brine concentration than gel swollen in 

high brine concentration. Approximately 5 PV was used for gels swollen in 0.05% while 

approximately greater than 15 PV was used for gel swollen in 1%.  

 

 

Figure 7.14—Brine concentration effect on sand face injection pressure. 
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7.6.1.3.2. Effect of injection flow rates. The PPG injection pressure 

 measurements at different flow rates for the two brine concentrations are plotted in the 

Figure 7.15. Stable pressures were obtained for each injection flow rate. The injection 

pressure increased as the injection flow rate increased. This increase was significant and 

obvious at the early injection flow rates. It was less significant when the injection flow 

rates exceeded 4 ml/min. Injection pressures for gels swollen in high brine concentrations 

were greater than gels swollen in low brine concentrations for all of the injection flow 

rates. The power law equation was used to fit the injection pressure measurement as a 

function of flow rate. A very good fit was obtained for both brine concentrations. 

 

 

Figure 7.15—The effect of the injection flow rate on the PPG injection pressure. 
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7.6.1.4. Effect of particle size. Two particle sizes of PPGs were used to 

 investigate the effect of particle size on PPG injection pressure behavior. The first 

particle size was 75 microns before swollen; the second was 150 microns before swollen.  

Both gel sizes were swollen in the same NaCl concentration (1%) and injected into the 

same sand pack permeability (26.5 Darcy). Two gel particle sizes were injected at the 

same injection flow rate (2 ml/min) as illustrated in Figures 7.16 and 7.17. The PPG was 

injected until produced at effluent and the pressure became stable at each sand pack 

section.  

The injection pressure rose sharply as the injection pore volume increased. It 

continued to fluctuate, finally becoming stable after it began to produce effluent. The 

injection pressures measured at the sand face for 150 micron size was much greater than 

that for the PPG 75 micron size. The injection pressures became stable at approximately 

2500 psi for the former and approximately 1600 psi for the latter. The larger particle size 

required a larger injection pore volume than did the smaller particle size before it could 

enter the production side. PPG with larger particle size required approximately twice 

injection pore volume greater than it required for small particle size. The PPG that was 

150 microns used approximately 34 PV of injection volume. The PPG that was 75 

microns required a smaller injection pore volume (17 PV). A large injection pressure 

drop occurred at the sand face for both particle sizes (as compared to the last sections of 

the sand pack). The pressure drop change along the sand pack when small particle sizes 

were used was greater than the pressure change along the sand pack when larger particle 

sizes were used.  
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The results gathered also indicated that the pressure drop in the last sand pack 

sections changed little when large particle size were used. This insignificant change in the 

last sections was attributed to the gel’s size. The 150 microns needed a substantial 

injection pressure at the sand face to enable PPG propagation through the sand pack. This 

high injection pressure caused PPG to break into small pieces. As result, a small change 

in pressure drop occurred along the sand pack. Additionally, large entrapment of PPG at 

the sand face allowed only a small amount of PPGs to be transported through the sand 

pack. 

 

 

Figure 7.16—The gel injection pressure for a 75 micron PPG. 
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Figure 7.17—The gel injection pressure for a 150 micron PPG. 
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Figure 7.18—The effect of brine concentration on sand face injection pressure. 
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Figure 7.19—The effect of the injection flow rate on the PPG injection pressure. 

 

 The fitting equations for the pressure injection measurements obtained from the 

power law equation are summarized in Table 7.2. 

 

Table 7.2—Fitting equations for injection pressure as a function of injection flow rate. 
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1 P= 1634.3 q0.3056 0.91 
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R² = 0.9985

100

1000

10000

0.1 1 10

G
e

l 
In

je
c

ti
o

n
 P

re
s

s
u

re
, 
p

s
i

Gel Injection Rate, ml/min

75 micron 150 micron



197 

 

 

7.6.2. PPG Passing Measurement.  Both a threshold pressure and a 

breakthrough pressure were determined for each experiment during the PPG injection 

process. The threshold pressure is the minimum pressure required to initiate PPG 

propagation through sand. The breakthrough pressure is the initial pressure at which 

pressure begins to produce at the outlet. The evaluation of these two pressure is crucial to 

understanding PPG propagation mechanisms and injection performance through Super- K 

sand formations. PPG is not like other solid materials due to its elasticity and 

deformability. The results gathered during this study indicate the PPG injection pressure 

increased during three periods of injection. The injection pressure phases can be 

summarized as follow: the threshold pressure phase, the breakthrough pressure phase, 

and the stable injection pressure phase. These phases are detailed in Table 7.3. 

The pore volume associated with these three pressures was also measured. The 

particle to pore throat ratio (dPPG/dp ) was used to evaluate the passing ratio criteria for the 

PPG injection processes. 

The threshold pressure was significantly affected by the particle pore throat ratio 

and the gel concentration. The threshold pressure was increased significantly as dPPG/dp 

and the PPG concentration increased. Four patterns were observed during the PPG- 

initiated propagation. These patterns were determined according to the threshold pressure 

measurement and the pressure drop between the sand face injection pressure and other 

sections pressure. First pattern, PPG pass pattern and this was observed at low threshold 

pressure measured for permeability of 65.4 Darcy and low gel concentration of 800 ppm. 

Second pattern, PPG broke and pass and this was observed for permeability of 26.5 

Darcy and brine concentration of 0.05%. Third pattern, PPG broke, entrapment, and pass, 
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this pattern similar to the second pattern but a larger accumulation of PPG was observed 

at the sand face before a small portion of PPG transport through sand. PPG broke, 

entrapment, and pass could be concluded from the results gathered from the test that 

employed 150 micron PPGs. The last pattern was PPG plug pattern as shown in Figure 

7.20 where PPG was not able to propagate through sand. The threshold pressure was 

approaching the upper limit of injection pump (>=2500 psi). PPG plug pattern is 

discussed in more details in Section 7.2.6.1. 

 

Table 7.3—A summary of the passing ratio criteria for the PPG injection processes. 

Effects 

Threshold 

pressure, 

 psi 

Volume at 

threshold,  

PV 

Breakthrough 

pressure, 

 psi 

Volume at 

breakthrough, 

PV 

Stable 

pressure, 

psi 

Volume at 

stable 

pressure, PV 

Permeability 

(Darcy) 

26.5 817 3.68 983 7.34 1680 14.07 

65.4 6.7 1.83 26.6 15.17 27.18 17.9 

PPG 

Concentration 

(ppm) 

800 88.6 9.91 184.2 38.02 183.5 40.3 

2000 817 3.68 953 7.34 1680 14.07 

NaCl 

Concentration 

(%) 

0.05 421.7 1.47 666.8 3.94 856 5.01 

1 817 3.68 953 7.34 1680 14.07 

PPG Size 

(micron) 

75 817 3.68 953 7.34 1680 14.07 

150 2646 10.8 2670.9 32.9 2545.4 34.3 

 

The calculated pore volume indicated a smaller PPG volume was required when 

the threshold pressure was small. In contrast, larger PPG volume was required for gel 

concentration effect. The PPG volume injected increased as the PPG concentration 
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decreased. The variation in PPG injection pore volume was created by the PPG retention 

level during the injection process.  

The PPG injection pressure increased as the PPG propagated deeply into the sand 

cores, as indicated by the breakthrough pressure measurements. This data also indicates 

the PPG reached the outlet at a pressure greater than the threshold pressure. The 

breakthrough pressure increased significantly as both dPPG/dp and the PPG concentration 

increased. Most of the results indicate the injection pressure continued increase until it 

became stable at rate higher that was than the breakthrough pressures.  

 A similar experiment were used PPG swollen in 1% brine with a concentration of 

800 ppm but the sand pack model was not saturated with oil. The purpose was to test the 

effect of residual oil saturation on the PPG injection process. Sand pack permeability of 

27 Darcy was prepared for the experiment. Figure 7.20 shows PPG injection pressure 

measured at different sand pack sections as a function of PPG injection pore volume. 

Injection pressure measured at sand face (P1) was increased without any change/response 

in the other sections. More than 20 PV of PPG was injected and still no response in other 

segment. The injection process was stopped when injection pressure approach 2500 psi 

which is upper limit for pump pressure. The sharp linear increased in sand face injection 

pressure imply that gel particles were not able to transport through sand pack cores. This 

kind of patterns indicate that PPG was accumulated in the sand face and only plug sand 

face cores. 
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Figure 7.20—The PPG plug pattern. 
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Despite the clear effect of residual oil saturation on PPG injection for these two 

experiments but more experiments are needed to test other factors and verify the current 

conclusion. 

Table 7.4—Sand permeability 27 Darcy with and without residual oil saturation.   

Sand rock Pattern  Threshold pressure, psi Volume injected at threshold pressure, PV 

With Sor Pass 90 10 

With no Sor Plug — — 

 

7.6.3. Resistance Factor Calculations.  Sand permeability, PPG concentration, 

 brine concentration, and gel size effects on resistance factors are discussed in the 

following sub sections. 

7.6.3.1. Effect of unconsolidated sandstone permeability. The resistance factor 

 (Fr) was determined for permeabilities of 26.5 and 65.4 Darcy; it is plotted in Figure 

7.21 as a function of the injection flow rate. These results indicate that the resistance 

factor decreased as the injection flow rates increased. The decrease in Fr was significant 

at the early injection flow rates. The level of reduction became insignificant, however, 

when the injection flow rates exceeded 4 ml/min. In the permeability of 65.4 Darcy, Fr 

significantly decreased from 361 to 245 when the injection flow rate increased from 1 to 

2 ml/min. It decreased insignificantly from 134 to 113 when the injection flow rates 

increased from 5 to 6 ml/min. These results also indicate the Fr increased as the sand 

permeability decreased. Fr determined for a 26.5 Darcy was substantially greater than the 

Fr determined for a 65.4 Darcy for all of the injection rates. Fr determined for a 

permeability of 26.5 Darcy was 3380 at the same injection rate of 1 ml/min; it was 361 
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for a permeability of 65.4 Darcy. The power law equation as a function of the injection 

flow rates was used to fit the Fr results for both permeabilities.  

 

 

Figure 7.21—Resistance factors for the permeability affect. 
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 The power law equation was used to fit the Fr results for both PPG concentrations. These 

results were fairly fitted as functions of flow rates with a highly accuracy (R2 ). 

 

 

Figure 7.22—The resistance factors for the PPG concentration affect. 
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Thus, gels swollen in a low brine concentration are much weaker and more deformable 

than gels swollen in a high brine concentration. The power law equation as a function of 

the injection flow rates was used to fit the Fr data. 

 

 

Figure 7.23—The resistance factors for the brine concentration affect. 
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The power law equation as a function of flow rates was used to successfully fir 

the Fr results. These equations revel the Fr for both brine concentrations decreased when 

the injection flow rates increased. 

 

 

Figure 7.24—The resistance factors for the gel size affect. 
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1

10

100

1000

10000

0.1 1 10

R
e

s
is

ta
n

c
e

 F
a

c
to

r

Injection Flow Rate, ml/min

75 micron 150 micron



206 

 

 

7.6.3.5. Empirical correlation for resistance factor. The resistance factors 

 shown in Figures 7-21, 7-22, 7-23, and 7-24 have a very good relationship with injection 

flow rates when they were plotted on log-log plots. This relationship was expressed using 

the power law equation and listed in the Table 7.5.  

 

Table 7.5—Empirical correlation for resistance factor. 

Effect Value Fitting Equations R2 

Effect of K K=26.5 Darcy Fr= 3245.8 q-0.78 0.97 

K=65.4 Darcy Fr= 372.95 q-0.628 0.99 

Gel Concentration 800 ppm Fr= 1175.4 q-0.774 0.99 

2000 ppm Fr= 3245.8 q-0.78 0.97 

Brine 

Concentrations 

0.05% NaCl Fr= 932.45 q-0.466 0.98 

1%NaCl Fr= 3245.8 q-0.78 0.97 

Effect of Particle 

Size 

150 micron Fr= 4258.6 q-0.824 0.99 

75 micron Fr= 3245.8 q-0.78 0.97 

   

7.6.4. Preformed Particle Gel Resistance to Water Flow.   Cycles of NaCl 

 concentrations were injected into the sand packs not only to test the PPG’s resistance to 

water flow but also evaluate the pore throats blocking efficiency. A low-to-high injection 

rate procedure was used to inject the water through the sand pack. A stable pressure was 

required for each flow rate. Water was next injected into the sand packs at high-to-low 

injection rate to determine whether or not the gel was washed out of the pore throat as 

result of the increased injection rate. If the injection pressure measured from the repeated 

injection rate process overlapped the previous injection pressure results from the previous 



207 

 

 

injection rates, the gel did not move from the pore throat. The injection cycles stopped 

when the injection pressure did not change with repeated injections cycles. The final 

residual resistance factor (Frrw) to water was calculated at this stage, and the blocking 

degree of PPG to water was determined. 

7.6.4.1. Effect of unconsolidated sandstone permeability. Brine concentration 

with a 1% NaCl was injected at different injection rate to test PPG resistance to water 

flow. Water was injected at seven different flow rates. These injections were made from 

low-to- high (see Figures 7.25 and 7.26) and again from high-to-low. The repeated 

injection rates began at the previous end injection rates and continued until no change in 

injection pressure occurred between repeated cycles. 

In the permeability of 26.5 Darcy (Figure 7.25), water injection processes started 

at flow rate of 1 ml/min. A sharp increase in injection pressure was noticed before it 

declined and fluctuated when injection rate increased. The stable pressure continued to 

fluctuate until an injection rate of 7 ml/min was reached. The injection pressure then 

dropped suddenly. Water injection cycle began again from 7 ml/min. The injection rate 

decreased gradually and the injection’s stable pressure was measured for each flow rate. 

Repeated results revealed a large discrepancy between the first and second injection flow 

rates. The water injection was continued until the fourth water cycle. At this cycle, the 

injection pressure measured at each flow rates matched the injection pressure measured at 

previous water injection. The injection pressure at the forth cycle increased as the 

injection flow rate increased. This increased intend to be less affected by increasing 

injection rate when injection rate exceeded 4 ml/min.  
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The injection pressure continued to increase with the injection flow rate in a 

permeability of 65.4 Darcy (see Figure 7.26). A large difference occurred between the 

injection pressure at the repeated injection flow rate and the injection pressure results 

taken from the first water flooding. A matched pressure reading occurred during the 

fourth water cycle. The injection pressure increased with the injection flow rates at this 

final water flooding stage. 

The water injection pressure for the low permeability (26.5 Darcy) remained 

higher than the injection pressure for high permeability (65.4 Darcy). The pressure 

reduction percentage for both permeabilities due to water injection, however, seemed 

similar to each other. The pressure declined with approximately 80% less than PPG 

injection pressure. 

 

 

Figure 7.25—Water injection pressure for a permeability of 26.5 Darcy. 

 

0

500

1000

1500

2000

2500

0 2 4 6 8

W
a

te
r 

In
je

c
ti

o
n

 P
re

s
s

u
re

, 
p

s
i

Water Injection Flow Rate, ml/min

1st water flood L to H

 2nd water flood H to L

3rd water flood L to H

4th water flood H to L



209 

 

 

 

Figure 7.26—Water injection pressure for a permeability of 65.4 Darcy. 

 

 Residual resistance factors determined for the permeability of 26.5 and 65.4 

Darcy were plotted as shown in Figures 7.27 and 7.28. The Frrw results did not decrease 

systematically with the injection flow rates as a result of the gel washout/diversion’s path 
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Figure 7.27—The residual resistance factor for a permeability of 26.5 Darcy. 

 

 

 

Figure 7.28—The residual resistance factor for a permeability of 65.4 Darcy. 
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7.6.4.2. Effect of gel concentrations. Water was injected into the sand pack after 

the PPG injection process was complete to determine the effect of gel concentration on 

PPG’s resistance to water flow. Water injection flow rate again increased from low-to- 

high and then from high-to-low as it had for the study of permeability effect. The water 

injection stable pressures at the 7 injection flow rates determined for PPG concentrations 

of 800 and 2000 ppm are illustrated in Figures 7.29 and 7.30, respectively.  

A seven cycles of a1% NaCl were injected into a sand pack model in an 800 ppm 

concentration until the injection and repeated measured pressures matched each other. 

The injection pressure increased during the first water cycles, fluctuating at times. The 

injection pressure continued to increase until it reached an injection flow rate of 4 

ml/min, where it declined and then increased again. The second water cycle was 

performed and the injection rate decreased gradually until reaching 1 ml/min. The 

injection pressure measured from a second water injection revealed a considerable 

discrepancies with previously measured pressure. These discrepancies continued to occur 

during the water cycles. They decreased and becoming negligible as additional water 

injection cycle were run. A similar trend was observed for the PPG concentration of 2000 

ppm. The injection pressures measured from different water cycles did not approach to 

each other until the fourth water cycle was performed.   

The injection pressure measured for PPGs of 2000 ppm was maintained higher 

than the injection pressure measured for PPGs of 800 ppm after the water injection cycles 

ended. The injection pressure for PPGs of 2000 ppm was 314 psi at the same injection 

rate (7 ml/min); the injection pressure for PPGs of 800 ppm was 44 psi. 
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 Fewer injection water cycles were performed, however, to reach final pressures 

for PPGs of 2000 ppm than it were performed for PPGs of 800 ppm. Four injection water 

cycles were injected for the former and seven for the latter. 

 

 

Figure 7.29—The water injection pressure for a PPG concentration of 800 ppm. 
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Figure 7.30—The water injection pressure for a PPG concentration of 2000 ppm.  
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The Frrw determined for a PPG concentration of 2000 ppm was 75 at the injection flow 

of 7 ml/min; it was 40 for 800 ppm. 

 

 

Figure 7.31—The residual resistance factor for a PPG concentration of 800 ppm. 
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Figure 7.32—The residual resistance factor for a PPG concentration of 2000 ppm. 
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 Equivalently, injection pressure measured for 1% NaCl was increased, fluctuated, 

and finally overlapped with previous injection pressures after additional water cycles 

were injected.  

The injection pressures measured for a brine concentration of 1% NaCl were 

greater than the injection pressures measured for brine a concentration of 0.05% NaCl at 

all of the injection flow rates. The injection pressure recorded for a 0.05% NaCl was 167 

psi at the injection rate of 7 ml/min; it was 315 for 1% NaCl.  

In contrast, larger injection water cycles were required to achieve stability for a 

0.05% NaCl than were required for a 1% NaCl.  Six water cycles of 0.05% NaCl were 

injected into sand pack model while only four cycles of 1% NaCl were injected. 

 

 

Figure 7.33—The water injection pressure for a brine concentration of 0.05%. 
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Figure 7.34—The water injection pressure for a brine concentration of 1%. 
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Figure 7.35—The residual resistance factor for a brine concentration of 0.05%. 

 

 

Figure 7.36—The residual resistance factor d for a brine concentration of 1%. 
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7.6.4.4. Effect of particle size.  Two particle sizes (150 and 75 microns) were 

 used to determine the effect of particle size in resisting the water flow through high 

permeability sand (see Figure 7.37 and 7.38, respectively). The water injection pressure 

for the water cycles increased and fluctuated during the water injection rate. The water 

injection pressure recorded for the 150 micron was substantially greater than the water 

injection pressure recorded for the 75 micron at all  injection rate. The injection pressure 

recorded for the 150 micron was 2089 psi at a flow rate of 7 ml/min. The injection 

pressure recorded for the 75 micron at this flow rate was 314 psi. These findings revealed 

that the water flow through a larger particle was more restricted than the flow through a 

smaller particle in the same sand permeability sand. 

 

 

Figure 7.37—The water injection pressure for a 150 micron PPG. 
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Figure 7.38—The water injection pressure for 75 micron PPG. 
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however, was 74. The power law equation was used to fit the Frrw determined at the last 

water cycle. 

 

Figure 7.39—The residual resistance factor for a 150 micron PPG. 

 

 

Figure 7.40—The residual resistance factor for a 75 micron PPG. 
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7.6.5. Residual Resistance Factor Correlations. The residual resistance factors 

 shown in Figures 7-27, 7-28, 7-31, 7-35, and 7-39 have a very good relationship with 

injection flow rates when they plotted on log-log plots. This relationship was expressed 

using the power law equation as listed in the Table 7.6. Equation shown in the Table were 

fitted for the last water injection cycle. 

 

Table 7.6—Fitting equation for residual resistance factor as a function of flow rate. 

Effect Value Fitting Equations R2 

Effect of K K=26.5 Darcy Frrw= 326.16 q-0.803 0.96 

K=65.4 Darcy Frrw= 42.165 q-0.183 0.98 

Gel concentration 800 ppm Frrw= 61.847 q-0.191 0.91 

2000 ppm Frrw= 326.16 q-0.803 0.96 

Brine concentrations 0.05% NaCl Frrw= 86.024 q-0.336 0.97 

1%NaCl Frrw= 326.16 q-0.803 0.96 

Effect of particle 

size 

150 micron Frrw= 953.89 q-0.443 0.98 

75 micron Frrw= 326.16 q-0.803 0.96 

 

7.6.6. PPG Blocking to Water Flow.  The Frrw was defined early as the ratio of  

water phase permeability before and after particle gel treatment. Blocking efficiency to 

water flow refers to the percentage of permeability reduction. The stabilized water 

injection pressures measured at injection flow rate of 2 ml/min were used to calculate 

Frrw and blocking efficiency. 

 Table 7.7 shows the blocking efficacy to water flow determined for the effects of 

sand permeability, gel concentration, brine concentration, and particle size. PPG blocking 
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to water flow was too high for all the effects. It reached 90% and above, which indicates 

that PPG can be used efficiently to plug the large pore throat sizes/channels exist within 

the super-k permeability features. This high unvaried percentage of blocking was reached 

because sufficient PPG volume was injected into the sand pack model. 

 

Table 7.7—A blocking efficiency to water flow determined at 2 ml/min. 

Effect 

Water Injection 

Pressure  before 

PPG (psi) 

PPG Injection 

Pressure (psi) 

Water Injection 

Pressure after 

PPG (psi) 

FRRW 

PPG 

Blocking 

(%) 

Effect of 

Permeability 

26.5 Darcy 1.1 1680 197.5 
179.5455 99.44304 

65.4 Darcy 0.15 27.1 1.6 
10.66667 90.625 

Gel 

Concentration 

800 ppm 0.4 183.5 21 
52.5 98.09524 

2000 ppm 1.1 1680 197.5 
179.5455 99.44304 

Brine 

Concentrations 

0.05% NaCl 1.9 856 52.2 
27.47368 96.36015 

1%NaCl 1.1 1680 197.5 
179.5455 99.44304 

Effect of 

Particle Size 

75 micron 1.1 1680 197.5 
179.5455 99.44304 

150 micron 1.8 2545.4 1272.1 
706.7222 99.8585 

 

7.6.7. Oil Recovery and Water Cut Measurements. The effect of PPG on 

 increasing oil recovery and decreasing water production was discussed in the following 

subsections. 

7.6.7.1. Effect of unconsolidated sandstone permeability. Two different ranges  

of sand pack permeability were used to determine the effect of sand permeability on oil 

recovery and water cut measurements (see Figures 7.41, 7.42, 7.43, and 7.44). Water was 

flooded at an injection flow rate of 2 ml/min into the sand pack’s permeability. The oil 
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recovery increased and reached stability after 1% NaCl was injected approximately 5 PV. 

of The oil recovery increased as the permeability increased during the first water 

flooding. The oil recovery reached approximately 70% for a permeability of 26.5 Darcy 

and approximately 80% for a permeability of 65.4 Darcy. A sharp increase occurred in 

the water cut measurement during the first water flooding.  The water cut fluctuated with 

a range of 90% before it became stable at approximately 99% at the end of the first water 

flooding process. 

 The PPG that was swollen in 1% NaCl with a concentration of 2000 ppm was 

injected at the same flow rate (2 ml/min). A considerable amount of oil increased when 

PPG’s were being injected. The oil recovery increased above 20% incrementally for both 

permeabilities during the PPG injection. The oil recovery increased by 24% after 15 PV 

of PPG injection in permeability of 26.5 Darcy. The oil recovery increased by 15% after 

18 PV PPG injection in permeability of 65.9 Darcy. The total oil recovery after the PPG 

injection was complete was above 95% for both permeabilities. The water cut decreased 

during the PPG injection, finally reaching 80%. This reduction in water cut increased the 

amount of oil produced from the sand pack models.  

A second water flooding was performed after the PPG treatment was complete to 

determine whether or not any oil could be recovered from the sand pack. Approximately 

5 PV of brine was injected into the sand packs. A negligible amount of oil was produced 

during this flooding. The total oil recovery obtained before, during, and after PPG 

treatment reached above 90% an increase of approximately 20% of that recovered during 

the PPG treatment. 
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Figure 7.41—Oil recovery for a permeability of 26.5 Darcy. 

 

 

Figure 7.42—Water cut for a permeability of 26.5 Darcy. 
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Figure 7.43—Oil recovery for a permeability of 65.4 Darcy. 

 

 

Figure 7.44—Water cut for a permeability of 65.4 Darcy. 
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7.6.7.2. Effect of gel concentrations.  Two different ranges of PPG  

concentrations were used to test the effect of gel concentration on oil recovery and water 

cut measurements (Figures 7.45, 7.46, 7.47, and 7.48).  Both sand packs used in this 

evaluation had the same average permeability with approximately 26.5 Darcy. Each sand 

pack was first flooded with 1% NaCl at an injection flow rate of 2 ml/min. The oil 

recovery increased substantially at the early injection pore volume before it became 

stable at the end of the water flooding process. Oil recovery reached approximately 70% 

after approximately 5 PV of water injection. The water cut increased sharply to reach 

approximately 99% during the end of this water flooding process.  

The PPGs that were swollen in 1% NaCl with concentrations of 800 and 2000 

ppm were injected into the sand packs after the water flooding was complete. The PPG 

were then injected with injection flow rates of 2 ml/min until the gel produced at effluent. 

The oil recovery during this treatment increased by approximately 25% for both 

concentrations. The oil recovery determined for both PPGs concentration were almost 

equal. The PPG injection pore volume, however, were varied. The oil recovery increased 

by 28% in 800 ppm after 42 PV of PPG were injected. The oil recovery increased by 24% 

in 2000 ppm after 15 PV of PPG were injected. This similarity in oil recovery indicates 

that different PPG concentrations can achieve same the oil recovery though different 

injection pore volumes are required. The water cut during the PPG injection decreased, 

reaching 80% before it increased again to 90% at the end of the PPG injection.  

Water was recycled again at the same injection flow rate. Approximately 3 to 5 

pore volumes of water were injected again though a very small amount of oil was 

obtained. The final oil obtained from the two sand pack models reached a similar 
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recovery (more than 90%). A larger PPG volume was, however, required for PPGs with 

smaller concentrations. 

 

Figure 7.45—Oil recovery for a PPG concentration of 800 ppm.  

 

 

Figure 7.46—Water cut for a PPG concentration of 800 ppm. 
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Figure 7.47—Oil recovery for a PPG concentration of 2000 ppm.  

 

 

Figure 7.48—Water cut for a PPG concentration of 2000 ppm. 
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7.6.7.3. Effect of brine concentration. Two different ranges of brine 

 concentration were selected for the experiments. Brine concentrations of a 0.05% and a 

1% NaCl were used to prepare swollen PPGs for injection purposes. The brine was 

injected through the sand packs had a permeability of 26.5 Darcy. The brine was injected 

at an injection flow rate of 2 ml/min into the oil saturated sand pack. The oil recovery 

increased during the water flooding process to approximately 70% (see Figures 7.49 and 

7.51). The water cut increased significantly reaching approximately 99% at the end of the 

water flooding mechanism (see Figures 7.50 and 7.52). The water injection continued 

until no oil was produced from effluent. A approximately 4 PV of 0.05% and 4 PV of 1% 

were injected into the sand packs. The PPGs that were swollen in 0.05% and 1% were 

injected into sand packs at the same injection rate (2 ml/min). The oil recovery increased 

by approximately 20% during the injection process.  This increased, however, required 

different PPG injection pore volume. The PPGs that were swollen in a low brine 

concentration required less injection pore volume than did the PPGs swollen in high brine 

concentration to achieve the same incremental oil recovery factors. An approximately 6 

PV of PPGs swollen in 0.05% increased oil recovery by 22%. Approximately 15 PV of 

PPGs swollen in 1% increased oil recovery by 24%. Water cut during the injection 

swollen PPGs decreased to around 80% and assist to increase oil recovery.  

The sand packs were flushed again with brine to determine whether or not any oil 

recovery could be recovered. A small amount of oil was produced during the second 

water flooding cycle. The water cut continued to increase at a high percentage after a 

high percentage of oil was recovered during the PPG treatment. The final amount of oil 

recovered after the gel treatment was above 90%.  
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Figure 

7.49—Oil recovery for a PPG swollen in 0.05%.  

 

 

Figure 7.50—Water cut for a PPG swollen in 0.05%.  
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Figure 7.51—Oil recovery for a PPG swollen in 1 %.  

 

 

Figure 7.52—Water cut for a PPG swollen in 1 %.  
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7.6.7.4. Effect of particle size. Two different sizes of PPG were used to study the 

 effect of particle size on the oil recovery and water cut measurements (see Figures 7.53, 

7.54, 7.55, and 7.56). These PPGs were swollen in a 1 % NaCl concentration and injected 

through a sand pack permeability of 26.5 Darcy. Approximately 70% of oil recovered 

during the first water flooding. The water cut increased sharply as the water injection 

increased, reaching approximately 99% at the end of the water injection processes.  

Both 75 and 150 micron PPG were injected at 2 ml/min through the sand packs. A 

considerable amount of oil was produced during these injections. The oil recovered when 

the 75 micron PPGs were injected increased by approximately 25%. It increased by 28% 

when 150 micron PPGs were injected. This a similar oil recovery required a different 

PPG injection pore volume. Large PPG sizes required a higher injection pore volume 

than did small PPG sizes. A approximately 35 PV of 150 micron PPG s were injected to 

recover 28%. Approximately 15 PV of 75 micron PPGs were injected to recover 25%. 

The water cut decreased during the PPGs injection to approximately 80%.  

Water flooding was again conducted after the PPG injection to determine whether 

or not any oil could be produced. A negligible amount of oil was produced during this 

injection process. Water cut increased again during the second water flooding reaching 

approximately 99%. The final oil recovery after the gel treatment reached above 90%. A 

larger amount of PPGs were required for large particle size than did for smaller particles 

size.  
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Figure 7.53—Oil recovery for a PPG size of 75 microns.  

 

 

Figure 7.54—Water cut for a PPG size of 75 microns. 
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Figure 7.55—Oil recovery for a PPG size of 150 microns.  

 

 

Figure 7.56—Water cut for PPG size of 150 microns.  
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7.6.8. Preformed Particle Gel Resistance to Water and Oil Flow. The sand  

pack model was saturated again with oil after the PPG injection. The water was injected 

next to determine the effect of PPG on oil and water flow. The results obtained for the 

effect studies of permeability, PPG concentration, brine concentration, and gel size are 

presented in the following subsections. 

7.6.8.1. Effect of unconsolidated sandstone permeability.  Two different ranges 

 of permeability were used to investigate PPG’s ability to reduce the permeability of 

water more than the permeability of oil. The residual resistance factor to water (Frrw) and 

the residual resistance factor to oil (Frro) were each used to determine the PPG’s effect 

on blocking efficiency to water and oil flow, respectively.  The Frrw is compared to Frro 

as a function of the fluid injection flow rate in Figure 7.56. Multiple cycles of water were 

injected to create Frrw1 and Frrw 2. The Frrw1 is a measurement of the blocking 

efficiency after the gel treatment was complete. The Frrw2 is measurement of the 

blocking efficiency after the gel treatment was complete and the sand pack was saturated 

again with oil. 

Both the Frrw and the Frro decreased as the injection flow rates increased. They 

decreased substantially at the early injection flow rates and became independent when the 

injection rates increased. The Frrw was much greater than the Frro during all of the 

injection flow rates. This finding indicate that PPG reduce the water permeability much 

higher than the oil permeability. The Frrw1 was 560 and Frro was 26 at injection flow 

rate of 1 ml/min.  A similar mechanism for a permeability of 65.4 Darcy in which the 

Frrw was much larger than the Frro during all the injection flow rates as it illustrated in 

Figure 7.58.  
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Both the Frrw and the Frro were plotted as a function of injection flow rates for 

both permeabilities (see Figures 7.59 and 7.60, respectively). The low permeability had a 

higher Frrw and a higher Frro than did a high permeability. The Frrw determined for a 

permeability of 26.5 Darcy was 560 at injection rate of 1ml/min. The Frrw determined for 

a permeability of 65.4 was 17 at same injection rate. The Frro determined for a 

permeability of 26.5 Darcy was 26 at injection rate of 1ml/min while the Frro determined 

for a permeability of 65.4 was 6. 

 

 

Figure 7.57—Frrw and Frro at a permeability of 26.5 Darcy. 
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Figure 7.58— Frrw and Frro at a permeability of 65.4 Darcy. 

 

 

Figure 7.59—Compare residual resistance factor to water at a permeability effect. 
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Figure 7.60—Compare residual resistance factor to oil at permeability effect. 
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The Frrw is compared to the Frro as a function of the PPG concentration in Figure 

7.63 and 7.64. These results indicate that both the Frrw and the Frro obtained for a high 

concentration PPG were greater than the Frrw and the Frro obtained for a low 

concentration PPG. At injection rate of 1 ml/min, Frrw determined for PPG concentration 

of 2000 ppm was 560. While, the Frrw determined for PPG concentration of 800 ppm 

was 70 at same injection rate. Additionally, Frro determined for a PPG concentration of 

2000 ppm was 26 at injection rate of 1 ml/min. While, the Frro determined for a PPG 

concentration of 800 ppm was 18 at same injection rate. These results also reveal that the 

PPG concentration did not have a significant impact on the Frro (as compared to the 

Frrw). In contrast to the permeability effect, the Frro was less influenced by change in the 

PPG concentration.  

 

 

Figure 7.61—Residual resistance factor to water and oil at 2000 ppm PPG. 
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Figure 7.62—Residual resistance factor to water and oil at 800 ppm PPG.  

 

 

Figure 7.63—Residual resistance factor to water at PPG concentration effect. 
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Figure 7.64—Residual resistance factor to oil at PPG concentration effect. 
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The Frrw is compared to the Frro as a function of the brine concentration in 

Figures 7.67 and 7.68. These results reveal both the Frrw and the Frro obtained for a high 

brine concentration were greater than the Frrw and the Frro obtained for a low brine 

concentration. The Frrw determined for a gel swollen in brine concentration of 1% NaCl 

was 560 at injection rate of 1 ml/min; the Frrw determined for a brine concentration of 

0.05% was 69 at this flow arte. The Frro determined for a gel swollen in brine 

concentration of 1% NaCl was 26 at injection rate of 1 ml/min. The Frro determined for 

brine concentration of 0.05% was 14 at this flow arte. These results also reveal that the 

brine concentration had a great impact on both the Frro and the Frrw than did either the 

permeability or the gel concentrations.  

 

 

Figure 7.65— Frrw and Frro for a brine concentration of 0.05%.  
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Figure 7.66— Frrw and Frro for a brine concentration of 1% . 

 

 

Figure 7.67—The residual resistance factor to water for a brine concentration effect. 
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Figure 7.68—The residual resistance factor to oil for a brine concentration effect. 
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previous effects.  Both the Frrw and the Frro determined for 75 microns differed little 

from than the Frrw and the Frro determined 150 microns.  

 

Figure 7.69—The residual resistance factor to water and oil for 75 microns. 

 

Figure 7.70—The residual resistance factor to water and oil for 150 microns. 
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Figure 7.71—The residual resistance factor to water for a PPG size effect. 

 

 

Figure 7.72—The residual resistance factor to oil for a PPG size effect. 
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7.7. CONCLUSION  

 A number of factors that affect PPG transport and resistance to water/oil flow 

through super-K sand permeability were intensively examined in this section. The effect 

of PPG to increase oil recovery and reduce water cut was also investigated.  The 

following conclusions can be drawn from the research: 

• In field applications, it is very common that operators often concern about particle 

size for better injection performance. Contrary to the conventional concepts in 

PPGs treatment practices, we found that PPGs injection was more sensitive to 

the PPGs strength than PPGs size.  

• The results show fully swollen gel particles have better injectivity than partially 

swollen particles with larger diameter size; particle strength is more dominant 

particle movement than particle size. Injection pressure increased as the PPGs 

concentration, water salinity, and gel particle size increased. 

•  Large PPG injection pore volume was required to reach effluent when used high 

water salinity, big particle sizes, and low PPGs concentration. 

•  PPGs transport through super K permeability exhibited four patterns based on 

both the visual analyses and the threshold pressure gradient measurements as 

follows: pass; broke and pass; broke, entrapment, and pass; and broke, 

entrapment, and plug.  

• After the PPGs injection process completed, cycles of saline water were injected 

into sand pack to test PPGs resistance to water flow. PPGs blocking efficiency to 

water flow were increased as the PPGs strength, PPGs size, and PPGs 

concentration increased.  
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• Large oil recovery incremental, usually reached around 20%, noticed during the 

PPGs injection treatment. Oil recovery during PPGs injection was varied and 

based on PPGs injection pore volume, PPGs concentration, and PPGs strength. 

Oil recovery increased as the PPGs slug volume and PPGs concentration 

increased but it was less sensitive to the increase in gel strength and particle size.   

• After the PPGs injection process completed, cycles of saline water and oil were 

injected into sand pack to test PPGs resistance to water and oil flow. PPGs 

reduced the permeability to water much greater than did for the permeability to 

oil during all the injection flow rates. 

 

 

 

 

 

 

 

 

 

 

 



250 

 

 

8. GEL PROPAGATION AFFECT ON NON-CROSS FLOW HETEOGENITY 

RESERVOIR  

  

8.1. INTRODUCTION 

 Preformed particle gel were used as a diversion agent to correct permeability 

heterogeneity present in mature oil fields. The factors affecting the PPG’s ability to 

increase oil recovery and decrease water production in non-cross flow heterogeneity 

reservoirs are discussed in the following section.  

 

8.2. OBJECTIVES AND TECHNICAL CONTRIBUTIONS 

 This work was conducted in an attempt to study the behavior of a micron-size 

PPGs propagation through both high and low permeabilities by evaluating the following: 

• Study the effect of permeability contrast ratio on the oil recovery factor before, 

during, and after PPG treatment.  

• Determine the injection profile change after the gel treatment for both low and 

high permeabilities. 

• Compare the oil recovery and water cut results obtained during the initial water 

flooding with results obtained after PPG treatment.  

• Determine the oil produced from low permeability/un-swept zones after PPG 

treatments are introduce. 

• Determine the blocking efficiency to water flow after the heterogeneity sand pack 

model is treated with PPGs. 
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• The ratio between the high permeability and low permeability zones is an 

important factor to be considered during PPG treatment. Understanding this factor 

helps improve a PPG’s ability to increase the vertical sweep efficiency from un-

swept low permeability zones.  

8.3. EXPERIMENTAL DESCRIPTION 

The following are descriptions of the materials and equipments which used to 

conduct the heterogeneity experiments. 

8.3.1. Preformed Particle Gel. A superabsorbent polymer was used as a 

 PPG to conduct these experiments. Dry particles with a mesh size of 170-200 (90-75 

microns) were swollen in a 1% Sodium Chloride (NaCl) brine concentration. Gel 

concentrations of 2000 ppm was used. 

8.3.2. Brine Concentration and Oil Viscosity. A 1 wt% NaCl solution was used 

 for brine flooding and to prepare swollen PPGs. Heavy oil with a viscosity 195 cp at 70 

°F was used to saturate the sand pack model. 

8.3.3. Magnetic Stirring Vessel. An accumulator with a 1200 ml capacity and a 

 maximum adjusted impeller speed of 1800 r/min was used to inject PPGs into a high 

permeability sand pack model. The impeller was placed at the bottom of the accumulator 

to keep the PPG dispersed in brine before it was injected into the model. 

8.3.4. Sand Packs.  Three sizes of silica sand were used to obtain different  

permeability contrasts between the models. Mesh sizes of 18-20, 50-60, and 100-120 

were used to obtain low and high permeability sand packs. Silica sand was packed into 

two separate tubes that have the same length and area. The silica sand’s size distribution 

as determined through sieving test is listed in Table 8.1. 
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Table 8.1—Size distribution of silica sand. 

 

 

 

 

 

8.4. EXPERIMENTAL SETUP 

The experimental setup used in this experiment is depicted in Figure 8.1. Two the 

same dimensions tubes with (20 cm in length and 2.7 cm in diameter) were used to 

contain the silica sand pack.  Two horizontal (parallel in position tubes) were packed with 

different sand grains to emulate the permeability contrast present in reservoirs. A syringe 

pump was used to inject suspended PPG, brine, and oil from accumulators into the sand 

pack models. Two pressure transducers were mounted in front of each sand pack model 

to acquire the injection pressure change during the brine flooding and gel treatment 

processes. The test tubes was kept at the outlets of each sand pack to collect the volume 

of the effluents. The collected volume was used to determine gel penetration into each 

sand packs permeability.  

 

 

 

 

 

 

Sieves (mesh)  Size (microns) 

18-20  1000-850 

50-60  300-250 

100-120  150-125 



253 

 

 

 

Figure 8.1—A schematic diagram of the non-cross flow experiment apparatus. 

 

8.5. EXPERIMENTAL PROCEDURES  

Parallel sand pack tests were used to simulate the non-cross flow heterogeneities 

present in oil reservoirs. The ratio between the high permeability and low permeability 

layers is an important factor to be considered during PPG treatment. Three experiments 

were conducted with varying layer permeability contrast ratio as a part of this parallel 

heterogeneity study. The permeability contrast ratio was between the high permeability 

and low permeability zones as follows: 44, 20, and 4. 

The high permeability sand pack was kept nearly constant for all the three 

experiments. The low permeability sand pack, however, was varied. The rationale of 

keeping low permeability varied was to investigate the PPG’s blocking efficiency in a 

high permeability zone at different permeability ranges. This study was investigated by 

evaluating the injection pressure, oil recovery factors, water cut, and injection profile 

obtained for each permeability ratio contrast.  
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The following subsections are the procedures used to carry out the experiments. 

They are briefly explained as follow:  

8.5.1. Preparing and Saturating Sand Pack Models. A vibrator machine 

 Was used to prepare the different sizes of silica sand so that the desire sand pack 

permeability could be obtained. A screen filter was fastened at the end each tube to 

prevent migrating sand during the flooding processes. Sand grains were added and 

vibration was used until the entire tubes was filled. The sand pack models were then 

vacuumed for at least 6 hr. The sand packs was fully saturated next with 1% NaCl to 

determine pore volume, porosity, and permeability. The sand pack models were each 

continued flushed with brine at different injection flow rates to ensure the model was 

100% saturated with brine. 

Heavy oil viscosity was injected from the accumulator into each sand pack at a 

rate of 1 ml/min. The oil was injected until no water was produced and the injection 

pressure became stable. The brine volume produced was recorded to determine the oil in 

place and the irreducible water saturation for each sand pack model. 

 The permeability, pore volume, porosity, irreducible water saturation, and original 

oil in place obtained for each experiment are summarized in Table 8.2. 
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Table 8.2—The sand pack properties for different permeability contrast ratio. 

Case # 
Permeability 

Contrast Ratio 

Permeability 

(Darcy) 

Pore Volume 

(gm) 

Porosity 

(%) 

Swi 

(%) 

OIIP 

(cc) 

1 44 
High 22.1 41.87 34.84 26 30.8 

Low 0.5 24.9 20.72 12 21.8 

2 20 
High 22.4 32.60 30.72 27 21.93 

Low 1.1 35.40 33.35 18 32.60 

3 4 
High 21.7 35.7 33.64 25 26.70 

Low 6.2 39.60 37.31 8 36.60 

 

Finally, the sand pack permeabilities (low and high) were connected to each other 

(as illustrated in Figure.8.1) and the first water flooding process was began. 

8.5.2. First Water Flooding. A 1% NaCl was injected into both low and high  

permeabilities at a rate of 1 ml/min to simulate secondary oil recovery conditions. Oil and 

water productions from each permeability was recorded separately for every 3 ml,. The 

brine was injected into the sand packs until no oil was produced and the brine injection 

pressure became stable. Both oil recovery and water cut were determined for the low and 

the high sand pack permeabilities during the first water flooding. 

  The PPGs that had been swollen in 1% NaCl with a concentration of 2000 ppm 

were injected into the sand packs at a rate of 1 ml/min after the first water flooding 

processes was complete. The volumes of oil and water production at outlet were 

monitored during an injection 0.5 PV of PPG. The gel injection pressure was also 

recorded to determine the gel propagation’s response into low and high permeabilities.  
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8.5.3. Second Water Flooding. A 1% NaCl was injected again at same injection  

rate after PPG treatment to test the gel blocking efficiency for high permeability.  The 

PPG performance as a diverting agent to improve oil recovery from low permeability 

(un-swept zones) was also determined. Brine was also injected until no oil was produced 

at the outlets and the injection pressure became stable.  

The above procedures were all repeated for the three experiments conducted. The 

oil recovery factor, the water cut, and the injection profile were each determined for the 

low and the high permeability sand pack models. 

 

8.6. RESULTS AND ANALYSIS 

The injection pressure, the oil recovery, the water cut, and the injection profile 

results obtained for the three permeability contrast ratios are discussed systematically as 

follow. 

8.6.1. Injection Pressure Measurements. The injection pressures of the first 

 water flooding, PPG injection, and second water flooding of the three layer permeability 

contrast ratios are plotted in Figures 8.2, 8.3, and 8.4. All three injection pressures 

changed in similar manner. These changes are discussed in the following subsections. 

8.6.1.1. First water flooding. The injection pressure’s drop was slightly different  

At each low and high permeability. These differences were related to the differences in 

permeability between the layers. Water was injected until the injection pressure became 

stable. The pressure became stable for both k when approximately 2 PV of brine was 

injected.  Most of the water injection pressure for the three permeability contrasts became 

stable at approximately 0.5 psi. 
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8.6.1.2. PPG treatment. The PPG injection pressure rose significantly more than  

 the previous injection pressure during water flooding. It increased sharply in both the 

low and the high permeability layers. PPG injection pressure was less obvious in low 

permeability layers than in high permeability. This finding indicates that a considerable 

amount of PPGs flew into high permeability layers and a small amount of gel particles 

flew into low permeability layers. The PPG injection pressure for most permeability 

contrasts were above 5 psi (approximately 10 times more than the pressure recorded 

during the first water flooding). The PPG injection pressure did not became stable 

because only 0.5 PV of PPG was injected. 

8.6.1.3. Second water flooding. Water was injected again after the PPG was 

 injected to determine the effect of PPG on the injection pressure measured at the low and 

high permeability. The blocking efficacy of PPG to water flow in low and high 

permeability layers were also obtained. The water injection pressure began to decline, 

becoming stable after approximately 0.5 PV water was injected. The second water 

injection pressure was compared to the first water flooding. This injection pressure was 

still much larger for all of the water injection pore volumes. The injection pressure 

increased between 5 to 20 times more than the injection pressure recorded before PPG 

treatment. The injection pressure for both the low and the high permeabilities changed 

little during the water flooding process. The first case of heterogeneity layer, however, 

the injection pressure for the high permeability was slightly larger than the low 

permeability layer.  
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8.6.1.4. Effect of permeability contrast ratio. A comparison between the 

 injection pressures changes for the different permeability contrast layers as a function of 

the injection pore volume is illustrated in Figure 8.5.  The injection pressure drop in all of 

the tested permeability contrast layers began nearly at the same range each time. The 

injection pressure rose sharply when 0.5 PV of PPG was injected. The injection pressure 

for case # 3 was much lower than the pressure recorded for both cases # 1 and # 2. This 

trend occurred because too much PPG volume suspension was transported into the low 

permeability packs (case #3) producing a higher degree of blocking in these zones. The 

permeability contrast in case # 3 also had less heterogeneity than did the other two cases, 

creating more uniform brine distribution flew into the low and high permeability layers.  

 

 

Figure 8.2—Injection pressure measurement for case # 1. 
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Figure 8.3—Injection pressure measurement for case # 2. 

 

Figure 8.4—Injection pressure measurement for case # 3. 
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Figure 8.5—The injection pressures for the different permeability contrast ratios. 

8.6.2. Water Cut Measurements.  The water cut curves of the first water 

 flooding, the PPG injection, and the second water flooding of the three layer 

permeability contrasts are plotted in Figures 8.6, 8.7, and 8.8. All five water cut curves 

changed in a similar manner. 

8.6.2.1. First water flooding.  Large differences in the water cut were observed  

between the low and high permeability packs during the first water flooding. This 

flooding was primarily transported through high permeability layers. The water cut in the 

high permeability zones was higher than 90%. The water cut in the low permeability was 

between a negligible percentage and 0% (as indicated by water cut curves). This finding 

typically happens to water flooding in heterogeneous reservoirs when large areas of low 

permeability zones are untouched during the secondary recovery mechanisms. 
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8.6.2.2. PPG treatment. The water cut in low permeability layers began to 

 increase when PPG were injected into the heterogeneity model. The water cut in the low 

permeability zones rose significantly more than during the previous water flooding. The 

fractional flow reached 100% in case #1 and between 10% and 40% in cases # 2 and # 3. 

The total water cut declined at the end of the PPG injection in both the low and the high 

permeability layers as illustrated in Figures 8.6, 8.7, and 8.8. The water cut decreased to 

below 50% for all of the tested permeability contrasts. This decline in water cut indicates 

that PPGs can effectively block the water channels and divert the water floods to displace 

oil from low permeability layers. 

8.6.2.3. Second water flooding. The water cut began to decrease in the high 

permeability layers and increase in the low permeability layers when the water flooding 

was resumed. The water cut in the low permeability layers fluctuated during the first few 

pore volumes. It fluctuated between approximately 70% and 80% in the beginning. It 

rose above 90% at the end of water flooding. The total water cut reduced by 

approximately 20% in all the treated permeability layers ratios.  

The water cut in the low permeability layers was significantly higher than that in 

the high permeability layers during the second water flooding in case# 3. The water cut in 

the high permeability layer became 0%. It became higher than 80% in the low 

permeability layer. Reversions in the water cut because most of the injected PPG was 

propagated through high permeability layers, blocking the injected water flow’s paths. 
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a) Water cut for each low and high permeability. 

 

b) Water cut for total permeability model. 

Figure 8.6—The water cut measurements for case #1. 
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a) Water cut for each low and high permeability. 

 

b) Water cut for total permeability model. 

Figure 8.7—The water cut measurements for case #2. 
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a) Water cut for each low and high permeability. 

 

b) Water cut for total permeability model. 

Figure 8.8—The water cut measurement for case #3. 
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8.6.3. Oil Recovery Measurements. The oil recovery curves of the first water  

flooding, the PPG injection, and the second water flooding of the three layer permeability 

contrasts are plotted in Figures 8.9, 8.10, 8.11, 8.12, 8.13, and 8.14. The oil recovery was 

determined for low, high, and total permeabilities as a function of pore volume injection.  

 In the initial water flooding stage, a large volume of oil was recovered from high 

permeability compared to a very small volume of oil was recovered from low 

permeability sand layers (Figures 8.9, 8.11, and 8.13). The recoverable oil volume from 

the low permeability layer decreased substantially as the sand pack’s permeability 

contrast ratios increased. The recovery factors for the permeability contrast ratios of 4, 

20, and 44 were 20, 1.9, and 0.9, respectively. A larger amount of water injection was 

flew through the high permeability than it was through low permeability. Therefore, low 

oil recovery was obtained from the low permeability layers. Nearly all of the injected 

water was diverted into high permeability layers during this stage. More than 4 PV of 

water was injected through high permeability layers. In contrast, less than 0.1 PV of 

water was injected through the low permeability layers.  

The cumulative oil recovery of the high permeability layer (upper curve), the total 

oil recovery (middle curve), and the low permeability layer (lower curve) is illustrated in 

Figures 8.10, 8.12, and 8.14. The oil recovery of the high permeability layers during the 

first water flooding was higher than that in the low permeability layers. The oil recovery 

reached approximately 70% in the high permeability; it reached approximately 7% in the 

low permeability layers. As a result, the high permeability contrast ratio created a large 

remaining oil saturation in low permeability layers. 
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 The oil produced from the low permeability layers did not reach the level of oil 

produced from the high permeability layers. The sweep efficiency of the heterogeneity 

improved and oil recovered from the low permeability began to rise during PPG 

injection.  The oil recovered from the low permeability layer increased substantially more 

than that recovered from the high permeability layers. The recovery factor obtained from 

the low permeability layer at permeability contrast ratios of 4, 20, and 44 increased to 30, 

18, and 3, respectively. This oil production increase from low permeability layer 

indicates the PPGs diverted most of the water injection flow to low permeability layers. 

A significant amount of oil recovery was recovered from the low permeability 

layers during the second water flushing. A large amount of PPG suspension remained in 

the high permeability layers, helping reduce the permeability contrast between layers. 

PPGs also helped improve sweep efficiency of the heterogeneity layers and increased the 

amount of recovered oil from the low permeability layer during the second water 

flooding. The oil recovered from the low permeability layer rose substantially more than 

it did in the high permeability layers. The recovery factor obtained from the low 

permeability layer at a permeability contrast ratio of 4, 20, and 44 was increased to 93, 

61, and 38, respectively. This significant increase in oil recovery reveals the PPGs 

efficiency in blocking high permeability layers and diverting most of the water flooding 

flow to low permeability layers. 

The oil that was recovered from the low permeability layers increased, 

approaching the amount of the total oil recovery that was revealed, during the second 

water flooding (see Figures 8.10, 8.12, and 8.14). The oil that was recovered from a low 

permeability layer was slightly higher than the amount of oil recovered from a high 
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permeability layer at the end of second water flooding when the permeability contrast 

ratio was 4. The oil recovered from a low permeability layer reached 93 % at the end of 

the flooding mechanisms. The oil recovered from the high permeability layer reached 80 

%. Thus, PPGs can effectively increase the oil recovered from rich low permeability 

layers. 

 

 

a) Oil recovery for a low k (0.5 Darcy).            b) Oil recovery for a high k (22.1 Darcy).     

Figure 8.9—The oil recovery measurements for case # 1. 
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              Figure 8.10—The oil recovery for low, high, and total permeabilities for case # 1. 

  

 

             a) Oil recovery for a low k (1Darcy).        b) Oil recovery for a high k (20 Darcy).   

Figure 8.11—The oil recovery measurements for case # 2. 
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Figure 8.12—The oil recovery for low, high, and total permeabilities for case #2. 

 

 

          a) Oil recovery for a low k (6.1 Darcy).                    b) Oil recovery a high k (22 Darcy).   

Figure 8.13—The oil recovery measurements for case # 3. 
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Figure 8.14—The oil recovery for low, high, and total permeabilities for case #3. 
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incremental oil recovery was calculated based on ratio of the oil recovery increase from 

low and high permeabilities. The incremental ratio results were used to determine at 

which permeability ratio PPGs are more efficient at increasing the amount of recovered 

oil from low k. 

The results indicate that amount of oil that can be obtained from the whole 

flooding mechanisms. This smaller permeability contrast (less heterogeneous reservoirs) 

produced more uniform injection water distribution than did the higher permeability 

contrast ratio. The final oil recovery obtained from a low permeability layer was 93% 

when permeability contrast ratio was 4, while it was only 38% when permeability 

contrast was ratio 44. As a result, the amount of the total oil recovered from both low and 

high permeability layers reached 88% and 47%, respectively. 

The results obtained for the ratios of the incremental oil recoveries (low 

permeability to high permeability) indicate that the higher permeability contrast produce 

a larger oil recovery than did the lower permeability contrast. Thus, the PPGs ability to 

increase the amount of oil recovered from a low permeability zones increased as the 

permeability contrast ratio increased. The ratios of the incremental oil recoveries was 4.6 

(93/20) for a permeability ratio of 4, 31.5 (60/1.9) for a permeability ratio of 20, and 40 

(36/0.9) for a permeability ratio of 44. These results revealed that as the reservoir become 

more heterogeneous, PPGs ability to improve sweep efficiency and recover oil from low 

permeability become more obvious and effective.  
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Table 8.3—A summary permeability contrast ratio. 

Permeability 

Contrast 

Ratio 

Permeability, 

Darcy 

Oil recovery (%) 

Oil 

Incremental 

Recovery 

Ratio of 

Incremental 

Recovery 

Total Oil 

Recovery,% 
1st Water 

Flooding 

PPG 

Treatment 

2nd Water 

Flooding 

44 
High 22.1 52.2 52.2 52.2 1 

40 45.8 

Low 0.5 0.9 0.9 36 40 

20 
High 22.4 74 74 74 1 

31.5 66.7 

Low 1.1 1.9 1.9 60 31.5 

4 
High 21.7 80 80.1 80.2 1 

3.9 86 

Low 6.2 20 31.7 93 4.6 

 

8.6.5. Improve Injection Profile. Injection is one of the most common reservoir  

problems created by reservoir heterogeneity. The production/injection flow percentage 

was used in this study to evaluate injection profile change as a result of PPG treatments.  

This flow is the ratio of the total production volume of oil and water obtained from each 

permeability layer to the total brine injection volume. This parameter helps clarify how 

the injection profile changes as a result of PPG treatments. It provides a quantitative 

value of how much fluid is produced during the first water flooding, during the PPG, and 

after the second water flooding. The production profile change between the low and high 

permeability sand pack was calculated as. 

 

    opq�rstup v�uwtx� = (:�
:H ) × 100  ...................................... (8.1) 

where Vp is the cumulative volume of total fluid produced at each permeability and Vi is 

the cumulative volume of total water injected. 
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When production profile increased to 100% means injection water flew through 

that permeability layer started to increase. If production profile was decreased to less than 

100% means water injection through that permeability layer started to decrease. If the 

production profile equals 100% all of the total water injected flew through the 

permeability layer.   The injection profile curves of the first water flooding, the PPG 

injection, and the second water flooding of the three layer permeability contrast are 

plotted in Figures 8.15, 8.16, and 8.17. All the three production profiles had similar 

changes. A poor injection profile was identified during the first water flooding for all of 

the low permeability layers.  A high production profile trend was identified for the high 

permeability layers. The injection profile was less than 5% in the low permeability layers; 

it was above 80% in high permeability layers. Thus, more than 80% of the total water 

injection that was used in the first water flooding was transported into the high 

permeability layers. This large water injection transported explains the high amount of 

remaining oil saturation that was not produced from low permeability zones. 

 

Figure 8.15—The injection production profile for a permeability contrast ratio of 44. 
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Figure 8.16—The injection production profile for a permeability contrast ratio of 20. 

 

 

Figure 8.17—The injection production profile for a permeability contrast ratio of 4.       
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 The injection profile began to improve in the low permeability layers once the 

PPGs injected into the heterogeneous permeability. The injection profile in the high 

permeability declined by approximately 10% while it increased in the low permeability 

by approximately 3 %. The profile change indicates that the PPG plugged the high 

permeability zone gradually and diverting the water injection to low permeability layers.  

The injection profile was significantly improved after the PPG treatment was 

complete. It began to increase in the low permeability layer during the second water 

flooding; it began to decrease in the high permeability layers. Thus, the PPG effectively 

diverted most of the injection water to sweep the large oil remaining in the low 

permeability layers. The injection profile in the low permeability layers reached an 

average between 15 and 60%. It decreased to 30 and 50% in high permeability layer. 

 Several cases (a permeability contrast of 4) the injection profile in the low 

permeability layer was improved significantly more than in the high permeability layers, 

reaching 63% in the low permeability and 34 % in the high permeability. This difference 

in injection profiles was a result of the permeability contrast effect; the low permeability 

contrast had a higher injection profile than the others. Therefore, PPG can effectively 

divert more than 60% of the water injection into the low permeability layers. 

The final injection profile percentages determined both before and after the PPG 

treatment are listed in Table 8.4.  A significant improvement in the water injection 

volume in low permeability layers occurred as a result of the PPG injection. 

 

 

 



276 

 

 

Table 8.4—The final production improvements for the three permeability contrasts. 

Permeability Contrast 

Ratio 

Permeability, 

Darcy 

Injection Profile,%  

1st Water 

Flooding 

2nd Water 

Flooding 

44 
High 22.1 88 55 

Low 0.5 0.1 33.6 

20 
High 22.4 83 80 

Low 1.1 0.5 15 

4 
High 21.7 90 34 

Low 6.2 5 63 

   

8.7. CONCLUSION 

This section was focusing on evaluate the use of PPG to improve the conformance 

control in non-heterogeneity formations. Three different ranges of permeability contrast 

were tested. Water cut, oil recovery, and injection profile were determined. The following 

are the main conclusions drawn from this section: 

• The effect of PPG on improving sweep efficiency and recovering more oil 

from low permeability became more obvious and effective as the sand 

pack model became more heterogeneous.  

• Oil recovery from the low permeability sand packs improved significantly 

after the PPG injection was complete. The oil recovery incremental was 

strongly dependent on the permeability contrast ratio.  

• The oil recovery incremental from that was obtained from the low 

permeability was larger than that obtained from the high permeability. The 
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oil recovery incremental ratio revealed better oil improvement at a large 

permeability contrast ratio. 

• Injection profile improved significantly after the PPG treatment. In some 

cases (e.g., permeability contrast of 4) the injection profile in low 

permeability was improved much larger than in high permeability layers. 

It reached approximately 63% in the low permeability and approximately 

34 % in the high permeability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



278 

 

 

9. GEL PROPAGATION EFFECT ON CROSS FLOW HETEROGENITY 

RESERVOIRS 

 

9.1. INTRODUCTION 

To make the research more robust and to provide a deep understanding of the 

effect of heterogeneity on oil recovery mechanisms during water flooding, the research 

was extended to study also the cross-flow heterogeneity problems. Various scenarios of 

crossflow heterogeneity presented in mature oil field reservoirs were investigated. 

Preformed particle gels (PPGs) were also evaluated for their ability to increase the 

amount of oil recovered from crossflow heterogeneous formations after they were 

flooded with water. 

 

9.2. OBJECTIVES AND TECHNICAL CONTRIBUTIONS 

This study was conducted in attempt to investigate the behavior of micron PPG 

propagation through unconsolidated sandstones. These cores have interaction flow 

communication between their layers. The objective can be met by evaluating the 

following: 

• Determine whether or not the oil recovery improved after the PPG was injected 

into the heterogeneity sand pack model.  

• Evaluate the gel’s ability to plug water injected into high permeability zones. 

• Study the effect of PPG slug pore volume on improving oil sweep efficiency.  
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• Evaluate the factors that influences a PPG’s ability to reduce the water cut during 

water flooding processes. 

• Evaluate the use of hydrochloric acid to treat the gel filter cake formed on the 

surface of low permeability zones during a PPG injection. Evaluate this acid 

treatment based on both the injection pressure behavior and the oil recovery 

improving. 

• The results gathered from this study will be tremendously beneficial when 

designing a PPG injection. They will clarify the PPG mechanisms needed to 

divert the water injection to produce more oil from un-swept zones. The results 

gathered from this study can be used to build a numerical simulator that matches 

the field application use. The knowledge obtained from both the cross flow 

heterogeneity sand pack investigation and a previously homogenous sand pack 

investigation will provide a clear vision of a PPG design and select a best well 

candidate for conformance control treatment. 

9.3. EXPERIMENTAL DESCRIPTION 

9.3.1. Preformed Particle Gel.  A superabsorbent polymer was used as a 

 PPG to conduct these experiments. Dry particles with a mesh size of 170-200 (90-75 

micron) were swollen in a 1% NaCl brine concentration. Gel concentrations of 2000 ppm 

were used. 

9.3.2. Brine Concentration and Oil Viscosity. A 1 wt% Sodium Chloride 

(NaCl) solution was used for brine flooding and to swell PPG. Oil with a viscosity 37 cp 

at 70 °F was used to saturate the sand pack model. 
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9.3.3. Magnetic Stirring Vessel. An accumulator with a 1200 ml capacity and a 

maximum adjusted impeller speed of 1800 r/min was used to inject PPGs into the high 

permeability sand pack model. An impeller was placed at the bottom of the accumulator 

to keep the PPGs dispersed in brine before they were injected into the model. 

9.3.4. Sand Pack. Two sizes of silica sand were used to obtain different 

permeabilities. Both a 18-20 and 80-100 mesh sizes were used to obtain high and low 

permeabilities, respectively. A vibrator was used to pack the silica sand into the model. 

The size distribution of the silica sand used in the experiments, as determined by a 

sieving test is listed in Table 9. 

 

 Table 9.1—Size distribution of silica sand. 

 

 

 

 

9.4. EXPERIMENTAL SETUP 

The experimental setup used in this experiment is illustrated in Figure 9.1. It was 

constructed of a stainless steel round tube with a diameter of 2 inches and 1 ft length with 

3 different pressure taps was assigned to monitor fluid and PPG flow. A round hole 

perforated screen tube with diameter less than 1 inch was inserted inside the stainless 

steel round tube. Large sand grains (18-20 mesh size) were poured first inside the 

stainless steel around the perforated screen tube. Fine sand grains (80-100 mesh size) 

were then poured inside the perforated screen. A vibrator was used for both sizes to 

Sieves (mesh) Size (microns) 

18-20 1000-850 

80-100 180-150 
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enhance sand packing inside the model. A syringe pump was used to inject suspended 

PPG, brine, and oil from accumulators to the crossflow heterogeneity model. Pressure 

transducers were mounted in front and along the sand pack model to acquire the injection 

pressure change during brine flooding and gel treatment processes. The test tubes were 

kept at the outlet to collect the volume of the oil and water productions.  

 

 

Figure 9.1—The cross flow heterogeneity apparatus.  

 

9.5. EXPERIMENTAL PROCEDURES  

The procedures followed during the non-cross flow heterogeneity experiments are 

described briefly here. 

9.5.1. Preparing and Saturating Sand Pack Models. A vibrator machine was  

 used to prepare different sizes of silica sand do that  the desire sand pack permeability 

can be obtained. Large sand grains 18-20 were used to provide a high permeability of 

approximately 30 Darcy. An 80-100 mesh size was used to provide a low permeability of 

approximately 0.5 Darcy.  Begin pouring the sand grains inside and around the perforated 

tube after fastened the end with screen filter to prevent migrating sand during flooding 

processes. The sand was poured and vibration was used until the entire tube was filled 
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with sand. The sand pack models were then vacuumed for at least 2 hr before they were 

fully saturated with a 1% NaCl solution. The pore volume and porosity of the whole 

cross-flow model were determined. Sand pack models were flushed with brine at 

different injection flow rates (1, 2, 4, and 6 ml/min) to ensure the model was 100% 

saturated with brine. 

Oil viscosity with 37cp was injected from accumulator into the cross flow sand 

pack model at a rate of 1, 2, 4, 6, and 8 ml/min. Oil was injected until desirable connate 

water saturation was achieved. Table 9.2 summaries heterogeneity sand pack parameters 

obtained for the five performed experiments before starting with first water flooding 

process.  

 

Table 9.2—A summary of the cross flow heterogeneity sand pack’s properties. 

Effects 
Pore volume 

(gm) 

Porosity (%) Swi (%) OIIP (cc) 

PPG slug 

volume 

0.5 PV 247.5 39.9 28.1 160.9 

3 PV 253 40 29.6 178.1 

5.5 PV 251.5 40 29.8 176.3 

heterogeneity 

level 

Large un-swept  244 39 28.7 173.8 

Less heterogeneity 214 34.5 10.6 191.3 
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9.5.2. First Water Flooding. A 1% brine NaCl solution was injected into the 

crossflow heterogeneity model at a rate of 2 ml/min to simulate secondary oil recovery 

conditions. Oil and water productions at effluent were recorded at every 3 ml. The brine 

was injected until no oil was produced and the brine injection pressure became stable. 

Overall, 3 PV of brine injection was sufficient to ensure no oil was produced at effluent., 

Both oil recovery and water cut were determined during the first water flooding.  

9.5.3.  PPG Treatment. Swollen PPG dispersed in 1% NaCl with a concentration 

 of 2000 ppm was injected into sand packs at rate of 2 ml/min after completing the first 

water flooding processes. PPGs were injected in different values of pore volume to 

evaluate their effect on the oil recovery incremental. The volume of oil and water 

production at the outlet as well as PPG injection pressure was recorded for each 

experiment.  

9.5.4. Second Water Flooding. Brine was injected again at the same injection 

flow rate after the PPG treatment was complete, to test the gel blocking efficiency for 

high permeability (swept zones from first water flooding). It also to determine the oil 

recovery incremental from the un-swept zones. Brine was also injected until no oil was 

produced at the outlets and the injection pressure became stable. Approximately 3 PV of 

brine was also injected so that could be compared to the results obtained to the results 

obtained from the first water flooding.  

These procedures were repeated for each experiment. The oil recovery factor, 

water cut, and injection pressure were each determined during the water flooding and 

PPG treatments. 
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9.6. RESULTS AND ANALYSIS 

9.6.1. Effect of PPG Slug Volume. Three volume ranges of PPG were used to 

test the affect of PPG injection pore volume on the oil sweep efficiency. PPG was 

injected in very small amounts (0.5 PV) so that only the sand pack face was treated. A 

simple sketch is given in Figure 9.2 that simplifies the injection and placing process 0.5 

PV of PPGs into the planned target zone. 

 

Figure 9.2—Inject 0.5 PV of PPG and its use to divert the water injection flow. 

 

 The second PPG volume slug was increased until it reached the first segment of 

the sand model. Approximately 3 PV of a PPG injection pore volume was used to reach 

the first segment of the sand model. A pressure reading from the first pressure sensor was 

used to locate the PPG propagation’s length. A simple sketch is given in Figure 9.3 that 

simplifies the injection and placing 3 PV of PPGs into the planned target zone. 

 

Figure 9.3—Inject 3 PV of PPG and its use to divert water injection flow. 
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 The third PPG slug volume was used to investigate PPGs deep penetration affect 

when gel was injected until it reached the second sand pack segment. Approximately 5.5 

PV of a PPG injection pore volume was used to reach the second sand segment section. A 

simple sketch is given in Figure 9.4 that simplifies the injection process, placing 5.5 PV 

of PPGs into the planned target zone. 

 

Figure 9.4—Inject 5.5 PV of PPG and its use to divert water injection flow. 

 

9.6.1.1. PPG slug volume of 0.5 PV. Water was injected at rate of 2 ml/min into 

a heterogeneity model. A large amount of oil (Figure 9.5) was recovered and continued to 

increase until reach maximum oil recovery at 63%. A 3PV of a 1% NaCl solution was 

injected to reach the maximum oil recovery. Water cut as indicated in Figure 9.6 was also 

increased accordingly. It continued to increase until the end of the first water cycle. At 

the end of injecting the 3PV, the oil recovery stopped increasing and the water cut 

reached 100%. The injection pressure during the first water flooding recorded as a 

function of injection pore volume as shown in Figure 9.7. The injection pressure during 

this cycle was very low and fluctuating between 0.07 and 0.12 psi before it became stable 

at 0.08 psi. This pressure indicates the water was easily injected into and through the high 

permeability zone and sweeping most of the oil from this permeability.  
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Figure 9.5—Oil recovery during water flooding and a PPG injection of 0.5 PV. 

 

 

Figure 9.6—Water cut during water flooding and a PPG injection of 0.5 PV. 
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Figure 9.7—Injection pressure during water flooding and a PPG injection of 0.5 PV. 

 

A PPG with a concentration of 2000 ppm was injected at the same injection flow 

rates (2 ml/min) for consistency purposes. Only 0.5 PV was injected into the model after 

the first water flooding process was complete. During this treatment an increase of oil 

recovery was noticed. The amount of oil increased by approximately 4% to reach 

approximately 67% of total oil recovered. Water cut measurements indicated a decrease 

in water production during the gel injection, allowing the oil production to increase. The 

water cut was reduced by a percentage range between 5 and 8%.  

A significant change occurred in the injection pressure measurements during the 

gel injection; the injection pressure increased significantly, despite the small injection 

volume of PPG that was used. It increased 50 times greater than did the water injection 

pressure recorded during the first water stage injection.  It peaked at 7 psi at the end of 
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the gel treatment process. This significant increase indicates the PPG effectively plugged 

the high preamble paths present within the sand pack. 

Water was flooded again at the same injection flow rate to determine how much 

oil could be recovered after the gel treatment. This second water flooding was also used 

to test the PPGs blocking efficiency to water flow. Water injected until no oil was 

produced at effluent. Approximately 3 PV of water was injected which was similar to 

water injection pore volume used in the first water flooding. The oil recovery increased 

considerably during this water cycle. It continued to increase until it reached a stable 

recovery at 71%. This recovery revealed that approximately 5% of the recovery 

incremental was produced after the gel treatment. This incremental percentage illustrates 

PPG’s ability to divert the water injection into an un-swept area to recover more oil. The 

water cut continued to change; this decrease was not stable during the second water 

flooding. The water cut returned to a 100% measurement level at the end of the water 

injection. The injection pressure dropped significantly (from 7 psi to around 2 psi) during 

the early injection pore volume of the second water flooding. It continued to fluctuate 

between 2 psi and 3 psi before it became stable at the end of the injection mechanism (at 

2.6 psi). Despite this reduction in pressure, this water injection pressure remained greater 

than the water injection pressure recorded during the first water flooding. The injection 

pressure became stable in 2.68 psi in the second water flooding which was greater than 

stable injection pressure (0.08 psi) recorded during the first water flooding.  

A small percentage volume of PPGs was likely propagated into the small 

permeability zones reducing its permeability. This reduction could decrease the amount 

of oil produced from this zones. Therefore, a syringe was used to flush a small amount of 
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acid, approximately 6 ml of 10% HCl volume into the sand pack face. The sand model 

was maintained for 24 hr for acid soaking purposes. The third water cycle was injected at 

the same injection flow rate (2 ml/min) to test the oil recovery and to evaluate the effect 

of HCl on PPG blocking efficiency. The amount of oil recovered increased slightly by 

approximately 2% oil incremental to reach 73.5% at the end of the water flooding. The 

acid stimulation mitigated/removed the gel particle filter cake, increasing the amount of 

oil recovered from low permeability zones. The water cut changed very little during this 

third water cycle staying at 100%. A noticeable change occurred in the injection pressure. 

This pressure decreased sharply from 2.68 psi to 0.13 psi after the acid treatment was 

complete.  This pressure was almost similar to the original injection pressure before 

performed the gel treatment. The injection pressure increased slightly to 0.21 psi. A 

similar water injection pore volume (3 PV) was injected, decreasing the injection 

pressure until it became stable at 0.07 psi. The stable injection pressure obtained during 

the third water flooding revealed that HCl can be used to achieve a 100% water 

permeability retained.  

This highly improve in permeability after the acid treatment indicate a good fit to 

couple the gel treatment with acid treatment to recover more oil from both high and low 

permeability zones. 

9.6.1.2. PPG slug volume of 3 PV. The heterogeneity model was oil saturated 

according to the standard core flooding procedure. Water was then injected at 2 ml/min to 

determine the amount of oil recovered during the first water flooding. Water flooding 

continued until no oil was produced at effluent. A large amount of oil was recovered (see 

Figure 9.8) and continued to increase until reach maximum oil recovery at 57%. A 3PV 
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of 1% NaCl was injected to achieve the maximum oil recovery. Water cut (as indicated in 

Figure 9.9) was also increased accordingly and increased until the end of the first water 

cycle. At the end of injecting the 3PV, the oil recovery levelled and water cut reached 

100%. The injection pressure during the first water flooding recorded as a function of the 

injection pore volume is given in Figure 9.10. The injection pressure during this cycle 

was very low becoming stable at 0.01 psi. This significant low pressure indicates the 

brine moved easily through the high permeability zone.  

 

 

Figure 9.8—Oil recovery during water flooding and PPG injection of 3 PV. 
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Figure 9.9—Water cut during water flooding and PPG injection of 3 PV. 

 

 

Figure 9.10—Injection pressure during water flooding and PPG injection of 3 PV. 
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Swollen PPGs in a 1% NaCl solution with a concentration of 2000 ppm were 

injected at the same injection flow rates (2 ml/min) for consistency purposes. A 3 PV of 

swollen suspended PPG was injected into the model after the first water flooding was 

complete. A considerable increase in oil recovery occurred during this treatment. This 

increase began at approximately 13% and peaked at approximately 70%. The water cut 

measurements indicate water production rate decreased in during the gel injection. The 

water cut was reduced by between 5 and 8%. A significant change in the injection 

pressure measurements occurred during the gel injection. The injection pressure 

increased significantly more during this treatment than it did during the previous water 

flooding.  The injection pressure peaked at 15 psi during the gel treatment while the 

injection pressure before the gel treatment was only 0.01psi. This significant increase in 

injection pressure reveals that PPG’s can effectively plug the high preamble paths within 

sand pack. 

A second cycle of water was performed after the gel treatment at the same 

injection flow rate. Water continued to inject until no oil produced at effluent, around 3 

PV was injected which was similar to water injection pore volume performed in the first 

water flooding. The oil recovery increased slightly during this water cycle. The oil 

recovery became stable at 71%. Water cut continued to change; it fluctuated and reached 

100% water cut again at the end of the flooding process. The injection pressure dropped 

significantly to 4 psi during the early injection pore volume of the second water flooding. 

It fluctuated between 4 psi and 5 psi becoming stable at the end of the injection 

mechanism at 4.5 psi. This decrease in injection pressure, however, still greater than the 

water injection pressure recorded during the first water flooding. The injection pressure 
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became stable at 4.5 psi during the second water flooding while it became stable at 0.01 

psi during the first water flooding.  

9.6.1.3. Deep penetration treatment.  The first water cycle was performed at an 

injection rate of 2 ml/min. A significant amount of oil (Figure 9.11) was recovered 

reaching a maximum oil recovery of 63%. A 3 PV of a 1% NaCl was injected during this 

cycle. Water cut (as indicated in Figure 9.12) increased sharply during the early water 

injection stage, reaching 100% at the end of the first water cycle. The injection pressure 

during the first water flooding recorded as a function of the injection pore volume is 

given in Figure 9.13. The injection pressure stable during this cycle was a very low at 

0.07 psi.  

 

 

Figure 9.11—Oil recovery during water flooding and PPG injection of 5.5 PV. 
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Figure 9.12—Water cut during water flooding and PPG injection of 5.5 PV. 

 

 

Figure 9.13—Injection pressure during water flooding and PPG injection of 5.5 PV. 
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PPGs were injected deep into the sand pack at a rate of 2 ml/min until they 

reached the second section. They reached the second section after 5 PV was injected into 

the heterogeneity sand pack model. During this treatment a substantially increase in oil 

production was noticed. The oil production increased by approximately 16% to reach a 

total of approximately 79%.  The water cut decreased 5 to 20% during the gel injection 

indicating the injected water was consumed to recover more oil. The injection pressure 

measurements increased significantly to around 24 psi during the gel injection. This 

finding reveals that increasing the PPG injection pore volume significantly increased the 

injection pressure.  

A second batch of water cycles was injected at the injection flow rate of 2 ml/min 

to test both the oil recovery increase and the water flow resistance after the gel treatment. 

Approximately 3 PV of water was injected until no oil was produced at effluent. The oil 

recovery increased by around 2% before becoming stable at 81%.  The water cut 

continued to change reaching 100% water cut at the end of the second water flooding. 

The injection pressure dropped significantly to approximately 5 psi during the early 

injection pore volume of the second water flooding. It became stable at the end of the 

injection mechanism at 6.4 psi. This decrease in injection pressure, however, was still 

greater than the water injection pressure recorded during the first water flooding.  

A syringe was used to flush 6 ml of 10% HCl volume into the sand pack face.  

The sand model was maintained for 24 hr for acid soaking purposes. A third cycle of 

water was injected at the same injection flow rate (2 ml/min). The oil recovery increased 

slightly by approximately 1.5% oil incremental to reach to 81.7% at the end of the water 

flooding process. The water cut changed very little during this water cycle and continuing 
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at a level of 100%. The injection pressure decreased sharply after the acid treatment was 

complete, decreasing to 0.27 psi. It decreased to almost similar to the original injection 

pressure before performed the gel treatment. The injection pressure became stable at 0.68 

psi after a similar water injection pore volume (3 PV) was injected. The stable injection 

pressure obtained during the water flooding show that HCl can achieve 100% water 

permeability retained.  

The increase in the injection pressure that occurred during the last few injection 

pore volumes, in particularly at PV of 11 likely occurred because PPG began to re-swell 

again. The gel particle size increased increasing the injection pressure. Imqam et al. 

(2014) noted that PPGs will re-swell again after an acid treatment is complete when they 

are touched again with the same brine concentration. Imqam et al. (2014) also found that 

this increase in swelling volume is limited. It remains substantially smaller, however, 

than the original swelling volume. 

Table 9.3 summaries the results obtained for the effect of the PPG slug volume. 

The results gathered from three experiments indicate that on averaged 60% of the oil 

recovery could be produced during the first water flooding. After PPG injection, oil 

recovery improved. The oil recovery gained both during and after the PPG treatment 

varied with gel slug volume. The oil recovery increased as the PPG injection pore volume 

increased. It did not increase linearly with the PPG injection volume. The Oil recovery 

percentage increased by 12.7% during PPG injection at 0.5 PV of PPG during the second 

water flooding. This percentage increased to 24% after the PPG slug volume increased to 

3. But when PPG injection pore volume increased to 5.5, oil recovery did not increase 

substantially as compared to a PPG volume of 3.  
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The most of the oil production was occurred during the PPG injection, this 

indicate that PPG injection not only reduce the large channels but also divert the injection 

aqueous phase to produce more oil. This mechanism caused to have the majority of 

incremental oil recovery percentage gained during PPG injection.  

 

Table 9.3—A summary of oil recovered during water flooding and PPG injection. 

PPG slug 

volume, 

PV 

Oil recovery (%) Total oil 

recovery, 

%  

Oil 

incremental 

recovery, % 

1st water 

flooding 

PPG 

treatment 

2nd water 

flooding 

0.5 63 2.5 5.5 71 12.7 

3 57.3 12.2 1.5 71 24 

5.5 63.4 14.6 2.5 80.5 27 

 

9.6.2. Effect of Heterogeneity Sweep Volumes. This section discusses two  

scenarios of heterogeneity shapes/levels within formations. The first model present 

results of injected PPG when large un-swept volume/low permeability is greater than 

swept area volume/high permeability. This model design experiment differs than 

previous three experiments. Here, the high permeability layer was surrounded by low 

permeability layers. Figure 9.14 show a simple sketch cartoon to simplify inject and place 

3 PV of PPG into the large un-swept planned target zone. 
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Figure 9.14—PPG injection into large un-swept heterogeneity model.  

 

The second scenario depicts the results obtained for the model with less 

heterogeneity sand pack in which large volume of low permeability/un-swept zones 

dominated the model. Figure 9.15 show a simple sketch cartoon to simplify inject and 

place 3 PV of PPG into the less heterogeneity sand pack model. 

 

Figure 9.15—PPG injection into less heterogeneity model. 

9.6.2.1. Large un-swept volume. The first batch of water was injected into the  

heterogeneity model at an injection rate of 2 ml/min. The oil recovery (Figure 9.16) 

increased sharply during the early stages of water injection pore volume. It continued to 

increase until reaching a maximum oil recovery of 58%. During this flooding cycle a 

3PV of 1% NaCl solution was injected. The water cut (as indicated in Figure 9.17) also 

increased and fluctuated until reaching 100% at the end of the water injection cycle. The 

injection pressure during the first water flooding recorded as a function of the injection 

pore volume (as shown in Figure 9.18) was very low becoming stable at 0.1 psi.  
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Figure 9.16—Oil recovery determined from a large un-swept heterogenity model. 

 

 

 

Figure 9.17—Water cut determined from a large un-swept heterogenity model. 
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Figure 9.18—Injection pressure measured from large un-swept heterogenity model. 

 

PPGs with a concentration of 2000 ppm were injected at injection flow rates of 2 

ml/min for consistency purposes. A 3 PV of swollen PPGs was injected into the model 

after the end of the first water flooding. The amount of oil recovered increased during this 

treatment. Oil production increased by approximately 10% to reach around 68% of the 

total oil recovery. The water cut dropped during the gel injection to between 5 and 20%. 

The injection pressure increased significantly peaking at approximately 27 psi during the 

gel treatment.  

Water was injected again after the gel treatment at the same injection flow rate (2 

ml/min). It continued to inject until no oil was produced at effluent. Approximately 3 PV 

of water was injected which was similar to water injection pore volume during the first 

water flooding. The oil recovery increased by 4% reaching the total stable recovery at 
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72%. This incremental percentage illustrates the PPG’s ability to divert the water 

injection into an un-swept area to recover more oil. The water cut continued to change 

though most of the measurements were recorded at 100%. The injection pressure dropped 

significantly to approximately 2.7 psi during the early injection pore volume of the 

second water flooding. It became stable at the end of the injection mechanism at 2.65 psi. 

This decrease in injection pressure, however, remained greater than the water injection 

pressure recorded at the first water flooding. In the first water flooding, the injection 

pressure became stable at 0.1 psi while in the second water flooding injection pressure 

became stable at 2.65 psi.  

A small amount of acid approximately 6 ml of 10% HCl volume was injected into 

the sand pack face by a syringe. The sand pack model was maintained 24 hr for acid 

soaking purposes. Water was injected again at same injection flow rate (2 ml/min). The 

oil recovery increased slightly by around 0.6 % oil incremental to reach 72.8% at the end 

of the water flooding process. The water cut changed very little compared with previous 

flooding. The injection pressure decreased sharply after the acid treatment was complete 

decreasing from 2.65 psi to 0.48 psi. The stable injection pressure was similar to the 

original injection pressure before performed the gel treatment. The injection pressure 

during the first water flooding was 0.1 psi and during the third water flooding was 0.49 

psi.  
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9.6.2.2. A model with less heterogeneity. Water was injected at 2 ml/min into a 

heterogeneity model. A large amount of oil (as shown in Figure 9.19) was produced 

during this injection cycle. The oil recovery increased becoming stable at 54%. A 3 PV of 

a 1% NaCl solution was injected during this flooding cycle. The water cut (as indicated in 

Figure 9.20) also increased as the injection pore volume increased before becoming 

stable at 100% water cut. The injection pressure during the first water flooding was 

recorded as a function of the injection pore volume (see Figure 9.21). The injection 

pressure during this cycle was a quite low and becoming stable at 0.48 psi.  

 

 

Figure 9.19—Oil recovery determined from a model with less heterogenity. 
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Figure 9.20—Water cut determined from a model with less heterogenity.  

 

 

Figure 9.21—Injection pressure determined from a model with less heterogenity.  
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PPGs with a concentration of 2000 ppm were injected at the injection flow rates 

(2 ml/min). A 3 PV was injected into the model after the first water flooding process was 

complete. During this injection treatment a substantially increase of oil recovery was 

observed. The amount of oil increased by approximately 20% to reach approximately 

74% during this injection treatment. A very clear trend of water cut reduction was 

achieved during this PPG injection treatment. It was reduced by between 5 and 50%.  The 

water cut remained at an average of 93% until the gel treatment was complete. The 

injection pressure measurements changed significantly during the gel injection process 

peaking at 20 psi. This increase in pressure is much greater than the injection pressure 

recorded during the first water flooding. 

A second water flooding was performed after the PPG injection treatment was 

complete. Water was injected at flow rate of 2 ml/min. This injection was continued until 

no oil was produced at effluent. Approximately, 3 PV of water was injected which was 

similar to the water injection pore volume during the first water flooding. The oil 

recovery increased considerably during this water cycle. It continued to rise until 

reaching a stable recovery at 85% (equivalent to 6% incremental of oil production). The 

water cut decreased between 97% and 95% during the injection pore volume. The 

injection pressure dropped significantly to approximately 3 psi during the early injection 

pore volume of the second water flooding. It became stable at 3.34 psi at the end of 

injection mechanism.  This decrease in injection pressure, however, was still greater than 

the water injection pressure recorded during the first water flooding. In the first water 

flooding, the injection stable pressure was 0.48 psi; it was 3.34 psi during the second 

water flooding.  
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A around 6 ml of 10 % HCl volume was injected into the sand pack face by a 

syringe and the sand model soaked for 24 hr. Water was injected again after the soaking 

period at same injection flow rate (2 ml/min). The amount of oil recovery was increased 

slightly by approximately 4 % oil incremental to reach 89.5 % at the end of the water 

flooding. The water cut increased during the water injection cycle into 100% at the end of 

injection processes.  The injection pressure decreased sharply after the acid treatment 

dropping to 0.44 psi. The injection pressure declined to the original injection pressure 

before performed the gel treatment. The injection pressure increased slightly and became 

stable at 0.99 psi after injected similar water injection pore volume (3 PV).  

 

9.7. DISCUSSION  

The results obtained in section 8 indicate that PPG was not only propagated into a 

high permeability layers, but also there was a portion of PPG propagated into low 

permeability. PPG propagated into low permeable zones in the cross flow heterogeneity 

model might be more pronounced.  

This section discusses also the acid effect on the conformance control results 

determined after PPG injection. The injection pressure measured, as shown in Table 9.4, 

at sand face during the multiple water flooding were used to determine the effect of PPG 

on reducing water permeability and to determine the effect of HCl on improving 

conformance results after gel treatment. Blocking efficiency after gel and acid treatments 

were measured for the effects PPG slug volume and heterogeneity sweep volume. 

Results indicated that PPG blocking efficiency reached 90% and above during 

most of the experiment. The PPG blocking at the sand face was unaffected by the gel 
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injection pore volume as the blocking efficiency remained above 96%. The effect of HCl 

on the sand face’s blocking efficiency was varied; it was dependent on the gel 

injection/heterogeneity sweep volumes. Blocking efficiency was significantly affected by 

the PPG injection pore volume; it was reduced below 0% when a small pore volume (0.5 

PV) of PPGs was injected. While, at PPG injection of 5.5 PV conformance results did not 

hurt too much, it decreased from 98.9% to 89.7%. In real world, where large volume of 

PPG is injected compared to small volume of acid used, this lab results indicated that 

conformance control results would not hurt too much after the sand heterogeneity flushed 

with HCl stimulation.  

 

Table 9.4—A summary for blocking efficiency after PPG and HCl treatments. 

Experiments  

Injection pressure, psi Frrw 
Blocking 

Efficiency % 

Before 

PPG 

During 

PPG 

After 

PPG 

After 

HCl 

After 

PPG 

After 

HCl 

After 

PPG 

After 

HCl 

PPG slug volume, 

PV 

0.5 0.08 7 2.68 0.07 33.5 0.87 97 -14.2 

3 0.01 15 4.5 - 450 - 99.7 - 

5.5 0.07 24 6.4 0.68 91.4 9.71 98.9 89.7 

heterogeneity 

sweep volume 

Large un-swept  0.1 27 2.65 0.49 26.5 4.9 96.2 79.5 

Less heterogeneity  0.48 20 3.34 0.99 6.95 2.06 85.6 51.5 

 

9.8. CONCLUSION  

This section is discussing the use of PPG to improve the conformance control in 

cross flow heterogeneity formations. Five experiments were conducted successfully 

performed to investigate the effects of PPG injection volume and formation sweep 
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volume on oil recovery improve, water cut decrease, and injection pressure performance. 

The following conclusions were drawn from this section: 

• Oil recovery improved significantly both during and after the PPG 

injection. This increase was related to the PPG injection pore volume and 

the formation sand sweep volume. 

• Oil recovery increased as the PPG injection volume increased. This 

increase, however, was not linear.  

• The PPG injection increased oil recovery by an average of 20%. This 

amount increased as the sand sweep volume decreased.  

• Water cut measurements indicate the water production rate decreased 

during the gel injection, increasing the amount of recovered oil from the 

heterogeneity sand model. The water cut was reduced by a percentage of 

between 5 and 20% during most of the experiments. 

• The injection pressure increased considerably during the PPG injection. It 

decreased during the second water flooding remained higher than the 

injection pressure measured before the PPG treatment.   

• The injections when combined PPG with HCl treatments can potentially 

improve conformance control. The HCl treatment did not significantly 

influence the PPG treatment. 

• Water injection cycles were performed after the acid treatment and 

improved in oil production was noted during these cycles. Oil recovery 

increased between 1 and 5% after the acid treatment which imply 

continued enhancement in low permeability sweep layers.  



308 

 

 

10. A COMBINATION OF STIMULATION AND CONFORMANCE 

TREATMENT TO IMPROVE OIL RECOVERY  

 

10.1. INTRODUCTION 

In the existence of non-cross flow heterogeneity between the low and high 

permeability layers, a considerable amount of PPG injection volume propagated into high 

permeable zones and plug it. However, still small amount of PPG form a gel filter cake 

on the surface of low permeable zones during PPG injection (Figure 10.1). 

 

 

Figure 10.1—Gel filter cake formed on low permeability zones. 

 

Section 4 was focused only on combined PPG with HCl acid to remove gel filter 

cake in homogenous single low permeability core formation. Therefore, this current 

section presents an additional work results obtained from new experiment models. It aims 

to determine the effectiveness of combining HCl acid and PPG to gain a better 

conformance control results in heterogeneous core formations.  
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PPG was injected into large permeability zones (thief zones) to reduce their 

permeability and then divert the injection water to recover more oil from un-swept low-

permeable zones.  Acid was then pumped into heterogeneity model to remove the gel 

cake formed after gel treatment. The combined technologies increased the oil production 

from both low and high permeability cores. This current work was also extended to 

assess the possible side effect of acid treatment on reducing the gel-blocking efficiency in 

high-permeability cores.  

The new model was tested by investigating two parallel formations having low 

and high permeabilities. The high permeability sand pack had permeabilities above 10 

Darcy while the low permeabilities sand pack had permeabilities less than 1 Darcy.  

 

10.2. OBJECTIVES AND TECHNICAL CONTRIBUTIONS 

This work was conducted in an attempt to study the mechanisms of combined 

conformance control and stimulation treatments to produce more oil from un-swept low 

permeability zones by evaluating the following: 

• Compare the oil recovery results obtained from the heterogeneity model before 

and after introduce the gel treatment with results obtained after HCl acid 

treatments. 

• Evaluate the acid effectiveness to remove the gel cake formed on the surface of 

the low permeable layer. 

• Study the change in water injection pressure after both permeability layers treated 

with acid.  
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• Investigate the effect of HCl on gel blocking efficiency to water flow. This 

investigation was performed by determining the residual resistance factor to water 

for the high permeable zones. 

• Results from this study will promote the use of PPG for conformance control 

application, where the concern for PPG treatment was damaging low permeable 

zone. This concern was eliminated by flushing zones with an economic volume 

amount of HCl. 

 

10.3. EXPERIMENTAL DESCRIPTION 

10.3.1. Preformed Particle Gel. A superabsorbent polymer was used as a 

 PPG to conduct these experiments. Dry particles with a mesh size of 170-200 (90-75 

microns) were swollen in a 1% Sodium Chloride (NaCl) brine concentration. Gel 

concentrations of 2000 ppm was used. 

10.3.2. Brine Concentration and Oil Viscosity. A 1 wt% of NaCl solution was 

 used for brine flooding. It was also used to prepare swollen PPGs. Heavy oil with a 

viscosity 195 cp at 70 °F was used to saturate the sand pack model. 

10.3.3. Hydrochloric Acid (HCl). HCl from Fisher Scientific was diluted with 

 distilled water to obtain a concentrations of 10%. A 0.1 PV of HCl acid was flushed into 

the non-cross flow heterogeneity model and model was kept soaked for 12hr. 
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10.3.4. Magnetic Stirring Vessel. An accumulator with a 1200 ml capacity and 

 a maximum adjusted impeller speed of 1800 r/min was used to inject PPGs into high and 

low permeability sand pack model. The impeller was placed at the bottom of the 

accumulator to keep the PPG dispersed in brine before injected into the model. 

10.3.5. Sand Pack. Three sizes of silica sand were used to obtain different 

 permeability contrasts between models. A 18-20, 50-60, and 100-120 mesh sizes were 

used to obtain low and high permeability sand packs. Silica sand was packed into two 

separate tubes that had the same length and area.  

 

10.4. EXPERIMENTAL SETUP 

The experimental setup used in this experiment is illustrated in Figure 10.2. It 

constructed of two same tubes dimensions (with 20 cm in length and 2.7 cm in diameter) 

used to contain the silica sand pack.  Two horizontal (parallel in position) tubes were 

packed with different sand grains to emulate the permeability contrast present in 

reservoirs. A syringe pump was used to inject suspended PPG, brine, oil, and HCl from 

the accumulators into the sand pack models. Two pressure transducers were mounted in 

front of each sand pack model to acquire the injection pressure change during the brine 

flooding and the gel treatment processes. The test tubes were mounted at the outlets of 

each sand pack to collect the volume of the fluid produced.  
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Figure 10.2—Combined PPG with HCl experiment apparatus. 
 

10.5. EXPERIMENTAL PROCEDURES  

The procedures for carrying out the non-cross flow heterogeneity experiments 

were briefly described as follows: 

10.5.1. Preparing and Saturating Sand Pack Models. A vibrator machine  

Was used to prepare the different sizes of silica sand to get the desire sand pack 

permeability. Sand pack models were vacuumed for at least 6 hr. It was then fully 

saturated with 1% NaCl to determine pore volume, porosity, and permeability.  

Heavy oil viscosity was injected from the accumulator into each sand pack at a 

rate of 1 ml/min. Oil was injected until no water was produced and injection pressure 

became stable. Both sand pack permeability (low and high) layers were connected to each 

other as shown in Figure 10.2 and the water flooding cycles were began as follows. 
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10.5.2. First Water Flooding. A 1% NaCl was injected into both low and high 

 permeability layers at rate of 1 ml/min to simulate secondary oil recovery conditions. 

During the first water flooding, both oil recovery and water cut were determined for the 

low and the high sand pack permeability.  

10.5.3. PPG Treatment.  A 0.5 PV of swollen PPGs in 1% NaCl with a 

 concentration of 2000 ppm were injected into the sand packs at rate of 1 ml/min.  Oil and 

water productions volume were collected at effluent. Gel injection pressure was also 

monitored. 

10.5.4. Second Water Flooding. A 1% NaCl was injected again at same injection  

rate after PPG treatment to examine the gel blocking efficiency to high permeability. PPG 

performance to improve oil recovery from low permeability was also determined. 

10.5.5. HCl Soak Treatment. A very small amount of 10% HCl was injected into 

 both sand packs model for mitigating the gel cake formed on surface of low permeability 

sands. A 0.1 PV was injected at 1 ml/min into sand packs. The model was remained for 

acid soaking purpose for 12 hr. 

10.5.6. Third Water Flooding. Same brine concentration was injected again at 

 1 ml/min after the soaking HCl time. The injection pressure was monitored during the 

third water flooding to determine the effect of HCl on minimizing/removing gel cake on 

low permeability zones. The injection pressure also measured for high permeability to 

determine any side effect on the blocking efficiency of PPG to the high permeability 

zones. Fluid productions at each sand pack was collected during the water flooding. Brine 

was injected until no oil produced at outlets and injection pressure became stable. 
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The above procedures were repeated for each experiment. The oil recovery factor 

and injection pressure were both determined for the low and the high permeability sand 

pack models. 

 

10.6. RESULTS AND ANALYSIS 

10.6.1. Injection Pressure Measurements. The injection pressure of the first  

water flooding, the PPG injection, the second water flooding, and the third water flooding 

of the three layer permeability contrast are plotted in Figures 10.3,10.4, and 10.5.  

 The injection pressure drop measured for the low and high permeability layers 

was a little bit low. The pressure became stable for both permeabilities when 

approximately 2 PV of brine was injected.  Most of the water injection pressure for the 

three permeability contrast became stable at approximately 0.5 psi. 

PPG pressure increased sharply in the both low and high permeability layers. It 

was, however, less in low permeability layers. This finding indicate that a considerable 

amount of PPG flew into the high permeability layers and a small amount of gel particles 

flew into the low permeability layers. The PPG injection pressure for most permeability 

contrasts reached above 5 psi (approximately 10 times increased than pressure recorded 

in first water flooding).  

During the second water injection, water injection pressure was declined after the 

PPG treatment. It became stable after approximately 0.5 PV of water injection. The 

second water injection pressure was still greater than injection pressure measured during 

the first water flooding. The injection pressure after PPG injection pressure was increased 

between 5 and 20 times.  
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The third water cycle was injected after the HCl was injected and soaked into the 

non-cross flow heterogeneity. The water injection pressure declined sharply at the early 

stage of the third water injection. At this early water injection pore volume, the injection 

pressure was dropped into the original injection pressure. The injection pressure began 

gradually increased when the water injection pore volume increased. This increase in 

pressure was due to the PPG re-swelling mechanisms (Imqam et al. 2014). The injection 

pressure continue to rise until finally became stable. In most cases, pressure became 

stable after 2 PV water injection. The injection pressure was lower than previous 

injection pressure recorded in the second water flooding at the end of third water 

flooding.  

The injection pressure measured for the high permeability layer was still higher 

than the injection pressure measured for the low permeability layers. Thus, HCl was 

effectively used to reduce the gel damage caused to low permeability layers. It had less 

effect on the conformance control results for the high permeability layers.  
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Figure 10.3—Injection pressure for permeability contrast ratio of 44. 

 

 

Figure 10.4—Injection pressure for permeability contrast ratio of 20. 
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Figure 10.5—Injection pressure for permeability contrast ratio of 4. 

 

10.6.2. Oil Recovery Measurements. The oil recovery curves of the first water  

flooding, the PPG injection, and the second water flooding of the three layer permeability 

contrast are plotted in Figures 10.6, 10.7, and 10.8. The oil recovery was determined for 

low and high permeability layers as a function of pore volume injection.   

In the initial water flooding stage, a large volume of oil was recovered from the 

high permeability layers while a very small volume of oil was recovered from the low 

permeability layers. The recoverable oil volume from the low permeability decreased 

substantially as the permeability contrast ratios of sand packs increased. The recovery 

factors for permeability contrast ratios of 4, 20, and 44 were 20, 1.9, and 0.9, 

respectively.  
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a) Oil recovery for  Low k ( 0.45 Darcy)                                  b) oil recovery for High k ( 20 Darcy) 

Figure 10.6—Oil recovery for permeability contrast ratio of 44. 

 

 

a) Oil recovery for Low k (1Darcy)                          b) Oil recovery for High k (20 Darcy) 

Figure 10.7—Oil recovery for permeability contrast ratio of 20. 
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a) Oil recovery for Low k (6.1 Darcy)                        b) Oil recovery High k (22 Darcy) 

Figure 10.8—Oil recovery for permeability contrast ratio of 4. 
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low permeability layers at permeability contrast ratios of 4, 20, and 44 was increased to 

93, 61, and 38, respectively.  

Third water flooding was performed to identify if there were any oil can be 

produced from the treated low permeability layers. A considerable amount of oil was 

produced during the third water flooding after acid stimulation. The oil produced from 

the low permeability layers was greater than the oil produced from the high permeability 

layers. The oil recovery increased by 5 to 30% for permeability contrast ratio of 44 and 

20, respectively. In the permeability contrast ratio of 4, the water injection could not gain 

any oil improve from both the low permeability layer and the high permeability layers. 

This change in oil recovery could be explained as a result of the different gel damage 

level/percentage caused to the low permeability layers. The injection pressures 

measurement indicated a large increased in the injection pressure for large contrast 

permeability ratio. While a small injection pressure was for the low contrast permeability 

ratio. The higher damage ratio would be formed in large permeability contrast ratio than 

that in small permeability contrast ratio. This damage was caused by propagating gel 

particle into the low permeability layers. It formed a gel cake into their sand surfaces. 

Consequently, such damage decreased the chance to produce more oil from these zones 

during the second water flooding. As the gel cake was removed by the acid stimulation, 

oil began to produce from these stimulated layers as shown in the large permeability 

contrast ratio.  
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10.6.3. Evaluate PPG Blocking to High and Low Permeabilities. The obtained 

 results indicated that PPG not only propagated to seal the high permeability layers, but 

also there was a portion of PPG propagated into low permeability layers as well. This 

section discusses the effects of PPGs on reducing both low and high permeabilities layers 

during a gel treatment. These effects can be investigated by measuring the low 

permeability and high permeability layers before and after the PPGs treatment. Blocking 

efficiency provides a quantitative percentage values on the permeability reduction created 

by PPG injections. The blocking efficiency results used to determine whether or not large 

amounts of gel was propagated into low permeability layers. 

Water injection stable pressure measured before and after the PPG treatment were 

used to determine the PPG’s blocking in both high and low permeability sand packs (see 

Table 10.1). The results indicate that the PPG’s blocking efficiency was larger in the high 

permeability layers than it was in the low permeability layers. At a permeability contrast 

ratio of 44, the blocking efficiency was 99% in the high permeability layers and 94% in 

the low permeability layers. The blocking efficiency was consistence with the oil 

recovery results; it increased as the permeability contrast ratio increased. Therefore, 

better conformance results would be achieved for sever heterogeneity formations.  

The results gathered also indicate that the low permeability sand pack was hurt 

during the PPG injection. Hydrochloric acid was soaked near the sand face to mitigate the 

gel blocking to low permeable sand.  Based on previous study (Imqam et al. 2015), very 

small amount of HCl could be used to remove gel filter cake damage. Therefore, a 0.1 PV 

of 10% HCl was soaked into the cross flow heterogeneity model. The third water 

flooding was injected at a rate of 1 ml/ min to determine the improvement in low 
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permeability. The Pressure data shown in Table 10.1 (fifth column) was measured during 

the third water flooding after the acid stimulation. PPG blocking to the low permeability 

was reduced for all permeability contrast ratios. This reduction was more visible in the 

permeability ratio of 4; it decreased by approximately 10% after the sand was soaked 

with acid. The PPGs blocking efficiency in the high permeability layers was, however, 

reduced insignificantly. This insignificant change indicates that HCl influences on the 

conformance results obtained for the high permeability layers was very little. 

 

Table 10.1—A PPG’s water blocking efficiency after PPG and HCl.  

Permeability 

 Contrast 

Ratio 

Absolute 

Permeability 

(Darcy) 

Pressure  Frrw  Blocking Efficiency, % 

before 

Gel 

 after 

Gel 

after 

Acid 

after 

Gel 

after 

Acid 
After Gel  after Acid  

44 
High 22.1 0.05 5.16 4.04 103.2 80.8 99 98.7 

Low 0.5 0.26 4.54 3.9 17.4 15 94 93 

20 
High 22.4 0.2 6.83 6.7 34.15 33.5 97 97 

Low 1.1 0.4 6.83 6.7 17.07 16.7 94 94 

4 
High 21.7 0.2 1.52 0.99 7.6 4.95 86 79 

Low 6.2 0.24 1.53 0.86 6.37 3.58 84 72 

 

10.7. CONCLUSION 

This section examined the effectiveness of combined PPG and HCl to 

improve oil sweep efficiency and study the side effect of HCl on the PPG blocking 

efficiency to the high permeability layers. The following conclusion can be drawn from 

this section. 



323 

 

 

• A considerable oil recovery incremental was observed from the low 

permeability layers after the acid treatment. HCl mitigated the gel filter 

cake formed on low permeability and as a result oil recovery was 

improved.  

• PPG blocking to the high permeability sand was larger than PPG blocking 

to the low permeability sand. The blocking efficiency was increased with 

increased in the permeability contrast ratio. 

• Hydrochloric acid was able to mitigate the PPG blocking to the low 

permeability. It’s capability to mitigate the gel filter cake was improved 

when the permeability ratio was increased. HCl did not hurt too much the 

conformance result in the high permeability. 
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11. A COMBINATION BETWEEN CONFORMANCE TREATMENT AND 

MOBILITY CONTROL TO IMPROVE OIL RECOVERY 

 

11.1. INTRODUCTION  

Gel treatments have a very different objective than the traditional polymer 

flooding. However, both treatments were ultimately intended to improve sweep 

efficiency. In the traditional polymer flood, we want to see the injected the polymer 

solution penetrates as far as possible into the low permeability un-swept zones. In 

contrast, in gel treatment, we want to see the gel penetrates as far as possible into high 

permeability and much less into low permeability. 

Therefore, a heterogeneity model was built from two parallel tubes have the same 

diameter and length packed with different sand grain sizes. It was built to emulate the low 

and high permeabilities layers in reservoirs. PPG was injected to plug high permeability 

swept zones and then polymer was injected to recover more oil from the low permeability 

un-swept zones.  

 

11.2. OBJECTIVES AND TECHNICAL CONTRIBUTIONS 

 This work was aimed to study the mechanism of combined three technologies, 

namely conformance control, stimulation treatments, and mobility control to produce 

more oil from swept and un-swept zones by evaluating the following: 

• Compare oil recovery obtained from heterogeneity model before and after 

introduced the gel treatment with results obtained after polymer flooding. 
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• Study the effect of water injection pressure after the polymer flooding for both 

high and low permeabilities.  

• Determine the water cut change during the four water flooding: initial water 

flooding, second water flooding after gel treatments, third water flooding after 

acid treatments, and forth water flooding after polymer flooding. 

• Results obtained from this study will prompt using PPG as conformance material 

with polymer to correct the heterogeneity and improve the mobility to increase oil 

recovery from both swept and un-swept formations. 

 

11.3. EXPERIMENTAL DESCRIPTION 

11.3.1. Preformed Particle Gel. A superabsorbent polymer was used as a  

PPG to conduct these experiments. Dry particles with a mesh size of 170-200 (90-75 

microns) were swollen in a 1% Sodium Chloride (NaCl) brine concentration. Gel 

concentrations of 2000 ppm was used. 

11.3.2. Brine Concentration and Oil Viscosity. A 1 wt% NaCl solution was 

used for brine flooding. It was also used to prepare swollen PPGs. Heavy oil with a 

viscosity 195 cp at 70 °F was used to saturate the sand pack model. 

11.3.3. Hydrochloric Acid (HCl). HCl was diluted with distilled water to obtain  

a concentrations of 10%. A 0.1 PV (High K) of HCl acid was injected to be soaked near 

the sand face for both k. 

11.3.4. Polymer. High molecular weight polyacrylamide (FLOPAAM 3630 S, 18  

million Dalton) from SNF Floerger company was used. Polymer concentration was 1000 

ppm prepared in 1% NaCl brine. 
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11.3.5. Magnetic Stirring Vessel. An accumulator with a1200 ml capacity and  

A maximum adjusted impeller speed of 1800 r/min was used to inject PPGs into a high 

permeability sand pack model. The impeller was placed at the bottom of the accumulator 

to keep PPG dispersed in brine before it was injected into the model. 

11.3.6. Sand Packs. Three sizes of silica sand were used to obtain different  

permeability contrasts between the models. Mesh sizes of 18-20, 50-60, and 100-120 

were used to obtain low and high permeability sand packs. Silica sand was packed into 

two separate tubes that had the same length and area.  

 

11.4. EXPERIMENTAL SETUP 

The experimental setup used in this experiment is shown in Figure 11.1. It 

constructed of two same tubes dimensions (20 cm in length and 2.7 cm in diameter) were 

used to contain the silica sand pack.  Two horizontal (parallel in position) tubes were 

packed with different sand grains to emulate the permeability contrast exist in reservoirs. 

A syringe pump was used to inject suspended PPG, brine, oil, HCl, and polymer from the 

accumulators into the sand pack models. Two pressure transducers were mounted in front 

of each sand pack model to acquire the injection pressure change during the brine 

flooding and gel treatment processes. The test tubes were kept at the outlets of each sand 

pack to collect the volume of the fluid produced at the effluents. 
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Figure 11.1—Schematic diagram of combined treatment techniques apparatus. 

 

11.5. EXPERIMENAL PROCEDURES  

The procedures for carrying out the non-cross flow heterogeneity experiments 

were briefly described as follows: 

11.5.1. Preparing and Saturating Sand Pack Models. A vibrator machine was  

used to prepare the different sizes of silica sand so that the desire sand pack permeability 

could be obtained. Sand pack models were vacuumed for at least 6 hr. It then fully 

saturated with 1% NaCl to determine pore volume, porosity, and permeability.  

Heavy oil viscosity was injected from the accumulator into each sand pack at a 

rate of 1 ml/min. Oil was injected until no water was produced and the injection pressure 

became stable. Both sand pack permeabilities (low and high) are connected to each other 

as shown in Figure 11.1 and then water flooding cycles began as follows. 
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11.5.2. First Water Flooding. A 1% NaCl was injected into both low and high  

permeabilities at a rate of 1 ml/min to simulate secondary oil recovery conditions. During 

the first water flooding, both oil recovery and water cut were determined for low and high 

sand pack permeability layers.  

11.5.3. PPG Treatment. Swollen PPGs in 1% NaCl with a concentration of 2000 

 ppm were injected into the sand packs at a rate of 1 ml/min after the first water flooding 

processes were complete. During 0.5 PV of PPG injection treatment, volume of oil and 

water production were collected. The gel injection pressure was also recorded to 

determine the gel propagation response into low and high permeability layers.  

11.5.4. Second Water Flooding. A 1% NaCl was injected again at the same 

 injection rate after PPG treatment to test the gel blocking efficiency for high 

permeability. Oil recovery measurements from low permeability or un-swept zones were 

also determined.  

11.5.5. HCl Soak Treatment. A very small amount of 10% HCl was injected into 

 both sand packs model for mitigating the gel cake formed on surface of low permeability 

sands. A 0.1 PV was injected at 1 ml/min into the sand packs. Sand packs was kept for 

12hr for HCl soaking purpose. 

11.5.6. Third Water Flooding. A 1% brine concentration was injected again at 1 

 ml/min after the soaking HCl time period. The injection pressure was monitored during 

the third water flooding to determine the effect of HCl on minimizing/removing gel cake 

from low permeability zones. Fluid production at each sand pack effluents was collected 

during the water flooding.  
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11.5.7. Polymer Flooding. Polymer was injected into both sand packs at 1  

ml/min. A 1 PV of polymer was injected. The injection pressure and fluid production at 

effluent were both recorded during polymer flooding. 

11.5.8. Final Water Flooding. The final patches of water flooding was injected 

at 1 ml/min into both sand packs after polymer flooding. The injection pressure, oil 

recovery, and water production were all recorded for each sand pack permeability. Brine 

was continued injected until no oil produced at outlets and injection pressure became 

stable. 

The above procedures were all repeated for each experiment. The oil recovery 

factor, the water cut, and the injection pressure were each determined for the low and the 

high permeability sand pack models. 

 

11.6. RESULTS AND ANALYSIS  

11.6.1. Oil Recovery Measurements.   The oil recovery curves of the water 

 flooding recycles, the PPG injection, and the polymer flooding of the three layer 

permeability contrast are plotted in Figures 11.2, 11.3 and 11.4. The oil recovery was 

determined for low and high permeabilities as a function of the pore volume injection.   

 In the initial water flooding stage, a large volume of oil was recovered from high 

permeability layers compared to a very small volume of oil was recovered from low 

permeability layers. The recoverable volume from the low permeability layers decreased 

substantially as the sand pack permeability contrast ratios increased. 
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                 a) Low permeability of 0.5Darcy.                         b) High permeability of 20 Darcy. 

Figure 11.2—Oil recovery for permeability of 0.5 Darcy and 20 Darcy. 

 

   

            a) Low permeability of 1 Darcy.                                b) High permeability of 20 Darcy. 

Figure 11.3—Oil recovery for permeability of 1 Darcy and 20 Darcy. 
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                a) Low permeability of 6.1 Darcy.                      b) High permeability of 21 Darcy. 

Figure 11.4—Oil recovery for permeability of 6.1 Darcy and 21 Darcy. 
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recovery factor obtained from the low permeability at permeability contrast ratio of 4, 20, 

and 44 was increased to 93, 61, and 38, respectively.  

 Results also show a considerable amount of oil was produced during the third 

water flooding after the acid stimulation. Oil produced from the low permeability layers 

was much greater than the oil produced from the high permeability layers. Oil recovery 

increased by 5 to 30% for the heterogeneity models which have permeability contrast 

ratio of 44 and 20, respectively.  

 The oil recovery did not increased too much during polymer flooding for both low 

and high permeability. For instance, in permeability ratio of 22, oil recovery increase was 

approximately 5% from high permeability. This low percentage might be occurred 

because of the small polymer volume injected into the sand faces. 

 Final water cycle was injected into the heterogeneity model to determine the 

efficiency of combined PPG with polymer to increase oil recovery. A significant increase 

in the oil recovery was noticed during the fourth water flooding for both low and high 

permeabilities layers. In most permeability contrast ratios, a higher oil recovered was 

from low permeability layers than it was in high permeability layers. In permeability 

contrast ratios of 44, 20, and 4 the oil recovered incremental from the low permeability 

layers was 35, 2, and 5%, respectively while, in high permeability was 17, 11, and 0%, 

respectively.  

 At the end of this final cycle of water flooding, the final oil recovered from most 

permeability contrast ratios reached 80% from each low and high permeability layers. 

Most interestingly, the oil recovered from the low permeability layers was exceed the oil 

recovered from the high permeability layers.  
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11.6.2. Water Cut Measurements. The water cut curves obtained during the  

water flooding cycles, the PPG injection, and the polymer flooding of the three layer 

permeability contrasts are plotted in Figures 11.5, 11.6, and11.7.  

During the first water flooding, large differences in the water cut were observed 

between the low and the high permeability packs. As shown by water cut curves, the 

water cut in the high permeability was higher than 90% while, in the low permeability 

packs was between negligible percentage and 0%.  

As PPG started to inject into non cross flow heterogeneity model, the water cut in 

low permeability layers began to increase. The water cut in the low permeability rose 

significantly more during this water flooding than the previous water flooding.  

When the water flooding is resumed again, the water cut began to decrease in the 

high permeability layers and increase in the low permeability layers. Water cut was 

fluctuated between approximately 70 and 80% in the beginning. It rose above 90% at the 

end of water flooding.  

Water was injected again into the non-cross heterogeneity model after the acid 

treatment. Water cut was not effected too much with acid treatment.  

Reduction in water cut was observed in both high and low permeabilities layers in 

the permeability ratio of 20 during the polymer flooding. The water cut dropped to 80% 

when the sand pack model was flooded with high viscous polymer. Other permeability 

ratios did not show any reduction in water cut.  

A final patches of water injection were performed after the polymer flooding. A 

considerable dropped in water cut was determined for the permeability ratio of 44.  Water 

cut decreased for both high and low permeability layers. Water cut decreased to 88, 75, 



334 

 

 

and 86% for the permeability ratios of 44, 20, and 4, respectively. It returned back into 

100% at the end of water flooding processes. Decrease in water cut from high 

permeability layers was less than water cut decrease from the low permeability layers. 

These drops in water cut caused an increase of oil recovery from these layers. 

 

 

Figure 11.5—Water cut for permeability of 0.5 Darcy and 20 Darcy. 
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Figure 11.6—Water cut for permeability of 1 Darcy and 20 Darcy. 

 

 

Figure 11.7—Water cut for permeability of 6.1 Darcy and 20 Darcy. 
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11.6.3. Injection Pressure Measurements.   The injection pressures during the 

water flooding cycles, the PPG injection, and the polymer flooding of the three layer 

permeability contrast are plotted in Figures 11.8, 11.9, and 11.10.  

The pressure drop during the first water flooding was slightly different at each the 

low and high permeability. These differences in pressure is expected because the 

difference in permeability between the layers.  

The PPG injection pressure rose significantly more than the previous water 

flooding. It increased sharply in the both the low and the high permeability layers. It was 

less in low permeability layers.  

During the second water flooding, water injection pressure began to decline after 

the PPG treatment. It became stable after around 0.5 PV. The second water injection 

pressure, however, was higher than injection pressure recorded during the first water 

flooding.  

Polymer was injected into both the non-cross flow heterogeneous permeability 

layers. The injection pressure for all the permeability contrast ratios was increased much 

higher than the injection pressure measured during the prior water flooding. 

The final water cycles was performed after polymer flooding was complete. The 

injection pressure declined for all the permeability contrast ratios. In the permeability 

contrast ratio of 44, injection pressure was higher than pressure recorded at prior water 

flooding. But it was similar to pressure change in the second water flooding. While, in 

permeability contrast of 4, injection pressure was in the same pressure change with 
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injection pressure measured in the prior water flooding. At the end of final water 

flooding, the injection pressure get back to the original pressures.  

 

 

Figure 11.8—Injection pressure for permeabilities 0.4 Darcy and 20 Darcy. 
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Figure 11.9—Injection pressure for permeabilities 1 Darcy and 20 Darcy. 

 

 

            Figure 11.10—Injection pressure for permeabilities 6.1 Darcy and 21 Darcy. 
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11.7. CONCLUSION 

• Combined PPG with polymer enhanced the oil recovered from both low and high 

permeability layers but more oil recovered was in low/un-swept layers. Oil 

recovery increased by approximately 25% from the low permeability layer and 

approximately 10% from the high permeability layers. 

• Water cut decreased for both high and low permeability layers after polymer 

flooding. But water cut reduction from the low permeability layers was more 

pronounced than it was from the high permeability layers. 

• The injection pressures measured after polymer flooding for all the permeability 

contrast ratios were greater than injection pressure measured after acid treatment 

but they were still close or less than injection pressure measured after PPG 

treatment. 
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12. CONCLUSIONS & RECOMMENDATIONS 

 

12.1. CONCLUSIONS 

 This dissertation provide an extensive laboratory work to evaluate PPG treatment 

as a cost effective method to control excessive unwanted water production and improve 

sweep oil efficiency. The study provide a comprehensive evaluation work on PPGs 

injection, mechanisms, and placement in different porous media models namely: 

fractures, conduits, channels, super-K permeability cores, heterogeneity cores, and low 

permeability cores. The research involved using PPG as a conformance control material 

with other techniques such as stimulation treatment using Hydrochloric acid and Mobility 

control using polymer. The major findings collected during this study are sorted below 

based on the discussed topics as follow: 

i. Effect of a Gel Pack on Oil and Water Flow.  A swollen PPG was placed in a 

large channel and cycles of brine and oil were injected through the gel to evaluate 

PPGs resistance to water flow. 

• PPGs formed a gel pack permeability with in channel rather than fully blocking it. 

Gel resistance to water flow improved when larger particles and stronger gel 

strengths were selected. The PPG pack was compressible; its compressibility 

decreased as the load pressure increased 

• PPG pack permeability measurements taken at different brine concentrations, 

particle sizes, and oil viscosities were not followed Darcy law. Instead, the 

measurements revealed that the PPG was velocity dependent, followed a 
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nonlinear relationship. PPG permeability was dependent on not only the velocity 

of the brine injected but also the elasticity index of the gels used. 

• Particles reduced the permeability to water much more than that to oil. The 

particle gels were less resistant to high viscosity oil than they were to low 

viscosity oil. 

ii. Evaluate The Effectiveness of Using Acid to Remove Gel Cake. In this topic, 

the factors effect on forming gel damage cake, the interaction between PPG and 

HCl, and the permeability reduction and the retained after gel and acid treatments 

were all evaluated.  

• PPG formed a permeable surface gel cake on the low-permeability cores. The 

formation of a gel cake significantly reduced the permeability when the brine 

concentration was low and the rock permeability was high. 

• Hydrochloric acid effectively removed the gel cake damage that formed on 

low-permeability zones. 

• The PPGs did not swell significantly after the HCl treatment when they were 

flushed with different cycles of brine. This low swelling ratio decreased the 

PPG’s chance of damaging low-permeable cores. 

iii. Particle Gel Propagation through Open Conduits. Swollen PPGs in different 

brine concentrations were injected into different internal diameters to determine 

the passing/blocking criteria for PPG injection. 

• Two new empirical correlation models were successfully developed to predict 

both the PPG resistance factor and the stable injection pressure. 
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• Weak gels can be injected into large particle openings ratio with relative small 

increase in injection pressure compared to strong gels. Weak gels broke into 

small sizes allowing them to pass through easily.  

• PPG strength impacted the injectivity significantly more than did the particle 

opening ratio. Its size was reduced when it moved through the conduits due to 

dehydration and breakdown. 

iv. Disproportionate Permeability Reduction through Conduits. In this subject, 

different cycles of brine and oil were injected through PPG filled closed fractures. 

It aims to determine how much PPG reduced water permeability much greater 

than oil permeability. 

• The permeability reduction factor to water became 100 to 1700 times greater 

than the permeability reduction factor to oil. 

• A different disproportionate permeability reduction mechanisms of the 

particle gel was investigated. The gel strength greatly affected the DPR and is 

an important parameter that should be considered in PPG design. 

v. Micron-size Particle Gel Propagation through Super K Permeability 

Systems.  A suspended swollen PPG was injected into super k sand pack models 

to monitor gel propagations and performance to increase oil recovery and 

decrease water production. 

• Fully swollen gel particles have a better injectivity than partially swollen 

particles with larger diameter sizes; particle strength is more dominant particle 

movement than particle size. 
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• A large PPG injection pore volume was needed to reach effluent when high 

water salinities, big particle sizes, and low PPG concentration were used. 

• The PPGs reduced the permeability to water much more than they reduced the 

permeability to oil during all of the injection flow rates. Its blocking 

efficiency to water flow increased significantly as the PPGs strength, size, and 

concentration increased. 

• A large oil recovery incremental, typically reached near 20%, occurred during 

the PPGs injection treatment. Oil recovery during the PPGs injection varied 

according to the PPGs injection pore volume, concentration, and strength. 

vi. Gel Propagation Effect on Non-Cross Flow Reservoir Heterogeneity. This 

topic discussed the effect of use PPG to correct the non-cross flow heterogeneity 

problems to improve sweep efficiency and increase oil recovery from un-

swept/low permeability formations. 

• Large incremental oil recovery from low permeability sand pack after PPGs 

treatment. This increase in oil recovery was strongly dependent on the 

permeability contrast ratio. 

• The use of PPG to correct non cross flow heterogeneity problem became more 

effective when the sand pack permeability layers became more heterogeneous. 

vii. Gel Propagation Effect on the Cross Flow Reservoir Heterogeneity. A novel 

experiments were used to evaluate the use of the diversion materials using PPG to 

improve oil recovery in cross flow heterogeneity formations. An acid treatment 

using HCl was involved in the evaluation process to mitigate the gel filter cake 

formed on the low permeability zone. 
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• A significant increase was noticed in oil recovery during PPG treatment. Oil 

recovery increased was dependent on the changes that occurred in PPG slug 

and the heterogeneity level between layers.  

• A stimulation treatment was used after PPG treatment retained the injection 

pressure to the original situation, before the PPG treatment was introduced. 

viii. A Combination of Stimulation and Conformance Treatments to Improve Oil 

Recovery. This part of research introduced the use of combing HCl and PPG to 

improve conformance control results obtained from the non-cross flow 

heterogeneity formations. HCl proposed to remove gel filter cake formed on 

surface of low k during gel treatment to increase oil recovery during post water 

flushes process.  

• The HCl was used successfully to mitigate the gel filter cake formed. The gel 

blocking efficiency in the large permeability cores did not hurt too much with 

acid treatment. 

• The amount of oil recovered typically reached 5% after the acid treatment. 

This increase in oil production caused by increased the amount of water 

injection into low permeability. 

ix.  A Combination of Conformance Treatments and Mobility Controls to 

Improve Oil Recovery. This work investigated the useful techniques of 

combining PPG with polymer to improve oil recovery from both low and high 

permeability zones. The PPGs were injected into high permeability zones to 

improve the sweep efficiency in low permeability zones and polymer was injected 

next to further increase oil production from both low and high permeability.  
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• The combination techniques show a very good promising results where 

oil recovery in some experiments increased to more than 20% from low 

permeability cores. 

 

12.2. RECOMMENDATIONS FOR FUTURE WORK 

 The ultimate objective of this dissertation was to provide a comprehensive and 

systematic study into designing better particle gel treatments intended for use in large 

permeability features such as fractures and high permeability streaks to increase oil 

recovery and reduce water production. The following are suggestions for future work to 

extend the outcomes of the current research: 

• During this study PPG was investigated heavily in both open fractures and super-

K permeability systems. Additional work is needed to determine factors that 

affects a PPGs injections and placement through closed fractures features. 

• Further work is need to evaluate PPG use to correct the non-cross flow 

heterogeneity problems. The impact of gel strength, concentration, and slug 

volume should be investigated. 

• The current work introduced combing PPG with other techniques such as 

stimulation and mobility controls. However, further investigation should be 

performed to better understand oil recovery changes when polymer are used either 

alone or in combination with gel. 
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